The Promise of Private-Collective Innovation

European Academy of Management, Oslo May 18 2006

Georg von Krogh
Chair of Strategic Management and Innovation
Contents

- The "private-collective" innovation model
- Research on private-collective innovation
- The Freenet Study
- The Knowledge Reuse Study
- Conclusion
"Why should thousands of top notch-programmers contribute freely to the provision of a public good?"

Lerner and Tirole (2000)
The Private–Collective Innovation Model

"Why should thousands of top notch-programmers contribute freely to the provision of a public good?"

Lerner and Tirole (2000)

What is the model of innovation behind open source software development?
The Private-Collective Innovation Model

Private model: Innovators appropriate private returns from their innovation related investments

Development of Cray Supercomputer (NASA picture arch., 1986)
The Private-Collective Innovation Model

<table>
<thead>
<tr>
<th>Private model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation supported by private investments and private return appropriation</td>
</tr>
<tr>
<td>Innovation encouraged through intellectual property protection</td>
</tr>
<tr>
<td>Free-revealing and uncompensated knowledge spill-over reduce innovators profits</td>
</tr>
<tr>
<td>Monopoly control granted to innovators represents a loss to society relative to free use by all of knowledge created</td>
</tr>
</tbody>
</table>

Demsetz (1967)

Liebeskind (1996)
The Private-Collective Innovation Model

Collective model: Innovators relinquish control of innovation by unconditionally supplying it to a "common pool"

Northwest youth corps building a bridge (NWYC, 2000)
The Private–Collective Innovation Model

<table>
<thead>
<tr>
<th>Private model</th>
<th>Collective model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation supported by private investments and private return appropriation</td>
<td>Provision of public goods (non-excludable and non-rival)</td>
</tr>
<tr>
<td>Innovation encouraged through intellectual property protection</td>
<td>Innovation encouraged through monetary, reputational or other subsidy</td>
</tr>
<tr>
<td>Free-revealing and uncompensated knowledge spill-over reduce innovators profits</td>
<td>Free rider problem a threat to continuous innovation</td>
</tr>
<tr>
<td>Monopoly control granted to innovators represents a loss to society relative to free use by all of knowledge created</td>
<td>Innovator relinquish control of knowledge produced, avoids social loss problem</td>
</tr>
</tbody>
</table>

- Demsetz (1967)
- Olson (1967)
- Liebeskind (1996)
- Aldrich (1999), Stephan (1998)
The Private-Collective Innovation Model

Compound model: Innovators obtain rewards from private use and collective improvement

Linux Development Tree (IX, 1998)
The Private-Collective Innovation Model

<table>
<thead>
<tr>
<th>Private model</th>
<th>Collective model</th>
<th>Compound model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation supported by private investments and private return appropriation</td>
<td>Provision of public goods (non-excludable and non-rival)</td>
<td>Developers use private resources to privately invest in innovation, and they reveal the innovation</td>
</tr>
<tr>
<td>Innovation encouraged through intellectual property protection</td>
<td>Innovation encouraged through monetary, reputational or other subsidy</td>
<td>Innovation encouraged by private use and collective improvement</td>
</tr>
<tr>
<td>Free-revealing and uncompensated knowledge spillover reduce innovators profits</td>
<td>Free rider problem a threat to continuous innovation</td>
<td>Free rider problem mediated by private rewards from collective innovation</td>
</tr>
<tr>
<td>Monopoly control granted to innovators represents a loss to society relative to free use by all of knowledge created</td>
<td>Innovator relinquish control of knowledge produced, avoids social loss problem</td>
<td>Innovator relinquish control of knowledge produced, avoids social loss problem</td>
</tr>
</tbody>
</table>

The Private-Collective Innovation Model

"Why should thousands of top notch-programmers contribute freely to the provision of a public good?"

Lerner and Tirole (2000)

What is the model of innovation behind open source software development?

Programmers contribute freely to the provision of a public good because they garner private benefits from doing so.
Motivations for private-collective innovation

<table>
<thead>
<tr>
<th>Some prior contributions</th>
<th>Research Focus (Examples)</th>
<th>Recent Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franke and von Hippel (2003)</td>
<td>* Impact of community participation on individual motives</td>
<td>* The motives of firm’s employees engaged in open source software development</td>
</tr>
<tr>
<td>Ghosh et al. (2002)</td>
<td>* Relationship between incentives and technical design</td>
<td>* Relationship between intrinsic and extrinsic motivation in producing a contribution to an open source software project</td>
</tr>
<tr>
<td>Hann et al. (2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hars and Ou (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hertel et al. (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakhani and von Hippel (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakhani et al. (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lerner and Tirole (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osterloh et al. (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenborg (2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitlyn (2003)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Research Focus (Examples)

- Individual incentives
- Impact of firms’ participation on individual motives
- Impact of community participation on individual motives
- Relationship between incentives and technical design
- Characteristics of individual motives
- The motives of firm's employees engaged in open source software development
- Relationship between intrinsic and extrinsic motivation in producing a contribution to an open source software project

Recent Contributions

- Roberts et al.
- Bagozzi and Dholakia
- Baldwin and Clark

Bagozzi and Dholakia

- Psychological and social factors explaining engagement in open source software user groups (Linux user groups)
- Motivation to conduct mundane work in an open source software project

Baldwin and Clark

- Incentives for developers to join and contribute to a modular open source software architecture
- Relationship between an open source software architecture and free riding
Contents

- The "private-collective" innovation model

- Research on private-collective innovation

- The Freenet Study

- The Knowledge Reuse Study

- Conclusion
The Freenet Study

- RESEARCH QUESTIONS:

 - How do people join a developer community?

 - Do newcomers specialize, and if yes, what causes this specialization?
The Freenet Study

356 individuals participated in Freenet developer discussion list
1.1% of population accounted for 50% of messages

30 Individuals (8.4%) wrote code for the project, all core-developers. High degree of concentration of developers with 4 developers (13%) committing 53% of the code.

Contents

- The "private-collective" innovation model
- Research on private-collective innovation
- The Freenet Study
- The Knowledge Reuse Study
- Conclusion
The Knowledge Reuse Study

- RESEARCH QUESTIONS:

 - Is private-collective innovation economically efficient?

 - What, if any, are the practices of knowledge reuse in open source software development:
 • what is reused (reuse inventory)?
 • when is it reused and by whom (reuse incidents)?
The Knowledge Reuse Study

- Findings I:

 - Knowledge reuse is extensive (3163 reuse incidents representing 16.9 million lines of code)!
 - Knowledge reuse inventory:

 • Algorithms and methods (used by all 21 informants, problem solving)
 • Software components (52 components)
 • Accredited lines of code (ALOC: 38,245)
Findings II

- The reuse of components (LOC) outweighs the reuse of accredited lines of code (ALOC).

- The efforts to search, integrate, and maintain knowledge relate to the knowledge reuse inventory.

- Reuse comes in two forms: Architectural and functional.
The Knowledge Reuse Study

Findings III:

- The frequency of knowledge reuse incidents (architectural and functional) relate to the stages of a developer’s active involvement in a project.

- Developer E: “Code reuse is just helping us to get the job done, so I can work on something that is more interesting”.
Contents

- The "private-collective" innovation model
- Research on private-collective innovation
- The Freenet Study
- The Knowledge Reuse Study
- Conclusion
Conclusion

- Private-collective innovation: A mix of incentives that incur public goods innovation with private investment

- Freenet study: Joining and contributing to private-collective innovation is costly

- Knowledge Reuse Study: Knowledge reuse allows innovators to mitigate the cost of joining and contributing to private-collective innovation
Conclusion

- The promise of private-collective innovation: Application in other fields of technical, organizational, and social innovation including...

 • Biotechnology (Bios initiative)
 • Pharmaceuticals (Virtual pharma)
 • Technical design (ThinkCycle)
 • Cultural goods (Wikipedia, OS music and arts)
References

YOU ARE WELCOME TO VISIT US AT:
WWW.ETHZ.CH
WWW.SMI.ETHZ.CH