Hazard	Measure	Implementation cost	Hazard mitigation value	Implemer -ation time	nt Life span	Expected impact	Examples of application
Flood	Riparian forests	\$10,000 to \$30,000 per acre ¹ ; \$20,000 to \$40,000 per acre ² ; From \$4,000 to almost \$8,000 per mile (average \$5,000 per mile, or \$110 per acre) ³ ;	0-24\$/ha4	50-100 years ⁵		30-40% for conifers; 10-20% for broadleaves ⁶ ; uplands 15-20%; lowlands 75+% ⁷ +/-10-15% ⁸ ; 2.2 km reach raised flood storage by 71% and delayed the flood peak by 140 min in an 80 km ² catchment ⁹ ; 977 m ³ /ha ¹⁰	River Cary catchment/ Somerset ¹¹ Mount Cameroun ¹²
Flood	Wetlands	\$10,000 – \$20,000/acre ^{13 14 15}	Around \$475/ha/year ¹⁶ \$11,7887/ ha/year ¹⁷	Three years or more ¹⁸		1 acre wetland -> 3 acre feet of water ¹⁹	Egå Engsø, Denmark ²⁰ Danube River ²¹
Flood, coastal inundation, storm surge	Coral reefs	\$20 to \$155,000 per meter (median \$1,290 per meter ²² 1 ha/US\$80000 (2010) and US\$1600000 (2010) ²³	 \$ 189,000 /ha/year (global) ²⁴ \$ 700,000 - 2.2 billion per year (Caribbean)²⁵ \$2,000/ square kilometer/year (American Samoa) ²⁶ 	0.3 – 5 years ²⁷		Coral reefs: 97% ; Reef crests alone (86%) ²⁸ St.Lucia: Coral reefs protecting 40% of island's shoreline ²⁹	Florida and U.S. Virgin Islands ³⁰
Flood	Closure gates	\$3 billion ³¹ 0.5 – 2.5 million € ³²	\$ 94 million at 2002 ³³	15 years ³⁴	25 years ³⁵	Chance of exceeding water level of 3,60m is reduced from once every 100 years on average to once every 10,000 years on average. ^{36 37}	Venice, Italy ³⁸ ; Thames barriers, London ³⁹
Flood	Dykes, levees, revetments, seawalls	 €270/metre to \$11,200/metre ⁴⁰; Netherlands: 4 - 11 million € per km per m heightening (rural areas); 	Safety level 1/500: 1997 million € ; Safety level 1/1250: Median 2809 million €; ⁴⁵	5-25 years ⁴⁶	50 to 100 years ⁴⁷ ; 30 years ⁴⁸		Netherlands ⁴⁹ , Vietnam ⁵⁰

		 14 - 22 million € per km per m heightening (urban areas)⁴¹ 4 - 8 million € per km per m heightening⁴² Vietnam: 0.7 - 1.2 million € per m heightening for a km stretch, maintenance: 0.02 million €/km dike/year ⁴³; Low river dike: 3 million €/km; High river dike: 5 million €/km; Estuarine dike: 5 million €/km; Coastal defence: 7.5 million €/km 					
Flood, coastal and riverbank erosion	Groynes/Bre akwaters	€4,500/metre ⁵¹ Netherlands: EUR 3,000 to 15,000/Meter (Groyne) & EUR 10,000 to 50,000/meter (Breakwater) ⁵² Vietnam: 11.850.000 US\$ per masonry (average) ⁵³		Groyne: 2 months for one masonr y (Vietna m) ⁵⁴	Breakwaters: 30-50 years Wooden groyne: 10-25 years Groynes made of gabions 1-5years ⁵⁵	Three scenarios ⁵⁶	Danish North sea coast ⁵⁷ Vietnam, Mekong ⁵⁸
Flood	Pump stations	\$500,000 to \$5,000,000 ⁵⁹			Pump station equipment: 20 to 30 years Pump station structures: 50 years ⁶⁰	 2.75 times the normal dry weather flow ⁶¹; 30 tons of water per second ⁶²; 76 lpm (20 gpm) - 378,500 lpm (100,000 gpm) ⁶³ 	York, UK ⁶⁴ Winnipeg, Canada ⁶⁵
Flood, inundation, flood wave attenuation, tsunami	Mangroves	\$91,66/ha (Vietnam) ⁶⁶ USD\$ 225-216,000/ha ⁶⁷	\$7.3 million/year ⁶⁸ ; US\$ 300,000/ km ⁶⁹	1508,33 ha per year ⁷⁰ 560 ha/year (Vietna m) ⁷¹	15-30 years 72	40–50 cm/km ⁷³	Vietnam ⁷⁴

Flood, inundation, coastal erosion	Beach nourishment	 € 3-4 per m³ (foreshore nourishment) € 7-8 per m³ (beach nourishment) € 11 per m³ (South Africa) ⁷⁵
Flood	Floodbox	\$500,000 ⁷⁶
Flood	Rip-Rap	\$50/m³ ⁷⁷
Flood	Tidal marsh	\$7,500/acre ⁷⁸

¹ **Forest restoration and enhancement** (establishment of native trees species, establishment of missing vegetative strata) <u>http://crwp.org/files/floodplain restoration sw management march 2009.pdf</u>

² **Reforestation** (res-establishment of appropriate forest communities through planting of areas that have been cleared) <u>http://crwp.org/files/floodplain_restoration_sw_management_march_2009.pdf</u>; <u>http://www.zentner.com/images/journal_articles/wetlandandriparianwoodlandrestorationcosts.pdf</u>

³ (Riparian reforestation; only cost for the trees) https://www.st.nmfs.noaa.gov/st5/Salmon Workshop/11 Bair.pdf

⁴ Flood protection, valued at value of avoidable crop and tree losses, Mount Cameroun) <u>https://www.cbd.int/doc/external/academic/forest-es-2003-en.pdf</u>

⁵ For riparian forest restoration http://link.springer.com/article/10.1007/s00267-001-0066-3

⁶ Reduced net rainfall under woodland due to interception loss http://www.forestry.gov.uk/pdf/ClimateChangeSeminars Floods YH 140507.pdf/\$FILE/ClimateChangeSeminars Floods YH 140507.pdf

⁷ Runoff reduced for conifers <u>http://www.forestry.gov.uk/pdf/ClimateChangeSeminars_Floods_YH_140507.pdf/\$FILE/ClimateChangeSeminars_Floods_YH_140507.pdf</u>

⁸ But marginal change for broadleaves

http://www.forestry.gov.uk/pdf/ClimateChangeSeminars_Floods_YH_140507.pdf/\$FILE/ClimateChangeSeminars_Floods_YH_140507.pdf

⁹ Establishing floodplain woodland

http://www.forestry.gov.uk/pdf/ClimateChangeSeminars Floods YH 140507.pdf/\$FILE/ClimateChangeSeminars Floods YH 140507.pdf

¹⁰ Additional temporary flood storage by flooplain woodplain

http://www.forestry.gov.uk/pdf/ClimateChangeSeminars Floods YH 140507.pdf/\$FILE/ClimateChangeSeminars Floods YH 140507.pdf

¹¹ http://www.forestry.gov.uk/pdf/ClimateChangeSeminars_Floods_YH_140507.pdf/\$FILE/ClimateChangeSeminars_Floods_YH_140507.pdf

¹² <u>https://www.cbd.int/doc/external/academic/forest-es-2003-en.pdf</u>

¹³ Freshwater marsh

http://www.zentner.com/images/journal_articles/wetlandandriparianwoodlandrestorationcosts.pdf

¹⁴ Accurate cost estimates are important for budgeting to cover all anticipated project costs, including monitoring and reporting, and that the lack of accurate budgeting has led to many projects being underfunded http://www.aswm.org/wetland-science/planning-design/restoration-costs

¹⁵ By using results from prior wetland valuation studies, they also estimated the average economic costs from restoration lags in Ohio and Colorado at \$16,640 and \$27,392 (US\$2000), which are equivalent to 25% and 49% of the total restoration costs, respectively http://www.sciencedirect.com/science/article/pii/S0169204608001448

¹⁶ For flood control (average) http://www.wetlandprotection.org/estimate-wetland-values.html

¹⁷ (Luznice floodplain; Czech Republic) <u>https://collections.unu.edu/view/UNU:1995#viewAttachments</u>

¹⁸ <u>https://fortress.wa.gov/ecy/publications/documents/93017.pdf</u>

¹⁹ One acre (4046.85m²) of wetland can usually store about three acre (12140.56m²) feet of water, or one million gallons (3785411.78 liters) https://www.epa.gov/sites/production/files/2016-02/documents/flooding.pdf

²⁰ <u>http://www.circle-era.eu/np4/%7B\$clientServletPath%7D/?newsId=432&fileName=BOOK_150_dpi.pdf</u>

²¹ <u>https://www.icpdr.org/main/publications/new-partnership-wetland-restoration</u>

²² The costs of structural coral reef restoration projects were \$20 to \$155,000 per meter with a median project cost of \$1,290 per meter. On average, reef restoration was significantly less expensive than building tropical breakwaters (Typical costs of building tropical breakwaters ranged from \$456 to \$188,817 per meter with a median project cost of \$19,791 per meter. These values were largely derived from U.S. Army Corp of Engineers projects.

https://www.wavespartnership.org/sites/waves/files/kc/Technical%20Rept%20WAVES%20Coastal%202-11-16%20web.pdf http://www.nature.com/ncomms/2014/140513/ncomms4794/pdf/ncomms4794.pdf

²³ The median and average reported costs for restoration of one hectare of marine coastal habitat were around US\$80000 (2010) and US\$1600000 (2010) http://onlinelibrary.wiley.com/doi/10.1890/15-1077/pdf ²⁴ <u>https://collections.unu.edu/view/UNU:1995</u>

²⁵ https://collections.unu.edu/view/UNU:1995

²⁶ https://www.wavespartnership.org/sites/waves/files/kc/Technical%20Rept%20WAVES%20Coastal%202-11-16%20web.pdf

²⁷ http://onlinelibrary.wiley.com/doi/10.1890/15-1077/pdf

²⁸ Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%) http://www.nature.com/ncomms/2014/140513/ncomms4794/pdf/ncomms4794.pdf

²⁹ <u>http://archive.ramsar.org/pdf/info/services_03_e.pdf</u>

³⁰ http://www.nature.org/ourinitiatives/habitats/oceanscoasts/howwework/restoration-works-coral-reefs.xml

³¹ Venice; MOSES barriers; most costly intervention in hazard mitigation http://unesdoc.unesco.org/images/0018/001832/183253e.pdf

³² Unit costs related to hydraulic head over barrier (m) http://repository.tudelft.nl/islandora/object/uuid:604825d4-f218-40fc-b3b5-5f4280b2338d/?collection=research

³³ St. Petersburg, Russia: The total average annual direct damage was estimated at USD 94 million at 2002 prices, and would now be substantially higher. This excluded any estimate of the cost of damage to the contents of buildings of cultural value, largely located in the low lying city centre, including the Hermitage and many other museums http://eprints.hrwallingford.co.uk/603/1/HRPP569 The St Petersburg Flood Protection Barrier - Design and Construction.pdf

³⁴ <u>http://climate-adapt.eea.europa.eu/metadata/adaptation-options/storm-surge-gates-flood-barriers/#implementation</u>

³⁵ http://climate-adapt.eea.europa.eu/metadata/adaptation-options/storm-surge-gates-flood-barriers/#implementation

³⁶ Thanks to the New Waterway Rotterdam Storm Surge Barrier the chance of exceeding in Rotterdam a water level of 3,60m above 56 Amsterdam Ordnance Datum (NAP) is reduced from once every 100 years on average to once every 10,000 years on average. The failure risk of the barrier itself is only once in 10,000,000 years. http://www.aia.org/aiaucmp/groups/aia/documents/pdf/aias076749.pdf

37

http://s3.amazonaws.com/academia.edu.documents/36709515/JMEE_MB21_06.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1472122008&Signature=F%2BBzU3kzJL1juW30kZ3IT WZdqow%3D&response-content-disposition=inline%3B%20filename%3DThe_projected_MOSE_barriers_against_floo.pdf

38

http://s3.amazonaws.com/academia.edu.documents/36709515/JMEE_MB21_06.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1472122008&Signature=F%2BBzU3kzJL1juW30kZ3IT WZdqow%3D&response-content-disposition=inline%3B%20filename%3DThe_projected_MOSE_barriers_against_floo.pdf

³⁹ https://www.gov.uk/guidance/the-thames-barrier

⁴⁰ Can vary a lot from small seawall (€270/metre) to large seawall for the protection of a road (\$11,200/metre) http://unesdoc.unesco.org/images/0018/001832/183253e.pdf

⁴¹ For the Netherlands the unit costs for strengthening of dikes range between 4 and 11 M per km per m heightening for rural areas and between 14 and 22 million € per km per m heightening for urban areas (2009 price levels).

http://repository.tudelft.nl/islandora/object/uuid:604825d4-f218-40fc-b3b5-5f4280b2338d/?collection=research

⁴² The cost estimates for dike and floodwall heightening for New Orleans are between 4 and 8 million € per km per m heightening http://repository.tudelft.nl/islandora/object/uuid:604825d4-f218-40fc-b3b5-5f4280b2338d/?collection=research

⁴³ https://www.google.de/url?sa=t&rct=j&g=&esrc=s&source=web&cd=1&ved=0ahUKEwivunmm9zOAhVIVRoKHbbPDsIQFggeMAA&url=http%3A%2F%2Frepository.tudelft.nl%2Fassets%2Fuuid%3A59fd0624-9ad9-4eb7-ad9c-14164e904dfc%2FReport Safety Standards May2008.pdf&usg=AFQjCNG2KqEHb8JnvQh2hEwT 3X51UX-kg&cad=rja

⁴⁴ Experience with dike re-enforcement in the Netherlands has yielded the following indicative estimates of total cost: low river dike: 3 million €/km; high river dike: 5 million €/km; estuarine dike: 5 million €/km; coastal defence: 7.5 million €/km

http://climate-adapt.eea.europa.eu/metadata/adaptation-options/adaptation-or-improvement-of-dikes-and-dams/#implementation

⁴⁵ Safety level 1/500 (construction costs: 331 million €) Maximum 2872 million €; Median 1997 million €; Minimum 726 million €; Safety level 1/1250 (construction costs: 375 million €) Maximum 4089 million €: Median 2809 million €: Minimum 994 million € http://library.wur.nl/ebooks/hydrotheek/1761062.pdf

⁴⁶ http://climate-adapt.eea.europa.eu/metadata/adaptation-options/adaptation-or-improvement-of-dikes-and-dams/#implementation

⁴⁷ Small scale to large scale 50 to 100 years

https://books.google.de/books?id=-

d59BwAAQBAJ&pg=PA351&lpg=PA351&dq=lifespan+of+dikes&source=bl&ots=UM7FF8KokB&sig=Yzz20VBxnUiivDyP RnhmGA471g&hl=de&sa=X&ved=0ahUKEwiLro-GwtzOAhVDthoKHfw6BH8Q6AEIHDAA#v=onepage&g=lifespan%20of%20dikes&f=false

⁴⁸ http://climate-adapt.eea.europa.eu/metadata/adaptation-options/adaptation-or-improvement-of-dikes-and-dams/#implementation

⁴⁹ http://repository.tudelft.nl/islandora/object/uuid:604825d4-f218-40fc-b3b5-5f4280b2338d/?collection=research

⁵⁰ https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=OahUKEwi-

vunmm9zOAhVIVRoKHbbPDsIQFggeMAA&url=http%3A%2F%2Frepository.tudelft.nl%2Fassets%2Fuuid%3A59fd0624-9ad9-4eb7-ad9c-14164e904dfc%2FReport Safety Standards May2008.pdf&usg=AFQjCNG2KqEHb8JnvQh2hEwT 3X51UX-kg&cad=rja

⁵¹ http://unesdoc.unesco.org/images/0018/001832/183253e.pdf

⁵² In the Netherlands, groynes are estimated to cost about EUR 3,000 to 15,000 per running meter. Breakwaters are estimated to cost about EUR 10,000 to 50,000 per running meter http://climate-adapt.eea.europa.eu/metadata/adaptation-options/groynes-breakwaters-and-artificial-reefs

⁵³ http://www.jica.go.jp/project/vietnam/031/materials/ku57pq00001y1feh-att/mekong_groynes_en.pdf

⁵⁴ http://www.jica.go.jp/project/vietnam/031/materials/ku57pq00001y1feh-att/mekong_groynes_en.pdf

⁵⁵ Breakwaters have a typical design lifetime of 30-50 years. This is the case for most rock structures. Wooden groynes have a lifetime of about 10-25 years; and groynes made of gabions of 1-5years

http://climate-adapt.eea.europa.eu/metadata/adaptation-options/groynes-breakwaters-and-artificial-reefs

⁵⁶ http://www.coastalwiki.org/wiki/Groynes_as_shore_protection

⁵⁷ http://www.coastalwiki.org/wiki/Groynes as shore protection

⁵⁸ http://www.jica.go.jp/project/vietnam/031/materials/ku57pq00001y1feh-att/mekong_groynes_en.pdf

⁵⁹ http://www.env.gov.bc.ca/wsd/public safety/flood/pdfs word/cost of adaptation-final report oct2012.pdf

⁶⁰ The useful life of pump station equipment is typically limited to 20 to 30 years, with good maintenance. Pump station structures typically have a useful life of 50 years https://www3.epa.gov/npdes/pubs/in-plant_pump_station.pdf

⁶¹ They can carry up to a minimum of 2.75 times the normal dry weather flow <u>http://www.winnipeg.ca/waterandwaste/sewage/floodPump/activity.stm</u>

⁶² capable of pumping 30 tons of water per second

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/297448/gene1208bpbw-e-e.pdf

⁶³ Pump station capacities range from 76 lpm (20 gpm) to more than 378,500 lpm (100,000 gpm). Pre-Fabricated pump stations generally have capacity of up to 38,000 lpm (10,000 gpm). Usually, pump stations include at least two constant-speed pumps ranging in size from 38 to 75,660 lpm (10 to 20,000 gpm) each and have a basic wet-well level control system to sequence the pumps during normal operation

https://www3.epa.gov/npdes/pubs/in-plant_pump_station.pdf

⁶⁴ https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/297448/gene1208bpbw-e-e.pdf

65 http://www.winnipeg.ca/waterandwaste/sewage/floodPump/activity.stm

⁶⁶ <u>http://www.proactnetwork.org/proactwebsite 3/images/Documents/Publications/ProAct Projects Reports/3.2.8.em ecoeng in drr cca.pdf</u>

⁶⁷ Reported costs of mangrove restoration range from USD\$ 225-216,000/ha

http://www.fao.org/forestry/10560-0fe87b898806287615fceb95a76f613cf.pdf

⁶⁸ Reduction of sea dyke maintenance cost by \$7.3 million/year

http://www.proactnetwork.org/proactwebsite 3/images/Documents/Publications/ProAct Projects Reports/3.2.8.em ecoeng in drr cca.pdf

⁶⁹ In Malaysia the value of intact mangrove swamps for storm protection and flood control has been estimated at US\$ 300,000 per km which is the cost of replacing them with rock walls <u>http://nidm.gov.in/PDF/pubs/Ecosystem%20Approach.pdf</u>

⁷⁰ Between 1989 and 1995 9,050 ha (1508,33 ha per year) of mangroves were planted in West Bengal, India with only a 1.52% success rate http://www.fao.org/forestry/10560-0fe87b898806287615fceb95a76f613cf.pdf

⁷¹ http://www.ifrc.org/Global/Publications/disasters/reducing_risks/Case-study-Vietnam.pdf

⁷² It has been reported that mangrove forests around the world can self-repair or successfully undergo secondary succession over periods of 15-30 years if: 1) the normal tidal hydrology is not disrupted and 2) the availability of waterborne seeds or seedlings (propagules) of mangroves from adjacent stands is not disrupted or blocked http://www.fao.org/forestry/10560-0fe87b898806287615fceb95a76f613cf.pdf

⁷³ 40–50 cm/km across the mangrove forest

https://www.wavespartnership.org/sites/waves/files/kc/Technical%20Rept%20WAVES%20Coastal%202-11-16%20web.pdf

⁷⁴ http://www.ifrc.org/Global/Publications/disasters/reducing_risks/Case-study-Vietnam.pdf

⁷⁵ For beach nourishment in the Netherlands the available literature sources indicate a unit cost price of about € 3-4 per m³ material for foreshore nourishment and € 7-8 per m³ material for beach nourishment. A somewhat higher unit cost € 11 per m³ material for beach nourishment has been obtained for South Africa <u>http://repository.tudelft.nl/islandora/object/uuid:604825d4-f218-40fc-b3b5-5f4280b2338d/?collection=research</u>

⁷⁶ <u>http://www.env.gov.bc.ca/wsd/public_safety/flood/pdfs_word/cost_of_adaptation-final_report_oct2012.pdf</u>

⁷⁷ http://www.env.gov.bc.ca/wsd/public_safety/flood/pdfs_word/cost_of_adaptation-final_report_oct2012.pdf

⁷⁸ <u>http://www.zentner.com/images/journal_articles/wetlandandriparianwoodlandrestorationcosts.pdf</u>