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Abstract

We propose to measure several transitions frequencies between the 2S and the 2P states (Lamb
shift) in muonic helium ions (µ 4He+ and µ 3He+) by means of laser spectroscopy, in order to deter-
mine the alpha-particle and helion rms charge radius. In addition, the fine and hyperfine structure
components will be revealed, and the magnetic moment distribution radius will be determined.

The contribution of the finite size effect to the Lamb shift (2S− 2P energy difference) in µHe+

is as high as 20%. Therefore a measurement of the transition frequencies with a moderate (for
laser spectroscopy) precision of 50 ppm (corresponding to 1/20 of the linewidth) will lead to a
determination of the nuclear rms charge radii with a relative accuracy of 3 × 10−4 (equivalent to
0.0005 fm). The limiting factor for the extraction of the radii from the Lamb shift measurements
is given by the uncertainty of the nuclear polarizability contribution.

Combined with an ongoing experiment at MPQ aiming to measure the 1S − 2S transition
frequency in He+, the Lamb shift measurement in µHe+ will lead to a sensitive test of problematic
and challenging bound-state QED terms. This measurement will also help to clarify the discrepancy
found in our previous µp experiment. Additionally, a precise knowledge of the absolute nuclear
radii of the He isotopes and the hyperfine splitting of µ 3He+ provide a relevant test of few-nucleon
theories.
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1 Beam requirements

Experimental area: πE5.

The proposed experiment needs the same low-energy muon beam as already used for the previous
experiment with muonic hydrogen (R98-03). The Cyclotron Trap, the MEC curved magnetic channel,
and the PSC/ALC Solenoid have to be installed in the πE5 area in the usual way. The Trap and
Solenoid are cryogenic devices which need the usual supply of LHe and LN2.

Required beam properties:

We request negative pions of 106 MeV/c momentum, with maximum momentum bite. The maximum
possible beam intensity is needed.

Duration of the experiment:

Most parts of the apparatus are the same as used for the muonic hydrogen experiment in 2009. Some
improvements and adaptions will be performed during 2010 and 2011. The status of the Cyclotron
Trap is discussed in Sec. 7.2.

The first beam time of about 14 weeks is considered for April-July 2012, with the aim to set up the
apparatus, search for the first 2S− 2P resonance line in µ 4He+, and measure both µ 4He+ transitions
with 50 ppm accuracy.

A second 14-weeks beam time in 2013 will be used to complete data taking for µ 4He+ and to perform
the measurements with µ 3He+.

Special remarks:

• This experiment uses the PSC/ALC solenoid which is shared with the ALC community. No
severe conflicts for the beam time allocation occurred in the past.

• It takes approx. 3 weeks to change the beam line in the πE5 area from the setup used for the
MEG experiment to the one needed for our experiment. It is therefore recommendable that our
beam time starts immediately after a shut down of the proton accelerator.

• Setting up the whole experiment is a major task, and experience in the past showed that long
beam times (at least 14 weeks) are preferable. The laser is permanently installed at a place near
the πE5 area but the fine adjustment of the laser beam to the muon target is also non-trivial.

• It is important that the Collaboration knows the beam time allocation at least 6 months in
advance, in order to organize the long stays of some members at PSI and to prepare the setup
of the apparatus.

2 Questions of safety

(See also page 5, PSI Declaration List)

Helium gas will be used and operated at pressure below 1 bar which is not dangerous. The only
component which needs careful safety control is the laser system. It is the same system as was
used in the previous experiment with muonic hydrogen, with some simplifications (no Raman cell is
needed). The disk laser emits up to 500 pulses per second with 100 mJ energy per pulse at wavelengths
of 1030 nm and 515 nm. The subsequent pulsed Ti:Sa laser emits pulses up to 20 mJ energy at 800-
970 nm wavelengths. Suitable protection goggles for the eyes are mandatory.
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3 Introduction and motivation

3.1 Quotes

[http://www.answers.com/topic/rydberg-constant]:
“Rydberg constant: The most accurately measured of the fundamental constants1, which enters
into the formulas for wave numbers of atomic spectra and serves as a universal scaling factor for any
spectroscopic transition and as an important cornerstone in the determination of other constants; it
is equal to

R∞ =
α2me c

2h
(1)

[...] where α is the fine-structure constant, me is the electron mass, c is the speed of light, and h is
Planck’s constant [...]; numerically, it is equal to R∞ = 10973731.568527(73)m−1”

[CODATA 2002, page 75]:
“Advances in the theory of H and D energy levels and an improved value for the proton radius rp has
eliminated the systematic deviation between theory and experiment in the 1998 adjustment and has
allowed the task Group to provide recommended values for rp and rd. This is a major step forward
and increases our confidence in the current formulation of bound-state QED theory.”

[CODATA 2002, page 76]:
“In fact, most of these suggestions [for future work] remain valid, because, as for the 1998 adjustment,
a key weakness of the 2002 adjustment id the lack of redundancy in the input data. [...] [T]he following
needs for new work [...] should resolve key issues and advance our knowledge

• [...]
• Rydberg constant:
One or more measurements of a transition frequency in hydrogen or deuterium with ur < 10−12

[...]
A measurement of the proton radius with ur ≈ 10−3 by means of spectroscopy in muonic
hydrogen which would also lead to an improved value of R∞.”

[CODATA 2006, page 644]:
“The disagreement of the analytic and numerical calculations [of the B60 term in hydrogen, cf.
Sec. 13.1.5] results in an uncertainty of the two-photon contribution that is larger than the estimated
uncertainty used in the 2002 adjustment. As a result, the uncertainties of the recommended values
of the Rydberg constant and proton and deuteron radii are slightly larger in the 2006 adjustment,
although the 2002 and 2006 recommended values are consistent with each other.”

[CODATA 2006, page 647]:
“An experiment currently underway to measure the Lamb shift in muonic hydrogen may eventually
provide a significantly improved value of rp and hence an improved value of R∞ (Nebel et al., 2007)”

[CREMA collaboration, to be submitted]:
“This new value of the proton radius is 10 times more precise than the previous one, but it disagrees
strongly with the other values: 5σ deviation from CODATA value which is inferred mainly from hy-
drogen spectroscopy, and 3σ from the value extracted from e-p scattering. The origin of this large
discrepancy is not known. [...]
A least-square adjustment of theory and measurements in electronic hydrogen and deuterium as well
as in µp results in a Rydberg constant cR∞ = 3289 841 960 253.9 (5.1) kHz, i.e. 107 kHz from the
CODATA value [which has an uncertainty of 22 kHz].”

1R∞ has ur = 6.6× 10−12. Only the electron g-factor has a smaller uncertainty ur = 7.4× 10−13 in CODATA-2006.
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3.2 R98-03 “Lamb shift in muonic hydrogen”

The present proposal shares much of its collaboration, apparatus and motivation with the recently
completed experiment R98-03, “Lamb shift in muonic hydrogen”. Therefore we will quickly review
the case of muonic hydrogen/deuterium here before we turn our attention to muonic helium.

The main motivations of R98-03 were twofold: On the one hand, the rms charge radius of the proton
was considered interesting as a fundamental property of the only stable hadron. On the other hand,
both calculations of bound-state QED and precision spectroscopy in hydrogen atoms had reached an
accuracy where the test of QED was limited by the uncertainty of the rms proton charge radius.

The aim of R98-03 was to measure one transition in muonic hydrogen to 30 ppm relative precision and
consequently reduce the uncertainty of the proton radius to 0.1% (20 times better than the one from
electron scattering), improve the achievable comparison between bound-state QED theory prediction
and measurements in the hydrogen 1S Lamb shift by an order of magnitude (to 3×10−7), and improve
the uncertainty of the Rydberg constant by a factor of six. All these goals have been accomplished in
2009. We measured several transitions in muonic hydrogen and deuterium. This results in improved
values for the proton radius, the deuteron radius and the deuteron polarizability. Additionally a
Zemach radius value is deduced from the hyperfine splitting in µp with an accuracy comparable to
other experiments. Most importantly, however, both transitions in muonic hydrogen show that the
proton radius deviates by about 5σ from the previously accepted CODATA value.

3.3 The proton radius discrepancy

Before the µp Lamb shift measurement the proton radius could be determined by two different meth-
ods: electron-proton scattering and hydrogen spectroscopy.

• The CODATA [2] value rp = 0.8768(69) fm (ur = 7.8×10−3) is mainly given by spectroscopy
in electronic hydrogen, assuming that (i) QED is a valid theory, (ii) the QED calculations
are mathematically correct, (iii) the QED calculations are complete (no relevant term is missing)
and (iv) the measured transition frequencies are correct within their stated errors.

• Sick has reanalyzed the world data on electron-proton scattering [3] and gives rp = 0.897(18) fm
(ur = 20× 10−3). This has so far been the value of rp relevant for testing QED in hydrogen.

• The value we have obtained frommuonic hydrogen spectroscopy is rp = 0.841(1) fm (ur = 1.2×
10−3). This is the most precise value now, but it deviates from the CODATA and Sick values
by 5 and 3 of their respective standard deviations [34].

The origin of this discrepancy is still completely unknown. We are confident that theoreticians will
soon start to double-check the relevant calculations in both electronic and muonic hydrogen. On the
experimental side, several projects are underway which should be able to shed light on the proton
radius puzzle and hydrogen spectroscopy:

• Flowers et al. of the British National Physics Laboratory have set up an apparatus for a new
measurement of the 2S − nS,D transitions in electronic hydrogen [6]. This experiment will
provide a check of the Paris 2S − 8S,D/12S measurements [7] who have so far determined the
Rydberg constant.

• The 1S−3S transition in electronic hydrogen is under investigation both in Paris and in Munich.

• The hydrogen 1S-2S apparatus has been improved in Munich and a new measurement is planned
for this spring. Afterward the apparatus is going to be replaced to further increase the accuracy
using novel experimental techniques.
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• New electron-proton scattering results are expected from the Mainz MAMI/A1 collaboration [8].

• Udem et al. are going to measure the 1S − 2S transition frequency in He+ [9].

We should also mention that the muonic hydrogen Lamb shift experiment provides a test of low
energy QCD theory. Recent lattice QCD, combined with chiral expansion calculations [4], has recently
produced a value of rp = 0.831(30) fm. This is interestingly close to our new µp value.

3.4 Why is µHe+ interesting?

Apart from the “traditional” approaches summarized above there is now a new road to improve
bound-state QED tests. Recent progress in laser technology (a frequency comb at 60 nm [10]) and ion
trapping techniques have made it possible to measure the 1S−2S transition frequency in hydrogen-like
Helium [9]. Such an experiment is well underway now in Garching.

The situation in helium is very much like it was in hydrogen before the success of R98-03:
Testing QED with He+(1S−2S) requires a precise value of the charge radius of the helium nucleus. Up
to now, electron scattering experiments give a value of r (4He) = 1.681±0.004 fm (ur = 2.5×10−3) [11].
A measurement of the Lamb shift in muonic helium ions will ultimately improve the value for the charge
radii of 3He and 4He by an order of magnitude, as we show in the next section.

Before, however, we want to summarize the impact of a Lamb shift measurement in µHe+:

• Initially, of course, precise measurements in both electronic and muonic He+ will help to resolve
the proton size puzzle by giving a hint, which of the involved theoretical or experimental
investigations might be wrong. In particular, a study of both isotopes will provide more detailed
tests of the hyperfine structure corrections, including recoil and QED contributions, some of
which have not been tested in detail. The real two-body theory that is needed is the subject of
many recent work.

Once the puzzle is resolved, the two new measurements will contribute to the test of bound-state QED
on the one hand, and to refinement of the Rydberg constant on the other.

• The proposed measurements in µHe+ and He+ will test bound-state QED on a supplementary
and more sensitive level than the corresponding hydrogen measurements.

As elaborated in the theory section below (Sec. 13.2, Table 6), the challenging two-loop QED
effects contributing to hydrogen-like atoms scale with (Zα)6...7, whereas the Bohr structure scales
like Z2R∞ and the leading finite size effect with Z4 r, where r is the nuclear radius, α the fine
structure constant and Z the nuclear charge. A measurement of the 1S − 2S transition in He+

with ur = 2 × 10−14 and the µHe+ Lamb shift with 50 ppm, together with an improvement
of the theoretical prediction of the polarizability in µHe+ to ur = 5% will lead to a test of
the interesting QED terms like B60 and B71 to a level of 50 kHz. This has to be compared
with the difference of ∼ 400 kHz between the two theoretical predictions: one from an all-order
calculation, and the other one based on an expansion/perturbative approach [12].

• Last, nuclear physics will benefit from the proposed measurement in µHe+ alone. Precise
isotope shift measurements of 3He, 6He, 8He have been accomplished [13] by means of laser
spectroscopy, which provide accurate differences of the rms radii relative to 4He. To deduce
absolute radii therefore it is necessary to know the absolute radius of the reference isotope 4He.
The knowledge of these radii will provide additional useful observables to check theories (NN,
NNN, NNNN potentials) of few-nucleon nuclei [14].
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Figure 1: Level schemes of µ 4He+ and µ 3He+ showing the huge finite size effect. The transitions we
intend to measure are indicated. In µ 3He+ we intend to measure all allowed transitions except for the
dashed one (cf. Tab. 2) whose wavelength is not accessible to the Ti:Sa laser.

3.5 Prediction of the µHe+ Lamb shift

The Lamb shift in electronic H and He is dominated by the electron self-energy, whereas the nuclear
effects contribute only on the 10−4 level. The muon mass is 200 times the electron mass. This means
that in muonic atoms the orbiting particle is moving with an average radius 200 times smaller than
in “normal” atoms. As a consequence, the role of electron vacuum polarization corrections, nuclear
structure and polarization effects, and recoil contributions dominate. Hence muonic atoms represent
a unique laboratory for the determination of nuclear properties. The effect of the finite nuclear size
is particularly important for muonic atoms, as can be seen in Fig. 1. The muonic wave function has
a significant overlap with the nucleus. The finite size effect is 2% in muonic hydrogen, and 20% in
muonic 4He. A comparison of measured Lamb shifts in muonic atoms with the theoretical prediction
gives very precise values of the nuclear charge radii (proton, deuteron, 3He, 4He, . . .).

The several contributions to the 2P1/2− 2S1/2 energy splitting in µ 4He+ are summarized in Table 1.
They are classified as radiative, relativistic, recoil, radiative-recoil, and nuclear structure contributions.
QED of a free particle involves only one small parameter, the fine structure constant α. In contrast,
bound–state QED needs several expansion parameters: α, Zα, m/M , and parameters describing the
nuclear structure like the rms charge radius r (see Sec. 13.1.3 for details).

Except for the nuclear polarizability contribution, all corrections to the µ 4He+ 2P1/2−2S1/2 interval
have been calculated with a precision of 0.001 meV [29]. The total predicted splitting is

∆E(2P1/2 − 2S1/2) = 1670.370(10)(600)− 105.322 rHe
2 + 1.529 rHe

3 meV (2)

= 403 893(2)(145)− 25 466 rHe
2 + 370 rHe

3 GHz (3)

= 1380.020(10)th(600)pol(1420)fin. size meV (4)

= 333 687(2)th(145)pol(343)fin. size GHz (5)
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Table 1: Summary of the ∆E(2P1/2−2S1/2) contributions in µ 4He+ from [29]. The leading finite size
effect of order (Zα)4 and the nuclear structure contribution of order (Zα)5 have been adjusted using
the most recent alpha-particle radius value of r4He=1.681(4) fm [11]. All terms have been computed
with a precision of 0.001 meV.

Contributions ∆E (meV)

One-photon VP contribution, α(Zα)2 1665.782

Two-loop VP contributions in first and second order PT, α2(Zα)2 15.188

Wichmann-Kroll correction 0.135

Three-loop VP in first and second order PT α3(Zα)2 0.138

Relativistic VP effects −0.203

Hadronic VP 0.223

µ self-energy, µ VP, µ form factor corrections (F ′

1(0), F2(0)) −11.243

Recoil corrections (Zα)4, (Zα)5, (Zα)6 −0.355

Radiative-recoil corrections −0.040

Nuclear structure contribution of order (Zα)4: -105.322 rHe
2 −297.615 (1.420)

Nuclear structure contribution of order (Zα)5: 1.529 rHe
3 7.261 (0.035)

Nuclear structure and one- two-loop VP+ higher order nucl. structure −2.357

Nuclear polarizability contribution 3.100 (0.600)

Total splitting 1380.020 meV

where rHe is the alpha-particle radius expressed in fermi; rHe=1.681(4) fm [11] was used. The first
uncertainty is related to QED and recoil contributions, the second one is caused by the nuclear
polarizability contribution, and the third one is from the finite size effect. The uncertainty related
with the finite size contributions is caused not by the pre-factors (-105.322 and 1.529) but by the
uncertainty of the radius rHe . These uncertainties have to be compared to the 0.069 meV accuracy
(corresponding to 50 ppm) we are aiming at.

To conclude, a measurement of ∆E(2P1/2−2S1/2) with 50 ppm precision, combined with the present
theoretical prediction, will lead to a determination of the 4He radius to a relative accuracy of ur =
1×10−3. This is a factor 2.5 better as presently known. The limitation in the extraction of the nuclear
radius is given by the polarizability contribution.

This polarizability term was calculated in 1976 [33]. It is expected that its uncertainty can be soon
reduced at least by a factor of 4, to a 5% relative accuracy [30]. This would lead to a determination
of the nuclear radius to ur = 3× 10−4 corresponding to 0.0005 fm.

The theoretical predictions of the 2nd line in µ 4He+ (2P3/2 − 2S1/2) and the transitions in µ 3He+

were computed in 1978 [31]. We are confident that updates of these calculations, similar to the 2007
work of [29], will soon be available, once this proposal has been approved.

Our proposed measurement of the Lamb shift in µ4He+ and µ3He+ will
ultimately provide the charge radii of both nuclei with ten times better
accuracy, i.e. to 0.0005 fm (ur = 3 × 10−4).
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4 Experimental principle

The principle of the proposed experiment in µHe+ is to stop negative muons in He gas whereby
highly excited µHe+ ions are formed. Most of them deexcite quickly to the 1S-ground state, but
∼2% populate the long-lived 2S-state [15, 16]. A short laser pulse with a wavelength tunable around
λ ∈ [800−970] nm (corresponding to ∆E2P−2S) is sent into a mirror cavity surrounding the target gas
volume, about 0.9µs after the muon stop. 2S→ 2P transitions are induced on resonance, immediately
followed by 2P→ 1S deexcitation via emission of a 8.2 keV X-ray (lifetime τ2P = 0.5 picoseconds). A
resonance curve is obtained by measuring at different laser wavelengths the number of 8.2 keV X-rays
which occur in time-coincidence with the laser pulse.

The lifetime of the µHe+ 2S-state τ2S is crucial for the feasibility of the experiment and its setup.
Thus in the following we present a small dedicated section on this topic.

5 µHe+(2S) long-lived population and its lifetime

The lifetime τ2S of µHe+2S states is determined by

τ−1
2S = τ−1

µ + λxx + λQ, (6)

where τµ = 2.2µs is the muon lifetime and λxx = 1.18× 105 s−1 [17] is the 2S − 1S two-photon decay
rate. The quenching rate λQ results from collisions with neighboring atoms and thus depends on the
He pressure pHe.

Experimentally it was found [15, 16] that λQ is the sum of a linear and a quadratic term in the He
pressure pHe:

λQ = k1 pHe + k2 p
2
He. (7)

For T = 293K it was measured that

k1 = (2.7± 1.0)× 103 [hPa−1 s−1]
k2 = (37± 4) [hPa−2 s−1] .

The linear term dominates at pressures below 70 hPa. It is leading to emission of 8.2 keV X-rays. Such
“collisional quenching” occurs during a collision with a He atom. The quadratic term is relevant at
higher pressures. It corresponds to the formation of molecular ions He-µHe+2S in three-body collisions,
with subsequent deexcitation to the µHe ground state within a few ns. About half of these molecules
deexcite non-radiatively via Auger-decay.

The resulting 2S-lifetimes are, e.g., 1.75 µs in vacuum, 1.71 µs at pHe = 4 hPa, and 1.35 µs at
pHe = 40 hPa. At 4 hPa where we plan to perform the Lamb shift experiment there will be an
emission of delayed 8-keV X-rays at a rate of 1.1 × 104 s−1 which contributes to the background at
delayed times (see Sec. 8).

In the 1970s the 2S − 2P energy difference in µ4He+ ions was measured at CERN at a He pressure
of 40 bar [18, 19]. This experiment relied on a sufficiently long 2S-lifetime (∼ 1µs) and a relative 2S-
population of a few percent. Such long lifetimes were in contradiction with theoretical predictions
about collisional 2S-quenching. The 2S-lifetime was therefore investigated by three independent
groups in the 1980s [15, 20, 21], and all of them found very short 2S-lifetimes at pressures above
1 bar.

Based on these facts a laser experiment was performed at SIN (now PSI) with the aim to find the
2S − 2P resonance in µ 4He+. It was shown that this resonance line is certainly not at the position
predicted by the old CERN experiment [22]. Unfortunately the event rate was too low to perform a
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search for the resonance transition at various laser wavelengths. The experiment was not rebuilt after
the 1990/1 reconstruction of the PSI experimental hall.

Another important parameter for the laser experiment is the relative 2S-population ε2S . It can be
deduced from the measured K-line yields which depend on pressure [15, 16]. The values are, e.g.,
ε2S = 2.3± 0.3 % at 8 hPa, and ε2S = 2.6± 0.3 % at 40 hPa. An extrapolation gives a long-lived 2S
population of

ε2S = 2.2± 0.3 % at 4 hPa. (8)

6 µHe+ transitions: wavelengths, probabilities and laser intensities

In this section we present the most important parameters of all the possible one-photon transitions
between the 2S and the 2P state in µHe+. These parameters are the transition frequency (wave-
length), the transition probability (which depends on the transition matrix element), the laser energy
required to saturate the transition, the relative population of the initial states and the linewidths.

If a µHe+ ion in the 2S state is subject to an intense pulse of radiation of suitable frequency, a
transition to the 2P state can be induced. This transition is immediately followed by a spontaneous
emission of an 8.2 keV photon bringing the µHe+ ion into the 1S ground state. This 8.2 keV photon
will be used as a signature of the 2S − 2P transition. The transition rate λa,b from state a to state b
is given by Fermi’s Golden Rule

λa,b =
2π

!2
| < b|Hint|a > |2

Γ/2π

(ω − ω0)2 + Γ2/4
(9)

where Γ = Γa + Γb is the transition linewidth (sum of initial and final state decay rates), ω the
laser frequency, ω0 the transition frequency and | < b|Hint|a > | is the transition matrix element. The
Hamilton operator describing the interaction of light with the atom in the electric dipole approximation
is given by Hint =

e
mcA⃗ · p⃗, where A⃗ is the laser field vector potential, p⃗ the muon momentum and m

the reduced mass of the system. In the dipole approximation we find that

| < b|Hint|a > |2 = 2π!α I | < b|⃗ϵ · r⃗|a > |2 (10)

where I is the laser intensity [W/cm2]. The calculation of these matrix elements involves an integration
over a radial part (Rn′l′

nl ), integration over an angular component which can be calculated with Clebsch-
Gordan coefficients, an average over the dipole moment relative to the polarizations (⃗ϵ) of the light
field, an average over initial spin projection and a sum over final spin-projection states. For the simple
case of µ 4He+ we have

| < 2P1/2 |⃗ϵ · r⃗|2S1/2 > |2 =
1

3
(R21

20)
2 ≡ f1/2,1/2(R

21
20)

2 (11)

| < 2P3/2 |⃗ϵ · r⃗|2S1/2 > |2 =
2

3
(R21

20)
2 ≡ f1/2,3/2(R

21
20)

2 (12)

where R21
20 = −3aµ

Z with aµ being the muonic Bohr radius. Table 2 reports the f coefficients for all
transitions.

On resonance (ω = ω0) the transition probability is given by

λa,b = k · fa,b · I (13)

where the constant k is

k =
72πα

!
·
(aµ
Z

)2
·
1

Γ
=

{

1.36 [ cm
2

J ] for µ 4He+

1.40 [ cm
2

J ] for µ 3He+ .
(14)
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Since aµ is inversely proportional to the reduced mass m, aµ ∼ 1/m, and Γ ∼ Z4m we see that k
scales like k ∼ m−3Z−6. Because of the m−3 dependence the laser intensity need to be 107 higher than
an equivalent transition in normal atoms and around 26 times higher than the equivalent transition
in µp. Luckily our laser system (cf. Sec. 7.4) will be operated without the Raman cell, so we will win
a factor of ∼ 60 in laser pulse energy.

The excitation probability for Γ2P ≫ λa,b is governed by following differential equation:

dwa,b(t)

dt
= λa,b(1− wa,b(t)) (15)

wa,b(0) = 0 initial condition . (16)

The general solution for a laser pulse with intensity I(ω, t) and duration T ≪ τ2S takes the form

wa,b(T ) = e−Λa,b(T ) ·

∫ T

0
λa,b(t) · e

Λa,b(t) dt (17)

Λa,b(T ) =

∫ T

0
λa,b(t) dt . (18)

On resonance it simplifies to:

wa,b(ω0) = 1− e−fa,b·k·F (ω0) (19)

F (ω0) =

∫ T

0
I(ω0, t) dt =

Elaser

A
≡ Fluence . (20)

We can define the saturation fluence to be Fsat = 1
fa,b·k

so that the transition probability on

resonance simplifies to:
wa,b = 1− e−F/Fsat . (21)

The saturation fluence Fsat for the various transitions is given in Tab. 2. For small fluences (fa,b k F (ω0) ≪
1) we can linearize this equation to wa,b = F/Fsat.

The 2S − 2P transition rate W is given by

W = η · ε2S · (1− e−F/Fsat) (22)

where ε2S = 2.2 ± 0.3 % is the 2S population at 4 hPa target gas pressure (cf. Sec. 5), and η is the
sub-level population as listed in Tab. 2. We see that the event rate is linearly proportional to the
initial sub-level population. For transitions with small matrix elements one can increase the transition
probability (and henceforth the event rate) only by increasing the laser pulse energy.

On resonance, the saturation fluence transfers 63% of the 2S population into the 2P state. At the
same time there is power broadening

FWHM = Γ

(

1 +
F

Fsat

)1/2

(23)

due to the fact that the transition probability saturates at the peak of the resonance line, whereas it
is still linear in the wings. To avoid line broadening we will perform the measurements at fluences
≤ 1/2 Fsat, so we will transfer at most 30% of the sublevel population.

As we will see in Sec 7.4.5, a pulse of 10 mJ energy from the Ti:Sa laser causes a laser fluence of
1.4 J/cm2 in the cavity surrounding the muon stopping volume. We will therefore reduce the laser
pulse energy for transitions with saturation fluence < 2.8 J/cm2, keeping the 2S − 2P transition
probability at ∼ 30% to avoid power broadening. The expected signal rates in Tab. 2 have been
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calculated accordingly. Saturation fluences larger than 2.8 J/cm2 cause a decrease of the event rate
as can be seen from the Table.

Finally we have to consider the transition wavelengths accessible with our Ti:sapphire (Ti:Sa) laser.
The maximum of the Ti:Sa laser gain is at 795 nm, and we can drive all but the 1108 nm transition in
µ 3He+ with our Ti:Sa laser. The given rate estimates also account for the reduction of the available
laser energy when operating the laser at wavelengths > 900 nm.

Accounting for these facts we plan to measure the several transitions in two successive phases (beam
times): In phase 1 we intend to measure both transitions in µ 4He+. The gas handling of 3He needs
special attention, so we plan to measure several transitions in µ 3He+ during phase 2, one year after
µ 4He+ has been measured.

The goal of the experiment is to measure each of the accessible transition frequencies with an accuracy
of 50 ppm. The centroid position must thus be determined with an accuracy of approximately 20 GHz,
which corresponds to ∼ Γ/20. The natural linewidth Γ = 320 GHz (corresponding to 0.9 nm) is huge.
It is about 10−3 of the total 2S − 2P energy difference! From the statistics point of view, 500 events
in the resonance are sufficient to be able to reach such goal (see Sec. 8).

Table 2: 2S−2P transition properties for µ 4He+ and µ 3He+. We give energy difference, wavelength,
sub-level population η, transition matrix element, transition strength fa,b, laser fluence required to
saturate the transition Fsat, and expected event rate (cf. Sec. 8). The event rates have been calculated
assuming a (constant) 30% transition probability for saturation fluences up to 2.8 J/cm2 (to avoid
power broadening of the resonance line the laser energy has to be adapted when possible). Addition-
ally the event rates account for the expected decrease of the laser energy with increasing wavelength.
The transition at 1108 nm cannot be accessed with a Ti:sapphire laser. The energy differences and
wavelengths for the µ 4He+ transitions have been taken from [29] and adjusted to the most recent
value of the nuclear radius r4He = 1.681 (4) fm [11]. The µ 3He+ transitions energies have been taken
from [32] and adjusted to a 3He nuclear value of r3He = 1.971 (4) fm (deduced from r4He and the recent
measurement of the isotope shift [13]).

Isotope Transition ∆E λ Pop.(η) Mat. el. fa,b Fsat event rate

[meV] [nm] [aµ] [J/cm2] [h−1]

µ 4He+ 2S1/2 − 2P3/2 1526 812 1 6 8/12 1.1 48

µ 4He+ 2S1/2 − 2P1/2 1380 898 1 3 4/12 2.2 48

µ 3He+ 2SF=0
1/2 − 2PF=1

1/2 1119 1108 1/4 3 1/12 2.1 —

µ 3He+ 2SF=0
1/2 − 2PF=1

3/2 1294 958 1/4 6 2/12 1.1 12

µ 3He+ 2SF=1
1/2 − 2PF=1

1/2 1286 964 3/4 2 2/12 3.2 22

µ 3He+ 2SF=1
1/2 − 2PF=0

1/2 1344 923 3/4 1 1/12 6.4 13

µ 3He+ 2SF=1
1/2 − 2PF=2

3/2 1436 863 3/4 5 5/12 1.3 36

µ 3He+ 2SF=1
1/2 − 2PF=1

3/2 1461 849 3/4 1 1/12 6.4 16
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7 Apparatus

In this section we discuss our experimental setup of muon beam line, laser system, detector-target-
assembly and DAQ system. We need basically the same setup we used in the 2009 beam
time of the µp experiment. Only few changes have to be applied to the existing setup. The major
ones are:

• Removal of the Raman cell since we need laser pulses in the wavelength region
λ ∈ [800− 970] nm (depending on the chosen transition)

• New LAAPDs optimized to detect 8.2 keV instead of 1.9 keV as for the µp experiment.

The removal of the Raman cell represents a major simplification of the present laser system, and the
detection of the 8.2 keV single photons is simpler than detecting X-rays at 1.9 keV. Following the
detailed description of all the setup components, at the end of this section, we will stress what are the
major changes, what will be the simplifications and the needed work.

7.1 Muon beam line, target and X-ray detectors

The µHe+ Lamb shift experiment will be performed at the PSI πE5 beam-line. For the µp experiment
R98-03 we have built a beam line for low-energy muons (∼ 5 keV kinetic energy), which yields an order
of magnitude more muon stops in a small low-density gas volume than a conventional muon beam.

Our muon beam (Fig. 2) consists of the Cyclotron Trap (CT) for the production of low energy muons,
the muon extraction channel (MEC) which is a curved solenoid for the transport and the selection of
these muons, and the 1 m long PSC solenoid containing the gas target and two transmission detectors
for the muons.

108 sec−1 negative pions with a momentum of 102MeV/c enter the cyclotron trap (CT) tangentially,
where they are moderated by passing a degrader. About 30% of the pions decay into µ− which are
further decelerated by repeatedly passing a metalized thin Formvar foil. The two superconducting
magnetic ring-coils of the CT act as a magnetic bottle confining the µ−. The µ− slow down until the
repulsive electric field/potential applied to the moderator foil dominates over the magnetic forces.

Muons escaping the CT enter the MEC, a toroidal momentum filter assembled from normal conduct-
ing magnetic coils (magnetic field B = 0.15T). It favors muons with ∼ 20 keV energy and separates
them from unwanted background radiation and particles. From the MEC, the muons are guided into
the bore hole of a 5Tesla superconducting PSC magnet, slightly above its axis.

The schematic view of the setup inside the PSC solenoid is shown in Fig. 3. The solenoid’s high
magnetic field ensures minimal radial size of the muon beam thereby reducing the target volume to
be illuminated by the laser. Before entering the He target, the muons pass two stacks (S1 and S2) of
ultra-thin carbon foils (d = 4µg/cm2 for each foil) kept at high electric potential which both serve
as muon detectors and decelerate the muons to 5–8 keV. Each muon releases a few electrons in the
stack-foils which are separated from the much slower muons in an E⃗× B⃗ separator field. The electrons
are detected by plastic scintillators and photomultiplier tubes and provide the trigger signal for the
data acquisition system and the laser. The trigger signal results from the coincidence (with the TOF
for 5 keV muons) between the electrons from S1 (detected in the photo multiplier PM1) and S2 (seen
in PM2 or PM3).

The number of detected muons is 330 s−1 at a proton beam current of 1900µA. The S1 and S2

detector efficiencies are 80% and 70% (resulting from 55% downstream, 35% upstream photomultiplier
detector) respectively. The trigger quality, i.e. the fraction of stopped muons to detected muons, is
Q ≈ 60% at 4 mbar.
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Figure 2: Layout of the πE5 area with Cyclotron Trap, muon extraction channel MEC, and PSC
solenoid (B = 5 T). Details of the setup inside the solenoid are shown in Fig. 3.

Finally, the muons arrive in the gas target volume which is filled with 4 hPa of He gas and, along
the beam axis, has a length of 20 cm. The transverse dimensions of the stop volume are 5×12mm2.
Above and below, two face-to-face arrays of Large Area Avalanche Photo–Diodes (LAAPDs) record
the 8.2 keV Kα X-rays in a distance of 8mm from the muon beam axis. The LAAPDs signals are
amplified and stored in an 12-bit waveform digitizer operated at 250 MHz. This allows an optimal
suppression of background signals with non–standard shape and the separation of two consecutive
superimposed pulses in the analysis. For the µp experiment we have used beveled LAAPDs from
Radiation Monitoring Devices (RMD) to detect the 1.9 keV X-rays. The minimum detectable energy
was 1 keV, the average resolution at 1.9 keV was 25%, and (FWHM) ∆t ≈ 40 ns when the LAAPDs
were cooled at -30◦ [23, 24]. We have measured that the efficiency of these LAAPDs at 8 keV is
approximately a factor of 2 smaller than at 2 keV, and that the maximum is reached at 3.5 keV [26].
Obviously, although this decrease of efficiency does not affect the feasibility of our experiment (see
event rate estimations) we will put effort to test other type of LAAPDs which have a larger efficiency
in the 8 keV region.

The muon beam line will not be changed between 2009 and the next beam time. The target pressure
will increase from 1 mbar of H2 (2009) to 4 mbar of He. This will be advantageous resulting in a
better muon stop distribution and muon stopping rate (×1.5) because of the increased trigger quality
Q: At higher pressure, more muons stop in the fiducial volume of the target.
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Figure 3: Schematic view of the apparatus mounted inside the 5 T solenoid. The muons enter from
the left and cross two stacks of ultra–thin carbon foils, S1 and S2, which act together with PM1, PM2

and PM3 as two muon detectors. The E⃗×B⃗ filter (shown in side view) separates µ− from e−. The gas
target is filled with 4 hPa He gas and it is separated by the vacuum of the muon beam line by a 30 nm
thick Formvar foil. The laser cavity mirrors (shown in top view) are placed sideways of the muon stop
volume. The laser light enters the vacuum vessel and the gas target and reaches the multipass mirror
cavity (shown in yellow) through a hole in one of the cavity mirror. Two LAAPD arrays are mounted
above and below the muon stop volume (not shown in the picture).

7.2 Cyclotron Trap

The Cyclotron Trap is the first stage of the low-energy muon beam. It has been operated successfully
for many years. There were problems in the 2009-beam time because there was a short-circuit of one
of the two coils, which obviously touched the inner surface of the assembly. This problem occurred
after a sequence of cooling down and heating up of the cryogenic part which was not the usual one.
The problem was solved after we heated up the whole assembly to room temperature and cooled it
down again, following the usual procedure.

We therefore expect that this problem will not occur in future. In principle a repair of the Trap is
possible, as was done several years ago by Marti Company together with PSI workshop and other PSI
groups, but this would be a work of several months and considerable costs (of order 50 kCHF), and
the risk of failure cannot be totally excluded. (Oxford Company, the original supplier, is not anymore
capable to do it.)

It is foreseen that the Cyclotron Trap will be transported to Paris University (Laboratoire Kastler
Brossel) in May 2010 and back to PSI in Nov. 2011. Paul Indelicato (one of our collaborators) will
use it as part of an ECR ion source developed at PSI by Leo Simons et al.

Depending on the experience that we gain during operation at Paris, we will decide about the future
of the Trap.

In principle, the µHe Lamb shift experiment proposed here could be performed also at the πE5 beam
line operated in the “cloud muon” mode, using a very low momentum of 10 MeV/c. We got experience
with this mode in the mid-1990s when we successfully stopped negative muons in hydrogen gas at
pressures between 64 hPa and 0.06 hPa (measurement of the kinetic energies of µp atoms). To use this
beam would however need considerable changes of the muon entrance detectors and the laser beam
line.
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7.3 LAAPDs: Detectors for 8.2 keV X-rays

The µHe experiment requires X-ray detectors which work in a magnetic field of 5 Tesla, which are
relatively compact, and have a large area, good energy resolution, and fast time response.

Large area APDs (LAAPDs) from RMD (Radiation Monitoring Devices, Inc.) with an active area
of 14x14 mm2, operated at -30 ◦C, were used in the previous µp experiment. Typical energy and
time resolutions for the muonic hydrogen Kα X-rays at 1.9 keV were 25% (FWHM) and 40 ns. Two
rows of 10 such APDs were mounted above and below the target cell. These APDs did not show any
degradation of performance in the 5 Tesla magnetic field of our solenoid.

The RMD APDs are optimum for the detection of 1.9 keV X-rays from µp (∼ 80% detection ef-
ficiency) but not for the 8.2 keV muonic helium Kα X-rays. There the efficiency drops to ∼ 40%
because the depletion region is relatively thin (∼ 30µm).

We will investigate, together with RMD, the possibility to produce APDs with thicker depletion
regions.

Recently, Hamamatsu Photonics has developed APDs of the “reach-through” type with thicker de-
pletion layer (∼ 130µm) which makes them suitable for detecting X-rays up to 20 keV [60]. For
8 keV X-rays their detection efficiency is above 90%. APDs of this type, with 3 mm diameter, have
demonstrated a good energy resolution of 6.4% for 5.9 keV X-rays and an excellent time response of a
few ns [60]. Prototypes with larger area may be produced by the company, increasing the solid angle
for X-ray detection.

Another possibility to obtain a good efficiency at 8 keV would be to glue a thin scintillator plate
(e.g., LYSO) onto an APD (of the type we already have). The amount of scintillation light produced
by an 8 keV X-ray will give a signal in the APD whose amplitude is of the same order as produced by
a 2 keV X-ray without scintillator. The efficiency would be ∼ 90% in this case, the timing reasonably
fast (depending on the scintillator properties), but the energy resolution relatively poor.

The collaboration will perform a research and development program in 2010 and 2011 in order to
find the optimum solution for the X-ray detector. In any case, the existing LAAPDs from RMD can
still be used, reducing the quoted event rates only by a factor of 2. (This is then still a 4 times larger
event rate than in the µp run 2009).

7.4 Laser system

7.4.1 The muonic hydrogen laser system

The design of the laser as it exists in the laser hut close to the πE5 area has historically been dictated
by the need for tunable 6µm light output within 1 µs after a random trigger. The lifetime of the 2P
state in muonic hydrogen is 1µs. The 2S lifetime in µHe+ is 1.7µs, so the laser is fast enough.

In addition, the Ti:sapphire laser has been optimized to deliver 5 ns short pulses suitable for optimal
conversion in the multipass Raman cell. This resulted in a rather short Ti:sapphire oscillator cavity,
followed by a multipass Ti:sapphire amplifier delivering 15mJ of red light at λ ∈ [700− 710] nm.

For the µHe+ experiment the Ti:sapphire light will be used directly. This has several advantages:

• The Ti:sapphire oscillator can be made longer resulting in longer output pulses (e.g., 50 ns).
This reduces the laser damage threshold problems of the optical components significantly.

• The Raman cell converted 15mJ of red light into 0.25mJ of IR light for the spectroscopy in
muonic hydrogen. We will now avoid this loss of 98% of the available pulse energy.

• The light traveled 35 times 2m = 70m inside the Raman cell resulting in 230 ns laser delay.
This can be avoided now, too.
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Figure 4: Schematic view of the laser system. The main components are a pulsed thin-disk laser with
frequency doubling, a tunable cw Ti:Sa laser, a pulsed oscillator–amplifier Ti:Sa laser, and a multipass
mirror cavity with its diagnostic system. FP: Fabry–Perot, Rb: Rubidium absorption cell.

• Alignment of the Raman cell was rather subtle and time-consuming.

• The light leaving the Raman cell was easily absorbed by humidity in air and care had to be
taken to guide the light to the πE5 area through a vacuum system. This is not the case for the
visible light required for µHe+ spectroscopy.

7.4.2 Laser requirements for µHe+

The laser system has to deliver pulses of 10 mJ at 812 nm2, has to be stochastically triggerable, with
average rates ≃ 500 s−1 and with a delay between trigger to arrival of the pulse inside the cavity
< 1.7 µs. The laser has to be tunable for 2 THz (5 nm) around each predicted transition frequency,
and it has to have a bandwidth < 10 GHz to search and scan for the resonance.

The laser system (see Fig. 4) is composed of a pulsed thin-disk laser [28] and a pulsed oscillator-
amplifier Titanium-Sapphire (Ti:Sa) laser whose frequency is injection-seeded (that is, controlled) by
a continuous (cw) Ti:Sa laser [27]. The laser pulses produced by the Ti:Sa laser at 812 nm are then
transported into the zone via our existing laser beam transport tube, and coupled to a multipass
enhancement cavity, illuminating the muon stopping volume. This system is very similar with the one
used in the µp experiment besides

2In this section, for simplicity, we give the numbers required for the measurement of the first transition in µHe+, i.e.
the transition at 812 nm. The different matrix elements and wavelengths (λ ∈ [800 − 970] nm) of the other transitions
have been taken into account in the transition rate estimates.
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• removal of the Raman cell: see Sec. 7.4.1

• different wavelength (λ ∈ [800 − 970] nm): This is easily accomplished by replacing the optical
components (mirrors, fibers, beam splitters etc.) In particular, the departure from the 6 µm
wavelength region simplifies tremendously the availability of mirrors, detectors, and in particular
the target cavity coatings.

We can already conclude at this point that the present laser system with small adjustments (because
of the different Ti:Sa wavelength) will fulfill all the requirements.

7.4.3 Disk laser

The muon entrance detectors trigger two parallel Yb:YAG thin-disk laser systems. Each disk laser
system is a Q-switched oscillator followed by a 12-pass amplifier [28]. A fiber coupled diode laser
continuously pumps the thin-disk laser with 1.2 kW of radiation at 940 nm, so that the energy is
continuously stored in the disk active material (upper level lifetime ∼ 1ms). To achieve a minimal
intrinsic delay of the laser pulse buildup we operate the Yb:YAG oscillators in “cw-prelasing” mode.

After a muon-trigger, the Q-switched oscillator cavities are closed by switching one of the two HV-
electrodes of their Pockels cells (PC) within a few nanoseconds. Fast intra-cavity pulse build-up
follows.

About 200 ns later the cavities are opened by switching the second electrode of the PC. The circulating
power is thus released. Each oscillator delivers a 9mJ pulse at 1030 nm with a beam-quality factor
M2 < 1.1 and an delay of only 250 ns after the muon trigger.

The two thin-disk amplifiers boost each pulse to 43 mJ using a novel configuration whose main
peculiarity is its insensitivity to thermal lens effects even for large beam waists [28].

A frequency doubling stage based on LBO crystals is used to convert the two disk-laser pulses from
1030 nm to 515 nm which is a suitable wavelength for the pumping of the Ti:Sa laser. We achieved a
stable output of 27mJ at 515 nm per system during the run 2009.

7.4.4 Ti:Sa laser

The Ti:Sa laser is a concatenation a wavelength-selective master-oscillator cavity and a bow-tie con-
figuration multi-pass power-amplifier. It is pumped with a total of 54mJ at 515 nm wavelength, and
lases at 812 nm. The 1.5 mJ pulses emitted from the oscillator are boosted in the amplifier to 15
mJ. The frequency of the Ti:Sa laser is controlled by injection seeding the Ti:Sa oscillator with a
single-mode cw-Ti:Sa laser. Tuning the wavelength of the cw Ti:Sa laser therefore leads to a tuning
of the frequency of the Ti:Sa pulses.

The stability of the cw Ti:Sa laser is guaranteed by locking it to an external reference Fabry-Perot
cavity. This temperature stabilized and low expansion Fabry-Perot cavity was calibrated by means
of two-photon spectroscopy of well-known Rb and Cs lines. The resulting free spectral range was
measured to be 1497.33(4) MHz in the 812 nm region. The frequency of the cw Ti:Sa laser is thus
absolutely known with a precision of 30 MHz.

The frequency of the pulsed Ti:Sa laser equals the frequency of the cw one, apart from a frequency
chirp we have measured to be of the order of 200MHz. In order to avoid uncertainties related with
any chirping effects in the Ti:Sa laser we do not only calibrate the cw-Ti:Sa laser but also the pulses
by means of Cs one- and two-photon spectroscopy. In such a way the frequency of the pulse we use to
drive the 2S− 2P resonance is known over all scanning range with an accuracy better than 200 MHz.
This uncertainty is negligible with the expected statistical error of 20 GHz.
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7.4.5 Multipass cavity

The 812 nm laser pulse is then coupled into a (non-resonant) multipass cavity surrounding the muon
stop volume. The cavity is shown in Fig. 5. It follows the design of the µp cavities. Here, we had also
some training cavities for visible laser light (6µm light is very hard to play with.)
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Figure 5: Impression of the multi–pass mirror cavity. Curvatures are greatly exaggerated. Dimensions
are given in mm.

The cavity is designed to be very insensitive to misalignment and to illuminate a large volume
reasonably homogeneously. The cavity’s design is so robust that we can avoid any active stabilization.

The laser pulse enters the cavity via a 0.6 mm diameter hole in one of the mirrors. The cylindrical
mirror M2 confines the light in the vertical direction, whereas the two cylindrical pieces attached to
the flat mirror M1 guarantee the confinement in the horizontal direction. The illuminated area is
176mm × 5mm.

The confinement time of the light inside the cavity (and thus the enhancement factor) is given by
the reflectivity R of the mirrors, by the losses through the coupling hole and other losses related with
cavity “ears” and the optical surface rugosity. At 812 nm a reflectivity of 99.999% (10 ppm losses)
can be reached. However due to the noisy and dusty environment of our setup and surface related
problems we expect only a reflectivity Reff = 99.98%. The losses through the hole are calculated to be
1× 10−4 leading to Reff = 99.97%. We can conservatively assume that the final effective reflectivity3

(accounting also for losses at the “cavity-ear”) will be Reff = 99.95%.

This effective reflectivity corresponds to nref = 2000 reflections between the two mirrors, leading to
a lifetime of 170 ns. This large number of reflections results in a laser fluence enhancement, which can

3Note that we had Reff = 99.95% at 6µm with the “radioactive cavity” in 2003. High reflectivities are considerably
more difficult to achieve at 6µm than for 800-1000 nm.
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be parametrized as:

F = ftfc
nref

A
· Elaser (24)

= 140 cm−2 · E (25)

where Elaser is the Ti:Sa laser pulse energy, A = 8.8 cm2 is the illuminated mirror surface, ft = 0.7
is the transfer efficiency of the light from the laser output to the target cavity entrance (including all
beam splitters required for laser monitoring etc.), and fc = 0.9 is the coupling efficiency through the
φ = 0.6 mm diameter hole. For example, a pulse energy of 10 mJ at the Ti:Sa amplifier output will
lead to an average laser fluence F = 1.4 J/cm2.

One must compare this value with the saturation fluence given in Table 2. To avoid power broadening
of the resonance lines we have to work at or below half of the saturation fluence. A laser pulse energy
of 10mJ is therefore sufficient.

7.5 Summary of setup modifications

Here we summarize all planned modifications of the apparatus and the expected costs. Even if we
don’t find suitably new LAAPDs we can still run with the existing LAAPDs, sacrificing 50% of the
event rates in Tab. 2. The Ti:Sa laser modifications are straight-forward.

Table 3: Setup modifications: 2009 vs. next beam time

Item Costs [kEUR]

Remove Raman cell 0

Ti:Sa optics (708 nm → 812 nm) 20

Beam transport optics (6µm → 812 nm) 10

Multipass target cavity (6µm → 812 nm) 30

Laser monitoring and calibration system in πE5 10

LAAPDs optimized for 8.2 keV, pre-amplifiers 35

3He target gas available

3He gas handling system 10

In addition, we want to further improve the disk laser system, exploiting the rapid progress in disk
laser technology. We expect a simpler disk laser system requiring less maintenance work during the
beam time.
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8 Expected event and background rates

The µHe+ apparatus will be very similar to the one used for the muonic hydrogen Lamb shift ex-
periment. Therefore we can base our estimation of signal and background event rates in the µHe+

experiment on the rates measured in µp in the 2009 beam time.

In µp we measured 6 signal events per hour on resonance and 1 background event per hour, both for
a proton beam current of 1900µA.

8.1 Signal rate

The relevant parameters for the signal rate are summarized in Table 4. The µHe+ experiment is
considerably simpler than the one in µp due to the fact that the µHe+(2S) population is twice as
large, at four times the target gas pressure, where the µHe+(2S) lifetime is still 70% larger. Higher
target gas pressure results in 50% more muon stops inside the volume illuminated by the laser.

In the µp experiment we lost 98% of the laser pulse energy in the conversion between the red light
from the Ti:sapphire laser to the required 6µm wavelength (15mJ in the red → 0.25mJ at 6µm). In
the µHe+ experiment we will directly use the Ti:sapphire light. This gain of ≈ 50 in pulse energy
compensates for the increase in laser saturation fluence (see Tab. 2).

Table 4: Comparison of signal rate between the measured µp transitions (at 1mbar) and the pro-
posed µ 4He+ experiment (4mbar). For µ 3He+ the increase is smaller because of the smaller sub-level
population (1/4 and 3/4 vs. 1) and weaker transition strength.

Effect µp µ 4He+ µ 4He+ / µp

Long lived 2S-population 1.1% 2.2% 2

2S sub-level population 75% 100% 1.33

2S-lifetime (survival probability) 1 µs 1.7 µs 1.7

Muon stop in gas (trigger quality Q) 40% 60% 1.5

Muonic 2S atoms not drifting out of laser volume 80% 100% 1.25

Laser transition probability 30% 30% 1

(only 20% for some weak transitions in µ 3He+)

Laser repetition rate 500 s−1 500 s−1 1

Detection of Lyman alpha X-ray 70% 70% 1

Total event rate increase: for µ 4He+ 8

Total event rate increase: for µ 3He+ strong transition and triplet population 6

Total event rate increase: for µ 3He+ weak transition and singlet population 2

8.2 Background rate

The energy spectrum measured without laser in the 2009 µp beam time is shown in Fig. 6. It results
from the sum of two main background sources for µp, only one of which is relevant for µHe+, too:

• Electrons from muon decay give mostly signals above 10 keV, but some of this background is
still present below 9 keV. The increase of this continuous background below 4 keV is due to
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Figure 6: X-Ray energy spectrum of events in the laser time window recorded in µp during the 2009
beam time. The ratio between the background at 1.9 and 8.2 keV is approximately 3. The silver
fluorescence peak at 3 keV stems from muon transfer from hydrogen to the silver-coated target walls.
This background will not be present in µHe+ (see text).

Bremsstrahlung photons from decay electrons. As one can see, this µ-decay background is going
to be smaller in the proposed µHe+ experiment by a factor of 3.

• Muon transfer to higher-Z atoms: The peak at 3 keV in Fig. 6 is a peculiarity of our µp setup.
We used silver-coated target windows, and muonic hydrogen atoms in the ground state, who
drift to these windows, will transfer the muon to the silver coating. This transfer results in the
silver fluorescence peak at 3 keV.
Muon transfer from hydrogen to high-Z atoms is one of the main backgrounds in the µp experi-
ment, but this will not occur in µHe+, because the transfer reaction
µHe++ Z → µZ + He+ does not occur.

Other background sources in µHe+ are:

• “Second muons”: The prompt Lyman X-rays of a “second muon”, which enters our apparatus
(after the “first muon” opened the event gate and triggered the laser) fakes a delayed Lyman
X-ray. The combined detection efficiency of our muon entrance detectors (ORed together) is as
large as 94% (measured in 2009), and the second muon background is correspondingly reduced
by 94%.
This background will be the same for µHe+ as for µp. It amounts to 0.1 ev/h.

• Collisionally induced one-photon decay from the 2S state: At 4 mbar He pressure the expected
collisionally induced Stark deexcitation rate is ∼ 104 s−1. In the 200 ns long laser time window,
we expect 0.1 ev/h.

• Spontaneous two-photon decay from the 2S state: The 2S state decays emitting two photons
with a rate of 105 s−1, giving a broad continuous distribution. We expect that about 10% of
these decays will fall into the Lyman-alpha energy cut and henceforth this background amounts
to 0.1 ev/h.
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As with the event rate estimations, the best way to estimate the background rate, is to reference it
to the background rate measured in the µp case. In the run 2009 we have measured a background
rate of 1 ev/h at 1.9 keV.

1. The decay-electron-induced background amplitude at 8.2 keV is only 1/3 of the background rate
at 1.9 keV (see Fig. 6).

2. The Lyman-alpha width cut will increase by about a factor of 2, assuming that the LAAPD
energy resolution will scale with the square root of the X-ray energy (

√

(8.2/1.9) ≈ 2.1). So will
the background rate.

3. Due to the better reflectivity of the cavity coating in the visible, the laser time window can be
1.5 times longer in µHe+ compared to µp. The background increases by the same factor.

4. The muon stop rate will improve by a factor of 1.5 due to the higher target gas pressure. Both
event rate and muon correlated background rate will increase by this factor.

5. The background related with the 2S-state decay as presented above must be added.

This results in an expected background rate of:

1 ev/h ×1/3× 2.1× 1.5× 1.5 + 0.1 + 0.1 = 1.8 ev/h ≈ 2 ev/h.

8.3 Summary of expected rates

The conclusions about the event and background rate are summarized in Table 5. In the best case
of µ 4He+ we expect 48 events per hour and 2 background events per hour. The worst line in µ 3He+

will have both signal and background rates a factor of two higher than the resonance lines measured
in µp.
In µd we have observed additional background originating from radiative decay of 2S atoms at the
level of about 1 event/hour, increasing the total background rate to ≈ 2 events per hour. This is the
same level as expected for all lines in µHe+.

Table 5: Event and background rate summary. The number of events required to reach Γ/20 accuracy
is 500.

µ 4He+ µ 3He+ (max) µ 3He+ (min) µp (max)
Event rate on resonance: 48 ev/h 36 ev/h 12 ev/h 6 ev/h
Background rate: 2 ev/h for all µHe+ 1 ev/h
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9 Systematics

The systematic effects which could shift the position of the resonance line has been extensively studied
for muonic hydrogen. The following effects have been considered:

• AC-Stark shift

• DC-Stark shift

• Zeeman shift

• Pressure shift

• Doppler shift

• Laser energy asymmetry for blue/red detuning.

Apart from the laser energy blue/red detuning asymmetry, all the other effects are smaller than
50 MHz in µp. The same is valid for µHe+. Generally speaking, all these effects are small because of
the larger muon mass (e.g., the Zeeman shift scales like 1/m). Remember that we want to determine
the centroid position with an accuracy of 20 GHz!

The only relevant systematic effect is given by a possible variation of the laser pulse energy at the
various laser frequencies. A laser pulse energy asymmetry AL/R between measurements of the left and
right wing of the resonance (red and blue detuned, respectively) will cause a shift of the line center
by 1

2 AL/R × Γ. An asymmetry smaller than 3% must thus be achieved. This will result in a shift of
the line position by ∼ 0.015Γ = 5GHz. Note that we aim for a statistical uncertainty of 20 GHz,
and the systematic uncertainty should be ∼ 3 smaller than the statistical one.

In conclusion, apart from the laser energy asymmetry for blue/red detuning there are no relevant
systematics limiting our experiment. A detection system monitoring the light circulating in the cavity
with a relative accuracy of 3% will be implemented in order to have control over the systematics effects
on a level of Γ/60, i.e., a factor of 3 better than the Γ/20 (50 ppm) accuracy we are aiming at.
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10 Experimental program and milestones

The modifications of the apparatus, compared to the situation in 2009 for the µp Lamb shift exper-
iment, are moderate. The main tasks to be done are listed in Table. 3. These modifications will be
performed in 2010-2011.

As explained in the first section, it is preferable for this experiment to have long beam times (at least
14 weeks), starting immediately after a long (winter) shut-down of the PSI proton accelerator.

We propose to have a first beam time in April-July 2012 where we want to set up the apparatus and
perform the measurements for Phase 1 in µ 4He+, i.e. to search for the 2S1/2 − 2P3/2 resonance line
and to measure both 2S − 2P transitions in µ 4He+ to 50 ppm accuracy.

Assuming an uncertainty of the 4He nuclear radius of up to 5 standard deviations of the value of
Sick [11], there is an uncertainty of the first resonance line of 1.7 THz which corresponds to 5 natural
line widths. The search for this line needs therefore measurements at 20 different wavelengths (2 hours
each).

To avoid confusion about the measuring time required to scan the resonance we have to emphasize
the following: to achieve the quoted number of 500 events in the resonance line, one has to measure for
a time required to obtain 1000–1500 events, if one measured all the time on the peak of the resonance.
This accounts for the fact that (a) the FWHM points are best to determine the centroid position
and (b) that there is background. With the event rates given in Sec. 8 (48 events/hour on resonance
for both transitions in µ 4He+), an accuracy of 50 ppm ( = Γ/20) will be reached after 30 hours of
measuring time for each line. In practice we will need one week to scan the resonance (once it has been
found). Time is spent for regular maintenance work (like filling LHe to the cryogenic magnets), but
also for frequent laser frequency and energy calibrations. In addition, each change of laser wavelength
required something like 15minutes during the µp measurements. In µHe+ one should change the laser
wavelength frequently to minimize systematic effects.

In April-July 2013, we want to complete Phase 1 (if this was not already done in 2012) and perform
Phase 2, the measurement of 5 transitions in µ 3He+. The position of the first transition, 2SF=1

1/2 −

2PF=2
3/2 , will probably not be known precisely and needs a search similar to the one for µ 4He+. If one

line is measured, the position of the other four lines can be predicted with sufficient precision.

The weaker line of µ 3He+ has 12 events/hour. The corresponding measuring time will be 200 hours.
The total measuring time for the five µ 3He+ lines will thus be about 900 hours, corresponding to 8
weeks (considering off-times of the proton accelerator and parts of our apparatus).

The foreseen milestones are:

• end 2010: Analysis R98-03 measurements and publications, LAAPDs R&D, laser optimization.

• end 2011: Test of the whole laser system, multipass cavity and LAAPDs.

• 2012: Setup of the apparatus in πE5 area, search and measure the two transitions in µ 4He+

(Phase 1).

• 2013: Complete measurements in µ 4He+ if necessary, and measure the five transitions in µ 3He+

(Phase 2).
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11 Responsibilities of collaborating partners

28



12 Requests from PSI
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13 Theory

In this section we present the theoretical background related with the µHe+ experiment. It involves,
from one side the bound-state QED theory in µHe+ together with some nuclear structure related
effects (like polarizability), and on the other side, the bound-state QED theory in H and He+. A
prediction (theory) of the Lamb shift in µHe+ is clearly required in order to be able to perform the
experiment (search for the resonance in the correct laser frequency region), and when the measurement
is achieved, for the interpretation of the measured line position, i.e. extraction of the charge radii.
Additionally a comparison between Lamb shift theory and measurements in µHe+ will help to clarify
the existence or not of a theoretical problem (discrepancy issue) in the muonic sector. The precise
values of the He-isotopes charge radii are of fundamental importance in the interpretation of the He+

spectroscopy. As we will present in full details below the knowledge of these radii open the way to
check very challenging higher order bound-state QED terms.

In Sec. 3.5 we have presented the current µHe+ theoretical prediction. Section 13.1 shows in a
simplified way how to extract the 1S Lamb shifts and R∞ from H and He+ spectroscopy. Section 13.1.3
illustrates why the bound-state QED is interesting and presents the very interesting bound-state QED
terms we aim to check. Finally in Section 13.2 a comparison between H and He+ Lamb shifts is given.
The emphasis here is set on the improved sensitivity of He+ and µHe+ spectroscopy compared to H
and µp spectroscopy for the testing of interesting higher order bound-state QED corrections.

13.1 Bound-state QED test in H and He+

Ultra-precise spectroscopy in simple systems like atomic hydrogen has been improved in recent years
by several orders of magnitude in precision, according to the formidable progress of laser techniques.
The 1S − 2S transition frequency in H was measured at MPQ-Garching to a precision of 10−14 [35]
using a cold hydrogen beam and the frequency comb laser invented at MPQ. Further improvements
and extensions are in sight. This level of precision is appealing to test fundamental physics laws, in
particular bound–state QED.

From the 1S − 2S measurement and other measured transition frequency (2S − 8S . . .) [7] in H the
1S Lamb shift was extracted. Prior to our measurement in µp, the comparison of this experimentally
determined Lamb shift with the theoretical prediction was limited by the poor knowledge of the proton
rms radius rp. From the measurement of the 2S − 2P energy difference in µp to 20 ppm a proton
radius of rp = 0.841(1) fm (ur = 10−3) was deduced [34]. This will improve the achievable level of the
bound-state QED test from 6× 10−6 to 3× 10−7 as soon as the above mentioned discrepancy problem
is solved. Then, then uncertainty of the Rydberg constant (R∞ = α2mec/2h) will also be reduced by
an order of magnitude.

A measurement of the 1S − 2S transition frequency in He+ ions is even more promising because
the interesting QED terms scale with Z5...7 and thus become larger for He+ than H, relative to the
measured 2S − 1S energy difference which scales with Z2. By measuring the 1S − 2S transition
frequency in He+ and knowing the R∞ from H spectroscopy it is possible to deduce the 1S Lamb
shift in He+. As in the H case, a precise value of the nuclear rms charge radius is required in order to
compare the theoretical prediction of the 1S Lamb shift in He+ with the measured one.

13.1.1 Experimental 1S Lamb shift in H and comparison with theory

The energy levels of hydrogen-like atoms are described in a simplified way by

E =
Z2

n2
R∞

mr

m
+ L(α, c, rx . . .)
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where R∞ is the Rydberg constant, mr the reduced mass of the system, m the electron mass, α the fine
structure constant, rx the nuclear rms charge radius, Z the nuclear charge and L the Lamb shift. The
Lamb shift is defined as any deviation of the energy level from the prediction of the Dirac (Schrödinger)
equation caused by radiative (QED), recoil and nuclear structure corrections (see Sec. 13.2 for a more
precise definition). Note that to predict the hydrogen energy levels within bound–state QED, we need
to know, with proper accuracy, fundamental constants like R∞, α, !, m. . . and rp.

Several transition frequencies measured in hydrogen and deuterium have been combined to determine
the hydrogen 1S–Lamb shift and R∞ [2]:

∆E1S−2S = 0.75R∞

mr
m − L1S + L2S

∆E2S−8S/D = 0.23R∞

mr
m − L2S + L8S/D

. . .

LnS = 1
n3L1S + εn

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⇒

{

Lexp
1S = 8172.839 (22) MHz

cR∞ = 3289 841 960.362 (25) MHz

Progress in H-atom spectroscopy will further reduce the quoted experimental errors of Lexp
1S and R∞

in the near future.

Bound–state QED can predict the value of the Lamb shift (Lth
1S). Its uncertainty is related by the

inadequacy of the theory itself (first uncertainty in the following equations) and by the uncertainty
related to the fundamental constants (second uncertainty, given by the uncertainty of rp) [2, 47, 40,
46, 39, 56, 41, 42, 43, 44, 45, 48, 12]:

rp
α, c, !, m . . .

QED

⎫

⎬

⎭

⇒Lth
1S = 8172.900 (4)th.(51)fin. size. MHz, rp = 0.895 (18) fm from e–p scattering

Lth
1S = 8172.743 (4)th.(3)fin. size.MHz, rp = 0.841 (1) fm from µp Lamb shift

As can be inferred from the above equations, prior to the successful µp Lamb shift experiment the
comparison between theory and experiment was strongly limited by the uncertainty of the proton
radius to a level of 6× 10−6. The determination of rp by the muonic hydrogen Lamb shift experiment
has opened the way to check bound-state QED on a level of 3 × 10−7. However, first it is necessary
to solve the discrepancy problem between the Lamb shift predicted using rp from the µp experiment
and the experimentally determined Lexp

1S .

13.1.2 Experimental 1S Lamb shift in He+ and comparison with theory

A similar comparison between theoretically predicted and experimentally determined 1S-Lamb shift
in He+ will be reached when both the proposed µHe+ and the ongoing He+ spectroscopy experiments
will be accomplished. The situation will be even much better, first because we are more sensitive to
the interesting bound-state QED contributions and second because we will have an independent very
sensitive way to determine R∞.

When the 1S−2S transition frequency in He+ will be measured with ur = 2×10−14 [9], the 1S-Lamb
shift in He+ can be deduced by knowing R∞ from the H-spectroscopy experiments as:

∆E1S−2S = 0.75 · 22 ·R∞

mr
m − L1S + L2S

LnS = 1
n3L1S + εn

R∞ from H spectroscopy

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⇒ Lexp
1S expected uncert.=0.088 MHz
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This can then be compared with the theoretical prediction [41, 48, 55, 12]:

rHe

α, c, !, m . . .
QED

⎫

⎬

⎭

⇒

{

Lth
1S = 107693.196 (211)th.(348)fin. size.MHz, rHe = 1.681 (4) fm from scatt.

Lth
1S = 107693.yyy (211)th.( 40)fin. size.MHz, rHe = 1.6xxx (5) fm from µHe+

As in the hydrogen case, comparison between theoretical and experimental 1S Lamb shift in He+ will
be limited by the uncertainty related with the nuclear rms charge radius. This is the main motivation
for the µHe+ experiment.

13.1.3 Why is bound-state QED interesting?

Precision QED for free particles (e.g., g − 2) is being calculated with an increasing number (several
thousands) of complicated diagrams (up to the five–loop level [38]). Bound–state QED deals with
diagrams up to the two–loop level in α (few contributions to the three-loop), but the charged particles
are bound, leading to the presence of Coulomb exchange (Zα expansion) that is difficult to calculate.
Free QED involves only one small parameter α, while bound–state QED needs at least three expansion
parameters α, Zα and m/M :

• α, the power of which indicates the number of QED loops.

• Zα is the Coulomb strength. It represents the binding effect. α and Zα expansions behave quite
differently. There is a number of contributions where we need to sum over an infinite number
of Coulomb exchanges, like for the Bethe logarithm. If Zα is not small (Uranium: Zα ≈ 0.7),
there is strong coupling, and perturbation theory can not be applied. For Zα → 0 there is
a non–analytic behavior of the perturbation theory. The result is the occurrence of numerous
logarithms lni[(Zα)−2] and large coefficients in the expansion.

• m/M is the recoil parameter. In the non–relativistic case the two-body system can be exactly
solved by introducing the reduced mass of the system, but the separation of center–of–mass
and relative motion can not be done in a relativistically covariant way. This complicates the
treatment of bound–states fundamentally.

The QED corrections to the energy levels can be written in the form of a power series expansion in
these three small dimensionless parameters. These parameters, in particular α and Zα, enter both
in the wave function and the particle propagator in a non-perturbative way. Although bound–state
QED is non-perturbative, it is possible to make use of these small parameters to develop expressions
in increasing order of smallness. However the non-perturbative nature of this expansion shows up in
the coefficients of the power series. Some of these coefficients are not constants but slowly varying
functions (e.g. ln (Zα)−2 in Eq. (27)) of the expansion parameters. Hence the energy shift caused by
a given kernel can not be estimated by simply counting the powers in α and Zα it contains.

To get an idea of the difference between a bound and a free electron propagator consider the self–
energy diagram for a free and a bound electron:

SF (q) =
i

q/−m
SB(q) =

i
q/−m− γ0V

For high energies of the exchanged virtual photon, the Dirac–Coulomb (bound electron) propagator
may be expanded as
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q/−m− γ0V
=

1

q/−m
+

1

q/−m
γ0V

1

q/−m
+

1

q/−m
γ0V

1

q/−m
γ0V

1

q/−m
+· · ·

where V = Zα
r , r ∼ (Zα).

In terms of Feynman diagrams this corresponds to the following expansion:

= + + + + . . . . . .

In the bound–state QED problem, every coefficient of the α expansion is developed in powers of Zα
as shown for the one-loop self–energy in the above figure. Every additional photonic line connecting
the electron to the nucleus generates an additional power in Zα.

13.1.4 An example: One-loop self–energy in hydrogen and hydrogen-like atoms

The one-loop corrections (order of α) are by several orders of magnitude the largest contributions
to the Lamb shift and are given by the electron self–energy and the vacuum polarization. In the
following, focus is given on the evaluation of the self–energy term which is the most problematic and
largest contribution to the Lamb shift in hydrogen. Because of the approximate (Zα)4/n3 scaling law
of the self–energy level shift, it is convenient to express the energy shift of each state caused by the
one-loop self–energy as

∆E(one−loop)
SE = m

α

π

(Zα)4

n3
Fn(Zα). (26)

There exist two ways to calculate Fn(Zα). The first relies on a perturbative expansion of the Dirac–
Coulomb propagator on Zα, i.e., the coupling constant to the external field [51, 39, 40, 41, 42], and
the second one treats the Dirac–Coulomb propagator exactly [43, 44, 45, 46, 47, 48]. The coupling
constant Zα for heavy elements (e.g.,, for uranium Zα ≃ 0.7) is not really small compared to 1. For
high-Z nuclei the semi–analytical expansion of Fn(Zα) in terms of Zα and ln (Zα) no longer converges,
and in that case Fn(Zα) must be evaluated with the numerical all–order exact method. Hence the
perturbative method is valid only for low–Z (Z ≤ 5 for the one-loop self–energy) systems (but the
exact value is needed for accuracy in the region of a few Hertz, even for Z=1).

In the perturbative approach the dimensionless quantity Fn(Zα) can be expressed as a semi–analytical
expansion over Zα and ln (Zα),

Fn = A40 +A41 ln (Zα)−2 + (Zα)A50

+(Zα)2
[

A62 ln
2 (Zα)−2 +A61 ln (Zα)−2 +GSE(Zα)

]

(27)

The first index of the A coefficients gives the power of Zα (including the (Zα)4 pre–factor in Eq. (26)),
whereas the second index corresponds to the power of the logarithm. Fn = Fn(nlj, Zα) and Apq =
Apq(nlj) depend on the atomic state with quantum numbers n, l, j. The work involved in calculating
the A constants in Eq. (27) has involved many physicists and has extended over more than five decades.
A complete list of the A coefficients is given in [2]. A40 contains the Bethe–logarithm ln (k0(nl)), and
the self–energy remainder function GSE(Zα) contains the higher order contribution in Zα to the
one-loop self–energy and can be semi–analytically expanded as [49]

GSE(Zα) = A60 + (Zα)
[

A71 ln (Zα)−2 +A70
]

+(Zα)2
[

A83 ln
3 (Zα)−2 +A82 ln

2 (Zα)−2 +A81 ln (Zα)−2 +A80
]

. (28)
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The higher–order terms in the potential expansion of the Dirac–Coulomb propagator and the rela-
tivistic corrections to the wave–function both generate higher order terms in Zα which are manifest
in Eqs. (27) and (28).

Since the binding Coulomb field enters in a non-perturbative way and no closed–form expression for
the Dirac–Coulomb propagator exists, already the calculation of corrections of (Zα)2 relative order is
a highly non trivial task. The one-loop electron self–energy contributes to all orders in Zα, and the
separation in (Zα)2 relative contribution involves hundreds of terms. Additionally the series expansion
in Zα is slowly convergent.

The best evaluation of the GSE term is hence based on a direct all–order numerical evaluation of the
bound–electron propagator [50]. Calculating Fn in the all–order exact method and subtracting from
it all the other contribution related to the A coefficients of Eq. (27) gives GSE . The uncertainty of the
one-loop self–energy to a given energy level arises entirely from the uncertainty of the GSE . The non-
perturbative results are consistent with the results of the Zα–expansion but are orders of magnitude
more precise. The numerical uncertainty of the all–order calculation is 0.8 × Z4 Hz [46], whereas
the uncertainty related to the perturbative method is of 28 kHz, due to the truncation of the Zα
expansion (unevaluated higher order terms). The numerical all–order (non perturbative) treatment
of the one-loop self–energy for hydrogen has nowadays overcome the limitations of the perturbative
approach in Zα [46].

13.1.5 The present limit of theory: Two-loop self–energy in hydrogen

Among all the “pure” QED contributions to the Lamb shift only the two-loop terms have a non-
negligible uncertainty [56, 57]. The two-loop self–energy shift can be expressed as:

∆E(two−loop)
SE = m

(α

π

)2 (Zα)4

n3 Gn(Zα). (29)

As for the one-loop self-energy, in recent years, intensive studies of the higher-order two-loop correc-
tions to the Lamb shift have been performed, with two different methods: the all-order approach [12]
and the expansion in powers of Zα and ln[(Zα)−2]. In the perturbative approach the function Gn(Zα)
can be expanded as

Gn = B40 + (Zα)B50

+(Zα)2
[

B63 ln
3 (Zα)−2 +B62 ln

2 (Zα)−2 +B61 ln (Zα)−2 +Gh.o

]

, (30)

with Gh.o. = B60 + (Zα)(. . .). The calculation of the B coefficients [51, 39, 41, 52, 53, 54, 55] is at
present one of the most challenging problems in bound–state QED, and it is the limiting factor of the
theory. B40 which is the leading–order correction is quite small, B40(ns) = 1.409244, whereas B50

was also found to be large, B50(ns) = −24.2668(31). This indicates a slow convergences or even a
non-perturbative behavior of the two-loop contributions. The B6i coefficients have turned out to be
surprisingly large, with a remaining contribution to B60 due to high-energy virtual photons still being
investigated (B63(ns) = −8/27, B62(ns) = −16/27 − (16/9) ln 2, B61(ns) = 48.388913, B60(ns) =
−61.6(9.2) [12]). The convergence of this expansion is rather modest, and non-negligible contributions
from unknown B7i-terms cannot be excluded. Higher order corrections in Zα are required, but the
complexity of calculations of order α2(Zα)7 does not seem to make it feasible in the near future. Hence
the estimation of uncertainty of higher order effects is rather problematic.

A non-perturbative approach in the parameter Zα is therefore desirable even for hydrogen and
helium (Z = 1, 2), but up to now this numerical approach is reliable only for ions with Z ≥ 10.
Non-perturbative all-order calculations were performed first at high Z and recently down to Z = 10,
and then extrapolated to Z = 1. The result differs from the perturbative approach by nearly 6 kHz
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for the two-loop Lamb shift in H, and following common practice (see also the discussion in Ref. [55]),
we take half of this discrepancy as uncertainty, resulting in 3 kHz uncertainty. Obviously, these terms
become quite large for He+ because they scale as Z6 and higher powers. Figure 7 shows the Gh.o. term
for hydrogen calculated for Z = 1 with the perturbative expansion (which is B60), compared with the
Gh.o. values from the all–order approach at Z ≥ 10. Simple extrapolation of the all–order values to
Z = 1 is in obvious discrepancy with the value calculated by perturbative expansion. Effort to solve
this discrepancy is required.

Figure 7: Gh.o. term calculated with the perturbative approach in Zα shown with a cross point, and the
all–order approach for higher Z (other points). In order to obtain the Gh.o. values from the all–order
approach, the various known B’s from Eq. 30 calculated with perturbation theory have to be subtracted
from Gn. The extrapolation from higher Z (non-perturbative) to Z = 1 gives Gh.o. = 101(15), in
discrepancy with the value B60 = −61.6 from perturbative calculations.(Figure from [12])

The expansion of the two-loop self–energy in powers of Zα and ln[(Zα)−2] leads to surprisingly
large terms and is therefore considered as prototype for badly converging series. Bad convergence
of the (Zα) expansion and disagreement between the perturbative and non-perturbative approach
require progress in this field, both from the theoretical and experimental side. Bound–state QED
may be considered a platform for the development of instruments to understand bound–state systems
where no expansion in small parameters is possible. For the verification of this challenging two-loop
contributions in H and He+ a better knowledge of the proton radius (already achieved) and of the
alpha-particle radius are required.
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13.2 H and He+ Lamb shift theory and verification

In Table 6 we summarize all contributions and some important quantities which are relevant for the
1S − 2S transition in H and He+. The total energy difference ∆E2S−1S = E2S − E1S given on row
(A) is the 1S − 2S transition energy. This energy difference is essentially given by 3/4Z2R∞m/mr.
Corrections related to QED, relativistic and nuclear structure effects affect this energy difference at
the few ppm level. The uncertainty of the ∆E2S−1S prediction caused by the uncertainty of R∞ is
given in row (B) and is ≈ 3/4 δR∞. Present knowledge of R∞ (δR∞/R∞ = 6.6×10−12) comes mainly
from precision spectroscopy of H(1S − 2S), H(2S − 8D), H(2S − 12D)[7].

We define the Lamb shifts L1S and L2S according to the generally adopted convention that a part
of the recoil corrections, which are beyond the Dirac energy value but do not lift the 2S1/2 − 2P1/2

degeneracy, as well as hyperfine effects, are excluded from the definition of the Lamb shift L. The
following, implicit definition [61] is the commonly adopted one, and reads

E = c2mr [f(n, j)− 1]−
c2m2

r

2(me +M)
[f(n, j)− 1]2 + L+ Ehfs . (31)

Here, E is the energy level of the bound two-body system (electron+nucleus), and f(n, j) is the
dimensionless Dirac energy. E.g., we have f(1, 12) = f(1S) =

√

1− (Zα)2, and f(2, 12) = f(2S) =
√

1
2 (1 +

√

1− (Zα)2) for the 1S and 2S states, respectively. The other symbols are as follows: mr

(M) is the reduced mass of the system, M the nuclear mass, and Ehfs is the energy shift due to
hyperfine effects. The latter is absent for a nucleus with spin 0 (4He).

The Lamb shift difference L1S −L2S can be determined to essentially the same absolute precision in
frequency units as the Rydberg constant using this simplified expression:

(L1S − L2S)
exp ≈ ∆E2S−1S − 3/4Z2R∞. (32)

In fact ∆E2S−1S in H is measured to an accuracy of 1.4 × 10−14 [35], much better than R∞, and
similarly when the measurement in He+ will be finished. The experimentally inferred Lamb shift
difference (L1S − L2S)exp is given in row (C) whereas the theoretical predicted one, (L1S − L2S)th

in row (E). The relative uncertainty of the theoretical predictions is shown in row (F). For these
theoretical predictions we made use of nuclear radii values coming from independent experiments like
electron scattering experiments, e.g., rp = 0.895± 0.018 fm, r4He = 1.681(4) fm [11].

The quoted theoretical uncertainties for the Lamb shift differences L1S −L2S in H and He+ take into
account the recent investigations reported in Refs. [41, 55, 58] for H and in Ref. [57] for He+. The
theoretical uncertainties of these calculated Lamb shift differences result from quadratically adding
the uncertainties of the nuclear-size term and computational uncertainties. Note that we did not use
the newly determined rp from µp.

The resulting relative uncertainty in He+ of 3.7 ppm (±348 kHz) is roughly half the size as the
corresponding value in hydrogen (6.3 ppm or ±44 kHz) and is composed in almost equal parts from
uncertainties of the nuclear size and computational uncertainties. This is in sharp contrast to the
situation in hydrogen.

The main contribution to the Lamb shifts in H and He+ are given by the one-photon one-loop
self-energy which scales approximately like α(Zα)4. Detailed calculation shows that this term scales
according to α(Zα)4 ln[(Zα)−2]. Both at Z = 1 and at Z = 2, the dependence on Z can be approxi-
mated by a non-integer power ≈ Z3.7.

Among all the “pure” QED contributions to the Lamb shifts only the two-loop terms have a non-
negligible uncertainty. The contribution of the most critical terms (B60 and B7i) together with its
uncertainty is given in row (G) of the Table. It is interesting to observe that the uncertainty of the
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Table 6: Comparison of the energy differences (in frequency units) between the 1S and 2S states of
the H atom and He+ ion, given for the binding energy E, the Lamb shift L, some higher order QED
terms, and for the energy shifts due to the nuclear size and polarizability. Uncertainties are given in
parenthesis.

H(1S − 2S) He+(1S − 2S) ratio

[kHz] [kHz]

A ∆E2S−1S 2.466× 1012 9.869× 1012 Z2

B δ∆Eth
2S−1S (from δR∞) (16)a (65)a Z2

C (L1S − L2S)exp 7 127 831(16) Z2 (Eq. (32))
D δ(L1S − L2S)exp (from δR∞) 2.2 ppma 0.7 ppma

E (L1S − L2S)th 7 127 887(44) 93 856 127(348) Z3.7

F δ(L1S − L2S)th (6.3 ppm) (3.7 ppm)

G B60 and B7i terms −8(3) −543(185) Z6...

H other uncalc. higher terms (C50, recoil...) ∼ (2) ∼ (100) Z5...7

I nuclear size (p, 4He) 1102(44)b 62 079(295)c Z4r2

J uncert. of nucl. size (from µp, µ4He+) (2) (40)d

K nucl. polarizability −0.06(2)e −28(3)f

L 1S − 2S laser linewidth < 1 ∼ 13g

M 1S − 2S natural linewidth 0.0013 0.084 Z6

(a): will be reduced by a factor 2 when measuring, e.g., H(1S − 3S) to 1 kHz precision

(b): with r(p) = 0.897(18) fm [3]

(c): with r(4He) = 1.681(4) fm [11]

(d): if the nuclear polarizability of µ4He(2S) can be calculated to 5% uncertainty

(e): calculated, see Eq. (A11) of Ref. [1]

(f): calculated, see Ref. [59]

(g): expected

1S − 2S prediction due to δR∞ in comparison to the higher-order two-loop effects is 16 times larger
for H than for He+ because the two-loop effects scale like Z6.

The largest uncertainty in the prediction of the Lamb shifts in H and He+ is given by the finite
size effect. Line (I) reports the finite size contributions and uncertainties for nuclear radii extracted
from electron scattering experiments. However the uncertainties of the nuclear radii can be reduced
by an order of magnitude via the Lamb shift measurements in µp and µHe+. Row (J) shows the
uncertainties of this finite size contribution after the performed measurement in µp, and for He+

the expected results after completion of the corresponding measurements in µHe+. Other source of
uncertainties are given by the nuclear polarizability effects whose contribution is shown in row (K).
We note that the nuclear polarizability correction for 4He+ has been computed very recently for the
first time [59]. The correction is numerically significant on the precision level which may be reached
in the not-too distant future.

By looking at the Table we can draw following conclusions:
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• Hydrogen: Prior to the measurement of the Lamb shift in µp the bound-state QED test was
limited to a level of 6 × 10−6 level by the uncertainty related with the rms proton radius.
After the µp measurement we have opened the way to check bound-state QED (1S Lamb shift
prediction) to a level of 3× 10−7. To reach such an accuracy an improvement of R∞ is required
(some improvement of the R∞ uncertainty can be achieved by the ongoing 1S−3S measurement
in H). It has to be stressed here that before being able to perform such a precision test we need
to understand the above explained discrepancy.

• Helium: Due to scaling of the interesting QED corrections with high powers of Z, He+ offers
promising opportunities in comparison to H. The comparison between theoretical and experi-
mental 1S-Lamb shift in He+ is more sensitive to interesting two-loop correction (scaling with
Z6) and less to the uncertainty of the Rydberg constant (which scales like Z2). The number
of theoretical digits that can be compared with experiments is about the same in hydrogen
and He+. The scaling of the limiting contributions with Z6 compared with the scaling of the
Bohr structure (Rydberg) Z2 means that the same interesting terms are tested with on order of
magnitude more precision in He+ than in H.

For example the B60 term can be checked with an accuracy of 50 kHz. This has to be com-
pared with the difference between the predictions from the two developed approaches (all-order,
expansion) of ∼ 400 kHz.

13.3 Impact on nuclear theory of few nucleon nuclei

We have seen in the previous chapter the relevance of the µHe+ experiment for the interpretation of
the spectroscopy in hydrogen-like atoms. It will lead to a possible understanding of the discrepancy,
an accurate test of QED, and improvement of R∞. Additionally the nuclear radii extracted from the
µHe+ Lamb shift may be used in nuclear physics. Precise isotope shift measurements of 3He, 6He,
8He [13] have been accomplished by means of laser spectroscopy which provide accurate differences of
the rms radii relative to 4He. To deduce absolute radii it is therefore necessary to deduce the absolute
radius of the reference isotope 4He. Our µp, µd and µ 3,4He+ experiments will lead to a determination
of the proton, deuteron, 3He 4He, 6He, 8He rms charge radii.

The knowledge of these radii will provide additional useful observables to check theories (NN, NNN,
NNNN potentials) of few nucleons nuclei[14].

A measurement of two transitions in 3He (one starting from the singlet and one from the triplet
2S state) will lead to a determination of the hyperfine splitting, and thus to the Bohr-Weisskopf
contribution. A measurement of the two transitions with 50 ppm will lead to the knowledge of the
quadratic sum of rms charge and magnetic radius in 3He with 1% accuracy. This is another observable
which may be used to check nuclear models.
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