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Abstract

While quantum information processing with trapped ions has already
been demonstrated at high fidelities with a few ions, scaling up to larger
numbers is a formidable challenge. For doing so, the quantum CCD archi-
tecture proposes interconnecting many small ion traps and transporting
ions between processing and storage regions [Wineland 98, Kielpinski 02].
More recently, transport quantum logic gates have been proposed to re-
duce the demands on the optical control [D. Leibfried 07]. Transport is
therefore a key technique associated with scaling.

In this work, we implement adiabatic ion transport, paying special atten-
tion to keeping the transport velocity constant over time. We present a
method based on quadratic programming to calculate feedforward control
inputs for transport, taking common hardware constraints into account.
We also identify and eliminate a flaw in our electronics used to imple-
ment transport. We then evaluate the use of iterative learning control
to further improve the time-varying feedforward control inputs driving
transport. With it, we have reduced velocity fluctuations from 0.1 m/s
to 0.01 m/s at an overall transport speed of 2.8 m/s, paving the way for
future experiments.

We also present a new method to infer the time-dependent Hamiltonian
of a two level system from straightforward experimental measurements.
We use it to study the Hamiltonian arising during a transport gate with
40Ca+ , inferring both the ions velocity and the laser beam intensity it
experiences over time.
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Chapter 1

Introduction

The past few decades have seen many advances in the experimental control of
various physical systems at the quantum level, sparking the hope of building
devices using the laws of quantum mechanics to their advantage. Among
them, quantum computers are arguably the most famous. They promise to
efficiently simulate quantum systems, which is known to be intractable with
classical computers [Feynman 82].

Trapped ions are a promising system currently being investigated for building
a quantum computer. All the required individual building blocks have already
been demonstrated [Home 09]. Now, the main challenge lies in scaling. To
that end, the quantum CCD architecture proposes the use of a large num-
ber of connected ion traps [Wineland 98, Kielpinski 02]. It features separate
regions for storage and processing of information encoded in the electronic
states of trapped ions, requiring transport between regions. Later, transport
quantum logic gates were proposed to reduce the demands on the optical con-
trol [D. Leibfried 07]. Instead of performing logic gates by pulsing a laser
beam on a static ion, the ion is transported through a static laser beam. Due
to a Doppler shift, the laser frequency experienced by the ion depends on
its velocity, as does the time it spends in the beam. Control of the velocity
therefore becomes crucial, as we realized upon implementing transport gates
[de Clercq 15c].

In this work, we implement adiabatic transport of single 40Ca+ ions in practice,
paying special attention to keeping the velocity constant over time. We trans-
port only along a single axial direction, neglecting micromotion. For transport
across more complicated geometries, the reader is referred to [Blakestad 09,
Wright 13]. Also, we do not investigate motional heating during transport, as
is done e.g. in [Rowe 02, Blakestad 10, Bowler 15].

The remainder of this thesis is structured as follows:
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1. Introduction

Chapter 2 introduces the experimental apparatus and sketches the physics
behind ion trapping as well as the laser-ion interactions relevant for this work.
It also briefly outlines the laws of quantum mechanics and discusses their
implications for the control of quantum systems.

Next, Chapters 3, 4, 5 and 6 form the core of this investigation. Their
logical progression in analogy to a feedback control loop is visualized in Figure
6.1.

Calculation of
feedforward

control inputs

Transport
hardware,

improved in

Hamiltonian
Estimation to
infer velocity

Iterative
Learning
Control

r(t) ~u(t) |Ψ(t)〉 v(t)

2)

Corrections

1)

Chapter 3 Chapter 4Chapter 5

Chapter 6

Figure 1.1: Outline of the core of this thesis.

Chapter 3 presents a method based on quadratic programming in order to
calculate the feedforward control inputs used to implement adiabatic transport,
taking into account various practical constraints of the control electronics.

Chapter 4 introduces a method to infer the velocity v(t) of an ion during
transport from the time-evolution of its internal electronic quantum state
|Ψ(t)〉. It presents a simple experimental method and associated analysis
techniques to infer the time-dependent Hamiltonian governing the dynamics
of the internal quantum state. The velocity can then be read off from the
inferred Hamiltonian.

Chapter 5 identifies a subtle flaw in the control electronics and documents
modifications made to the hardware in order to resolve it.

Chapter 6 introduces iterative learning control (ILC) to further reduce ve-
locity fluctuations. This is done by iteratively adding small corrections to
the feedforward control inputs after measuring the velocity profile v(t). In a
first approach, ILC is used to make small corrections to the reference r(t). In
a second approach, the feedforward control inputs ~u(t) are modified directly.
ILC thus closes the loop.

Chapter 7 presents the main conclusions and outlines directions for future
investigations.
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Chapter 2

Background Material

This chapter gives an overview of the physics required to understand this thesis,
introduces the experimental apparatus, and outlines some of the challenges
regarding control. Rather than giving a comprehensive introduction to the
overall field, the aim is to present a brief overview of the knowledge required
to make this thesis understandable in a self-contained way. Topics that are
only relevant for specific chapters will be presented therein and are omitted
here. For more details, the reader can consult the many references.

2.1 Ion trapping

In this work, we use a linear Paul trap with segmented dc electrodes to trap a
single Calcium ion, specifically 40Ca+ . Figure 2.1 shows a drawing of the trap.
It features a linear axis which is usually referred to as the trap axis. Because
transport is done along this axis, we also call it the transport axis and often
denote it as the z-axis. The plane perpendicular to it is spanned by the x-axis
and y-axis, which are commonly also called the radials.
Using a combination of static (“dc”) and time-varying (“rf”) electric fields one
can confine ions along all three axes. The rf electrodes provide confinement
along the radials with oscillating electric fields. The segmented dc electrodes
are used to form a confining potential well along the trap axis. We can write
the overall potential Φ(r, t) as a combination of the potentials due to the dc
and rf electrodes

Φ(r, t) = Φdc(r) + Φrf(r) cos(Ωrft). (2.1)

The equations of motion for a particle of mass m and charge q under the
influence of such a potential are then given by Newton’s second law

F = mr̈(t) = −q~∇rΦ(r, t). (2.2)

3



2. Background Material
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Figure 2.1: Schematic of the trap, cut transverse to the trap axis on the left
side, and along the trap axis on the right side. The figures show the arrange-
ment of the segmented shim and dc electrodes, as well as the rf electrodes.
Adapted from [Kienzler 15] and [de Clercq 15c].

Solving equation (2.2) for a general setting is quite complicated. In our oper-
ating regime, the solutions assume the form [Sasura 02]

x(t) ∝
[
1 +

qx
2

cos(Ωrft)
]

cos(ωxt+ ϕx) (2.3)

y(t) ∝
[
1 +

qy
2

cos(Ωrft)
]

cos(ωyt+ ϕy) (2.4)

z(t) ∝ cos(ωzt+ ϕz) (2.5)

where ωi stands for the trap frequencies and qx and qy depend on the exact
operating conditions. The motion at angular frequency Ωrf is called micromo-
tion. Experimentally, we can minimize its effect with the help of another set
of electrodes, usually referred to as the shim electrodes. In this work, we thus
neglect the effect of micromotion and assume the ion to be well confined in
the radial direction. We will thus mainly focus on the potential along the trap
axis. Finally, we can simplify the overall potential using the pseudo-potential
approximation by averaging the forces over time. We then obtain

U(r) =
1

2

mw2
zz

2

q
+

1

2

mw2
r(x

2 + y2)

q
. (2.6)

We thus approximately have three decoupled harmonic oscillators. Under
typical operating conditions, we have radial angular frequencies ωx and ωy
between 2π× 3 MHz and 2π× 4 MHz, and a rf frequency Ωrf around 2π× 115
MHz.

The ion trap is placed in an ultra-high vacuum chamber in order to minimize
the loss of ions due to collisions with the background gas. Loading an ion
is accomplished by heating a slab of Calcium and ionizing the neutral, evap-
orated Calcium atoms by a two-photon photoionization process using lasers
with wavelengths of 375 nm and 423 nm. Afterwards, the ion is cooled close
to the motional ground state using laser-cooling techniques.
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2.2. Laser-ion interactions

2.2 Laser-ion interactions

2.2.1 Calcium as a qubit

A single trapped ion can approximately be described as a two level system
together with three decoupled quantum mechanical harmonic oscillators cor-
responding to the motional degrees of freedom. In this work, we focus on the
pseudo-spin system encoded in the electronic states of 40Ca+ , ignoring the
motional degrees of freedom. We thus avoid driving any transitions between
different motional states, the so-called sidebands (blue or red) and drive only
carrier transitions.

397 nm 

t = 7.7 ns 

729 nm 

t  = 1.045 s 

866 nm 

t  = 94.3 ns 

854 nm 

t  = 101 ns 

334.70 MHz 

Splitting: 

133.65 MHz 

Splitting: 

200.67 MHz 

111.31 MHz 

223.00 MHz 

B = 119.45 Gauss 

40Ca+ Energy Level Splittings 

Figure 2.2: Level scheme of 40Ca+ in a magnetic field of 119.45 G, together
with various transitions and their natural lifetimes. Adapted from [Lo 15].

The level scheme of 40Ca+ under the influence of a magnetic field of 119.45 G
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2. Background Material

is shown in Figure 2.2. We use the quadrupole transition between the levels
|S1/2,mJ = 1/2〉 and |D5/2,mJ = 3/2〉 as an optical qubit, defining our two
level system. The transition has a long natural lifetime of approximately
one second and can be addressed using a laser with a wavelength of 729 nm.
Additional lasers with wavelengths of 397 nm, 854 nm and 866 nm are used for
state initialization to |S1/2,mJ = 1/2〉 via optical pumping and state readout
using fluorescence detection of the dipole transition corresponding to 397 nm
between the P1/2 and S1/2 states. The lasers are also used to implement
various laser cooling techniques, such as Doppler cooling, sideband cooling,
and electromagnetically induced transparency cooling. Details can be found
in [Kienzler 15, Lo 15].

2.2.2 Bloch sphere

The state of a two level system is described by its wave function |Ψ(t)〉. It
consists of a complex superposition of the two energy eigenstates |0〉 and |1〉.
We can thus write

|Ψ(t)〉 = α(t) |0〉+ β(t) |1〉 (2.7)

where α(t), β(t) ∈ C and |α(t)|2 + |β(t)|2 = 1. Multiplying the wave function
|Ψ(t)〉 by an overall phase has no physical significance, as it leaves all possible
measurements unchanged. Therefore, one often fixes the overall phase, and
describes the state of a two level system using just two parameters θ(t) and
φ(t). This results in

|Ψ(t)〉 = cos

(
θ(t)

2

)
|0〉+ eiφ(t) sin

(
θ(t)

2

)
|1〉 (2.8)

with 0 ≤ θ(t) ≤ π and 0 ≤ φ(t) < 2π

The two parameters θ(t) and φ(t) can be interpreted as spherical coordinates,
leading to the picture of the so-called Bloch sphere, illustrated in Figure 2.3.
The state |Ψ(t)〉 can thus be seen as a vector on the unit sphere.

2.2.3 Rabi oscillations

A two level system interacting with a strong classical electric field (e.g. from a
laser), oscillating at a frequency ω close to the natural frequency ω0 = ∆E/~
of the transition between the two energy levels shows oscillatory behavior.
Specifically, the populations in the states vary sinusoidally over time.

Resonant interaction

Let us first analyze the simplest case when the driving electric field has a
constant amplitude and is exactly on resonance with the transition, e.g. ω =
ω0. We can then write the Hamiltonian as

Ĥres = −~
2

Ωσ̂x (2.9)
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2.2. Laser-ion interactions

Figure 2.3: Visualization of the Bloch sphere. Note that the state |0〉 is at the
top. Adapted from Wikipedia.

where σ̂x is a Pauli matrix, and Ω is called the Rabi frequency and is pro-
portional to the amplitude of the electric field. Because the Hamiltonian is
constant over time, we can easily solve for the time evolution of the system
using the unitary propagator U :

|Ψ(t)〉 = U(t; 0) |Ψ(0)〉 = exp(−iHt/~) |Ψ(0)〉 (2.10)

=

[
cos(Ωt

2 ) i sin(Ωt
2 )

i sin(Ωt
2 ) cos(Ωt

2 )

]
|Ψ(0)〉 (2.11)

In particular, if we initially start in the state |0〉, we get the following wave
function

|Ψ(t)〉 = cos

(
Ωt

2

)
|0〉+ i sin

(
Ωt

2

)
|1〉 . (2.12)

Comparing this result to equation 2.8, we see that our state vector simply
rotates around the x-axis on the Bloch sphere, as illustrated in blue in Figure
2.4.

Detuned interaction

Including a detuning δ = ω−ω0 between the frequency of the electric field and
the transition frequency makes the analysis slightly more complicated. The
Hamiltonian now has an additional term involving σ̂z , e.g.

Ĥdet =
~
2

(−Ωσ̂x + δσ̂z ) (2.13)

If we again start in state |0〉, solving Schrödinger’s equation leads to

|Ψ(t)〉 =

(
cos

(
Ωdt

2

)
− i δ

Ωd
sin

(
Ωdt

2

))
|0〉+

(
i

Ω

Ωd
sin

(
Ωdt

2

))
|1〉 (2.14)
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2. Background Material

where Ωd =
√

Ω2 + δ2. Looking at the probability to be in state |0〉 over time,

P (|0〉)(t) = 1− Ω2

Ω2 + δ2
sin2

(
Ωdt

2

)
, (2.15)

two effects stand out in the detuned case [Fox 05]. First, the oscillations be-
come faster as the detuning increases. Second, the amplitude of the oscillations
is reduced.

Figure 2.4 visualizes the trajectories described by equation 2.14 for different
detunings on the Bloch sphere. For a given detuning, the trajectory corre-
sponds to rotating the initial state vector around a fixed axis in the x-z plane.
For zero detuning, the rotation axis corresponds to the x-axis, and we recover
our previous analysis. As the detuning δ becomes larger and larger relative to
the Rabi frequency Ω, the rotation axis gradually shifts towards the z-axis.

Ωt
0

0.25

0.5
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1
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ro
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e
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|0
〉

δ = −

√
3Ω

δ = −1Ω

δ = −

√

1
3
Ω

δ = 0

Figure 2.4: Resonant and detuned Rabi oscillations visualized on the Bloch
sphere (left), and the probability to be in state |0〉 plotted against time (right).

Time-varying case

In general, both the Rabi frequency Ω and the detuning δ can be time-varying.
We will later encounter this case when doing transport gates with 40Ca+ . The
resulting Hamiltonian

Ĥ(t) =
~
2

(−Ω(t)σ̂x + δ(t)σ̂z ) (2.16)

is then time-varying. For this general Hamiltonian, one can not solve Schrödinger’s
equation analytically and has to rely on numerical methods.

2.2.4 Transport gates

Transport gates were originally proposed as an addition to the QCCD archi-
tecture proposed to build a scalable quantum computer based on trapped ions

8



2.3. Computer control system

[Kielpinski 02, Wineland 98]. In the QCCD architecture, there are different
zones for processing and for storing information. It therefore requires the
transport of ions between these zones. During processing, single or two-qubit
gates are performed by shining laser pulses on static ions. While the trap itself
can be scaled using microfabrication techniques, the same can not be said for
the optics: To control the laser pulses, one typically uses bulky acousto-optic
modulators and associated control electronics.

Transport gates address this scaling problem by shifting the burden of control
from the optical to the electrical domain [D. Leibfried 07]. During a transport
gate, the laser beam is static in space and constantly on. To perform a the gate,
the ion is transported through the laser beam. By carefully controlling the
velocity of the ion during transport, one can perform the desired gate. This
also combines transport and processing into a single operation. However, we
now have to deal with a time-varying detuning δ(t) as well as a time-varying
Rabi frequency Ω(t).

2.3 Computer control system

Our computer control system consists of several pieces of hardware and soft-
ware. A rough overview is given in Figure 2.5.

• Ionizer This software serves as the GUI to specify parameters of exper-
iments and then run them. It communicates with the Zedboard over
Ethernet. Ionizer sends the parameters to the Zedboard, which then
runs the experiments. Afterwards, Ionizer receives the experimental re-
sults, visualizing them for the user. Ionizer also controls various other
devices such as cavities and the shim electrodes not shown in Figure 2.5

• Zedboard The Zedboard is the heart of the control system. It has a
Xilinx Zynq chip, containing a ARM CPU and an FPGA. It runs all
the time-critical parts of the experiment. It is directly connected to the
DDS, and can use transistor–transistor logic (TTL) signals to trigger
other devices such as the DEATH. It also performs the readout of the
photomultiplier tubes (PMT).

• DDS The DDS boards synthesize RF signals with a given phase, ampli-
tude and frequency using “direct digital synthesis”. These RF signals
are then used to drive acousto-optic modulators which control various
laser beams.

• DEATH The “Direct Ethernet Adjustable Transport Hardware” con-
trols the voltages of the segmented dc electrodes of the ion trap. Cur-
rently, it consists of four boards, each containing four arbitrary wave-
form generators. Before experiments, the user can load several different
waveforms into the memory of the DEATH over Ethernet. During ex-

9



2. Background Material

periments, playback of these is then triggered by a TTL signal from the
Zedboard.

Figure 2.5: Schematic overview of the control system.

2.4 Quantum mechanics and implications for control

The laws of quantum mechanics have profound implications for the control
of quantum systems. We therefore quickly review the relevant aspects of
quantum mechanics. We then analyze the limitations they impose on the
control of quantum systems, and describe how one usually deals with them in
practise.

2.4.1 Quantum mechanics

In quantum mechanics, all the information about a quantum state is contained
in its complex wave function |Ψ(t)〉. Its time evolution is governed determin-
istically through Schrödinger’s equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (2.17)

where Ĥ(t) is the potentially time-varying Hamiltonian. Observables are asso-
ciated with self-adjoint operators Ô. One can easily calculate the expectation
value of an observable at time t:

E[Ô(t)] = 〈Ψ(t)| Ô |Ψ(t)〉 (2.18)

As the operator Ô is self-adjoint, all its eigenvalues On are real, and using an
appropriate normalization, the associated eigenvectors |n〉 form an orthonor-
mal basis of the state space. The wave function can thus be expanded as a

10



2.4. Quantum mechanics and implications for control

complex superposition of these normalized eigenstates:

|Ψ(t)〉 =
∑

n

cn(t) |n〉 , with cn(t) ∈ C (2.19)

When we measure the observable Ô at time t, the result is probabilistic. We
obtain eigenvalue On with probability |cn(t)|2. Furthermore, upon measure-
ment, the wave function |Ψ(t)〉 collapses into the eigenstate corresponding
to the observed eigenvalue. Performing a measurement thus alters the state
itself.

2.4.2 Implications for experimental control

In practise, we usually deal with the destructive nature of measurements in
quantum mechanics by doing repeated measurements on identically prepared
quantum states. We first initialize the quantum state, then manipulate it
for some time t, and finally perform a measurement. The results of a single
measurement is typically called a “shot”. Repeating this procedure many
times allows us to gather statistics about the probabilities |cn(t)|2 to be in
state |n〉 at time t. In order to measure the evolution of a state over time, we
can repeat the above procedure, varying the duration t of the manipulation
time.

Experimentally, this requires very good repeatability at the hardware level, as
any significant changes in experimental conditions between individual shots
would invalidate the above approach. Achieving good repeatability in practise
is one of the technical challenges. One typically uses a great number of classical
feedback loops to stabilize all the relevant experimental parameters. In our
lab for example, we have classical feedback loops to stabilize the frequency and
intensity of lasers, magnetic fields and the temperatures of sensitive equipment
to name just a few.

The main consequence of repeated measurements on identically prepared quan-
tum states for control is that we have to rely on pure feedforward. Using
classical feedback is impossible, because we fundamentally can not measure
the state in real-time1. The feedforward control inputs are usually calculated
based on a model of the system under consideration. Because models are
hardly ever perfect, the calculated feedforward control signals usually do not
perfectly achieve what they were designed for. If the control signals are par-
ticularly simple, e.g. just a pulse of constant strength for a fixed time, we can

1In quantum computing, there is also the concept of quantum error correction. It enables
fault-tolerant quantum information processing despite imperfect measurements and state
preparation, decoherence etc. To do so, the information of a single logical qubit is stored
in several physical qubits, using entangled states. By doing measurements on the entangled
state, one can determine and correct for errors in the logical qubit. One can thus argue that
in this case, one does use real-time feedback. It is however beyond the scope of this work.
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2. Background Material

easily calibrate them by experimentally scanning either the strength or the
duration. However, this does not work for more sophisticated, time-varying
control signals.

While we can not use classical, real-time feedback due to the lack of real-
time state measurements, we can still use feedback based on the repeated
measurements on identically prepared systems: First, we measure the time
evolution of the quantum state for a specific set of feedforward control inputs.
Based on the error, we can then update the feedforward control inputs and
measure again. This process is repeated until the feedforward control inputs
achieve our goals and the error is minimized. This procedure is commonly
known as “iterative learning control” and is typically used to improve the
control of repetitive processes. Not surprisingly, it originated in the control
of robots performing repetitive tasks [Arimoto 84]. As outlined above, it is
however also well suited to deal with the limitations that the laws of quantum
mechanics impose on control.
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Chapter 3

Calculation of Feedforward Control
Inputs for Transport

In this chapter we develop a method to calculate the time-varying voltages
for the segmented dc electrodes used for adiabatic ion transport. Rather
than investigating ion transport from a theoretical point of view (as is done
in [Lu 14, Fürst 14]), we focus on practical matters: We assume that the
desired trapping potential over time is given. We then investigate how one
can approximately form the desired potential in practise using a combination
of the segmented dc electrodes, while also respecting practical constraints of
our electronics and incorporating the effect of filters. Even though the method
is presented using transport as an example, it should also be well suited for
the splitting of ions or similar tasks.

3.1 Ion transport in practise

One way to transport ions within an ion trap is called adiabatic transport.
In it, we move the location of the minimum of the harmonic potential well
confining the ion in the axial direction. In this case, adiabatic means that the
transport happens on a timescale that is long compared to the axial oscillation
period of the ion. We can thus expect the ion to always be located at the
minimum of the potential well. The desired potential Vdes(z, t) has the form

Vdes(z, t) =
1

2

mω2
z(t)

q
(z − zmin(t))2 + C(t) (3.1)

where m and q stand for the mass and charge of the ion, ωz(t) is the desired
axial trapping frequency, zmin(t) the desired position of the potential well
and C(t) an overall offset. The offset is included because it influences the
orientation of the radial axes [de Clercq 15c].
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3. Calculation of Feedforward Control Inputs for Transport

While adiabatic ion transport is simple enough in theory, actually implement-
ing it in practise is a bit harder. First, we form potentials along the trap axis
using a superposition of the potentials of the individual control electrodes and
can thus not create arbitrary potentials. Second, there are many constraints
related to the limitations of the electronics used to control the voltages of the
trap electrodes. Third, there are lowpass filters between the arbitrary wave-
form generators (AWG) and the electrodes. It is thus necessary to consider
these practical matters when calculating the feedforward voltage waveforms
used for transport.

Figure 3.1: Simplified schematic of the electronics controlling the voltages of
the segmented dc electrodes. The DEATH is heavily simplified and shows
only the part relevant for this work.

A simplified schematic of the control electronics is shown in Figure 3.1. In our
transport experiments, the feedforward control inputs are generated by home-
built arbitrary waveform generator nicknamed DEATH1 [de Clercq 15c]. The
voltage signal then passes through an external filterboard implementing a third
order Butterworth lowpass filter with a cut-off frequency of 250 kHz. Next, the
signal enters the vacuum chamber where the ion trap is located. Right next
to the trap there is another lowpass filter with a cut-off frequency of 810 kHz.
The filters are designed to block signals near and above the motional frequency
of the ion. This prevents unwanted motional heating due to electrical noise.

+z-z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RF

Figure 3.2: Schematic overview of the 2×15 segmented dc electrodes and two
rf electrodes. Adapted from [de Clercq 15c].

1Direct Ethernet Adjustable Transport Hardware
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Figure 3.3: The potentials Vi(z) and electric fields V ′i (z) of the individual seg-
mented dc electrodes along the transport axis upon applying 1 V to electrode
i and grounding all others, as obtained from simulations. The naming scheme
coincides with Figure 3.2.

The electrode structure is shown in Figure 3.2. The two rf electrodes confine
the ion in the radial plane. The fifteen pairs of segmented dc electrodes are
used to generate a confining potential along the transport axis. Currently,
adjacent electrodes are driven by a single arbitrary waveform generator and
each electrode has its own filter, but there are plans to change that in the
future. Figure 3.3 shows the potentials along the trap axis due to the indi-
vidual electrodes, as well as the first derivative, corresponding to the electric
field. We can form specific potentials V (z, t) along the z-axis using a linear
superposition of the potentials Vi(z) due to the individual electrodes, weighted
by the time-varying voltages Ui(t) put on the individual electrodes i

Vgen(z, t) =
∑

i

Vi(z)Ui(t). (3.2)

The problem left to solve is thus how to determine the time-dependent voltages
Ui(t) such that Vgen(z, t) approximates Vdes(z, t) as well as possible while also
following all the practical constraints. In particular, these are:

Constraints

i) The voltages Uawg
i (t) at the output of the AWG are constrained to Umin ≤

Uawg
i (t) ≤ Umax. In our current setup Umin = −9 V and Umax = 9.

ii) The slew rate dUi
dt of the voltage Ui(t) at the trap electrode is limited to

µmax = 4 V/µs.

iii) The voltage Ui(t) at the trap electrode corresponds to Uawg
i (t) after pass-

ing the filters.

iv) The trapping wells should be at least a few tens of meV deep in order to
avoid losing the ion.
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3. Calculation of Feedforward Control Inputs for Transport

Over the years, our group has used many methods with varying levels of so-
phistication to tackle this problem. First, we used ordinary least squares fits
at various time steps and then built up the overall waveform, interpolating
between individual time steps. Because this sometimes produced unreason-
ably high voltage jumps in violation of constraint (ii) between time steps, an
additional regularization term punishing the voltage differences between time
steps was later added. This corresponds to using a regularized version of
least squares, sometimes also called Tikhonov regularization. This removed
the voltage jumps, but the absolute voltage constraint (i) was still not ad-
dressed. Next, we switched to using dynamic programming and solved the
problem over the whole time-horizon rather than using a one-step lookahead
procedure. With the help of additional regularization terms punishing the
absolute voltage and slew rate, one could also satisfy constraints (i) and (ii),
but only after manually adjusting the weights of the cost terms. Eventually,
we realized that all those issues can be addressed by quadratic programming,
which is what we are currently using.

3.2 Quadratic programming

The name quadratic program (QP) refers to an optimization problem consist-
ing of a convex quadratic cost function subject to affine constraint functions
[Boyd 04]. In particular, one would like to optimize a convex cost function J

J =
1

2
xTHx+ fTx+ c (3.3)

subject to the affine constraints

Aeq x = beq (3.4)

Aineq x ≤ bineq. (3.5)

This optimization problem has two nice properties that allow us to solve it effi-
ciently. First, the cost function is convex. Second, the set of points satisfying
the constraints is also convex. Because this kind of problem comes up very
often in science and engineering, there are many sophisticated solvers that can
handle even large instances reasonably quickly.

Calculating the waveforms corresponds to setting up the right kind of quadratic
program that reflects our objectives and practical constraints and then hand-
ing it to a solver. After some experimentation, we arrived at the cost function

J =
N∑

k=1

‖V k
des − V k

gen‖2Qk
(3.6)

+
∑

i

(
r0‖Uawg

i − Udef
i ‖2 + r1‖∆kU

awg
i ‖2 + r2‖∆2

kU
awg
i ‖2

)
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3.2. Quadratic programming

where we will now explain the various terms.

Overall, the cost function has two main competing terms. The first one pun-
ishes differences between the desired and the generated potential, where V k

gen

is formed by a discretization of equation 3.2 both in space (index suppressed)
and time (index k). The positive semi-definite weighting matrices Qk define
a window of interest around the desired position of the potential minimum.
The second set of terms regularizes the control inputs as follows:

• The term with the weighting factor r0 sets the default electrode voltage
to Udef

i . We use this to force all the electrodes that do not particularly
influence the desired potential (for example because they are too far
away) to a high voltage, resulting in deep potential wells.

• The terms with the weighting factors r1 and r2 enforce smoothness of
the waveforms by punishing the first and second derivatives using a
finite difference approximation based on the finite difference operator
∆k. This has two advantages. First, it eliminates sudden changes in
voltage that the AWG potentially can not follow. Second, the smoother
a signal is, the faster its power spectral density rolls off. Because the
lowpass filters act only on high frequencies, this thus limits distortion of
the waveforms in the time domain.

As so often, one needs to make trade-offs between absolute performance (e.g.
creating the desired potential) and practical considerations (e.g. creating wave-
forms that can be generated). Greedily optimizing only for absolute perfor-
mance is thus too short-sighted.

Next, we cover the constraints. Constraints i) and ii) can be handled by
enforcing

Umin ≤ Uawg
i ≤ Umax (3.7)

−µmax ≤
∆kUi
Ts

≤ µmax (3.8)

for all time steps k and electrodes i. Constraint (iii) connecting the voltages
Uawg
i at the AWG to the voltages Ui at the trap electrodes can be written as

Ui =




h1 0 . . . 0

h2 h1 . . .
...

...
...

. . . 0
hN hN−1 . . . h1



Uawg
i (3.9)

where h stands for the impulse response of the complete filter system (external
and in-vacuum) in discrete-time.

The cost function J and constraints presented above can be written as a
quadratic program. To do so, we combine all the voltages Ui at the trap
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3. Calculation of Feedforward Control Inputs for Transport

electrodes and Uawg
i at the AWG for all sample times into a single vector x.

In correspondence to equation 3.5 we then construct H, f , c, Aeq, beq, Aineq

and bineq. When doing so, the use of sparse matrices is advisable, as it greatly
reduces the memory requirements and the computation times. To calculate
the waveforms, one then hands the quadratic program to a solver2.

Although direct filter handling can be incorporated via equation 3.9, there are
several practical issues. First, it causes the time-varying voltages at the AWG
to be obtained via model inversion. Because we rely on pure feedforward,
this requires an accurate model of the complete system from the AWG to the
individual electrodes in the trap, as encoded in the impulse response h(k).
Second, it also requires handling of initial and final conditions, because the
filters have internal state variables (e.g. the voltages across capacitors and the
current through inductors). Third, when accounting for filters, the waveforms
can not be played back with different sampling frequencies or in reverse, both
two common practises in our group. Finally, the system does not behave as
a perfect LTI system over its whole operating range, as will be discussed in
chapter 5.

The practical issues associated with explicitly accounting for filters led us to a
pragmatic solution: We enforce smoothness in our waveforms, thus minimizing
the distortion of the voltage signals due to filters in the time-domain. Thus the
main effect of filters is to delay the voltage signal by roughly 1.25 µs. Because
this delay is the same for all electrodes, it poses no problem for our purposes.
This approach has worked well at speeds of a few metres per second at which
we are currently transporting. For faster transport filter handling becomes
increasingly relevant. There is a simple way to check if one needs to account
for filters for a given transport sequence: Calculate the waveforms without
taking filters into account, and then simulate the effect of filters on them. If
there is any significant distortion in the time domain other than a delay, this
indicates that filters should be taken into account.

3.3 Results and discussion

Quadratic programming has proven to be well suited to calculate transport
waveforms while also handling all the practical constraints. Figure 3.4 shows
the electrode voltages over time for a typical transport sequence. It also
shows the spatial potential resulting from the superposition of the individual
electrodes at varying times during the transport. The generated potential wells
are deep and coincide with the desired potential wells, plotted in green. The
electrode voltages all vary smoothly over time and respect both the absolute
voltage limits as well as the voltage slew rate constraint.

2We have made good experiences with Gurobi [Gurobi 15].
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Figure 3.4: Top: Sample waveform showing the voltages Ui(t) of the segmented
dc electrodes calculated to transport from −500 µm to 500 µm. Bottom: The
resulting potential wells at various times (gray) as well the reference potential
(green).

Experimentally, transport of single and multiple ions using these waveforms
worked reliably. For example, using this method we have performed parallel
transport gates, transporting two ions simultaneously [de Clercq 15a]. Due to
the deep wells, losing an ion is unlikely to happen. However, the waveforms
are based on first principles modeling. Due to modeling errors, performance is
degraded in practise. Nonetheless quadratic programming has proven to be a
convenient method. Instead of relying on clipping of voltages or manual tuning
of parameters as with previous methods, it can directly handle constraints.

The main difficulty does not lie in solving the quadratic program, but in
accurately encoding what one actually cares about as an optimization problem.
It can often happen that the solver finds a solution that optimizes a given cost
function very well, but that is useless from a practical point of view. Once
a suitable cost function and accompanying constraints are found though, the
method requires no further effort to generate waveforms for various scenarios.

There are already some ideas for future improvements. One could form the cost
function from a combination of cost terms involving the desired potential and
its first and second derivative to gain more control about the trade-offs. E.g.
one could then specify if one cares more about the well frequency, or the overall
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3. Calculation of Feedforward Control Inputs for Transport

offset. Quadratic programming also allows cost terms based on the 1-norm
and the infinity-norm in addition to the 2-norm used here. Regularization
terms on the electrode voltages using the 1-norm could be used to limit the
number of electrodes active during transport, similar to feature selection in
lasso regression [Tibshirani 96].

In the end, the waveforms are only as as good as the underlying system
model. There are thus diminishing returns to refining the waveform calcu-
lation method. Eventually, one either needs to improve the modeling, use
feedback, or e.g. iterative learning control in order to further optimize trans-
port.

20



Chapter 4

Measuring the Hamiltonian during
Transport

This work was carried out together with Ludwig de Clercq.

In order to control the velocity of an ion during transport, one first needs to
be able to measure it. In this chapter, we present methods to experimentally
determine the velocity of the ion over time. To do so, we measure the evolution
of the internal electronic state of the ion as it passes trough a static laser beam.
The state evolution depends on the frequency of the laser light as seen by the
moving ion. As there is a Doppler shift between the frequency experienced by
the moving ion and the frequency in a static frame of reference, this allows
us to infer the velocity (as well as the Rabi frequency) from the observed
dynamics.

Part of this work previously appeared in [de Clercq 15c, de Clercq 15b], the
latter of which is also reproduced in Appendix D. Here, I thus opt to treat the
subject from the viewpoint of control engineering and state estimation, which
is the dual of control [Todorov 08]. I relate the method developed to infer
the time-dependent Hamiltonian from the experimental data to concepts in
control. The description of the underlying physics, experimental procedures
and practical challenges is thus brief.

4.1 Hamiltonian estimation

4.1.1 Underlying physics

The main reason we care about the velocity of an ion during transport is its
influences on the evolution of the internal electronic state. When performing
transport quantum logic gates, the goal is to manipulate the state as precisely
as possible, thus also requiring good control over the velocity. Specifically,
we can write the spin Hamiltonian governing the evolution of the state in an
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4. Measuring the Hamiltonian during Transport

appropriate rotating frame of reference as

Ĥ(t) =
~
2

(−Ω(t)σ̂x + δ(t)σ̂z ) (4.1)

where δ(t) is the detuning from resonance, and Ω(t) is the Rabi frequency
[de Clercq 15c]. We can write the detuning δ(t) as

δ(t) = δL −
d

dt

(
~k(~z(t)) · ~z(t)

)
(4.2)

where δL = ωL−ω0 stands for the laser detuning from resonance and ~k(~z(t)) is
the wave vector of the laser at position ~z(t). Restricting ourselves to transport
along the z-axis and assuming a constant wave vector ~k, we can simplify this
to

δ(t) = δL − |~k||~v(t)| cos(α) (4.3)

where α is the angle between the wave vector ~k and the transport axis. We
thus have a Doppler shift between the laser frequency experienced by the mov-
ing ion and the laser frequency in the laboratory frame. In reality, matters
are a bit more complicated because Gaussian laser beams have curved wave
fronts, resulting in a time-dependent angle α(t) [de Clercq 15b]. In this thesis,
we opt to neglect treating this effect separately, as it only adds a lot of need-
less complexity, and because we are mainly interested in δ(t) (which already
includes the effect of the curved wavefronts) rather than the velocity on its
own. We thus freely convert between detunings and velocities using equation
4.3. As a rule of thumb, a detuning of 1 MHz corresponds to a velocity of
roughly 1 m/s when transporting 40Ca+ in our current setup.

The task of inferring the velocity over time can thus be accomplished by de-
termining the time-varying Hamiltonian Ĥ(t), additionally also giving us the
Rabi frequency over time. While there are many techniques to experimentally
determine a static Hamiltonian, the same can not be said for the time-varying
case. One way to infer Ĥ(t) would be to discretize in time, and to perform
process tomography for each time step. However, this would be quite demand-
ing experimentally, as it requires accurately preparing different input states,
and measuring the output states in different bases.

In our method, we rely on measuring the time evolution of the state in a single
basis (i.e. measuring σz) and additionally varying the laser detuning δL, which
is easy to do in practise. We thus measure e.g. 〈σ̂z (t, δL)〉. Experimentally
this is done by turning the laser off at varying times t, stopping the spin
dynamics (see [de Clercq 15b] for details). At a time t, the state will vary for
different laser detunings due to the different previous time evolution. This
introduces the diversity in the measurements needed to infer the Hamiltonian
Ĥ(t). This is similar to system identification where the test signal needs to
be sufficiently rich in order to excite the various modes of the system under
investigation, or to the concept of observability in control.
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4.1. Hamiltonian estimation

4.1.2 Inferring the Hamiltonian

Inferring the Hamiltonian Ĥ(t) from the experimental data 〈σ̂meas
z (t, δL)〉

proved out to be much harder than expected. Here, we first discuss why our
initial attempts with various standard techniques for state estimation failed.
We then outline how we came up with a solution, combining several concepts
from control and adapting them to our specific problem.

Initially, we investigated the use of standard estimation techniques from con-
trol engineering to infer the detuning and Rabi frequency over time from the
experimental data. Because the Kalman filter can not handle nonlinear dy-
namics, we first investigated using the extended or unscented Kalman filter.
There, we faced several issues. First, we have a unusually large number of
states, as we need to store the quantum state for each laser detuning. Sec-
ond, each quantum state is constrained to lie on the Bloch sphere. After
re-parametrizing the states to always respect the constraints and accepting
a huge state vector, we noticed that the algorithms were prone to overreact-
ing. For example, after underestimating the Rabi frequency in one timestep,
it would massively overestimate it in the next, quickly leading to divergence.
The solution to this problem is clear. Rather than overcompensating, the al-
gorithm should have gone back in time and fixed the previous state estimate.
We therefore also looked at smoothing techniques that reconstruct the state
trajectory over time based on all the data, rather than only using the data
up to the current timestep. However, smoothing is usually done by a forward
pass, followed by a backward correction pass [Särkkä 13]. As we could not
even complete a forward pass due to overcompensating, we abandoned this
idea as well.

Next, we investigated the use of optimization-based techniques. Essentially,
we want to determine δ(t) and Ω(t) such that the resulting simulated spin
dynamics matches the experimental data as well as possible. To quantify the
match, we can use a standard chi-squared cost function J

J = χ2 =
1

N

∑

t

∑

δL

[〈σ̂meas
z (t, δL)〉 − 〈σ̂sim

z (t, δL)〉
σmeas(t, δL)

]2

(4.4)

where σmeas(t, δL) is the standard deviation of 〈σ̂meas
z (t, δL)〉 assuming shot

noise and N is the number of data points.

When minimizing J we face two main difficulties. First, we are optimizing
with respect to time-varying functions δ(t) and Ω(t). If we simply discretize
the problem in time, we end up with a great number of optimization vari-
ables. Second, 〈σsim

z (t, δL)〉 depends on δ(t) and Ω(t) in a non-trivial way,
being linked by Schrödinger’s equation. We thus have to solve the following
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4. Measuring the Hamiltonian during Transport

optimization problem

min
δ(t),Ω(t)

J(δ(t),Ω(t))

subject to i~
∂

∂t
|Ψ(t, δL)〉 = Ĥ(t) |Ψ(t, δL)〉 ,

|Ψ(t = 0, δL)〉 = |0〉 ,
〈σ̂sim
z (t, δL)〉 = 〈Ψ(t, δL)| σ̂z |Ψ(t, δL)〉 .

(4.5)

This optimization problem also turned out to be difficult. Initial attempts
with genetic algorithms for global optimization and nonlinear least squares
fitting routines produced mixed results at best and took many hours to run.
Two ideas helped to overcome the difficulties. First, we use Basis spline curves
[de Boor 01, Bartels 95] to efficiently represent δ(t) and Ω(t) using just a few
parameters each, assuming both of them to vary smoothly over time. This
is reasonable in our case, because we expect the velocity and laser intensity
to vary smoothly during transport. Second, we use the causality inherent in
our data. If we can not make sense of the data up to some time, it makes no
sense to try to look even further. We thus optimize J only over a short time
horizon at first, and later iteratively extend it, ultimately covering the whole
timespan. For each time horizon we optimize J with the help of a standard
nonlinear least squares fitting routine1. When extending the time horizon,
we can use the previously found δ(t) and Ω(t) as a starting point, warm-
starting the solver. We call this procedure “extending horizon estimation”
(EHE). For details on the actual implementation the reader is referred to
[de Clercq 15c, de Clercq 15b].

In retrospect, we can easily relate the ideas used in extending horizon estima-
tion to common concepts in control engineering. To do so, we first need to
introduce model predictive control (MPC) and the dual technique of moving
horizon estimation (MHE).

In model predictive control, the control input uk at timestep k is calculated
by minimizing a cost function capturing the control objectives with respect
to all future control inputs ui, i ≥ k. Afterwards, the first control input uk is
enacted. At the next timestep k + 1, the procedure is repeated, which is why
it is often also referred to as “receding horizon control”. The main strength
of this approach is that it can easily handle practical constraints, much in
the same way as we did when we calculated the feedforward control inputs in
chapter 3. Because of finite computational resources, the optimization time
horizon only extends some fixed time into the future. To ensure stability, one
usually introduces a terminal cost, approximating all future costs incurred
after the end of the explicit optimization time horizon [Rawlings 09]. The
need for such a terminal cost is best seen in analogy to business. If a company

1Specifically, we used Matlab’s lsqnonlin function.
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4.1. Hamiltonian estimation

optimizes only for short-term profits, the chances are that it will not be around
for very long.

There is a duality between control and state estimation. In control, one aims
to minimize the deviations from a desired state (e.g. caused by disturbances),
expending as little control effort as possible. In state estimation, the aim
is to minimize the difference between the estimated and the true state of
the system, making as little unexplained corrections to the state estimate as
possible. Because of the similarity of the tasks, a concept used for control can
often be adapted to be used for state estimation and vice versa. The most
famous example is the correspondence between the linear quadratic regulator
and the Kalman filter. Moving horizon estimation is the dual technique to
model predictive control for state estimation.

In moving horizon estimation, the aim is to estimate the current state based
on the past few measurements. This is again done by solving an optimization
problem. The estimated state trajectory is optimized such that the difference
between the actual and expected measurements are minimized. Instead of
a terminal cost ensuring stability, we now have an arrival cost, penalizing
changes in the starting state. Determining the right arrival cost for a general
setting is still an open problem. As in MPC, the optimization is performed at
each timestep. At the next timestep, we move the optimization time-horizon
forward by one sample.

Extending horizon estimation as introduced above is very similar to moving
horizon estimation. However, instead of moving both the start and the end of
the time-horizon, we leave the start fixed, and extend the end. We can thus
avoid having to introduce a heuristic arrival cost, something that would be
very difficult for our application. The downside is of course that the compu-
tational burden grows over time as the time horizon increases. In MHE, that
would be unacceptable, as it is used to estimate the state in real-time (and
thus potentially forever), often on severely constrained embedded platforms.
But for our application, this is no problem, as the overall time horizon is fixed
in length and we have no real-time constraints. Using splines to efficiently rep-
resent δ(t) and Ω(t) is conceptually similar to move-blocking in MPC, greatly
reducing the number of optimization variables. Note however that EHE is not
guaranteed to find the global minimum of optimization problem 4.5.

4.1.3 Results

Our approach to reconstruct a time-varying Hamiltonian worked well in prac-
tise. Figure 4.1 shows two datasets, together with the best fit and residuals.
The only difference between the datasets is the position of the laser beam along
the transport axis. The experimental data and the best fit agree very well,
indicating that our Hamiltonian Ĥ(t) models the underlying spin dynamics
well. Figure 4.2 shows the inferred time-varying detuning δ(t) and Rabi fre-
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Figure 4.1: The measured spin populations as a function of time and detuning
(left), the best fit to it (middle) and residuals (right) for two datasets, corre-
sponding to different positions of the laser beam along the transport axis.
Each data point 〈σ̂meas

z (t, δL)〉 is the result of 100 repeated measurements.
Adapted from [de Clercq 15b].

quency Ω(t). We see that the detunings δ(t) of the two datasets do not overlap.
We suspect that this is due to curvature of the wave fronts of the Gaussian
laser beam. Taking this effect into account and calculating the velocity ż(t)
according to equation 4.2, we obtain consistent results. Overall, the difference
between the velocity calculated based on equation 4.2 and 4.3 is very small
though. The method also works well for datasets with much lower resolutions
in both time and detuning. However, one must then be careful to ensure that
the timestep used to simulate the spin dynamics is small enough. There is
however a problem that limits the accuracy of the method. For high beam
powers, we are unable to reproduce the start of the spin dynamics such as the
one shown in Figure 4.3, taken at the maximum laser beam power. With our
model 4.1, we are unable to reproduce the spin dynamics narrowly confined in
detuning in the region t < 50 µs . Currently, the reason for this is unclear, but
we suspect that we might have neglected an effect that only becomes relevant
in this specific regime. As this problem only occurs in a small region at the
start of the fit for high beam powers, it is not very restrictive.
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Figure 4.3: Start of the spin dynamics at maximum beam power. While we
can easily reproduce the dynamics for t > 50 µs with our model, we fail to do
so for the narrow features in the region t < 50 µs.

27



4. Measuring the Hamiltonian during Transport

4.2 Limiting case: Direct measurement of the Hamil-
tonian

In limiting cases, one can also directly measure the Rabi frequency Ω(t) and
detuning δ(t) at a time t upon making some approximations. So far, we have
always measured the spin dynamics with the laser beam turned on already
before the start of the transport, and then turning it off at varying times into
the transport. The spin evolution at time t thus depends on the previous
evolution, making it hard to interpret. After looking at many datasets, we
noticed that the initial dynamics upon entering the beam are essentially always
the same, and hence easy to interpret. This led to the idea of probing the spin
dynamics with a short laser pulse of length T at varying times t.

Keeping the pulse duration T short compared to the timescale at which Ω(t)
and δ(t) fluctuate allows us to approximate them as constant over the course
of the pulse. Because we additionally always prepare the state to initially be
in |0〉, this corresponds exactly to the detuned interaction described in section
2.2.3. Using equation 2.15, we can write the spin population in state |0〉 after
a pulse of duration T as

P (|0〉) = 1− Ω2

Ω2 + δ2
sin2

(√
Ω2 + δ2 T

2

)
. (4.6)

Figure 4.4 plots equation 4.6 for different values of ΩT . Choosing the pulse
duration T such that ΩT = π results in the highest contrast. In practise,
we can not always do so, because we have limited beam power, resulting in
a limited Rabi frequency Ω. However, we can simply choose a shorter pulse
duration T , leading to lower contrast, but keeping our underlying assumptions
valid.
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Figure 4.4: Probability to find the spin in state |0〉 after a laser pulse of
duration T as given by equation 4.6.

In practise, the method has worked well. Figure 4.5 presents experimental
data and a best fit to it, showing that there is a good agreement. We can
readily read off that the resonance occurs for a laser detuning δL of roughly
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4.3. Discussion

-2.3 MHz, corresponding to a speed of roughly 2.3 m/s. Using this method,
we can thus measure δ(t) and Ω(t) at a specific time t. If we now also vary
the starting time of the short laser pulse, we can sample δ(t) and Ω(t) at
different times. Figure 4.6 shows an example of that. Note that the detuning
is now plotted along the vertical axis. We can interpret each vertical slice in
the same way as before. We can thus readily read off that the velocity started
out at roughly 2.4 m/s, then increased to 3 m/s and finally decreased down to
2.6 m/s.
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Figure 4.5: Measured probability to find the ion in state |0〉 after a laser pulse
lasting 1.4 µs.
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Figure 4.6: Measured probability to find the ion in state |0〉 after a laser pulse
lasting 1.4 µs. The horizontal axis marks the time at which the pulse was
turned on.

4.3 Discussion

The two methods described above to determine the time-varying coefficients
δ(t) and Ω(t) of the Hamiltonian Ĥ(t) both have advantages and disadvan-
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4. Measuring the Hamiltonian during Transport

tages, making them complimentary to each other.

The first method is based on measuring the time evolution of the spin de-
gree of freedom and then inferring the Hamiltonian Ĥ(t) using optimization
techniques. It is easy to implement in practise and works well for a general
setting, not requiring any strict assumptions. However, the experimental data
is hard to interpret without running an extended analysis. Also, if we want
to measure the velocity at a particular time t, we still have to measure the
complete time evolution leading up to that time. Furthermore, we can not use
this method indefinitely in time, as eventually noise accumulated during the
time-evolution will drown out the signal. In practise, we were operating far
from that regime though, making it no concern for now. Fundamentally, the
analysis method relies on quickly being able to simulate the spin dynamics
many times. It will thus not scale well to more complex quantum systems
with a large number of states.

The second method is based on probing the spin dynamics only for a short time.
The main disadvantage is that it requires a set of simplifying assumptions to
hold, limiting the regime for which it can be used in practise. For example, the
method does not work at low beam powers, because as it would require long
pulse durations, invalidating our assumptions that δ(t) and Ω(t) are constant
over the pulse duration. Allowing time-varying δ(t) and Ω(t) in the analysis
would then again lead to the first method. In practise, making sure that the
assumptions are met is not always easy. The method allows us to measure
δ(t) and Ω(t) at a specific time, thus enabling pointwise measurements. The
resulting data is easy to interpret by eye and simple to process.

In practise, we have mostly used the first method because it has no restrictive
underlying assumptions. Another practical reason was that our analysis pro-
cess was much more refined for the first method. The second method proved
to be very useful to quickly check the effects of modifications on the velocity
without requiring any sophisticated processing. It thus proved very helpful
over the course of this work in order to quickly try and test various changes.
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Chapter 5

Hardware Modifications: Filters

The technique presented in the previous chapter is nice in that it enable us to
measure the velocity of the ion during transport. What is not so nice, however,
is that even though we were aiming for a constant velocity of 2.8 m/s, the
measured velocity profile is far from constant, with deviations of up to 1 m/s
(see Figure 4.2c). Originally, the plan was to use iterative learning control in
order to compensate for those deviations. However, after some initial tests,
we discovered a serious flaw in the design of the electronics driving the trap
electrodes. We therefore first investigated this issue in detail, and modified
the hardware to fix the problem at its root, benefiting all future experiments.

5.1 The problem: Limits to the LTI assumption

Discovering the issue was tricky mainly because all our measurements were
very indirect, and because we did not anticipate it at all. The problem was
uncovered when we tried to determine the time at which the ion is at the exact
center of the trap. To do so, we made use of the fact that electrode 8 coincides
with the center. As visible in Figure 3.3, the electric field due to electrode 8
has a zero crossing at z = 0. Therefore, the effect of a positive voltage step on
electrode 8 depends on the position of the ion: If it is left of the center (z < 0),
it will move the trapping well to the left. If we are transporting from left to
right and apply a positive voltage step while the ion is still to the left of the
center, the velocity is thus reduced. If the ion is to the right of the center, the
well is shifted to the right, thus speeding up the ion. The closer the ion is to
the center of the trap, the weaker this effect becomes.

Using this effect, we experimentally determined the time at which the ion is
at the center. We transported the ion from z = −200 µm to z = 200 µm using
normal voltage waveforms. On top of those, we added a voltage step of 0.5
V lasting for 4 µs to electrode 8, centered at varying times. Using the direct
technique from chapter 4, we measured the effects of this voltage step on the
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5. Hardware Modifications: Filters

velocity. Figure 4.6 shows one such measurement: At t = 78 µs the ion was
to the left of the center, and thus the velocity was slowed down. Then, after
4 µs at t = 82 µs the negative voltage step from 0.5V back to 0 V again causes
a slow down of the velocity because the ion is now located right of the trap
center. Thus the ion crossed the trap center between those two times. Using
this technique, we found a delay of around 14 µs between the time when we
would have expected the ion to be at the center and the time when it actually
was there. Because this delay was inexplicably high, we had a closer look at
the electronics, which was previously introduced in chapter 3 in Figure 3.1.

The electronics consists of a home-built arbitrary waveform generator nick-
named DEATH1, external lowpass filters, and another lowpass filter within
the vacuum can, close to the trap electrodes. The issue lies subtly at the
interface between those blocks. When testing the DEATH in isolation, they
perform well in that they nicely output the desired waveform. The same is
true for the external filters: The measured transfer function matches the de-
sign value well (see Figure 5.3). Even though both subsystems perform well
in isolation, the overall system performed in unexpected ways. Step testing
on the combined system of DEATH and external filter (but excluding the in-
vacuum filters) revealed two issues. First, the output series resistor Ro on the
DEATH drastically lowered the corner frequency from 250 kHz to roughly 20
kHz. Second, the voltage slew rate was severely limited. This is due to the
non-ideal behaviour of real op-amps. In order to change the output voltage
at the end of the filter, its capacitors need to be charged. This in turn re-
quires a current, which is supplied by the op-amps. Because real op-amps can
only supply a limited current, the slew rate of the filter output is also limited.
We were thus accidentally operating in the nonlinear regime of our hardware,
saturating the op-amp output current.

The effect of both issues on transport is visualized in Figure 5.1 and can easily
be identified. First, the delay between the signals before and after the filters is
much larger than the 1.25 µs one would expect for a third order Butterworth
filter with a cut-off frequency of 250 kHz. Second, for electrodes 7 and 9, we
run into the slew rate limit. This heavily distorts the waveform in the time
domain. From the reference voltage waveforms, we would expect the ion to
be at the trap center around t =160 µs, which is when electrodes 7 and 9 have
equal voltages. However, we see that due to the filters, the time when both
voltages actually are equal is delayed by roughly 14 µs, explaining the delay
measured previously.

Once the problems were identified, resolving them was quite straightforward.
The first issue was solved by shorting out the output series resistor on the
DEATH. To address the second problem, the external filterboard was re-
designed. When designing analog filters, one usually chooses a fixed topology,

1Direct Ethernet Adjustable Transport Hardware
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Figure 5.1: Voltages during a typical transport operation for electrodes 7, 8
and 9 measured at varying points along the electronics: The reference signal
(thin black line), the signal measured when the DEATH is connected to a high-
impedance load (e.g. and oscilloscope, dotted colored line), and the signal of
the system consisting of DEATH and the old external filters (but excluding
the in-vacuum filters, solid colored line).

and then finds suitable values for capacitors, inductors and resistors to match
the transfer function to the desired one. The transfer function only depends
on certain ratios of the components, but not on their absolute values. Using
C, L, and R, one can form three time constants: τ1 = RC, τ2 =

√
LC and

τ3 = L/R. A combination of these will determine the overall transfer func-
tion. The time constants are invariant upon multiplying all the inductors and
resistors by a factor of α while simultaneously also dividing all the capacitor
values by the same value α. Thus the overall transfer function is also invariant
with respect to this transformation. What does change however is the current
drawn by the filters: Because the capacitors are lower by a factor of α, they
also require a factor of α less current for the same voltage swing.

The new external filterboards are based on the old design, but with the com-
ponents scaled by a factor α = 10. This reduces the current required by the
filters by a factor of 10. With the new filters, the voltage slew rate measured
at the output of the external filterboard for a voltage step at the DEATH
from -9 V to +9 V improved from 0.7 V/µs to 4 V/µs. For such steps, we still
run into the current limit (as is illustrated by the perfect LTI step response in
5.2), but its effect is reduced. To avoid this limit, one can easily incorporate
it as a constraint in the calculation of the waveforms, as outlined in chapter 3.

33



5. Hardware Modifications: Filters

Increasing the obtainable voltage slew rate even more would necessitate larger
changes, as we can not simply increase the scaling factor α indefinitely: First,
larger resistors result in higher Johnson–Nyquist noise, as its power spectral
density is proportional to resistance. Currently, the noise is still dominated
by the resistor of the in-vacuum filters. Second, moving to higher and higher
inductances is impractical due to the limited availability of components in
small packages, and due to the non-idealities of real inductors.

5.2 Results and discussion

The new filters were tested thoroughly before installing them in the overall
setup. The results are shown in Figure 5.2 and 5.3. Figure 5.3 shows the
transfer function of the new and old filters, measured with a Digilent analog
discovery kit. The measured transfer functions are quite similar, as one would
expect. The transfer function of both filters compare favourably with the
design value up to roughly 1 MHz. From then on, the attenuation is limited
to roughly 40 dB. The exact reason for this is unclear, but we suspect that
non-ideal components might explain it. The behavior of the combined system
of DEATH and external filterboard in the time domain is shown in Figure 5.2.
Rescaling the component values of the external filters and shorting the output
series resistor on the DEATH both clearly improved the step response.
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Figure 5.2: Time Domain: Step response of the combined system consisting
of the DEATH AWG and external filterboard, measured with and without
series output resistor Ro. Also shown is the ideal step response of the filters,
indicating that we still run into the current limit.

After installing the new filters, we also measured the heating rate using blue
sideband flops. At first, when only one of the three new external filterboards
was directly connected to ground, the heating rate was markedly worse when
compared to the old filters. After connecting each of the three new filterboards
directly to ground, the heating rate dropped to the value of the old filterboards.
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Figure 5.4: Velocity profile and spin dynamics after improving the hardware.

The velocity profiles during transport are also much improved. Figure 5.4
shows the velocity profile measured after modifying the hardware but with a
waveform generated using the same method and model as before. There is
still a deviation from the desired velocity of 2.8 m/s, but the velocity fluctua-
tions are reduced down to roughly 0.1 m/s. Compared to the fluctuations of
roughly 1 m/s from before the modifications (see e.g. Figure 4.2) this is an
improvement by a factor of roughly 10.

We can already think of two possible future improvements. Currently, each
AWG channel of the DEATH drives two filters, each leading to the two oppo-
site dc electrodes. We could thus gain a factor of two by having a separate
AWG channel for each filter. To limit distortion of the voltage waveforms by
the filters in the time domain, it would also be interesting to switch the filter
type. Currently, we are using a third order Butterworth filter, which has a
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5. Hardware Modifications: Filters

maximally flat response in the passband. Instead, we could switch to Bessel
filters, which have a maximally flat group delay, minimizing the time-domain
distortion of the input signal, only delaying it. However, implementing a
Bessel filter would require considerably higher inductor values [Blakestad 10].

The improvements to the hardware will be beneficial for any kind of operation
involving quickly varying voltages. This is in contrast to ILC, which only
improves specific operations ‘on demand’, i.e. upon actually running ILC.
Furthermore, staying away from the current saturation regime of the op-amps
enables us to treat the combined system of DEATH and filters as a standard
linear, time-invariant (LTI) system. As LTI systems are the staple of control
engineering, this simplifies the task of implementing ILC.
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Chapter 6

Iterative Learning Control

While the hardware changes described in the previous chapter have improved
the velocity profile during transport, there are still some remaining velocity
fluctuations. Instead of further improving our modeling or hardware, we now
use iterative learning control (ILC) to optimize the feedforward control inputs
in order to reduce the velocity fluctuations. We do so by combining the tech-
nique for calculating the feedforward control inputs developed in chapter 3,
and the technique for measuring the velocity of the ion over time developed
in chapter 4. We present two different approaches for ILC, the corresponding
experimental results and discuss ideas for future studies.

6.1 Iterative Learning Control

In control engineering one often uses a combination of feedforward and feed-
back in order to control a process. The feedforward control inputs are usually
calculated in advance based on a mathematical model of the process and are
designed to make the process track a reference trajectory. The feedforward
control inputs are directly fed to the actuators. Solely relying on feedforward
is unreliable because of potential modeling errors and disturbances. One there-
fore often also uses feedback to minimize the tracking error on the real system
based on real-time measurements of the tracking error.

Up to now we have only used feedforward control in this thesis. While the
results have been reasonably good, there are remaining velocity fluctuations.
It would therefore be tempting to use real-time feedback in order to min-
imize them. However, we can only infer the velocity of the ion based on
retrospectively analyzing its spin dynamics. We therefore have no real-time
measurements and thus can not use real-time feedback. However, our goal
of transporting the ion from A to B at a constant velocity does not change
over time. We can therefore measure the velocity for a specific set of feed-
forward control inputs and afterwards update the control inputs iteratively.
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6. Iterative Learning Control

Introducing an iteration domain thus allows us to close the loop. This process
of iteratively optimizing the feedforward control inputs is commonly known
as iterative learning control.

Next, we present two different ILC schemes, closing the loop at different points
as illustrated in Figure 6.1. The first method closes the loop by modifying the
reference position over time used to calculate the feedforward control inputs
as described in chapter 3. The second method operates directly on the voltage
waveforms. The main motivation for the first approach is its simplicity. Com-
pared to directly operating on the voltage waveforms, modifying the reference
position is easier conceptually. In contrast to the second approach, it requires
no additional modeling and identification efforts, although that also makes it
susceptible to modeling errors.

Waveform
Calculation

Transport
Process

Hamiltonian
Estimation

ILC
Method 2

ILC
Method 1

r(t) ~u(t) |Ψ(t)〉 v(t)

∆~u(t)∆r(t)

Figure 6.1: Conceptual overview of the two ILC methods investigated.

6.2 Method 1: Modifying the reference

The main motivation for the first approach is the observation that although
we have so far failed to transport exactly at the reference velocity, we are
already quite close, as illustrated in Figure 5.4. The model used to calculate
the feedforward control inputs as outlined in chapter 3 might thus be already
reasonably accurate. Iteratively adjusting the reference position over time
based on the measured velocity error and then recalculating the feedforward
control inputs might thus already be all we need to do.

Figure 6.2 presents a conceptual overview of the approach1. At iteration
m, 0 ≤ m the reference position zmref(t) is used to calculate the feedforward
control inputs umi (t), collectively referred to as the waveforms. This is done as
outlined in chapter 3, inverting our estimated system model Ĝ. The waveforms
are then used on the real system G, and we infer the velocity vmmeas(t) from the

1We opt to present the analysis in continuous-time, resulting in simple formulas. The
actual implementation is however done in discrete-time via a straightforward discretization.
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d
dt

Waveform
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Ĝ−1

Transport
Process
G

vmref(t)

ILC Correction

zm−1
ref (t) zmref(t) umi (t) vmmeas(t)

∆zmref(t)

+

Ĝ−1G ≈ 1

Figure 6.2: Outline of the first ILC method and the signals involved in it.

time evolution of the spin as outlined in chapter 4. We can then use vmmeas(t)
to calculate an updated reference position

zm+1
ref (t) = zmref(t) +

∫ t

−∞
(vref(τ)− vmmeas(τ))d τ (6.1)

effectively closing the loop. The assumption underlying this procedure is that
our estimated system model Ĝ is a good representation of the real system G
such that Ĝ−1G ≈ 1.

For our application, we made some slight adjustments to the update law 6.1
in order to deal with practical constraints. First, we can only reliably infer the
velocity vmmeas(t) while the ion is in the laser beam. We thus restrict ourselves
to this region in time. Second, we keep the start and end positions fixed.
Third we keep the time tcenter at which the ion passes the exact center of the
trap fixed by setting zm+1

ref (tcenter) = zmref(tcenter) = 0. Finally, for simplicity,
we opt to only flatten out velocity fluctuations, but allow for a small constant
offset to the original reference velocity.

The results of running update law 6.1 on two different days are shown in Fig-
ure 6.3a and Figure 6.3b. On both days, we observed clear improvements
in the velocity profiles after one iteration. The initially substantial velocity
deviations are much reduced. After further iterations the results are mixed.
On one hand, iterations 2 and 3 did not result in additional improvements
in Figure 6.3a . On the other hand, the velocity profile in Figure 6.3b con-
verges to within the measurement uncertainty indicated by the area shaded in
gray. However, despite the good results in Figure 6.3b, the pattern of initial
improvements followed by stagnation (or even regression) from Figure 6.3a is
much more representative of our experiences with this approach to ILC. So
while the method improved the flatness of the velocity profile to some degree,
it did not do so reliably, and there are usually still some remaining velocity
fluctuations.

We have two possible explanations for this behavior. As outlined in chapter
3 the waveforms are calculated by optimizing a cost function with competing
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(a) Data taken on 05.09.2015. While iteration 1 reduced the velocity fluctuations, iteration 2
and 3 led to no further improvements.
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Figure 6.3: Velocity profiles obtained with update law 6.1 on two different
days.

objectives (e.g. not only the position zref(t) is optimized, but also the fre-
quency ωz(t) and the offset C(t) of the potential well) as well as constraints.
The effects of changing the reference position on the velocity are therefore not
straightforward and the validity of the assumption Ĝ−1G ≈ 1 is thus question-
able. Second, the experimental apparatus exhibited different behavior from
day to day (as will be discussed in more detail in the next section). For the
current approach, we always rely on the same, original system model. Drifts in
the real system will thus not be accounted for, potentially causing problems.

6.3 Method 2: Directly modifying the waveforms

6.3.1 ILC with a quadratic cost criterion

Addressing the main weakness of our first approach to ILC naturally leads
to the second method. The first approach critically depends on the accuracy
of our model Ĝ of the complete system. With some courage, we just boldly
hoped that Ĝ−1G ≈ 1 is a good approximation, but never actually verified it.
While we could perform system identification on the combined system Ĝ−1G,
it would be needlessly complicated due to having two concatenated nonlinear
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6.3. Method 2: Directly modifying the waveforms

systems Ĝ−1 and G interacting in non-trivial ways, especially because the
waveforms are calculated by solving an optimization problem. We therefore
opt to instead identify G in isolation. Doing so then forces us to directly
modify the voltage waveforms instead of the reference position over time.

In general, the transport process G is nonlinear. Identifying it for a general
setting would therefore be very challenging. Luckily, we do not need a general
system model for our purposes. Instead, we linearize around the transport
trajectory, resulting in a linear time-varying system ∆G. We can then write
the change in velocity ∆v ∈ RN as

∆v =
∑

i

∆Gi∆ui (6.2)

where ∆Gi ∈ RN×N is the linear time-varying model for electrode i , and
∆ui ∈ RN is the change to control input ui over time with N being the
number of samples in time2.

We can use our model ∆G to calculate the corrections ∆umi to the voltage
waveforms umi at iteration m. Roughly speaking, we want to use the correc-
tions ∆umi to compensate for the error in velocity measured at iteration m,
emmeas = vref − vmmeas. Updating the voltage waveforms with

um+1
i = um+1

i + ∆umi (6.3)

we can predict the error at the next iteration using equation 6.2 as

em+1
pred = emmeas −

∑

i

∆Gi∆u
m
i . (6.4)

Ideally, we would like to minimize the predicted error, while also keeping the
corrections ∆umi small. We thus introduce a cost function

Jm = ‖em+1
pred ‖2Q +

∑

i

‖∆umi ‖2R (6.5)

capturing both these objectives. Here, Q and R are positive-definite weighting
matrices. To determine the corrections ∆umi we minimize Jm with respect to
them, i.e.

∆umi = arg min
{∆umi }

Jm. (6.6)

In practice, we have used a more elaborate cost function and introduced ad-
ditional constraints to suit our application. The details are described in Ap-
pendix C.1. The approach outlined here is based on [Amann 95, Lee 00].

2In contrast to the first method, we treat the second ILC method in discrete-time, using
k as the time index.
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6.3.2 Derivation of the linear time-varying model

We now derive the linear time-varying model needed in update law 6.6. Here,
we present a simplified but intuitive derivation. A more rigorous treatment
can be found in Appendix C.2.

At any given time during transport, the ion is confined by an approximately
harmonic potential well which is formed by a superposition of the individual
electrodes, e.g.

V (z) ≈ 1

2

mω2
z

q
(z − zmin)2 + C ≈

∑

i

Vi(z)Ui (6.7)

where we have dropped the time-dependence for convenience. If we now in-
crease the voltage of electrode j by dUj , we get an additional field dV (z)

dV (z) = Vj(z)dUj ≈
[
Vj(zmin) + V ′j (zmin)(z − zmin)

]
dUj (6.8)

where we expanded to first order around the ion position zmin in the undis-
turbed potential V (z). We can then calculate the shift in the equilibrium
position due to dUj by finding the minimum of V (z) + dV (z), i.e.

0 =
d

dz
(V (z) + dV (z)) =

mω2
z

q
(z − zmin) + V ′j (zmin)dUj (6.9)

Solving for the new equilibrium position znew
min , we obtain

znew
min = zmin −

qV ′j (zmin)dUj

mω2
z

. (6.10)

The small voltage dUj thus shifts the equilibrium position by

dz = znew
min − zmin = −

qV ′j (zmin)dUj

mω2
z

. (6.11)

There is a simple interpretation for this result. Originally, the ion is attached
to a spring with a spring constant of k = mω2

z , oscillating at frequency of
ωz around the equilibrium position zmin. The change dUj to the voltage on
electrode j causes a force dF = qV ′j (zmin)dUj . This force then results in a
small change dz = −dF/k in the equilibrium position of the spring.

Now recall that we are primarily interested in changes in velocity dv rather
than in position. To obtain dv, we calculate the derivative of dz with respect
to time

dv =
d(dz)

dt
≈ −

qV ′j (zmin)

mω2
z

d(dUj)

dt
(6.12)

where we have neglected the time-dependence of V ′j (zmin) and ω2
z . We thus

see that the change in velocity is proportional to the first derivative of the
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6.3. Method 2: Directly modifying the waveforms

control input change dUj with respect to time, with the proportionality con-
stant being time varying. By evaluating the proportionality constant for a
specific trajectory zmin(t), we arrive at the linear time-varying model ∆Gi
(see Appendix C.2 for the details).

6.3.3 Verification of the linear time-varying model

Before proceeding with ILC, we now compare the linear time-varying model
we just derived from first principles with measurements on the real system.

In practice, we are mainly concerned with precisely transporting in the center
of the trap, i.e. roughly from z = −100 µm to z = 100 µm, as the laser beam
is usually centered there. In this region, the main electrodes having a strong
influence are number 7, 8 and 9, with electrode 8 providing most of the axial
confinement (see e.g. Figure 3.3). We therefore opt to only use electrodes
7 and 9 for corrections, and thus only need to verify models ∆G7 and ∆G9

when the ion is in the laser beam.

To test our modeling, we measured the velocity of the ion at various times
tn first for the unperturbed base waveform, and then once more after adding
a perturbation dUj(t). Subtracting the measured velocities gives us dv(tn)
from equation 6.12. In order to make the results easy to interpret, we chose
a perturbation dUj with a constant slew rate µslew, centered around tn. The
resulting change in velocity dv(tn) is then approximately given by

dv(tn) ≈ −
qV ′j (zmin(tn))

mωz(tn)2
µslew (6.13)

where j stands for electrode 7 or 9. We can thus compare the difference in
velocity dv(tn) measured on the real system to the one predicted by equation
6.13 at various times tn.

The measured and predicted changes in velocity are shown in Figure 6.4. For
electrode 9 the measurements (green markers) and the predicted values (solid
green line) agree well, except for t = 62 µs. For electrode 7, the measurements
(blue markers) and the predicted values (solid blue line) agree well only for
t > 80 µs. For t < 80 µs the measured and predicted values differ consider-
ably. This is quite surprising because electrodes 7 and 9 are both identical
in shape, with electrode 7 being located to the left of the trap center and
electrode 9 to the right. We therefore would have expected them to show the
same behavior in their respective regions of influence. For the time being, we
therefore opted to only use electrode 9 for corrections. Furthermore, there
also seem to be drifts from day to day, as repeating the measurements on
different days gave different results. Currently, we have no explanation for the
model mismatch and the drifts and can only speculate about possible reasons.
Performing additional investigations to identify the underlying causes would
seem worthwhile.
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Figure 6.4: Measured change in velocity (markers �/◦/×) against predicted
values (solid lines) for electrodes 7 and 9 at various times. The measurements
were repeated on three different days, each corresponding to a different marker
type. Also shown are the predictions for electrodes 6, 8 and 10 in order to
illustrate their respective strengths.

The observed model mismatch and drifts are not much of a problem for ILC
though. While the predicted and measured velocity changes do not match
perfectly, at least the sign is always correct. In practice, we can deal with
inaccurate models by decreasing the step size of the corrections. For example,
instead of trying to correct the complete error emmeas when going from itera-
tion m to m + 1, we can opt to only correct part of it. This can easily be
accomplished by choosing appropriate weighting matrices Q and R in 6.5 such
that the changes ∆umi are strongly penalized. Furthermore, the drifts pose
no problems as long as they occur on a slow timescale compared to the ILC
iterations, which is currently the case.

6.3.4 Results

The results upon applying update law 6.3 on two different days are shown
in Figure 6.5. In both cases the results are very similar. After one iteration,
the velocity is already much improved, although towards the end of the time
window the corrections overshoot, e.g. leading from too slow to too fast ve-
locities. In contrast to the first approach to ILC, the next few iterations then
consistently lead to further improvements. Within two to three iterations, we
reliably converge to within the measurement uncertainty. From then on, we do
not have a reliable error signal emmeas(t) anymore and thus stop the procedure.

The resulting spin evolution after three iterations is shown in Figure 6.6. Note
that the features are very narrow in the laser detuning δL, covering only
roughly 200 kHz, indicating that the velocity varies little. This is in stark
contrast to e.g. Figure 4.1b where the detuning varied by roughly 1.5 MHz.
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resolution for the spin dynamics.

Figure 6.5: Velocity profiles obtained with update law 6.3. The area shaded
in grey indicates the uncertainty in the velocity measurements (± 0.01 m/s).
On both days, the procedure converged to within measurement uncertainty
after 3 iterations.

Second, the spin evolution is almost symmetric with respect to the horizontal
axis. This also indicates that the velocity fluctuations are very small. In
the limiting case of a truly constant velocity, the data would be perfectly
symmetric.

Finally, Figure 6.7 shows the original voltage waveform from iteration 0, as
well as the final waveform from iteration 3 from Figure 6.5b. The absolute
changes to the voltage of electrode 9 are very small compared to the overall
voltages. Linearizing around a particular trajectory is thus well justified.

6.4 Discussion and Outlook

Overall, ILC was successfully used to reduce velocity fluctuations during trans-
port from about 0.1 m/s down to roughly 0.01 m/s. The first approach pro-
duced mixed results, improving the velocity only to some degree. The second
approach reliably reduced the velocity fluctuations down to within the mea-
surement accuracy in a few iterations.
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Spin dynamics 〈σ̂z (t, δL)〉
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Figure 6.6: Spin dynamics obtained after iteration 3 on 19.10.2015.
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from iteration 3 from 19.10.2015. Note that only the input to electrode 9 was
modified. Bottom: Overall changes to the voltage of electrode 9 from iteration
0 to iteration 3.
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6.4. Discussion and Outlook

Currently, the main limitation is not the ILC technique, but rather the accu-
racy of the velocity measurement. As soon as one is unable to reliably infer
an error signal, ILC cannot be used to make further progress. There are two
factors limiting the accuracy of the velocity measurement. First, for some ex-
perimental settings our model can not accurately reproduce the spin dynamics
at the very beginning. Second, choosing the number of fitting parameters is
challenging. When using many parameters one obtains very fine features in
the velocity profile. However, it is hard to tell if they are real or the result
of overfitting. Using cross-validation could help in this regard. If those two
problems can be overcome, we expect further improvements to the flatness
of the velocity, as simulations show that we should be able to measure the
velocity more accurately.

The improved control over the velocity also revealed new aspects of the experi-
mental apparatus. First, we observed day-to-day fluctuations. Sometimes the
measured results changed over the timescale of hours, but at other times the
setup was stable over the course of a full day. Second, while there generally
is a good agreement between model and measurement, we observed a discrep-
ancy between the measured and expected effectiveness of electrodes 7 and 9
left of the trap center. Now that our control of the velocity is good enough
for these effects to become significant, it would be interesting to study them
in more detail and then also get them under control.

While ILC currently is not the limiting factor, there are some possibilities
for future improvements. First, one could use the data between iterations to
perform on-the-fly system identification as in [Rezaeizadeh 15]. Second, one
could further adapt the method to the constraints posed by quantum mechan-
ics. Specifically, we rely on repeated measurements on identically prepared
systems. One could therefore correct the velocity profile in a progressive way
from the start to the end. This could reduce the time spent measuring, as one
then only has to measure at a specific time rather than over the whole time
horizon. Currently, the time spent measuring is not a limiting factor though.
Third, with the recent introduction of scripting to our control software, we
could automate much of what is currently done manually.
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Chapter 7

Conclusions and Outlook

Transport of ions is a key component of the proposed QCCD architecture
for building a scalable ion trap quantum computer. Transport quantum logic
gates are another promising building block as they shift the burden of control
from the optical to the electrical domain, which has an excellent track record
when it comes to scaling. By controlling the velocity of an ion during transport,
we can control the time it is in a laser beam as well as the detuning of the
laser as seen by the ion due to a Doppler shift. This thesis investigated how
to implement ion transport in practice, paying special attention to the control
of the velocity over time.

Quadratic programming was used to calculate feedforward control signals for
adiabatic ion transport. The strength of this approach is that it can easily
handle various practical constraints. We also expect it to be useful e.g. for
splitting of ions. However, in the end, the experimental results will always be
limited by the accuracy of the underlying model. Because models are never
perfect, iterative learning control was later used to close the gap between
predicted and actual performance.

In order to control something, one first needs to be able to measure it. To this
end, we devised experimental methods and associated analysis techniques to
reconstruct a time-dependent Hamiltonian from experimental data, allowing
us to infer the ion’s velocity. The method only requires being able to quickly
turn off the dynamics, and to add a controlled perturbation to the Hamiltonian.
We thus expect it to be useful for many different physical systems. One of its
key strengths is the experimental simplicity, as it only requires measurements
in a single basis. However, we do not expect it to scale to more complicated
quantum systems, as it fundamentally relies on being able to rapidly simulate
the quantum dynamics, one of the original motivations for building a quantum
computer.

Control of the velocity during transport was improved, reducing velocity fluc-
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7. Conclusions and Outlook

tuations from the order of 1 m/s down to roughly 0.01 m/s at a constant trans-
port speed of 2.8 m/s. Finding and eliminating a flaw in the control electronics
contributed roughly a factor of 10. Another factor of 10 came from iteratively
updating the feedforward control inputs using iterative learning control. The
current limiting factor is the uncertainty of the velocity measurements, but
further improvements seem possible.

Precise control over the velocity enables follow-up investigations. First, ran-
domized benchmarking could be used to assess the fidelity of single-qubit trans-
port gates. Second, it would be interesting to see if one can also carry out
two-qubit gates solely using transport, e.g. implementing a transport version
of a Mølmer-Sørensen gate. However, doing so might also require stabilizing
the axial trapping frequency during transport, which one could also do with
ILC.

We expect iterative learning control to be a useful tool in the quest for better
control over quantum systems. Particularly when time-varying control inputs
are used, calibration becomes difficult. Furthermore, quantum mechanics puts
strict limitations on what one can measure, with measurements influencing the
quantum state. One therefore often relies on repeated measurements on iden-
tically prepared systems. In this context, iterative learning control seems to
be well suited for optimizing time-varying feedforward control inputs directly
on the experimental apparatus. ILC could also be further adapted to the
constraints posed by the control of quantum systems; doing so would seem
worthwhile
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Appendix A

List of Abbreviations and Symbols

Abbreviations

AOM Acousto-Optic Modulator
AWG Arbitrary Waveform Generator
DEATH Direct Ethernet Adjustable Transport Hardware
EHE Extending Horizon Estimation
ILC Iterative Learning Control
LTI Linear Time-Invariant
LTV Linear Time-Varying
MHE Moving Horizon Estimation
MPC Model Predictive Control
RF Radio Frequency
QCCD Quantum Charge-Coupled Device
QP Quadratic Program

Symbols

Indices

i Electrode index
k Discrete-time sample index
m Iteration index

Physics

δ Detuning
ωx, ωy, ωz Trap frequency along a given axis
Ω Rabi frequency
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A. List of Abbreviations and Symbols

~k Laser wave vector

Ĥ Hamiltonian
σ̂x, σ̂y, σ̂z Pauli matrices
|Ψ〉 Wave function
|0〉 , |1〉 Energy eigenstates of a two level system

Transport

V (z, t) Voltage along the trap axis z at time t
Vi(z) Voltage along the trap axis z due to a unit voltage on electrode i
Uawg
i (t) Voltage at the output of the AWG controlling electrode i

Ui(t) Voltage on trap electrode i at time t
ui(k) Voltage on trap electrode i at sample index k
∆ui(k) Change to the voltage on trap electrode i at sample index k
z(t) Position along transport axis z

Mathematics

∆k Finite difference operator with respect to index k
du Small change to continuous-time quantity u
∆u Small change to discrete-time quantity u
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Appendix B

Schematic of new external Filterboards
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Appendix C

Iterative Learning Control Details

C.1 Adjustments to the cost function and additional
constraints

Here we present the modifications we made to the cost function Jm from
equation 6.5 in order to adapt it to our application. First, we introduced
additional cost terms, arriving at

Jm =‖em+1
pred ‖2Q + roff‖

∑

i

Vi(zmin(k))∆umi ‖2R (C.1)

+
∑

i

[
r0‖∆umi ‖2R + r1‖∆k∆u

m
i ‖2R + r2‖∆2

k∆u
m
i ‖2R

]

where ∆k stands for the finite difference operator in time.

The term with the weighting factor roff minimizes changes to the offset of the
potential well. The terms prefaced by r0, r1 and r2 punish the changes ∆umi
as well as their first and second derivatives. This results in small and smooth
changes ∆umi , the latter of which is important to prevent distortion of the
corrections by the filters in the time domain. Furthermore, the term penalizing
the first derivative controls how much of the error emmeas gets corrected by ∆umi ,
because velocity changes are proportional to the derivative of the control input
changes with respect to time1.

Furthermore, we also added constraints. To enforce the absolute voltage limits
on the control inputs, we set

Umin ≤ umi + ∆umi ≤ Umax (C.2)

for all electrodes i. We could easily also incorporate slew rate constraints,
but there currently is no need to do so because we are far from the limit.

1This result is derived intuitively in section 6.3.2 and rigorously in Appendix C.2.
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C. Iterative Learning Control Details

Second, we want to keep the time at which the ion passes through the exact
center of the trap (z = 0 µm) constant in order to have a fixed reference point.
Denoting the sample at which the ion is in the middle by kmid, we can write
this constraint as ∑

i

ki(kmid)∆umi (kmid) = 0 (C.3)

where ki(kmid) is the proportionality constant between the change in position
∆z and the change in control input ∆umi as introduced in equation C.13 below.
Finally, in order to keep the start and end position of the transport fixed, we
constrain the changes ∆umi to be equal to zero for a fixed number of samples
at the start and end of the waveform.

The choice of the weighting matrices Q and R is also important. We primarily
care about the velocity of the ion while it is in the beam, which is also when
we can actually measure it. We therefore use a window corresponding to the
time the ion is in the beam as the matrix Q weighing the predicted error. For
the matrix R weighing the control effort over time, we also use a similar time
window. However, we still want to keep the changes to the control inputs
small even at times when the ion is not in the beam. We therefore only reduce
the weights outside the beam, but do not set them to zero.

In order to handle the time delay introduced by the lowpass filters, we shift
the measured velocity error accordingly in time. For example, if we have
a time delay of td and originally measure the velocity error emorig(t), we set
emmeas(t) = emorig(t− td).
The implementation was done in Matlab. We write the cost function and the
constraints as a quadratic program, being careful to use sparse matrices. We
can then carry out the minimization and calculate the changes to the control
inputs by handing the quadratic program to a solver such as [Gurobi 15].

Sample results of the calculation process are presented in Figure C.1. As-
suming we can reliably infer the velocity between t = 50 µs to t = 110 µs,
corresponding to the time the ion is in the beam, we ramp the measured ve-
locity error before and afterwards. We then use emmeas to calculate the changes
to the control inputs by minimizing the cost function given in equation C.1
subject to the constraints outlined above. Because we only used electrode 9
for corrections in the experiment, we also restrict ourselves to electrode 9 here.
We see that the derivative of ∆um9 varies depending on the measured error.
This counteracts the measured velocity error, resulting in a much lower pre-
dicted error. When the measured error is zero around t = 88 µs, the derivative
of ∆um9 is also zero. For this example, the ion is expected to be in the middle
of the trap at tmid = 81.5 µs. Because we only use electrode 9 for corrections,
∆um9 (tmid) is zero in order to satisfy constraint C.3. Finally, we note that the
predicted error is nonzero at the beginning and towards the end, i.e. when
the ion is not in the beam. This is due to the corrections ∆um9 having to
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C.2. Detailed derivation of the linear time-varying model

ramp down to zero at the start and at the end, resulting in velocity changes.
However, we do not mind those velocity changes, as they happen outside the
beam.

Figure C.1: Illustration of the calculation of the changes to electrode voltage
9 for a sample velocity error. The top shows the measured velocity error as
well as the predicted velocity error at the next iteration upon applying the
corrections ∆um9 shown in the bottom half of the Figure.

C.2 Detailed derivation of the linear time-varying model

Here, we derive the linear time-varying models ∆Gi by linearizing the general
process model G from chapter 3 around a particular trajectory of the ion.
First, we recall that in adiabatic transport the ion is always located at the
minimum of the confining potential V (z, t). We can write the position zmin(t)
of the ion at time t as

zmin(t) = arg min
z
V (z, t). (C.4)

The confining potential V (z, t) is the result of a superposition of the spatial
potentials Vi(z) due to the individual electrodes, weighted by the electrode
voltages Ui(t) (see equation 3.2):

V (z, t) =
∑

i

Vi(z)Ui(t) (C.5)

To perform the minimization in equation C.4, we take the derivative with
respect to z and set it to zero, resulting in

0 =
∑

i

V ′i (zmin(t))Ui(t) (C.6)
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C. Iterative Learning Control Details

which implicitly defines zmin(t). For general V ′i (z) we can not explicitly solve
for zmin(t). Luckily, for our current task of linearizing around the trajectory
zmin(t) there is no need to do so. Instead of solving for the ion position zmin(t)
for given electrode voltages Ui(t), we want to determine the small change in
position dz(t) caused by small changes dUi(t) to the electrode voltages Ui(t).
Modifying equation C.6 and dropping the time argument, we get

0 =
∑

i

V ′i (zmin + dz) (Ui + dUi) (C.7)

≈
∑

i

(
V ′i (zmin) + dzV ′′i (zmin)

)
(Ui + dUi) (C.8)

≈
∑

i

[
V ′i (zmin)Ui + V ′i (zmin)dUi + dzV ′′i (zmin) (Ui + dUi)

]
(C.9)

≈
∑

i

[
V ′i (zmin)dUi + dzV ′′i (zmin) (Ui + dUi)

]
(C.10)

where we first expanded V ′i (z) in a Taylor series around zmin, then multiplied
out the terms, and finally used equation C.6 to eliminate the term V ′i (zmin)Ui.
Solving for dz and approximating Ui + dUi as Ui, we obtain

dz ≈ −
∑

i V
′
i (zmin)dUi∑

i V
′′
i (zmin)Ui

(C.11)

Next, we re-introduce the time argument and bring the result into a more
readable form

dz(t) ≈
∑

i

ki(t)dUi(t) (C.12)

by introducing

ki(t) =
−V ′i (zmin(t))∑
i V
′′
i (zmin(t))Ui(t)

. (C.13)

We thus see that the small changes dUi to the electrode voltages Ui lead to a
small displacement dz. So far, we have worked in continuous-time. We now
switch to discrete-time by replacing time t with sample index k, dz(t) with
∆z(k), ki(t) with ki(k) and dUi(t) with ∆ui(k) in accordance to our definitions
in equation 6.2. We thus have

∆z(k) ≈
∑

i

ki(k)∆ui(k). (C.14)

Finally, we recall that we were originally interested in the change in velocity
∆v(k) rather than the change in position ∆z(k). To obtain the change in
velocity, we can simply use a finite difference approximation. Using e.g. first
central differences we obtain

∆v(k) ≈ ∆z(k + 1)−∆z(k − 1)

2Ts
(C.15)

≈
∑

i ki(k + 1)∆ui(k + 1)−∑i ki(k − 1)∆ui(k − 1)

2Ts
(C.16)
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C.2. Detailed derivation of the linear time-varying model

where Ts stands for the sampling time. By comparing equations 6.2 and C.16,
we can read off the matrices ∆Gi representing the linear time-varying models
obtained after linearizing around a particular trajectory {zmin(t), Ui(t)}.
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Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions

L. E. de Clercq, R. Oswald, C. Flühmann, B. Keitch, D. Kienzler,
H.-Y. Lo, M. Marinelli, D. Nadlinger, V. Negnevitsky, J. P. Home

Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland

The time evolution of a closed quantum sys-
tem is connected to its Hamiltonian through
Schrödinger’s equation. The ability to estimate
the Hamiltonian is critical to our understand-
ing of quantum systems, and allows optimization
of control. Though spectroscopic methods al-
low time-independent Hamiltonians to be recov-
ered, for time-dependent Hamiltonians this task
is more challenging [1–6]. Here, using a single
trapped ion, we experimentally demonstrate a
method for estimating a time-dependent Hamil-
tonian of a single qubit. The method involves
measuring the time evolution of the qubit in a
fixed basis as a function of a time-independent
offset term added to the Hamiltonian. In our
system the initially unknown Hamiltonian arises
from transporting an ion through a static, near-
resonant laser beam [7]. Hamiltonian estimation
allows us to estimate the spatial dependence of
the laser beam intensity and the ion’s velocity as
a function of time. This work is of direct value
in optimizing transport operations and transport-
based gates in scalable trapped ion quantum in-
formation processing [8–10], while the estimation
technique is general enough that it can be ap-
plied to other quantum systems, aiding the pur-
suit of high operational fidelities in quantum con-
trol [11, 12].

Estimation of the underlying dynamics which drive the
evolution of systems is a key problem in many areas of
physics and engineering. This knowledge allows control
inputs to be designed which account for imperfections
in the physical implementation. For closed quantum
systems, the time dependence of a system is driven by
the Hamiltonian through Schrödinger’s equation. If the
Hamiltonian is static in time, a wide range of techniques
have been proposed for recovering the Hamiltonian [1–
3, 13], which have been applied to a variety of systems
including chemical processes [4] and quantum dots [5, 6].
These methods often involve estimation of the eigenvec-
tors and eigenvalues of the Hamiltonian via spectroscopy,
or through pulse-probe techniques for which a Fourier
transform of the time-evolution gives information about
the spectrum. However these methods are not directly
applicable to time-dependent Hamiltonians. Such Hamil-
tonians are becoming of increasingly important as quan-
tum engineering pursues a combination of high opera-
tional fidelities and speed, often involving fast variation
of control fields which are particularly susceptible to dis-
tortion before reaching the quantum device [9, 10, 14–17].

In this Letter, we propose and demonstrate a method

for reconstructing a general time-dependent Hamiltonian
with two non-commuting terms which drives the evolu-
tion of a single qubit. The method works with any single
qubit Hamiltonian Ĥ =

∑
i fi(t)σ̂i, where the fi(t) are

arbitrary time-dependent functions and σ̂i are the Pauli
operators. In our experiments, a Hamiltonian with two
non-commuting time-dependent terms arises when we try
to perform quantum logic gates by transporting an ion
through a static laser beam [7, 18]. In this case, the
Hamiltonian describing the interaction between the ion
and the laser can be written in an appropriate rotating
frame as

ĤI(t) =
~
2

(−Ω(t)σ̂x + δ(t)σ̂z ) (1)

which includes a time-varying Rabi frequency Ω(t), and
an effective detuning δ(t) which is related to the first-
order Doppler shift of the laser in the rest frame of the
moving ion (see [19] for details). For a Hamiltonian of
this type with unspecified time-dependent coefficients, no
analytical solution to Schrödinger’s equation exists [20,
21]. In order to reconstruct the Hamiltonian we make use
of two additional features of our experiment. The first is
that we can switch off the Hamiltonian at time toff on a
timescale which is fast compared to the evolution of the
qubit. Secondly we are able to offset one of the terms in
the Hamiltonian, in our case by adding a static detuning
term Ĥs = ~δLσ̂z /2 such that the total Hamiltonian is

ĤI(t) + Ĥs. We then measure the expectation value of
the qubit in the σ̂z basis as a function of δL and toff .
Repeating the experiment with identical settings many
times, we obtain an estimate of the expectation value
which we denote as 〈σ̂meas

z (toff , δL)〉.
Hamiltonian extraction involves theoretically generat-

ing the qubit populations 〈σ̂sim
z (toff , δL)〉, and attempt-

ing to find the Hamiltonian for which this most closely
matches the data. In order to provide a simple parame-
terization, we represent δ(t) and Ω(t) as a linear weighted
combination of basis splines [22, 23]. 〈σ̂sim

z (toff , δL)〉 is
compared to the measured data using a weighted least-
squares cost function, which we optimize with respect
to the weights of the basis-splines used to parameterize
δ(t) and Ω(t). Solving this optimization problem in gen-
eral is hard because the cost function is subject to strong
constraints imposed by quantum mechanics, producing
a non-trivial relation between the weights and the spin
populations [19]. We overcome this problem by making
use of the inherent causality of the quantum-mechanical
evolution, and by assuming that the parameters of the
Hamiltonian vary smoothly. We call our technique “Ex-
tending the Horizon Estimation”, in analogy to estab-
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lished methods in engineering [24] (a detailed description
of our method can be found in [19]). Rather than opti-
mizing over the whole data set at once, we build up the
solution by initially fitting the data over a limited region
of time 0 < toff < T0. The solution obtained over this
first region can be extrapolated over a larger time span
0 < t < T1 where T1 = T0 + τ , which we use as a starting
point to find an optimal solution for this extended region.
This procedure is iterated until Tnmax = max(toff). The
method allows us to choose a reduced number of basis
spline functions to represent δ(t) and Ω(t), and also re-
duces the amount of data considered in the early stages
of the fit, when the least is known about the parame-
ters. This facilitates the use of non-linear minimization
routines, which are based on local linearization of the
problem and converge faster near the optimum. More
details regarding the optimization routine can be found
in [19].

In the experimental work, we demonstrate reconstruc-
tion of the spin Hamiltonian for an ion transported
through a near-resonant laser beam. Our qubit is en-
coded in the electronic states of a trapped calcium
ion, which is defined by |0〉 ≡

∣∣2S1/2,MJ = 1/2
〉

and

|1〉 ≡
∣∣2D5/2,MJ = 3/2

〉
. This transition is well resolved

from all other transitions, and has an optical frequency
ω0/(2π) ' 411.0420 THz. The laser beam points at
45 degrees to the transport axis, and has an approxi-
mately Gaussian spatial intensity distribution. The time-
dependent velocity ż(t) of the ion is controlled by adia-
batic translation of the potential well in which the ion is
trapped. This is implemented by applying time-varying
potentials to multiple electrodes of a segmented ion
trap, which are generated using a multi-channel arbitrary
waveform generator, each output of which is connected
to a pair of electrodes via a passive third order low-pass
Butterworth filter. The result is that the ion experiences
a time-varying Rabi frequency Ω(t) and a laser phase
which varies with time as Φ(t) = φ(z(t)) − ωLt, where
φ(z(t)) = kz(z(t))z(t) with kz(z(t)) the laser wavevector
projected onto the transport axis at position z(t) and ωL
the laser frequency. The spatial variation of kz(z(t)) ac-
counts for the curvature of the wavefronts of the Gaussian
laser beam. In order to create a Hamiltonian of the form
of equation 1, we work with the differential of the phase,
which gives a detuning δ(t) = δL−φ̇ = (k′z(z)z + kz(z)) ż
with δL = ωL−ω0 the laser detuning from resonance. For
planar wavefronts k′z(z) = 0, and δ(t) corresponds to the
familiar expression for the first-order Doppler shift (see
[19] for details).

The experimental sequence is depicted in figure 1. We
start by cooling all motional modes of the ion to n̄ < 3
using a combination of Doppler and electromagnetically-
induced-transparency cooling [25], and then initialize the
internal state by optical pumping into |0〉. The ion is
then transported to zone A, and the laser beam used to
implement the Hamiltonian is turned on in zone B. The
ion is then transported through this laser beam to zone C.
During the passage through the laser beam, we rapidly

Prepare

Transport
Gate

Readout

z

toff

Prepare Qubit Readout

Beam sequence

Transport sequence

t

tBeam

BA C

B A

a)

c)

A C C B

A CB

(i)

(ii)

(iii)

(iv)

(v)

b)

z

FIG. 1: Experimental sequence and timing: a) The ex-
periment is carried out in three zones of the trap indicated
by A, B and C. b) The experimental sequence involves steps
(i) through (v). Preparation and readout are carried out on
the static ion in zone B. The qubit evolves while the ion is
transported from zone A to zone C, via the laser beam in
zone B. c) Experimental sequence showing the timing of ap-
plied laser beams and ion transport, including shutting off the
laser beam during transport.

turn the beam off at time toff and thus stop the qubit
dynamics. The ion is then returned to the central zone
B in order to perform state readout, which measures the
qubit in the computational basis (for more details see

[19]). The additional Hamiltonian Ĥs is implemented
by offsetting the laser frequency used in the experiment
by a detuning δL. For each setting of toff and δL the
experiment is repeated 100 times, allowing us to obtain
an estimate for the qubit populations 〈σ̂z (toff , δL)〉.

Experimental data is shown in figure 2 for two different
beam positions, alongside the results of fitting performed
using our iterative method. The beam positions used for
each data set differ by around 64 µm, but the transport
waveform used was identical. The reconstructed veloci-
ties should therefore agree in the region where the data
overlap. It can be seen from the residuals that the es-
timation is able to find a Hamiltonian which results in
a close match to the data. In order to get an estimate
of the relevant error bars for our reconstruction, we have
performed non-parametric resampling with replacement,
optimizing for the solution using the same set of B-spline
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FIG. 2: Measured data, estimation and residuals: Spin population as a function of detuning and switch-off time of the
laser beam. a) is for a laser beam centered in zone B, while for b) the beam was displaced towards zone C by 64 µm. From
left to right are plotted the experimental data, the populations generated from the best fit Hamiltonian, and the residuals.
Each data point results from 100 repetitions of the experimental sequence. The data in a) consist of an array of 100 × 101
experimental settings, while that shown in b) consists of an array of 201 × 201 settings. This leads to smaller error bars in
the reconstructed Hamiltonian for the latter. For the Hamiltonian estimation the data was weighted according to quantum
projection noise.

functions as was used for the experimental data to pro-
vide a new estimate for the Hamiltonian. This is repeated
for a large number of samples, resulting in a distribution
for the estimated values of δ(t) and Ω(t) from which we
extract statistical properties such as the standard error.
The error bounds shown in figures 3 correspond to the
standard error on the mean obtained from these distri-
butions (see [19] for further details).

The estimated coefficients of the Hamiltonian ex-
tracted from the two data sets are shown in figure 3a).
It can be seen that the values of δ(t) for the two different
beam positions differ for the region where the reconstruc-
tions overlap. We think that this effect arises from the
non-planar wavefronts of the laser beam. Inverting the
expression for δ(t) to obtain the velocity of the ion, we
find ż(t) = δ(t)/(k′z(z)z + kz(z)). Using this correction,
we find that the two velocity profiles agree if we assume
that the ion passes through the center of the beam at a
distance of 2.27 mm before the minimum beam waist, a
value which is consistent with experimental uncertainties
due to beam propagation and possible mis-positioning of

the ion trap with respect to the fixed final focusing lens.
The velocity estimates taking account of this effect are
shown in figure 3b).

Figure 4 shows the results of a reconstruction for a sec-
ond pair of data sets taken using two different velocity
profiles but with a common beam position. The resolu-
tion in both time and detuning were lower in this case
than for the data shown in figure 2 (see [19] for the data).
We observe that the estimated Rabi frequency profiles
agree to within the error bars of the reconstruction. One
interesting feature of this plot is that the error bars pro-
duced from the resampled data sets are notably higher at
the peak than on the sides of the beam. We think that
this happens because the sampling time of the data is
0.5 µs, which is not high enough to accurately resolve the
fast population dynamics resulting from the high Rabi
frequency (the Nyquist frequency is 1 MHz). In order to
optimize the efficiency of our method, it would be advan-
tageous to run the reconstruction method in parallel with
data taking, thus allowing updating of the sampling time
and frequency resolution of points based on the current
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The estimated velocity ż(t) of the ion obtained after applying
wavefront correction. The inset shows that this can produce
consistent results.

time (µs)

δ(
t)

 (
M

H
z
)

2.3

2.4

2.5

2.6

2.7

2.8

2.9 a)

position (µm)

50 100 150 200 250

Ω
(z

)/
2
π

 (
M

H
z
)

0

0.1

0.2

0.3

b)

FIG. 4: Spatial Rabi frequency: a) The estimated δ(t)
obtained from the second pair of data sets (Figure 8 in [19]).
b) The estimated Rabi frequency Ω(t) for the same two data
sets.

estimates of parameter values.

Our method for directly obtaining a non-commuting
time-dependent Hamiltonian uses straightforward mea-
surements of the qubit state in a fixed basis as a func-
tion of time and a controlled offset to the Hamiltonian.
This simplicity means that the method should be appli-
cable in a wide range of physical systems where such con-
trol is available, including many technologies considered
for quantum computation [1, 5, 6, 26, 27]. A process-
tomography based approach would require that for ev-
ery time step multiple input states be introduced, and a
measurement made in multiple bases [28–30]. An effec-
tive modulation of the measurement basis arises in our
approach due to the additional detuning δL. It is worth
noting that tomography provides more information than
our method: it makes no assumptions about the dynam-
ics aside from that of a completely positive map while
we require coherent dynamics. Extensions to our work
are required in order to provide a rigorous estimation of
the efficiency of the method in terms of the precision ob-
tained for a given number of measurements, and to see
whether a similar approach could be taken to non-unitary
dynamics. Using this method on considerably lower res-
olution data sets, we have recently been able to improve
the control over the velocity, which will be necessary in
order to realize multi-qubit transport gates in our current
setup [7].
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FIG. 5: Beam and ion transport: The beam propagation
direction lies along the ξ-axis and the ion is transported along
the z-axis lying the κξ-plane as indicated. Normalized vectors
representing ~el(κ, ξ) lying perpendicular to the wavefronts are
indicated by the blue arrows.

I. SUPPLEMENTARY MATERIAL

A. Derivation of Hamiltonian

The interaction of a laser beam with frequency ωL
and wave vector ~k(~z(t)) with a two-level atom with res-
onant frequency ω0 and time-dependent position of the
ion ~z(t) = (0, 0, z(t)) can be described in the Schrödinger
picture by the Hamiltonian

ĤS = −~ω0

2
σ̂z − ~Ω(z(t)) cos

(
~k(~z(t)) · ~z(t)− ωLt

)
σ̂x ,(2)

where the Rabi frequency Ω(z(t)) gives the interaction
strength between the laser and the two atomic levels. We
can define the laser phase at the position of the ion as

Φ(t) = φ(t)−ωLt with φ(t) = ~k(~z(t)) ·~z(t) = kz(z(t))z(t)

and kz(z(t)) = |~k| cos (θ(t)) being the projection of the
laser beam onto the z-axis along which the ion is trans-
ported. Here θ(t) is the angle between the wave-vector
~k(z(t)) and the transport axis evaluated at position z(t).
Moving to a rotating frame using the unitary transforma-

tion U = e−i
Φ(t)

2 and applying the rotating wave approx-
imation with respect to optical frequencies, we obtain

ĤI =
~
2

(
−Ω(t)σ̂x +

(
−ω0 − Φ̇(t)

)
σ̂z

)
. (3)

Defining a static detuning δL = ωL − ω0 we obtain

ĤI =
~
2

(
−Ω(t)σ̂x +

(
δL − φ̇(t)

)
σ̂z

)
. (4)

with

δ(t) = δL − φ̇(t) (5)

which is the expression used in the main text.

B. Wavefront correction

For plane waves we find that φ̇(t) = ~k · ~v(t) which
is the well-known expression for the first-order Doppler

shift. For transport through a real Gaussian beam, the
wave-vector direction changes with position. Taking this
into account, the derivative of φ(t) becomes

φ̇(t) = [k′z(z(t))z(t) + kz(z(t))] ż(t) (6)

where k′z = dkz/dz and ż(t) is the component of the ion’s
velocity which lies along the z-axis. We extract δ(t) using
our Hamiltonian estimation procedure, thus to obtain the
velocity of the ion we use

ż(t) =
−δ(t) + δL

k′z(z(t))z(t) + kz(z(t))
. (7)

As the ion moves through the beam it experiences the

same magnitude of the wave vector |~k| = 2π/λ, but the
angle θ between the ion’s direction and the wave vector
changes. Written as a function of this angle, the velocity
becomes

ż(t) =
−δ(t) + δL

−|~k| sin (θ(z(t))) θ′(z(t))z(t) + |~k| cos(θ(z(t)))
(8)

where θ′(z(t)) = dθ(z(t))/dz(t). We parameterize our
Gaussian beam according to figure 5. The phase is given
as a function of both the position along the beam axis ξ
and the perpendicular distance from this axis κ by [31]

ϕ(κ, ξ) = |~k|ξ − ζ(ξ) +
|~k|κ2

2R(ξ)
. (9)

where the Gaussian beam parameters include the beam
waist W (ξ), the radius of curvature R(ξ) the Rayleigh
range ξR and the Guoy phase shift ζ(ξ). These are given
by the expressions

W (ξ) = W0

√
1 +

(
ξ

ξR

)2

R(ξ) = ξ

(
1 +

(
ξR
ξ

)2
)

ζ(ξ) = tan−1

(
ξ

ξR

)

ξR =
πW 2

0

λ

k =
2π

λ

(10)

where W0 is the minimum beam waist and λ the laser
wavelength. The ion moves along the z-axis shown in
figure 5. In the κξ-plane a unit vector ~el(κ, ξ) perpendic-
ular to the wavefronts is given by

~el(κ, ξ) =
∇ϕ(κ, ξ)

||∇ϕ(κ, ξ)|| (11)

and the unit vector ~ev pointing along the direction of
transport is given by

~ev =

[
cos(α)
sin(α)

]
(12)
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The angle θ(ξ) between the wave and position vector
is then given by the dot product

θ(κ) = cos−1 (~en · ~ev) . (13)

which can be written in terms of the full set of parameters
above as

θ(κ) = cos−1 (γ1 + γ2)

γ1 =
cos(α)

(
−2ξR

(
ξ2 + ξ2

R

)
+ kκ2

(
ξ2
R − ξ2

)
+ 2k

(
ξ2 + ξ2

R

)2)

η(κ)

γ2 =
sin(α)2kκξ

(
ξ2 + ξ2

R

)

η(κ)

η(κ, ξ) =
(
ξ2 + ξ2

R

)

4

(
kκξ

ξ2 + ξ2
R

)2

+

(
− 2ξR
ξ2 + ξ2

R

+ k

(
2 +

κ2
(
ξ2
R − ξ2

)

(ξ2 + ξ2
R)

2

))2



κ(t) = z(t) sin(α)

(14)
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FIG. 6: Extending the Horizon Estimation: The steps
performed when extending the time horizon from Tn to Tn+1

are illustrated. We first predict in the old basis, then move
to the new basis, and finally optimize again. The figure also
shows the basis splines Bi,k(t).

where in our experiments α = 3π/4.
Using Eq. 8 and 14 we examined the value of ξcl re-

quired for the velocity to match for our two beam posi-
tions. We find that they agree for ξcl = −2.27 mm, which
is within the experimental uncertainties for our setup.

C. Basis spline curves

One challenge in obtaining an estimate for the Hamil-
tonian is that we must optimize over continuous func-
tions δ(t) and Ω(t). To address this, we represent δ(t)

and Ω(t) with basis spline curves. Basis spline curves
allow the construction of smooth functions using only a
few parameters. This is achieved by introducing a set of
polynomial Basis (B)-spline functions Bi,k(t) of order k
[23]. A smooth curve S(t) can then be represented as a
linear combination of these B-spline basis functions [22]

S(t) =
n∑

i=0

αiBi,k(t). (15)

The B-splines Bi,k(t) of order k are recursively defined

over the index i over a set of points ~K = {t0, t1, ..., tn+k}
which is referred to as the knot vector [23].

Bi,1(t) =

{
1 ti ≤ t ≤ ti+1

0 otherwise

Bi,k(t) = ωi,k(t)Bi,k−1(t) + (1− ωi+1,k(t))Bi+1,k−1(t).

ωi,k(t) =

{ t−ti
ti+k−1−ti if ti 6= ti+k−1

0 otherwise
(16)

Figure 6 gives a visualization of the B-splines Bi,k(t) and
a basis spline curve. The B-spline construction ensures
that any linear combination of the B-splines is continuous

and has (k−2) continuous derivatives. The knot vector ~K
determines how the basis functions are positioned within
the interval [t0, tn+k]. We notice that for our Hamilto-
nian the spacing of the B-splines is not critical, which
we think is due to the smoothness of the variations in
our Hamiltonian parameters δ(t) and Ω(t). We therefore
used the Matlab function spap2 to automatically choose
a suitable knot vector and restricted ourselves to opti-
mizing the coefficients αi. We collect all coefficients αi
for δ(t) and Ω(t) and store them in a single vector ~α.
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D. Extending the Horizon Estimation

The task of inferring the time-dependent Hamiltonian
of the form (1) from the measured data can be cast into
an optimization problem for which we use a reduced chi-
squared cost function

J =
1

ν

∑

toff

∑

δL

[ 〈σ̂meas
z (toff , δL)〉 − 〈σ̂sim

z (toff , δL)〉
σmeas(toff , δL)

]2

(17)

where ν = N − n − 1 is the degrees of freedom with N
the number of data points and n the number of fitting
parameters, and σmeas(toff , δL) is the standard error on
the estimated 〈σ̂meas

z (toff , δL)〉 which we obtain assuming
quantum projection noise. In our case the Hamiltonian
ĤI (Eq. 1) with offset Ĥs = ~δLσ̂z /2 is parametrized by
Ω(t) and δ(t). We can thus write the problem as

min
δ(t),Ω(t)

J(δ(t),Ω(t)) (18)

subject to

i~
∂

∂t
|Ψ(t, δL)〉 =

(
ĤI(t) + Ĥs

)
|Ψ(t, δL)〉 ,

|Ψ(t = 0, δL)〉 = |0〉 ,
〈σ̂sim
z (t, δL)〉 = 〈Ψ(t, δL)| σ̂z |Ψ(t, δL)〉 (19)

for all δL.
This optimization problem is hard to efficiently solve

in general, because it is nonlinear and non-convex due
to the nature of Schrödinger’s equation and the use of
projective measurements. In order to overcome this chal-
lenge, we have implemented a method which we call “Ex-
tending the Horizon Estimation” (EHE) in analogy to a
well-established technique called “Moving Horizon Esti-
mation” (MHE) [24].

The key idea is that because our measurement data
arises from a causal evolution, we can also estimate the
Hamiltonian in a causal way. We define a time span
ranging from the initial time to some later time which
we call the time horizon. Instead of optimizing J over
the complete time span at once, we first restrict ourselves
to a small, initial time horizon reaching only up to the
start of the qubit dynamics. Optimizing J over this short
time horizon requires fewer optimization parameters and
is simpler than attempting to optimize over the full data
set. Once we have solved this small sub-problem, we
extend the time horizon and re-run the optimization, ex-
trapolating the results of the initial time window into the
extended window in order to provide good starting con-
ditions for the subsequent optimization. This is greatly
advantageous for the use of non-linear least squares opti-
mization, which typically works by linearizing the prob-
lem and converges much faster near the optimum. The
extension of the horizon is used repeatedly until the time
window covers the full data set.

Conceptually EHE is very similar to MHE. The main
difference is that in MHE the time span has a fixed length

and thus its origin gets shifted forwards in time along
with the horizon. In EHE the origin stays fixed at the
expense of having to increase the time span under con-
sideration. MHE avoids this by introducing a so-called
arrival cost to approximate the previous costs incurred
before the start of the time span. This keeps the compu-
tational burden fixed over time, which is very important
as MHE is usually used to estimate the state of a sys-
tem in real-time, often on severely constrained embed-
ded platforms. Since neither constraint applies to our
problem, we decided to extend the horizon rather than
finding an approximate arrival cost. This is advantageous
since finding the arrival cost in the general case is still
an open problem. Due to the similarity between MHE
and EHE, we anticipate future improvements by adapt-
ing techniques used in MHE to EHE.

Next, we present a more detailed algorithmic summary
of our implementation of the method outlined above.

1. Searching for a starting point. Here we re-
construct the Hamiltonian for a first, minimal time
horizon such that we can then use this as a starting
point to iteratively extend the horizon as described
in step 2.

(a) Choose an initial time horizon such that it
contains the region where the first discernible
qubit dynamics occur.

(b) Cut down the number of fitting parameters
as much as possible, e.g. by using few Basis
splines of low order. This amounts to choosing
empirically a low number of basis splines (and
thus the length of ~α0) which might represent
δ(t) and Ω(t) over the given region.

(c) Use a nonlinear least squares fitting routine
to minimize J by varying the parameters ~α0.
In the case that the initial fit is not good or
no minimum is found, try new initial condi-
tions, change the number of B-spline func-
tions, or manually adjust the function using
prior knowledge of the physical system under
consideration.

This procedure is used to provide a starting point
for the optimization over the initially chosen win-
dow, which is typically performed with a higher
order set of B-splines. From this starting point,
we iteratively extend the fitting method to the full
data set as follows.

2. Extend the horizon This step is repeated until
the whole time horizon is covered. It consists of the
following sequence, which is illustrated in figure 6.

(a) Extend the time horizon by τ from Tn to
Tn+1 = Tn + τ .

(b) Extrapolate fopt,old(t) within τ , e.g. using
fnxtr in Matlab.
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(c) Adapt the Basis splines to the new time hori-
zon Tn+1 and represent fpred,old(t) in the new
basis, giving fpred,new(t). In Matlab one can
use spap2 to do this.

(d) Use fpred,new(t) as the initial guess for a
weighted nonlinear least squares fit over the
extended time span up to Tn+1.

(e) Judge the results of the fit based on its re-
duced chi-squared value χ2

red. If it is below a
specified bound, continue with an additional
iteration of steps a)-d), repeating until the full
region of the data is covered. Otherwise, try
the following fall-back procedures:

i. Reduce τ , the time by which the time
horizon is extended, and try again

ii. Increase the number of Basis splines and
try again

iii. Try again using a different starting point.

If all of those fail, we have to resort to increas-
ing the bound on χ2

red.

3. Post-processing. The following steps are optional
and were performed manually in cases where we
desired to improve the fit, or examine its behaviour.

(a) The optimization over the whole time horizon
was re-run using different numbers of Basis
splines for δ(t) and Ω(t). This served as a
useful check on the sensitivity of the fit.

(b) The optimization over the whole time hori-
zon was re-run using a starting point based on
the previously found optimum plus random-
ized deviations. This examines robustness of
the final fit.

E. Error estimation

To obtain error bars of the time-dependent functions
we use non-parametric bootstrapping [32]. The process
is summarized as follow:

1. Estimate initial solution Estimate the time de-
pendent functions from the original data using
Hamiltonian estimation.

2. Resampling Create Ns sample solutions for all
time-dependent functions in the following way:

(a) Form a sample set by randomly picking with
replacement from the photon count data used
in qubit detection.

(b) Re-estimate new time-dependent functions by
optimizing over the full time span, using the
solution found in (1) as a starting point.

(c) Record the reduced chi-squared values χ2
red,r

for each sample r along with the B-spline
curve coefficients ~αr

δ(
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FIG. 7: Parametric bootstrap resampling: Predictions
for δ(t), ż(t) and Ω(t) with error bounds obtained using para-
metric bootstrap resampling, assuming quantum projection
noise. This can be compared with the error bounds obtained
from the non-parametric method which are shown in Figure
3 in the main text. The bounds are tighter for the parametric
bootstrapping.

3. Post-process samples

(a) Form a histogram of the chi-squared values
χ2

red,r.

(b) Find and fit a normal-like distribution to the
histogram with preference to the spread with
lowest lying χ2

red,r in the case of a multi-modal
distribution. From the fit obtain the mean
reduced-chi squared value 〈χ2

red,r〉 as well as
the standard deviation σχ.

(c) Eliminate the outlier samples by removing all
~αr with χ2

red,r values that are 3-5σχ from the

mean 〈χ2
red,r〉.

(d) Form a matrix Y where each row vector is
a sample set of coefficients ~αr that remained
after step 3(c).

4. Obtain statistics

(a) Find the mean B-spline coefficients 〈~α〉 of
equation 15 by taking the mean over the col-
umn vectors of Y with each element of the
mean given by 〈~α〉i = 〈αi〉.

(b) Find the covariance matrix Σ = cov(Y α) with
Σij = E [(αi − 〈αi〉) (αj − 〈αj〉)] with E the
expectation operator. The standard devia-
tions of each of the mean coefficients 〈αi〉 is
given by σ〈αi〉 =

√
Σii. We record these val-

ues in a row vector ~σ〈αi〉.

We have also applied parametric bootstrapping in or-
der to obtain the error bounds shown in figure 7. The
difference to the non-parametric case is that in point (2)
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FIG. 8: Measured data, estimation and residuals: Spin population as a function of detuning and switch-off time of the
laser beam, for the data sets used to obtain the reconstructed parameters shown in figure 4. a) uses a velocity profile with only
small variations. b) A second data run in which large variations in the velocity profile were used. Each data point results from
100 repetitions of the experimental sequence. For the Hamiltonian estimation the data was weighted according to quantum
projection noise.

the samples are created using the solutions obtained from
(1) and adding quantum projection noise. For each sam-
ple the Hamiltonian is estimated. The estimates from
multiple samples are used to construct error bounds in
the same manner as for the non-parametric resampling.
We have found that the error bounds obtained from para-
metric bootstrapping are lower compared to that of the
non-parametric case as shown in figure 3. We think this
is due to the latter exploring deviations around a single
minimum in the optimization landscape, while the case
resampling arrives at different local minima which are
spread over a wider region.

F. Single beam profile with two different velocity
profiles.

As a check that our method is also able to produce con-
sistent results for the Rabi frequency profile, we measured

a second pair of data sets in which we take two different
velocity profiles using the same beam position. This data
is shown in Figure 8. Also shown are the best-fits ob-
tained from the reconstructed Hamiltonians. The param-
eter variations obtained from the reconstructed Hamilto-
nians for these data sets can be found in the main text in
Figure 4. The sampling rate of the data in these data sets
was 2 MHz, resulting in a Nyquist frequency of 1 MHz.
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