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[1] A new ensemble of climate models is becoming
available and provides the basis for climate change
projections. Here, we show a first analysis indicating that the
models in the new ensemble agree better with observations
than those in older ones and that the poorest models have
been eliminated. Most models are strongly tied to their
predecessors, and some also exchange ideas and code with
other models, thus supporting an earlier hypothesis that the
models in the new ensemble are neither independent of
each other nor independent of the earlier generation. On the
basis of one atmosphere model, we show how statistical
methods can identify similarities between model versions
and complement process understanding in characterizing
how and why a model has changed. We argue that the
interdependence of models complicates the interpretation
of multimodel ensembles but largely goes unnoticed.
Citation: Knutti, R., D. Masson, and A. Gettelman (2013), Climate
model genealogy: Generation CMIP5 and how we got there,
Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256.

1. Introduction

[2] Global climate models are ubiquitous and irreplace-
able tools for projections of future climate change. They
evolve and improve, but few people really understand
exactly how and why. Model developers have scientific
reasons for why they focus on improving on one process
or component and not others, but the internal decision
making processes for model development are rarely docu-
mented publicly. As a result, although new models are
presented in detail in the literature and compared with obser-
vations, they remain massive and complex black boxes to
many users, with many questions remaining unanswered.
For example, why were certain parameterizations changed
but not others? Which of those changes had the largest
impact? Is the model “better” in terms of agreement with
observations, or just “better” in terms of a more comprehen-
sive description of the processes? Which variables and data
sets were used to evaluate a given model?
[3] Because formal methods to quantify uncertainties in

projections are complex and direct observational constraints
often absent [Knutti et al., 2010; Tebaldi and Knutti, 2007;

Weigel et al., 2010], the spread of an ensemble of models
is often used as a first-order estimate of projection uncer-
tainty [Meehl et al., 2007]. This assumes that the models
are approximately a representative sample of our uncertainty
in how to best describe the climate system given limited
observations, imperfect understanding, and finite computa-
tional resources [Knutti, 2008; Yokohata et al., 2012]. It also
assumes that there are not too many similarities that would
bias the results. Of course, all models are similar because
they describe the same system, but their biases, omissions
of processes, simplifications, parameterizations of processes,
and numerical approximations are also similar. In other
words, they are often similarly biased with regard to reality,
in some but not all cases for the same reasons (e.g., high
mountains are not resolved in all models). This does not
invalidate the use of the ensemble as a first-order estimate
of uncertainty but complicates the interpretation.
[4] Masson and Knutti [2011, MK11 hereafter] produced

a “family tree” of the Coupled Model Intercomparison
Project Phase 2/3 climate models, which documents the
similarities between models in an ensemble. For simplicity,
we define model similarity as similarity in the model simu-
lated fields because it is unclear how to define similarity of
a model code or the underlying process assumptions. The
term “model independence” is not used in a sense of statisti-
cal independence but loosely to express that the similarity
between models sharing code is far greater than between
those that do not. Models from the same centers were shown
in MK11 to often be very similar in their present day clima-
tology, and models in different centers sharing the same at-
mospheric model (even in different versions) were also
closely related. MK11 argued that such similarities result
from the fact that models evolve from their ancestors by
modification and by exchange of ideas and code with other
groups. Successful pieces are kept, improved, and shared,
and less successful parts are replaced. Here, we present an
analysis of the newest generation of models to supports this
hypothesis.

2. Results

[5] We used data from the most recent World Climate
Research Programme Coupled Model Intercomparison
Project Phase 5 (CMIP5) [Taylor et al., 2012], along with
data from the earlier CMIP3 and CMIP2 intercomparisons.
Model similarity is defined as in MK11 (details in the
Supporting Information of MK11) by a Kullback-Leibler
divergence, a distance metric that considers the spatial
field of monthly values in a control simulation without
external forcing. It takes into account the seasonal cycle,
the interannual variations, and the spatial correlation. The
method and data from CMIP2/3 and observations are identi-
cal to those used by MK11. The only difference is that for
Figures 1 and 3, the metric now also includes differences
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in the annual mean climatology and that we use the mean
square of the temperature and precipitation distance to define
overall similarity rather than presenting the single variables
as in MK11. None of those choices affect the main conclu-
sions. The similarity metric is defined from the unperturbed
preindustrial model control state and is strongly determined
by biases in the present day climatology and seasonal cycle,
that is, by model differences rather than initial conditions or
forcing. The pairwise distance between models is used to
construct “family trees” by a hierarchical clustering as in
MK11. The interpretation of the trees is that models
appearing in the same branch are close to each other in terms
of the defined metric. Two branches or nodes are more
similar the farther to the left the branching point is located.
Note that all results presented here are only based on model
output; they assume no knowledge about the structure,
parameterizations, or code of any model. A similar tree is
constructed for the projected change in the RCP8.5 scenario.

[6] The clustering of the CMIP3 and the new CMIP5
models for the control climate is shown in Figure 1a
and confirms several connections. For example, the new
MPI-ESM remains close to its predecessor because the
atmosphere models ECHAM6 and ECHAM5 are quite
similar. Two of the CSIRO models are close, and CCSM4
is close to CCSM3. Surprisingly, the CESM1 model
versions are still close to CCSM4, although most of the
major parameterizations were changed going from CCSM4
to CESM1 (see below). IPSL-CM5A is an only slightly
modified IPSL-CM4 and appears close in the tree, IPSL-
5A-LR/MR differ in resolution, whereas IPSL-CM5B
involved substantial changes in the atmospheric model.
The GISS-E2-H/R models differ in their ocean components
and remain close but appear separated from the older
GISS-E-H/R models in CMIP3 despite similar physics.
The main reason is much higher resolution in both ocean
and atmosphere. The GFDL-ESM2M/G models differ in

a) Control state b) Projected change RCP8.5

Figure 1. (a) The model “family tree” from CMIP3 and CMIP5 (marked with asterisks) control climate plus observations
(ERA40/GPCP and NCEP/CMAP), shown as a dendrogram (a hierarchical clustering of the pairwise distance matrix for
temperature and precipitation fields, see text). Some of the models with obvious similarities in code or produced by the same
institution are marked with the same color. Models appearing in the same branch are close, and similarity is larger the more
to the left the braches separate (for a detailed description of the method, see Masson and Knutti [2011]). (b) Same but based
on the predicted change in temperature and precipitation fields for the end of the 21st century in the RCP8.5 scenario relative
to the control.
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their ocean and have a new land surface and vegetation
component, but their atmosphere is similar to that used in
GFDL-CM2.0/2.1. GFDL-CM3 and CM2.5 are surprisingly
close to the other GFDL models despite substantial changes
to the atmosphere. All Hadley Centre models cluster as
well, despite many years of development between HadCM3
and HadGEM2.
[7] Sharing of model code occurred in CMIP3 (e.g., the

Italian INGV model using an ECHAM atmosphere, or the
Norwegian BCCR using the French ARPEGE atmosphere
also present in CNRM) but has become more widespread
in CMIP5. The Australian ACCESS models are based on
the HadGEM2 atmosphere, which is nicely picked up in
the tree. NorESM is built with key elements of CESM1, as
is FIO-ESM. BCC is based on a CCSM3 atmosphere, and
the FGOALS atmosphere uses several parameterizations
from CCSM. CNRM and EC-EARTH are both based on
the ARPEGE/IFS/ECMWF atmosphere, and CMCC-CM
uses an MPI ECHAM5 atmosphere. The use of similar
ocean models appears to be less relevant to the surface cli-
matology, but relationships exist as well. BCCR and
NorESM use the Miami-based MYCOM ocean version,
whereas its successor HYCOM is used in the GISS-EH
models. Many European models (e.g., IPSL and CNRM)
use an ocean based on the NEMO, ORCA, or OPA family.

Some ocean codes in fact have left a remarkable legacy.
The ocean codes by Bryan, Cox, and Semtner [Bryan,
1969], developed into the legendary MOM and POP models,
improved versions of which are still used today in the Had-
ley and the NCAR models. Further details on model compo-
nents and references are given in the Supporting
Information.
[8] For the projected changes, some models remain close

(e.g., those which share a similar atmosphere), whereas other
similarities do not persist (e.g., if the new version of a model
has a different climate sensitivity). This is consistent with
the fact that the projected climate change is often not related
to the climatological mean bias in an obvious way, a
difficulty seen in many studies [Knutti et al., 2010]. A key
challenge and requirement is to find metrics where certain
biases in observables can be attributed to specific parts of
the model code or related to the projected changes, to
constrain the projections, and to take into account the
model dependency.
[9] The distance between models from the same institu-

tions is often a factor of three to ten smaller than that to other
models. This is not surprising but rarely taken into account.
In most studies (including in the IPCC reports), all models
are treated equally, thus giving more weight to those who
have submitted multiple versions or share their code with
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Figure 2. (a) Dendrogram of the ensemble tracking the different steps from CAM4 to CAM5 in the NCAR CESM1 based
on aggregating the Kullback-Leibler divergence (see text) for precipitation, cloud radiative forcing, net top of atmosphere
radiation, precipitable water, and total cloud amount. CAM4 perturbations are shown in orange, and CAM5 sensitivity
tests are shown in blue. CAM4-2 is run from a different code base (different sea ice albedo specified at the surface).
(b) Normalized absolute distance fromCAM4 along the development path fromCAM4 to CAM5 for different variables (colors)
and all variables aggregated (black). (c) Same as Figure 2b, but for the accumulated distance from CAM4. The latter
indicates how much the model has changed in one step compared with its predecessor when adding a new component
and increases monotonously, whereas Figure 2b measures the distance to the base model CAM4, which can increase or
decrease. The biggest changes to the model appear with the change in the shallow convection (CAM4-pbl to CAM5).
The second biggest step was the change in the microphysics (CAM4 to CAM4-micro3) or the boundary layer (CAM4-aero
to CAM4-pbl), depending on the variable (see main text).
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others. Some models have evolved strongly from CMIP3 to
CMIP5, whereas in other centers much of the effort has gone
into additional components. Shared code or concepts may
lead to similarity of the output, but the degree depends of
course on what effect the shared code has on the simulated
field and less on the amount of code. For example, a shared
atmosphere produces more similarity than a shared ocean
when looking at a precipitation field. Similarity may also
arise from “fitting” to common data sets (see below). Shared
code and data sets reduce the effective degrees of freedom in
a multimodel ensemble.
[10] The detailed steps from one model version to the

next are often not obvious. Exceptions are the MIROC
model [Watanabe et al., 2012] and the evolution from
the NCAR CCSM4 (CAM4) to CESM1 (CAM5), which
is documented in detail by Gettelman et al. [2012] and
illustrates steps between CESM with two different versions
of the atmosphere model: CAM4 and CAM5. Gettelman
et al. [2012] created an ensemble of different experiments to
step from CAM4 to CAM5, by sequentially adding new
microphysics (micro), macrophysics (macro), radiation (rad),

aerosols (aero), planetary boundary layer (pbl), and finally
the shallow convection scheme to reach CAM5 (all runs
labeled CAM5). As discussed by Gettelman et al. [2012], the
biggest change in climate sensitivity results from the change
to the shallow convection scheme, which increases shortwave
cloud feedbacks. As is clear from the tree shown in Figure 2a,
the CAM5 experiments cluster together, with three single
perturbation experiments similar to the base CAM5 experi-
ment. The sequential changes between CAM4 and CAM5 also
cluster together (with macro, rad, aero, and pbl added in that
order). The micro1–3 series represent different tuning adjust-
ments to get a better radiation balance (micro3 is in approxi-
mate balance). The same is true for the pbl1–2 experiments.
Experiment CAM4_2 was run with different sea ice albedo
specified at the surface, which may partially explain the
separation. Thus, the CAM5 experiments cluster, and there
is a break point in the differences. The perturbation experi-
ments also cluster, with some of the single perturbation
(tuning) experiments closest together. In general, the CAM
models with the most similar physics packages cluster clos-
est together.
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Figure 3. Normalized distance from observations in the CMIP2, CMIP3, and CMIP5 models. The distance metric is
calculated as the root mean square of the surface temperature and precipitation distance as in Figure 1 but relative to
observations (NCEP, ERA40, and MERRA for temperature; GPCP and CMAP for precipitation, see MK11). Mean and
medians for the different ensembles are indicated by red solid and dashed lines, respectively. Note that most models in
CMIP2 (including HadCM2, but not HadCM3) used flux corrections.
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[11] Another way to depict the development path is to
show the distance of each version from the starting CAM4
version (Figure 2b) and the cumulative distance along the
path (Figure 2c). The final change in the shallow convection
introduces the largest change (last step in panel c), although
it brings CAM5 closer to the original CAM4 in some
variables (panel b). The second largest changes are caused
by the microphysics and boundary layer schemes, depending
on the variable.
[12] We can also use the distance metric of Figure 1 as one

example to quantify distance from observations for different
CMIP generations (shown in Figure 3), but with the strong
caveat that linking model performance metrics to model
quality or skill is difficult, subjective, and strongly metric
dependent [Gleckler et al., 2008]. The ranking within the
ensemble should therefore not be over interpreted and it
differs depending on the metric. CMIP5 continues the trend
of better agreement with observations [Reichler and Kim,
2008], with the mean distance from observations reduced
by approximately 20% from CMIP3 to CMIP5. Not unex-
pectedly, progress becomes harder at higher performance
levels, that is, the “worst” models have improved most or
are no longer used. The contribution of internal unforced
variability (quantified using multiple segments of a control
simulation) is small for this metric, but observational uncer-
tainties (estimated from differences across multiple data
sets) may explain some of the remaining model biases. The
typical distance between two reanalysis temperature data
sets (e.g., MERRA and ERA40) is about half the distance
as the typical distance between a model and the “observa-
tions.” Nevertheless, as shown already by MK11, the
different observation and reanalysis data set cluster together
(see Figure 1a), and the rankings in Figure 3 are nearly
identical irrespective of the chosen data set.

3. Conclusion and Discussion

[13] We propose that one reason some models are so
similar is because they share common code. Another expla-
nation for the similarity of successive models in one institu-
tion may be that different centers care about different aspects
of the climate and use different data sets and metrics to judge
model “quality” during development. In practice, that
hypothesis cannot be tested with the currently available
models but could be explored by calibrating structurally
different and computationally inexpensive models to differ-
ent data sets using different metrics.
[14] Confidence in model projections does not come from

the sheer amount of code and data and cannot be demon-
strated by repeated verification. Confidence is greatest in
those aspects of climate change that we understand and can
link back to known physical processes and simpler models
and concepts (e.g., the global energy balance). Scientific
insight into the models and their development is crucial. We
argue that transparency in the model development process is
helpful in understanding model evaluation and projections
and contributes to that insight. Efforts are already made to
document models and tuning (see Supporting Information).
Shared code should be communicated clearly, and the way
the model is evaluated and calibrated (metrics and data sets)
should be documented where possible. Such information will
help to make the best use of the massive amounts of data, for
example, by specifically selecting subsets of models for

certain applications, and to better understand model differ-
ences and uncertainties.
[15] The new generation of global climate models in

CMIP5 supports the idea of a rather gradual evolutionary
process by which models improve over time. The strengths
and weaknesses of particular models, as they are evident in
the biases in simulating present day climate, are partly
passed on to newer model versions and to other models by
the exchange of code and ideas. Sharing model components
is not a problem, and we can learn much from it. Diversity is
important, and reducing the ensemble to a few models would
not be useful. However, approaches to weighting models in
projections should not only consider metrics of model
performance but could also down weight models that have
very similar control biases to avoid biased projections from
near duplicate models. Pairwise distance metrics as used
here could be one approach, but each projection will require
a careful analysis of which metric and variables are impor-
tant and how the distance in the present relates to the
distance in predicted changes.
[16] CMIP5 appears to be a “better CMIP3” rather than

a radically new ensemble, also in its climate change
response [Knutti and Sedlá�cek, 2012]. The results point to
a remarkable consistency and robustness in many aspects
of simulated present day and future climate, but it also
suggests that convergence to reality is slow and radical
breakthroughs are hard to achieve. However, the fact that
the ensemble compares more favorably with observations,
despite the enhanced complexity of many of the models,
is perhaps one indication that this development strategy
of using enhancements in computational power to add
complexity is successful in better representing the current
climate system.
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