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The randomness of the occurrences of earthquakes, together with our limited abil-

ity to detect and measure earthquakes, combine to present challenges for the testing

of scientific hypothesis about earthquakes. This dissertation examines implications of

these challenges and presents methods for addressing them.

In contrast to physical systems characterized by a dominating length scale, the rele-

vant scales of earthquakes span many orders of magnitude. Our limited observations of

the smallest of these scales, in the form of small, undetected earthquakes, severely im-

pacts our ability to faithfully model observable seismicity because, as we show, small

earthquakes contribute significantly to observed seismicity. Using the Epidemic-Type

Aftershock Sequence model, a time-dependent model of triggered seismicity, we in-

troduce a formalism that distinguishes between the detection threshold and a smaller

size above which earthquakes may trigger others, and place constraints on its size.

We derive equations that relate observed clustering parameters obtained from different

thresholds. We show that parameters are biased and discuss the failure of the maximum

likelihood estimator.
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As an example of the power of simulation-based null hypothesis testing, we inves-

tigate a recent claim of a scaling law in the distribution of the spatial distances between

successive earthquakes. Motivated by the debate on the relevance of critical phenom-

ena to earthquakes and by the suggested contradiction of aftershock zone scaling, we

analyze other regions and generate synthetic data using a realistic model that explicitly

includes mainshock rupture length scales. We show that the proposed law does not

hold.

Earthquake catalogs contain a wide variety of uncertainties. We quantify magni-

tude uncertainties and find they are more broadly distributed than a Gaussian distribu-

tion. We show their severe impact on short term forecasts by proving that the devia-

tions of a noisy forecast from an exact forecast are power-law distributed in the tail.

We further demonstrate that currently proposed consistency tests to evaluate forecasts

reject noisy forecasts more often than expected at a given confidence limit. This is

due to the assumed Poisson likelihood, which should be replaced by a model-specified

distribution.

Finally, we propose the framework of data assimilation as a vehicle for systemati-

cally accounting for uncertainties. We review the concept of sequential Bayesian data

assimilation, the purpose of which is to estimate as best as possible a desired quantity

using both the noisy observations and a short-term model forecast. Sequential Monte

Carlo methods are identified as a set of flexible simulation-based techniques for esti-

mating posterior distributions. We implement a particle filter for a lognormal renewal

process with noisy occurrence times and present a Bayesian solution for estimating

noisy marks in a general temporal point process.
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CHAPTER 1

Introduction

The spatial, temporal and energy patterns of earthquake occurrences display an ex-

treme degree of randomness. The dramatic variation in the size of earthquakes, from

unnoticeable events to major disasters, apparently follows no deterministic, predictable

rules. Long periods of relative calm in certain regions of the world can be punctuated

by extremely active periods in which large clusters of strong earthquakes reconfigure

the stress field in the crust, releasing in a matter of seconds the energy slowly built

up elastically in the crust during the incompatible plate movements across the globe.

Their spatial distribution reflects the geometrical heterogeneity of faults and fractal

plate tectonics.

But these fluctuations in seismicity can be analyzed, quantified and modeled. Since

the discovery of the Omori law [Omori, 1894], which quantifies in a statistical distribu-

tion the random and extremely slow decay of aftershocks in time after a large (and not

so large) earthquake, and the Gutenberg-Richter law [Gutenberg and Richter, 1944],

which proposes that the energy of earthquakes is a random quantity drawn from a dis-

tribution spanning orders of magnitude but lacking a particular dominating size, seis-

mologists have studied the large-scale patterns to quantify the interactions in space and

time. Today, statistical seismicity models based on these and other empirical results

are used to test their underlying scientific hypotheses about the physics of earthquakes,

to calculate the risk of future earthquakes, and to probe deeper into the fluctuations and

correlations.
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A common theme in many of the empirical relations in seismology and employed

in seismicity models is the lack of a dominating scale. Many natural phenomena can

be approached by the traditional reductionist approach to isolate a process at a partic-

ular scale. For example, the waves of an ocean can be described quite accurately by a

theory that entirely ignores the fact that the liquid is made out of individual molecules.

Indeed, the success of most practical theories in physics depends on isolating a scale

[Wilson, 1979], although since this recognition, much progress has been made in de-

veloping a holistic approach for processes that do not fall into this class. Given current

observational evidence, earthquakes seem to belong to the set of (critical) processes

characterized by a lack of characteristic length scales (i.e. scale-invariance): fluctua-

tions on all levels are important and are in no way diminished.

The traditional reductionist approach in seismology, which, for instance, attempted

to separate large (main) shocks from small (fore- or after-) shocks, is slowly giving way

to the holistic approach, in which all earthquakes are created equal and seismicity is

characterized by scale-invariant fluctuations of all sizes. A particularly strong model

of these interactions has emerged in the concept of triggering, which places all earth-

quakes on the same footing: each earthquake can trigger its own events, which in turn

can trigger their own events, and so on, according to the same probability distributions,

and the resulting seismicity can be viewed as the cascades of triggered earthquakes that

cluster in space and time.

Triggering or clustering models of seismicity are developing into community-wide

agreed-upon null hypotheses that are well-understood and characterized, and are being

used in a wide variety of ways: as a benchmark against which new claims may be

tested; to (probabilistically) forecast earthquakes; to model and explain observations;

to guide the development of improved models; to model realistically entire space-time

regions of seismicity; and so on. Many of these phenomenological models belong to a
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class firmly rooted in the mathematical probability theory of random point processes.

The particular combination of a well-developed mathematical framework along with

associated statistical tools, and the successful first-order phenomenological description

of seismicity is promising in light of the obstacles still ahead.

One of these obstacles is our inability to measure earthquakes well. The obvious

reason is that earthquakes initiate at a depth of several to hundreds of kilometers, which

to a large degree we are unable to observe directly. Rather we rely mostly on surface

instruments that measure the seismic waves excited by the earthquake in order to infer

information about the event. Summary information (e.g. occurrence times, locations,

magnitudes and focal mechanisms) is then usually listed in earthquake catalogs. But

as a result of this complicated inverse problem, earthquake catalogs contain serious

uncertainties in their representation of the data. The uncertainties are themselves often

random fluctuations, but may contain strong biases. Therefore, it is critical to separate

the modeling of stochastic earthquakes from the modeling of uncertain and random

earthquake catalogs, which are a biased representation of earthquakes.

An example is provided by small, hard-to-detect or even undetectable earthquakes,

which are not and cannot be listed in earthquake catalogs. From the point of view of

seismicity as a process in which all scales are relevant and no scale can be neglected,

it is apparent that even small earthquakes, undetectable by our current instruments and

hence absent from earthquake catalogs, are important to the overall spatio-temporal

patterns of seismicity. Small, unobserved earthquakes therefore have observable con-

sequences. How strong is their influence, what is the nature of these consequences and

what are their implications? These questions will be explored in Chapters 2, 3 and 4.

The strong stochasticity of earthquakes and our biased observations thereof com-

bine to present unique challenges for the modeling, hypothesis-testing and forecasting

of earthquakes. Some authors have argued, notably Y. Kagan [Kagan, 1999b], that
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most studies claiming novel features are either a reformulation of already known facts

about seismicity or artifacts due to earthquake catalogs errors. An efficient method for

testing novel claims is to simulate data using a realistic null hypothesis, and then repeat

the data analysis on the synthetic data to provide confidence limits. This simulation-

based hypothesis testing can provide a benchmark for the detection of new features in

seismicity. Chapter 5 presents such an example by testing a proposed scaling law in

the distribution of spatial distances between subsequent earthquakes.

The fact that small earthquakes are absent from earthquake catalogs is well known.

Less information is available about other uncertainties. As a result, most applications

of triggering models to seismicity neglect their existence entirely and assume that the

given data is exact. To develop a strong null hypothesis, in which the influence of

catalog issues is minimized, we need to understand and quantify uncertainties and their

effects. This is pursued in Chapter 6, with an emphasis on magnitude uncertainties and

their impact on earthquake forecasts and their evaluation.

In light of the recently established earthquake forecasting and testing centers, in

which the scientific hypotheses of earthquake models are tested via prospective tests,

there is a growing need for robust methods that allow a systematic and rigorous treat-

ment of data uncertainties. Chapter 7 presents the framework of data assimilation, a

method developed in numerical weather prediction to estimate as best as possible the

state of the atmosphere, and adapts sequential Monte Carlo methods, a set of flexi-

ble simulation-based techniques for estimating posterior distributions, to the setting of

seismicity and triggering models.

Chapter by Chapter Overview

• Chapter 2: Scaling laws of triggering suggest that small earthquakes are cu-

mulatively as important for the triggered seismicity budget as rarer but larger
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events. To guarantee finite seismicity, we argue for the existence of a smallest

triggering earthquake, below which earthquakes do not trigger aftershocks. In-

troducing a formalism which distinguishes between the detection threshold and

the smallest triggering earthquake, we place constraints on its size by using a

simplified version of the Epidemic-Type Aftershock Sequence (ETAS) Model

[Ogata, 1988], a powerful model of triggered seismicity, and observed after-

shock sequences and Båth’s law. We find that the key parameter controlling its

size is given by the branching ratio of the triggering model, equal to the fraction

of triggered shocks in a catalog. From upper bounds on the smallest triggering

earthquake, we infer lower limits for the fraction of aftershocks.

This chapter was published in [Sornette and Werner, 2005a].

• Chapter 3: We revisit and extend the formalism introduced in Chapter 2. By

considering the branching structure of one complete cascade of triggered events,

we derive an apparent branching ratio and the apparent number of untriggered

events, which are observed when only the structure above the detection threshold

is known. We provide equations for relating (apparent) clustering parameters at

different thresholds. As a result of our inability to observe the entire branching

structure, inferred clustering parameters are significantly biased.

This chapter was published in [Sornette and Werner, 2005b].

• Chapter 4: This chapter expands the discussion of the previous two chapters

from the simplified ETAS model to the stochastic ETAS model. First, we argue

that triggering and clustering parameters are intricately connected to the detec-

tion thresholds above which they were estimated and hence difficult to to inter-

pret in geophysical terms. Second, separating triggered from untriggered events,

commonly known as declustering, also strongly depends on the threshold, so

that it cannot even in theory constitute a physically sound method. Next, we re-
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view a recent article [Saichev and Sornette, 2006a] confirming the predictions in

Chapter 3 for the stochastic number statistics of observed events. Using the fully

stochastic ETAS model, we then show that the conditional intensity function, the

object that defines the model, is not strictly invariant under a change of thresh-

old due to time-dependent contributions from undetected events. Simulations

and inversions confirm that parameters estimated above detection thresholds are

biased. We discuss the failure of the maximum likelihood estimator, the cur-

rently preferred method for parameter estimation, to provide unbiased parame-

ters and to provide accurate confidence limits even in an ideal setting. Finally,

the recently introduced Vere-Jones model [Vere-Jones, 2005] is reviewed, as it

eliminates the need of a detection threshold and extends the class of self-similar

random measures.

This chapter extends the results of Chapters 2 and 3 to the stochastic ETAS

model, proves parameter bias and summarizes developments since Chapters 2

and 3 were published. The (brief) discussion of the inaccuracy of the (Hessian-

derived) confidence limits in the maximum likelihood estimator are based on

[Werner and Jackson, 2007].

• Chapter 5: We review concepts and tools from the theory of critical phenomena

and discuss the motivation for placing seismicity in such as framework. After

briefly discussing the recent debate in the literature regarding claimed discover-

ies of novel and universal scaling laws in the recurrence statistics of earthquakes,

we analyze a particular claim that the distribution of spatial distances between

successive earthquakes obeys scale-free statistics and finite size scaling, contra-

dicting the idea of aftershock zone scaling. We show that this “law” depends

solely on one earthquake and its aftershocks, that it does not hold in other re-

gions of the world, and that a triggering model, with aftershock zone scaling
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explicitly built in, is capable of reproducing the observed power law, which sup-

posedly contradicts the existence of aftershock zones. This chapters serves as an

example of the power of simulation-based null hypothesis testing.

A section of this chapter was published in [Werner and Sornette, 2007a].

• Chapter 6: Motivated by the recent establishment of earthquake forecasting test

centers, we investigate the impact of magnitude uncertainties on seismic rate

estimates in seismicity models, in their forecasts and in their evaluation. First,

we quantify magnitude uncertainties and find that it is more heavy-tailed than a

Gaussian distribution, the commonly assumed function. Due to the fatter-than-

exponential tails, we show that the impact on the forecasts of a simple clustering

model, which captures the main ingredients of popular short term models, is

severe. We prove that the deviations of noisy forecasts from the exact forecast

are power law distributed in the tail. We study these fluctuations analytically

and numerically. Finally, we show that noisy forecasts, when evaluated in cur-

rently proposed consistency tests, are rejected more frequently than expected for

a given confidence limit. We discuss a first step towards making the test more

adequate for short-term forecast evaluation.

This chapter was submitted to the Journal of Geophysical Research [Werner and

Sornette, 2007b] and is currently in review.

• Chapter 7: We introduce data assimilation as a framework for systematically

dealing with earthquake catalog uncertainties. This chapter may be read by non-

seismologists and therefore contains a brief introduction to the observational

uncertainties in earthquake catalogs and to the models used for earthquake fore-

casting, with an emphasis on point process models. We review the few exist-

ing statistical approaches that have been applied in statistical seismology for

dealing with uncertainties in point process models. So far, they remain lim-
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ited to simple models and static methods. To make progress towards sequential

Bayesian methods for general point processes that can be used for real-time

earthquake forecasting of realistic clustering models, we review the concept of

Bayesian data assimilation and focus on sequential Monte Carlo methods, a set

of simulation-based techniques for estimating posterior distributions. These are

described in detail to make them accessible to the seismological community.

We briefly discuss the relatively thin literature of point processes in the setting

of noisy observations. Sequential Monte Carlo methods typically use a state-

space representation of the model, which is not entirely satisfactory for renewal

processes under noisy occurrence times, but fine for more general models. We

implement specific particle filters for a lognormal renewal process under noisy

occurrence time observations. Finally, we present the conceptual Bayesian so-

lution for the estimation of noisy marks in an unpredictably marked, arbitrary

temporal point process.

This chapter is the basis for a manuscript under preparation [Werner et al., 2007].

This thesis combines elements of seismology, statistical physics, probability the-

ory, applied statistics and data assimilation from meteorology. The resulting interdis-

ciplinary nature requires common terminology and concepts. However, since often

relevant only to particular chapters, we chose to introduce them whenever necessary,

thus making the chapters largely self-contained, but thereby increasing the length of

this document. Readers familiar with certain concepts may skip the sections introduc-

ing them. The thesis contains three groups, Chapters (2, 3, 4), Chapter 5, and Chapters

(6, 7). The chapters within groups should be read in succession, but the ordering of the

groups is not highly important and is presented here in chronological order.
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CHAPTER 2

Constraints on the Size of the Smallest Triggering

Earthquake from the Epidemic-Type Aftershock

Sequence Model, Båth’s Law, and Observed Aftershock

Sequences ∗

2.1 Abstract

The physics of earthquake triggering together with simple assumptions of self-similarity

imply the existence of a minimum magnitude m0 below which earthquakes do not

trigger other earthquakes. Noting that the magnitude md of completeness of a seis-

mic catalog is not in general the same as the magnitude m0 of the smallest triggering

earthquake, we compare observed aftershock sequence parameters with the predictions

made by the epidemic type aftershock sequence (ETAS) model to constrain the value

of m0. In particular, we use quantitative fits to observed aftershock sequences from

three previous studies, as well as Båth’s law, to obtain four estimates of m0. We show

that the branching ratio n (average number of triggered earthquakes per earthquake,

also equal to the fraction of aftershocks in a seismic catalog) is the key parameter con-

∗An edited version of this chapter was published by AGU. Copyright (2005) American Geo-
physical Union. Sornette, D. and M. J. Werner (2005), Constraints on the size of the smallest trig-
gering earthquake from the epidemic-type aftershock sequence model, Båth’s law, and observed
aftershock sequences, J. of Geophys. Res., 110, B08304, doi:10.1029/2004JB003535. Reproduced
by permission of American Geophysical Union.

9



trolling the estimate of the minimum triggering magnitude m0. Conversely, physical

upper bounds for m0 estimated from rate and state friction indicate that at the very

least 55 percent of all earthquakes are aftershocks.

2.2 Introduction

Scale invariance in earthquake phenomena is widely manifested empirically, in the

Gutenberg-Richter (GR) magnitude-frequency relation, in the Omori aftershock de-

cay rate, and in many other relationships. Scale-invariance means that there are no

preferred length scales in seismogenic processes and in spatio-temporal structures.

However, there are many reports that purport to identify characteristic scales. As em-

phasized by [Matsu’ura, 1999; Aki, 2000; Sornette, 2002], the search for characteristic

structures in specific fault zones could allow the separation of large earthquakes from

small ones and thus advance earthquake prediction.

Although there is clear evidence of deviations from self-similarity at large scales

[Kagan, 1999a; Pisarenko and Sornette, 2003], the issue is much murkier at small

scales. For instance, Iio [1991] reports a lower magnitude cutoff mmin ≈ −1.4 for

very small aftershocks of the 1984 Western Nagano Prefecture, Japan, earthquake

(mJMA = 6.8) in spite of the fact that the high sensitivity of the observation sys-

tem (focal distances less than 1 km and very low ground noise) would have permitted

to detect much smaller magnitudes. Based on induced seismicity associated with deep

gold mines, Richardson and Jordan [2002] find a lower magnitude cutoffmmin ≈ 0 for

friction-dominated earthquakes, while fracture-dominated earthquakes have no lower

cutoff but an upper cut-off of magnitude ≈ 1. Using deep bore-hole recordings, Aber-

crombie [1995a,b] found that small earthquakes exist down to at least magnitude 0 and

that source scaling relationships hold down to at least −1. Based on seismic power

spectra, on the evidence of a low-velocity low-Q zone reaching the top of the ductile
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part of the crust and on seismic guided waves in fault zones, Li et al. [1994] argue

for a characteristic earthquake magnitude of about 3 associated with the width of fault

zones. Another characteristic magnitude in the range 4− 5 is proposed by Aki [1996],

based on the simultaneous change of coda Q−1 and the fractional rate of occurrence of

earthquakes in this magnitude interval. At Parkfield, Heimpel and Malin [1998] found

evidence of a transition from creep-dominated slip to earthquake-dominated slip tak-

ing place in the range of magnitudes close to M = 0.9, above their detection limit

of M = 0.3. The authors underline that their results do not suggest the existence of

a minimum earthquake size, but rather indicate a nucleation scale in their stochastic

rupture model. They further consider it likely that this scale varies with the geological

setting. Similarly, Marone and Kilgore [1993] suggested that the critical slip distance

over which strength breaks down during nucleation in models of velocity-weakening

friction scales with shear strain in fault zones. Therefore, if the critical slip scale fixes

a minimum earthquake size, as we consider below, then the smallest earthquake may

be non-universal and change with the maturity or gouge thickness of the fault.

The existence of a discrete hierarchy of scales has in addition been suggested by

Sornette and Sammis [1995] based on the analysis of accelerated seismicity prior to

large earthquakes and recently by Pisarenko et al. [2004] by using a non-parametric

measure of deviations from power laws applied to the magnitude-frequency distribu-

tions of earthquakes in subduction zones. Evidence of a hierarchy of scales is also

found in fragmentation and rupture processes [Sadovskii, 1999; Geilikman and Pis-

arenko, 2000; Sahimi and Arbabi, 1996; Ouillon and Sornette, 1996; Johansen and

Sornette, 1998; Suteanu et al., 2000].

From a theoretical point of view, the equation of motion for a continuum solid

is scale-independent, suggesting that deformation processes in solids should produce

self-similar patterns manifested in power law statistics. However, the symmetry of an
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equation does not guarantee that the solutions of this equation share the same symme-

try. The difference (when it exists) in the symmetry between a solution and its gov-

erning equation is known as the phenomenon of “spontaneous symmetry breaking”

[Consoli and Stevenson, 2000] and underlies a large variety of systems (explaining

for instance the non-zero masses of fundamental particles [Englert, 2004]. Of course,

length scales associated with rheology and existing structures can produce deviations

from exact self-similarity. For instance, a transition from stable creep to a dynamic

instability at a nucleation size whose dimensions depend on frictional and elastic pa-

rameters defines a minimum earthquake size [Dieterich, 1992], estimated at magnitude

≈ −3 by Ben-Zion [2003]. This minimum size corresponds only to events triggered

according to the mechanism of unstable sliding controlled by slip weakening and thus

concerns friction-dominated earthquakes.

A different perspective is offered by models of triggered seismicity in which earth-

quakes (so-called foreshocks and mainshocks) trigger other earthquakes (so-called

mainshocks and aftershocks, respectively). Recent studies suggest that maybe more

than 2/3 of events are triggered by previous earthquakes (see Helmstetter and Sornette

[2003b]) and references therein). In this context, the relevant question is no longer

how small is the smallest earthquake but how small is the smallest earthquake which

can trigger other earthquakes (and, in particular, larger earthquakes).

The effects of seismicity below the detection threshold in models of triggered seis-

micity are also considered in the very closely related [Sornette and Werner, 2005b].

In particular, earthquakes too small to detect with the current network sensitivity are

shown to bias the estimates of the branching ratio and the background event rate. The

article also uses the estimates of the smallest triggering earthquake established below

to link the apparent (measured) percentage of triggered quakes in a seismic catalog to

the real fraction.
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2.3 The ETAS Model and the Smallest Triggering Earthquake

To make the discussion precise, let us consider the epidemic-type aftershock sequence

(ETAS) model, in which any earthquake may trigger other earthquakes, which in turn

may trigger more, and so on. Introduced in slightly different forms by Kagan and

Knopoff [1981] and Ogata [1988], the model describes statistically the spatio-temporal

clustering of seismicity.

The ETAS model consists of three assumed laws about the nature of seismicity

viewed as a marked point-process. We restrict this study to the temporal domain only,

summing over the whole spatial domain of interest. First, the magnitude of any earth-

quake, regardless of time, space or magnitude of the mother shock, is drawn randomly

from the exponential Gutenberg-Richter (GR) law. Its normalized probability density

function (pdf) is expressed as

P (m) =
b ln(10)10−bm

10−bm0 − 10−bmmax
, m0 ≤ m ≤ mmax, (2.1)

where the constant exponent b is typically close to one, and the cut-offsm0 (see below)

and mmax serve to normalize the pdf. The upper cut-off mmax is introduced to avoid

unphysical, infinitely large earthquakes. Its value was estimated to be in the range

8−9.5 [Kagan, 1999]. As the impact of a finite mmax is quite weak in the calculations

below, replacing the abrupt cut-offmmax by a smooth taper would introduce negligible

corrections to our results.

Second, the model assumes that direct aftershocks are distributed in time according

to the modified “direct” Omori law (see Utsu et al. [1995] and references therein).

Denoting the usual Omori law exponent by p = 1 + θ and assuming θ > 0, the

normalized pdf of the Omori law can be written as

Ψ(t) =
θcθ

(t+ c)1+θ
, (2.2)
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where t is the time since the earthquake and c is a constant.

Third, the number of direct aftershocks of an event of magnitude m is assumed to

follow the productivity law:

ρ(m) = k 10α(m−m0), m0 ≤ m ≤ mmax, (2.3)

where k and α are constants. Note that the productivity law (2.3) is zero below the cut-

off m0, i.e. earthquakes smaller than m0 do not trigger other earthquakes; this is typi-

cally assumed in studies using the ETAS model. The existence of the small-magnitude

cut-offm0 is necessary to ensure the convergence of the models of triggered seismicity

(in the statistical physics of phase transitions and in particle physics, this is called an

“ultra-violet” cut-off which is often necessary to make the theory convergent). Below,

we show that there are observable consequences of the existence of the cut-off m0 thus

providing constraints on its physical value.

Since the present formulation of the ETAS model requires cut-offs to ensure its

convergence, it is interesting to mention the variation recently introduced by Vere-

Jones [2005]. This modified model is completely self-similar yet well-defined and

convergent. No cut-offs break the self-similarity. To remove all scales, he first re-

quires the Omori law constant c to be a function of magnitude so that the plateau

following large mainshocks lasts longer than for smaller shocks. Secondly, α is set

equal to b. Thirdly, he introduces a function S that penalizes a large departure of a

daughter’s magnitude from the mother’s magnitude. This implies that the magnitudes

of the daughters are distributed according to a modified GR law, with a bend around

the mother magnitude. This completely self-similar model without cut-offs requires a

conditioning of aftershock magnitudes on mother magnitudes, for which observational

evidence remains to be established. This question is of fundamental importance in

order to clarify whether the ETAS cut-off magnitude m0 is of real physical relevance

to earthquake triggering. We will not consider the model of Vere-Jones [2005] further
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here.

The key parameter of the ETAS model is defined as the number n of direct af-

tershocks per earthquake, averaged over all magnitudes. Here, we must distinguish

between the two cases α = b and α 6= b:

n ≡
mmax∫
m0

P (m)ρ(m)dm

=

 kb
b−α

(1−10−(b−α)(mmax−m0)

1−10−b(mmax−m0) ), α 6= b

kb ln(10)(mmax−m0)

1−10−b(mmax−m0) , α = b.
(2.4)

Three regimes can be distinguished based on the value of n. The case n < 1 corre-

sponds to the subcritical regime, where aftershock sequences die out with probability

one. The case n > 1 describes unbounded, explosive seismicity that may lead to finite

time singularities [Sornette and Helmstetter, 2002]. The critical case n = 1 separates

the two regimes.

The fact that we use the same cut-off for the productivity cut-off and the Gutenberg-

Richter (GR) cut-off is not a restriction as long as the real cut-off for the Gutenberg-

Richter law is smaller than or equal to the cut-off for the productivity law. In that case,

truncating the GR law at the productivity cut-off just means that all smaller earth-

quakes, which do not trigger any events, do not participate in the cascade of triggered

events. This should not be confused with the standard but incorrect procedure in many

previous studies of triggered seismicity of simply replacing the GR and productivity

cut-off m0 with the detection threshold md in equations (2.1) and (2.3) (see, for exam-

ple, [Ogata, 1988; Kagan, 1991; Guo and Ogata, 1997; Ogata, 1998; Console et al.,

2003b; Ogata et al., 2003; Ogata, 2004; Zhuang et al., 2004]). This may lead to a bias

in the estimated parameters.

The realization that the detection threshold md and the triggering threshold m0

are different leads to the question of whether we can extract the size of the smallest
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triggering earthquake. Here, we infer useful information on m0 from the physics of

earthquake triggering embodied in the simple ETAS formalism, from Båth’s law, and

from available catalogs.

We will assume that the detection threshold md of a seismic catalog is (currently

still) larger than the smallest triggering earthquake m0. This assumption seems jus-

tified since, for instance, Helmstetter et al. [2005a] found that m = 2 earthquakes

trigger their own sequences of (possibly larger) magnitudes. Their Figure 1 presents

evidence that the scaling of aftershock productivity continues down to at least mag-

nitude 2. This implies that m0 has not yet been observed directly and is below the

detection threshold.

There is no loss of generality in considering one (independent) branch (sequence

or cascade of aftershocks) of the ETAS model. Let an independent background event

of magnitude M1 occur at some origin of time. We will refer to independent (non-

triggered) background events as mainshocks or initial shocks and any triggered events

as aftershocks, independent of magnitude. The mainshock will trigger direct after-

shocks according to the productivity law (2.3). Each of the direct aftershocks will

trigger their own aftershocks, which in turn produce their own, and so on. Averaged

over all magnitudes, each aftershock produces n direct offspring according to (2.4).

Thus, over all time, we can write the average of the total number Ntotal of direct and

indirect aftershocks of the initial mainshock as an infinite sum over terms of (2.3) mul-

tiplied by n to the power of the generation [Helmstetter and Sornette, 2003b], which

can be expressed for n < 1 as:

Ntotal = ρ(M1) + ρ(M1)n+ ρ(M1)n
2 + ...

=
k 10α(M1−m0)

1− n
(2.5)

However, since we can only detect events above the detection threshold md, the to-

tal number of observed aftershocks Nobs of the sequence is simply Ntotal multiplied
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by the fraction of events above the detection threshold, given by (10b(mmax−md) −

1)/(10b(mmax−m0) − 1) according to the GR distribution. The observed number of

events in the sequence is therefore

Nobs = Ntotal

(
10b(mmax−md) − 1

10b(mmax−m0) − 1

)
=
k 10α(M1−m0)

1− n

(
10b(mmax−md) − 1

10b(mmax−m0) − 1

)
. (2.6)

Equation (2.6) predicts the average observed number of direct and indirect after-

shocks of a mainshock of magnitude M1 > md. To estimate m0, we need to eliminate

or find estimates of the three unknowns n, k, and Nobs. We can eliminate k through the

expression (2.4) for n, leaving n and Nobs. The mean number of observed aftershocks

as a function of mainshock magnitude M1 was estimated by Helmstetter et al. [2005a]

and Felzer et al. [2003] and can also be obtained from Båth’s law. In the following sec-

tions, we use these three estimates forNobs and thus obtainm0 as a function of the only

remaining unknown n. Acknowledging the controversy surrounding the estimation of

the percentage of aftershocks in a catalog, we nevertheless use existing estimates of n

to finally obtain quantitative values for m0.

As we rely on fits and estimates of constants to obtain m0, it is useful to attempt

an error estimation of m0 given the variation of these constants. In particular, we can

solve equation (2.6) for m0 and find its variation ∆m0 with ∆n, which amounts to

assuming that the leading error in m0 comes from the relatively poorly known n. This

leads to

∆m0 =
1

(b− α) ln(10)

∆n

n− n2
(2.7)

For ∆n ' 0.2 and b − α ' 0.2, one obtains ∆m0 ' 1.6 for n = 0.5, and ∆m0 '

4.4 for n = 0.9. Given that the other parameters may also contain errors (see also

below) and that the estimates of n may be biased by undetected seismicity [Sornette

and Werner, 2005b], these error estimates may themselves contain large errors. We
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therefore stress that the following sections present order of magnitude calculations.

2.4 Constraint on the Smallest Triggering Earthquake from the

ETAS Model and Observed Estimates of Aftershock Numbers

Following the recipe outlined above, we begin by using the estimates of the observed

number of aftershocks Nobs obtained by Helmstetter et al. [2005a] in order to find m0

as a function of n. Helmstetter et al. [2005a] sidestepped the problems associated with

maximum likelihood estimates of the complete model parameters by fitting stacked

observed aftershock rates within pre-defined space-time windows using the formula

λfit(t) =
Kfit 10αM1−bmd

tpfit
, (2.8)

based on the scaling laws (the GR law, the Omori law, and the productivity law) dis-

cussed above. The constant Kfit includes all aftershocks, direct and indirect, and thus

corresponds to a global renormalized constant different from k in the ETAS productiv-

ity law (2.3). Furthermore, pfit is also a global exponent, which may be different from

the local exponent 1 + θ of the ETAS model for n close to 1 and at not too long times,

as explained in Sornette and Sornette [1999b] and Helmstetter and Sornette [2002].

The total number of aftershocks is then obtained by integrating over an un-normalized

Omori law according to [Helmstetter et al., 2005a]:

Nfit(T,M1) =

T∫
c

λfit(t)dt

= Kfit 10αM1−bmd
T 1−pfit − c1−pfit

1− pfit

. (2.9)

For pfit < 1, this expression diverges as T increases to infinity. But, as it has been

shown that the exponent of the observed global Omori law converges to a value 1+θ >
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1 at large times for n < 1 [Sornette and Sornette, 1999b; Helmstetter and Sornette,

2002] the time factor converges also to (θcθ)−1. Under the assumption that pfit =

1 + θ > 1, valid for n not very close to the critical value 1 Sornette and Sornette

[1999b]; Helmstetter and Sornette [2002], equation (2.9) may then be rewritten as

Nfit(M1) = Kfit 10αM1−bmd (θcθ)−1. (2.10)

Equating the ETAS model prediction Nobs(M1) given by (2.6) with the empirical esti-

mate Nfit(M1) given by (2.10), and eliminating the unknown k through the expression

for n in (2.4) leads to an equation for m0 as a function of n:

m0 =
1

(b− α) ln(10)
×

ln(10(α−b)mmax +
b− α
b

n

1− n
θcθ

Kfit

(1− 10−b(mmax−md)))

for α 6= b and

m0 = mmax − (
n

1− n
)
θcθ

Kfit

1− 10−b(mmax−md)

b ln(10)
(2.11)

for α = b.

Expression (2.11) shows that, provided an estimate of the branching ratio n is avail-

able, we can deduce m0, since the other quantities can be measured independently: b

is close to 1, α is usually between 0.5 and 1, md depends on catalogs but is often about

3, c is typically close to 0.001 days and Kfit in equation (2.8) is obtained from the

calibration of the productivity of earthquakes as a function of their magnitude. In Ta-

ble 1 of their study, Helmstetter et al. [2005a] report values for Kfit in the range from

0.0009 to 0.0193 (days)p−1, 0.94 ≤ α ≤ 1.16, b ≈ 0.95, and md = [2, 3]. They find

c < 0.001days and p = 0.9. We will thus assume θ = 0.1 (see above).

We note that md appears in the expression (2.11) for m0. Clearly, a detection

threshold that evolves with seismic technology should not influence the physics of

triggering. We thus expect m0 to be independent of md. The reason md does appear
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in the expression can be traced to the GR law (2.1), which is normalized over the

magnitude interval from m0 to mmax. When integrated to give the probability of m

lying in the range from md to mmax, the factor involving md does not enter as simply

as in the formulation (2.8) of Helmstetter et al. [2005a]. Therefore the factors do not

cancel out when comparing the ETAS prediction with the assumed parameterization of

Helmstetter et al. [2005a] and md remains in the equations. Assuming that the GR law

is correctly normalized in the present ETAS model, this implies a (weak) dependence

of Kfit on md. Given the correlation between α and Kfit (see below), the estimates

of α may thus also depend on md. Finally, for practical purposes we note that for any

reasonable values of the other parameters, the influence of md is negligible.

The estimate of m0 that we are trying to obtain relies on the adequacy of the model

used here and on the stability and reliability of the quoted parameters. For now, we

sidestep any possible difficulties in the determination of the parameters and present

in Figure 2.1 the magnitude of the smallest triggering earthquake m0 as a function of

the average number n of direct aftershocks per mainshock for a range of parameters.

For n = 0, m0 equals the largest possible earthquake mmax, representing the limit

that earthquakes do not trigger any aftershocks. At the other end, for n = 1, the for-

mula predicts that m0 diverges to minus infinity. Recall that n = 1 corresponds to the

system being exactly at the critical value of a branching process and the statistical av-

erage Nobs(m) of the total number of events triggered over all generations by a mother

event of magnitude m becomes infinite. Of course, individual sequences have a finite

lifetime and a finite progeny with probability one and the theoretical average loses its

significance due to the fat-tailed nature of the corresponding distribution [Athreya and

Ney, 1972; Saichev et al., 2005; Saichev and Sornette, 2004]. Therefore, the prediction

on m0 becomes unreliable for n close to 1 (how close to 1 depends on b − α which

controls the amplitude of the fluctuations from realization to realization).
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Figure 2.1: The magnitude m0 of the smallest triggering earthquake as a func-

tion of the average number n of direct aftershocks estimated from fits to ob-

served aftershock sequences and the ETAS model for values of, from light to dark,

[α = 0.5, Kfit = 9.6103], [α = 0.6, Kfit = 2.3312], [α = 0.7, Kfit = 0.5655],

[α = 0.8, Kfit = 0.1372], [α = 0.9, Kfit = 0.0333], [α = b = 1, Kfit = 0.0081]. We

assume parameters b = 1, mmax = 8.5, θ = 0.1, c = 0.001 days. Kfit, in days1−p,

was estimated by Helmstetter et al. [2005a] and here calculated from the values of α

through their correlation (see Figure 2.2). The horizontal lines represent two upper

limits on m0: the first one is derived from a typical detection threshold at md = 3

(solid line) while the second (lower) one was obtained from estimates of the critical

slip dc = 100µm in rate and state friction resulting inm = 0.5 (dotted line). The upper

limits on m0 conversely provide a lower bound on the percentage of aftershocks in an

earthquake catalog and/or α.
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For a wide range of n and combinations between α and Kfit, the magnitude of the

smallest triggering earthquake lies between 0 and −10. Only for values of n above 0.9

does the size of m0 become smaller than −10. For reference, a magnitude −10 event

roughly corresponds to a fault of length 1mm, i.e. to grain size.

Given that we expect m0 to be smaller than the detection threshold md, the hor-

izontal line at md = 3 serves as a (very) conservative estimate of the upper limit of

m0 and thus provides constraints on the combination of parameters α, Kfit and n. For

example, for α = 1, at least 65 percent of all earthquakes must be aftershocks. This

lower limit increases drastically to about 90 percent for α = 0.5. Note that we extrap-

olate Kfit from the observed values for α around one to smaller values of α using an

exponential fit (see below).

We can obtain another external bound on m0 from estimates of the minimum slip

required before static friction drops to kinetic friction and unstable sliding begins,

according to models of velocity-weakening friction. For example, the parameter dc in

rate and state dependent friction [Dieterich, 1992, 1994] was estimated at 0.5m from

seismograms [Ide and Takeo, 1997] and similarly at 40 − 90cm from slip-velocity

records [Mikumo et al., 2003], although both probably correspond to upper bounds.

Estimates of dc from laboratory friction experiments give 1 to 100µm, approximately

4 to 6 orders of magnitude less than the upper bound determined by seismic studies.

One could conclude that either the upper bound from seismic studies is so extreme

as to render the comparison to laboratory studies meaningless, or the slip weakening

process is in fact different at laboratory scales [Kanamori and Brodsky, 2004]. Scholz

[1998] related the critical slip to a minimum nucleation length Lc = G dc/([B−A]σ),

where G is the shear modulus, σ is the effective normal stress, and B−A is a material

property. Following Lapusta and Rice [2003], we take the values G = 30, 000 MPa,

B−A = 0.004, σ = 50 MPa, and dc = 100µm to obtain Lc = 10 m. If we assume that
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the minimum slip needed to initiate stable sliding scales with the minimum length of a

friction-based earthquake, then, neglecting fracture-based earthquakes, Lc corresponds

to the size of the smallest earthquake. Given that the smallest triggering earthquake

must be equal to or larger than the smallest earthquake, but that the estimate of Lc is

an upper limit, we use these values for Lc as an upper limit of the smallest triggering

earthquake. From the relations between fault length, moment and moment magnitude

[Kanamori and Brodsky, 2004] with Lc = 10 m and a stress drop of 3 MPa, we obtain

an upper limit of magnitude 0.5 for the smallest triggering earthquake. This upper

limit is represented in Figure 2.1 as the lower, dotted horizontal line.

Felzer et al. [2002] have used α = b on the basis of an argument of self-similarity.

Helmstetter et al. [2005a] also argue for a value of α essentially indistinguishable from

b based on fits of stacked aftershock decay rates in pre-defined space-time windows.

Other studies have found α smaller and much smaller than b (see, for example, [Con-

sole et al., 2003b; Helmstetter, 2003; Zhuang et al., 2004]. In view of the lack of

consensus and to keep the discussion independent of the estimation problem, we use

the correlation we found between the parameters Kfit and α estimated in Helmstetter

et al. [2005a] to extrapolate to smaller α. The existence of such a correlation is stan-

dard in joint estimations of several parameters and can be deduced from the inverse of

the Fisher matrix of the log-likelihood function Rao [1965]. Such correlation can also

be enhanced if the model is misspecified. We performed an exponential least-square

fit to the scatter plot (see Figure 2.2) to obtain a relationship between the parameters

and then calculated an estimate of Kfit for smaller values of α according to the best fit

relationship Kfit = 11441.3285 exp(−α/0.07056). In the absence of other estimates,

this method provides one possibility to extrapolate to small α. The resulting curves for

m0 are plotted in Figure 2.1.

Delaying the discussion on the estimation problem until the end of the section, we
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Figure 2.2: The correlation between the values of Kfit and α taken from Ta-

ble 1 of Helmstetter et al. [2005a]. The line is a least-squares exponential fit

Kobs = 11441.3285 exp(−α/0.07056). The extrapolation of this fit for smaller values

of α was used to obtain the values for Kfit in Figure 2.1.

use (2.11) together with existing estimates of the percentage of aftershocks in seis-

mic catalogs (equivalent to n [Helmstetter and Sornette, 2003b]) to constrain m0. We

note, however, that different declustering techniques lead to different estimates. No

consensus exists on which method should be trusted most. For example, Gardner and

Knopoff [1974] found that about 2/3 of the events in the Southern California cata-

log are aftershocks. With another method, Reasenberg [1985] found that 48% of the

events belong to a seismic cluster. Davis and Frohlich [1991] used the ISC catalog

and, out of 47500 earthquakes, found that 30% belong to a cluster, of which 76% are

aftershocks and 24% are foreshocks. Recently, using different versions of the ETAS
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model, Zhuang et al. [2004] have performed a careful inversion of the JMA catalog for

Japan using a magnitudemd = 4.2 for the completeness of their catalog. They provide

three estimates of the branching ratio for their best model: n = 0.42, 0.55, and 0.46.

Whether any of these methods estimate n correctly and without bias remains ques-

tionable. In particular, the branching ratios as calculated by Zhuang et al. [2004] and

others may be significantly biased by the assumption that md = m0, which can be

shown to lead to an apparent branching ratio modified by the impact of hidden seis-

micity below the catalog completeness [Sornette and Werner, 2005b]. Moreover, there

are problems with the maximum likelihood estimation (see for instance Helmstetter

et al. [2005a]). However, in the absence of better estimations, we nevertheless use the

above values as rough estimates of n. Given the range of α and Kfit, m0 is still not

very well constrained for values of n near one (see Figure 2.1). For example, for 85

percent aftershocks (n = 0.85), m0 ranges from −10 to an unrealistic 4 depending on

the values of α and Kfit. This argument could be used to rule out the combination

n = 0.85 and α = 0.5. In fact, for m0 to be smaller than md = 3, at least 65 percent of

earthquakes are aftershocks. For m0 to be smaller than the upper limit estimated from

dc, at least 75 percent must be aftershocks. Both fractions must increase for a smaller

α.

We can also use the values obtained by Felzer et al. [2003] to constrain m0. The

authors also used finite space-time windows in which they fitted aftershock sequences

with parameters for a global sequence according to

CT =
AT

1− pT

((t+ cT )1−pT − cT 1−pT ), pT 6= 1, (2.12)

where t is the selected duration of the sequences, pT is the global Omori exponent,

cT is the Omori constant, and AT is the productivity. Assuming that the local Omori

exponent is p = pT = 1 + θT , expression (2.12) can be rewritten for the infinite time
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limit as

CT =
AT

θT cT θT
. (2.13)

The values obtained are listed in Table 3 of their study: AT = 0.116 days1−pT , pT =

1.08 and cT = 0.014 days. These values hold for a typical California aftershock

sequence of a magnitude M1 = 6.04 mainshock, a detection threshold of md = 4.8,

and α = b = 1.

As before, we equate the ETAS model prediction (2.6) with the observation (2.13),

eliminate k through expression (2.4) for n (where α = b) and obtain an equation for

m0 as a function of n:

m0 = mmax −
n

1− n
(1− 10−b(mmax−md))

b ln(10)

×θT c
θT

AT

10b(M1−md), α = b = 1. (2.14)

This expression for m0 is shown in Figure 2.3 (solid curve). As in equation (2.11),

md remains artifactually in the equation due to a dependence of AT on the detection

threshold. Since the parameters were obtained with α = b = 1, we do not alter the

values of α and obtain only one curve.

Another estimate of m0 can be obtained from values estimated by Reasenberg and

Jones [1989]. Their aftershock rate above md due to a mainshock M is modeled as

λRJ(t,M) = 10a+b(M−md) (t+ c)−p . (2.15)

Again, we integrate over time, assuming p = 1 + θ > 1 to obtain

NRJ(t,M) = 10a+b(M−md) (θ cθ)−1 . (2.16)

As before, we equate expression (2.16) with the ETAS prediction (2.6), eliminate

k through equation (2.4) for n (where α = b), and arrive at a third estimate of m0 as a
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Figure 2.3: The magnitude m0 of the smallest triggering earthquake as a function of

the average number n of direct aftershocks estimated from fits to observed aftershock

sequences and the ETAS model according to Felzer et al. [2003] (solid) and Reasen-

berg and Jones [1989] (dotted). For the solid curve, we used the parameters of Felzer

et al. [2003]: θT = 0.08, cT = 0.014 days, M1 = 6.04 and AT = 0.116 days1−pT . For

the dotted curve, we used the parameters of Reasenberg and Jones [1989]: θ = 0.08,

c = 0.05 and a = −1.67. We also assumed mmax = 8.5, md = 3, α = b = 1. For

comparison, we include the curves corresponding to the special case α = b for the fit

according to Helmstetter et al. [2005a]) (dashed) (from Figure 2.1) and the constraint

due to Båth’s law (dash-dotted) (from Figure 2.4). The horizontal lines represent two

upper limits on m0: the first one was derived from the assumption that m0 is larger

than a typical detection threshold md = 3 (solid line), while the second (lower) one

was obtained from estimates of the critical slip dc = 100µm in rate and state friction

givingm = 0.5 (dotted line). The upper limits onm0 conversely provide lower bounds

for the percentage of aftershocks in an earthquake catalog.
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function of n:

m0 = mmax −
n

1− n
θcθ10−a

b ln(10)
(1− 10−b(mmax−md)) (2.17)

assuming α = b = 1.

We adopt here the values termed the “generic California model” according to

Reasenberg and Jones [1989]: a = −1.67, θ = 0.08, c = 0.05, and we assume

b = 1, mmax = 8.5 and md = 3. Expression (2.17) is drawn in Figure 2.1 (dotted).

For comparison, we include the curve for the case α = b that we obtained above in

Figure 2.1, based on the fits by Helmstetter et al. [2005a]) (dashed curve) and the curve

for the case α = b that results from using Båth’s law (see next section) (dash-dotted).

We observe the same characteristics as before in that m0 approaches mmax for small

n and that it diverges to minus infinity for n going to one. Differences between the

four curves arise only in the faster or slower decrease of m0 with n. For example, the

(conservative) upper limit md = 3 for m0 constrains n to be larger than 60 percent

according to the values obtained by Felzer et al. [2003], whereas the parameters of

Helmstetter et al. [2005a]) and Reasenberg and Jones [1989] for the case α = b im-

pose n to be at least 70 and 80 percent, respectively. For the estimate obtained from

Båth’s law (see next section), nmust be larger than about 45 percent. If we assume that

the upper limit of m0 can be obtained from estimates of the critical slip distance dc,

corresponding to m = 0.5, then n must be at least 55 percent according to the estimate

from Båth’s law, 70 percent according to Felzer et al. [2003], 80 percent according to

the fit by Helmstetter et al. [2005a]) and 85 percent according to the fit by Reasenberg

and Jones [1989].

Conversely, n = 0.7 determines m0 roughly equal to zero for the values of Felzer

et al. [2003] and an unrealistic 6 for the values of Reasenberg and Jones [1989]. n =

0.8 implies m0 lies around −7 and 3 according to Felzer et al. [2003] and Reasenberg

and Jones [1989], respectively.
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Since the four expressions form0 (for α = b) show the same functional dependence

on key variables and differ only in the different estimates of a few constants, this

consistency provides some confidence in our results. As for the difference in the four

curves, they constitute four differently formulated, empirical estimates of the rate of

events of typical aftershock sequences. Given the variability of the aftershock process,

the discrepancy in the estimates is to be expected.

We now point out difficulties for exploiting quantitatively the above ideas. Our

conclusions for m0 and n are based on empirical parameter estimations that involve

delicate technicalities. The constants Kfit defined in (2.8), AT defined in (2.13) and a

defined in (2.15) are in principle measurable. Issues that may bias the estimation of

these parameters include: (i) The rate of aftershock production is estimated empirically

over an apparently complete subperiod of finite space-time windows. Missed events

outside the spatial delimitation may act to decrease the rate estimate. (ii) Stacking

different sequences with different global Omori law decays may introduce errors. (iii)

The p exponent of the Omori law may intrinsically depend on the mainshock magni-

tude [Sornette and Ouillon, 2005; Ouillon and Sornette, 2005]. (iv) Background events

may be falsely counted as aftershocks. (v) Magnitude and location uncertainties may

bias the parameters. (vi) Missing events in the catalog, especially after large events,

may artificially change the parameter values. (vii) Undetected seismicity may bias the

estimated parameters [Sornette and Werner, 2005b].

Recently, Sornette and Ouillon [2005]; Ouillon and Sornette [2005] argued for a

dependence of the exponent p in the Omori law on the magnitude of the mainshock.

According to their calculations, p becomes zero, i.e. no earthquakes are triggered, at a

magnitude around −3. From Figure 2.1, their estimate of m0 = −3 constrains n to be

larger than roughly 80 percent for α = 1 and n extremely close to one for α = 0.5.
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2.5 Constraints on the Smallest Triggering Earthquake from Båth’s

Law

Finally, we use the empirical Båth’s law to constrain m0 as a function of n. The

law states that the average difference between a mainshock of magnitude M1 and the

magnitude ma of its largest aftershock is dm = M1 − ma = 1.2, regardless of the

mainshock magnitude [Båth, 1965]. Console et al. [2003a], Helmstetter and Sornette

[2003a] and Saichev and Sornette [2005a] showed that the law, deriving from the se-

lection procedure used to define mainshocks and aftershocks, is consistent with the

ETAS model.

Let Nobs be the total number of aftershocks generated by the mainshock above the

magnitude md of completeness of the catalog. Assuming that the magnitudes of the

aftershocks are drawn from the Gutenberg-Richter law, the largest aftershock has an

average magnitude given by a simple argument of extreme value theory:

ma = md + (1/b)(log10Nobs) . (2.18)

Solving this expression for Nobs, equating it with the ETAS prediction (2.6) and elimi-

nating k through the expression for n (2.4) provides an estimate of m0 as a function of

n:

m0 =
1

(α− b) ln(10)
×

ln 10(α−b)mmax +
(b− α)n

b(1− n)
10αM1−bma(1− 10−b(mmax−md)) (2.19)

for α 6= b and

m0 = mmax − (
n

1− n
)
(1− 10−b(mmax−md))

b ln(10)
10b(M1−ma) (2.20)

for α = b. Note that from expression (2.19), if α is different from b, and M1 − ma

is constant with M1 (Båth’s law), then m0 depends on M1, showing the inconsistency

30



of the argument based solely on the average number of events, as also explained by

Saichev and Sornette [2005a]. Only when α = b does the mainshock magnitude

disappear in the expression of m0 as shown in (2.20). The estimates of m0 for α < b

are thus dependent on M1 and should thus be taken only as indications.

Figure 2.4 illustrates the behavior of m0 as a function of the average number n of

direct aftershocks for reasonable values of the other constants (mmax = 8.5, md =

3, b = 1, α = [0.5, 0.6, 0.7, 0.8, 0.9, 1] (light to dark)), for mainshock and largest

aftershock values according to M1 −ma = 7− 5.8 = 1.2 from Båth’s law. Again, as

n tends to one, m0 tends to minus infinity, while for n = 0, m0 = mmax, as expected.

We also observe that m0 is almost constant over a wide range of n for comparatively

small α, whereas m0 varies much faster for the case α = b.

As alluded to in the last section, we obtain the same functional dependence as

in both previous estimates of the last section. However, for α = b, the decrease of

m0 with increasing n is even faster than when using the parameters of Felzer et al.

[2003]. Here, the upper limit md = 3 for m0 (upper horizontal line) constrains n

to be larger than 45 percent, much smaller than the lower limit obtained previously.

This discrepancy is due to the four different ways of estimating the observed number

of aftershocks. However, since all four are in a similar range, they provide a test of

the consistency of the results. When applying the dc-derived upper limit of 0.5 (lower

horizontal line), n must be larger than at least 55 percent for α = b and larger than

85 percent for α = 0.8. If n = 0.5, m0 is in the range 0 to an unrealistic 5, while

for n = 0.7, m0 lies between −9 and 5, depending on the values of α. Since m0 ≥ 3

is unrealistic, the entire region of combinations between α and n that fall above that

value can be ruled out. For example, the case α = 0.8 leads to a reasonablem0 smaller

than md = 3 only for n larger than about 65 percent.
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Figure 2.4: The magnitude m0 of the smallest triggering earthquake as a function

of the average number n of direct aftershocks as estimated by the ETAS model and

Båth’s law for α = [0.5, 0.6, 0.7, 0.8, 0.9, 1], from light to dark. The horizontal lines

represent two upper limits on m0: the first (upper) one is derived from the assumption

that m0 is larger than a typical detection threshold of md = 3 (solid line), while the

second (lower) one was obtained from estimates of the critical slip dc = 100µm in

rate and state friction giving m = 0.5 (dotted line). These two upper limits conversely

provide lower bounds on the fraction n of aftershocks in an earthquake catalog and/or

α. Common parameters are b = 1, mmax = 8.5, mmain = 7, ma = 5.8.
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2.6 Conclusions

We have shown that differentiating between the smallest triggering earthquake m0 and

the detection threshold md within the ETAS model leads, together with four separate

methods of estimating the observed numbers of “aftershocks” (defined as triggered

events independently of their magnitude), to four estimates of m0 as a function of the

percentage n of triggered events in a catalog (also equal to the branching ratio). We

have used empirically fitted values for aftershock numbers and thereby eliminated one

variable from the ETAS formalism in order to obtain an estimate ofm0 as a function of

n. The three different estimates were obtained from the fits performed by Helmstetter

et al. [2005a]), by Felzer et al. [2003], by Reasenberg and Jones [1989] and from the

empirical Båth’s law. All four give the same functional dependence and similar values

for m0. In particular, we can place bounds on m0 from estimates of the percentage

of aftershocks in earthquake catalogs. Conversely, we can limit the range of n by

observing that m0 must be less than the detection threshold md, or, less conservatively,

that m0 must be less than the magnitude corresponding to the rate-and-state critical

slip dc = 100µm estimated in laboratories. As well as quantitative values for m0, the

bounds limit the possible combinations between n and α and, in particular, indicate

that at the very least 55 percent of all earthquakes are triggered events (“aftershocks”).

The fact that the existence of a small magnitude cut-off m0 for triggering should

have observable consequences may appear surprising. But such a phenomenon of the

impact of a small scale cut-off on “macroscopic” observables is not new in physics

and actually permeates particle physics, field theory and condensed matter physics. In

the present case, the existence of m0 has an observable impact especially when α ≤ b

for which the cumulative effect of tiny earthquakes equate or dominate that of large

earthquakes with respect to the physics of triggering other earthquakes [Helmstetter,

2003; Helmstetter et al., 2005a]). We hope that the present article, together with our
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companion paper [Sornette and Werner, 2005b], will draw the attention of the com-

munity to the important problem of the distinction between md and m0. Moreover, it

will perhaps encourages re-analyses of inversion methods of models of triggered seis-

micity, and in particular of maximum likelihood estimations, to take into account the

bias due to the unobserved seismicity below the magnitude of catalog completeness.
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CHAPTER 3

Apparent Clustering and Apparent Background

Earthquakes Biased by Undetected Seismicity∗

3.1 Abstract

In models of triggered seismicity and in their estimation from empirical data, the detec-

tion threshold md is commonly equated to the magnitude m0 of the smallest triggering

earthquake. This unjustified assumption neglects the possibility of shocks below the

detection threshold triggering observable events. We introduce a formalism that distin-

guishes between the detection threshold md and the minimum triggering earthquake

m0 ≤ md. By considering the branching structure of one complete cascade of trig-

gered events, we derive the apparent branching ratio na (which is the apparent fraction

of aftershocks in a given catalog) and the apparent background source Sa observed

when only the structure above the detection threshold md is known due to the presence

of smaller undetected events capable of triggering larger events. If, as several recent

analyses have shown, earthquake triggering is controlled in large part by the smallest

magnitudes, this implies that previous estimates of the clustering parameters may sig-

nificantly underestimate the true values: for instance, an observed fraction of 55% of

aftershocks is renormalized into a true value of 75% of triggered events.

∗An edited version of this chapter was published by AGU. Copyright (2005) American Geo-
physical Union. Sornette, D. and M. J. Werner (2005), Apparent Clustering and Apparent
Background Earthquakes Biased by Undetected Seismicity, J. of Geophys. Res., 110, B09303,
doi:10.1029/2005JB00362. Reproduced by permission of American Geophysical Union.

35



3.2 Introduction

There is much evidence that a seismic event can have a significant effect on the pattern

of subsequent seismicity, most obvious in aftershocks of large events. More recently an

important extension of the concept of earthquake interactions has emerged: “triggered

seismicity”, in which the usual distinction that foreshocks are precursors of larger

mainshocks, which in turn trigger smaller aftershocks, becomes blurred: an efficient

description of seismicity does not seem to require the division between foreshocks,

mainshocks and aftershocks, as they appear indistinguishable in many of their physi-

cal and statistical properties [Helmstetter and Sornette, 2003c]. An important logical

consequence is that cascades of triggered seismicity (“aftershocks,” “aftershocks” of

“aftershocks,” ...) may play an important role in the overall seismicity budget [Helm-

stetter and Sornette, 2003b; Felzer et al., 2002].

There is a growing interest in phenomenological models of triggered seismicity,

which use the Omori law as a coarse-grained proxy for modeling the complex and

multi-faceted interactions between earthquakes, together with other robust descrip-

tions of seismicity (clustering in space, the Gutenberg-Richter (GR) earthquake size

distribution and aftershock productivity laws). The class of ETAS (Epidemic-Type

Aftershock Sequences) models introduced by Kagan and Knopoff [1981] and Ogata

[1988] offers a parsimonious approach that replaces the classification of foreshocks,

mainshocks and aftershocks by the concept of earthquake triggering: earthquakes may

trigger other earthquakes through a variety of physical mechanisms without attempting

to identify the particular mechanisms.

The questions suggested by this approach include: 1) what is the fraction of trig-

gered versus uncorrelated earthquakes? (This is linked to the problem of clustering and

a partial answer is given by Helmstetter and Sornette [2003b]). How can one use this

modeling approach to forecast future seismicity? What are the limits of predictability?
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(A partial answer using only time-dependent information is given by Helmstetter and

Sornette [2003d]). How sensitive are forecasts to catalog completeness and type of tec-

tonic deformation? In general, to tackle any such question, one needs to estimate key

parameters of the models of triggered seismicity in one way or another. Our present

paper shows that there is a non-trivial and important impact of catalog incomplete-

ness on the determination of the parameters quantifying earthquake triggering, with its

expected impact on all the above questions.

The most promising approach is in general to use the maximum likelihood method

to estimate the model parameters from a catalog of seismicity (time, location and mag-

nitude) (see for instance Ogata [1988] and Kagan [1991]). The calculation of the like-

lihood function requires evaluating the theoretical rate of seismicity at time t induced

by all past events at times ti < t. The maximization of the likelihood with respect to

the parameters of the model, given the data, then provides an estimate of the parame-

ters. All previous studies have considered that small earthquakes, below the detection

threshold, are negligible. Thus, the rate of seismicity is calculated as if triggered only

by earthquakes above the detection threshold. However, this method is not correct be-

cause it does not take into account events below the detection threshold, which may

have an important role in the triggering of seismicity. Indeed, small earthquakes have

a significant contribution in earthquake triggering because they are much more numer-

ous than larger earthquakes [Felzer et al., 2002; Helmstetter, 2003; Helmstetter et al.,

2005a]. This can simply be seen from the competition between the productivity law

∼ 10αM giving the number of events triggered by a mainshock of magnitude M and

the relative abundance ∼ 10−bM of such mainshocks given by the Gutenberg-Richter

(GR) law: the contribution of earthquakes of magnitude M to the overall seismic rate

is thus ∼ 10−(b−α)M , which is dominated by small M ’s for α < b Helmstetter [2003]

or equally contributed by each magnitude class for α = b Felzer et al. [2002]; Helm-

stetter et al. [2005a]. Therefore, one needs to take into account small events that are
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not observed in order to calibrate correctly models of seismicity and obtain reliable an-

swers to our questions stated above. This is an essential bottleneck for the development

of earthquake forecasts based on such models.

The purpose of this note is to present a general theoretical treatment of the impact

of unobserved seismicity within the framework of models of triggered seismicity. We

show by analyzing the branching structure of a complete cascade (cluster) triggered

by an independent background event that the unobserved seismicity has the effect of

decreasing the real branching ratio n and of increasing the number of independent

background events S into apparent quantities na and Sa. The bias persists in a catalog

of an arbitrary number of clusters (see Appendix A.2) and may be very significant.

We therefore claim that previous work should be reanalyzed from the new perspective

of our approach. This leads also to important consequences for the methods presently

used to forecast future seismicity based only on incomplete catalogs.

The closely related study by Sornette and Werner [2005a] also considered the ef-

fects of undetected seismicity in models of triggered seismicity. They found that a

magnitude cut-offm0 below which earthquakes do not trigger other events is necessary

to make these models convergent and well-defined. If each magnitude unit of quakes

collectively contributes a comparable amount of triggered events (of any magnitude)

to the overall budget, then a lower cut-off m0 must exist to ensure finite seismicity.

Sornette and Werner [2005a] showed that this cut-off has observable consequences

and can thus be estimated from parameters estimated from fits to the statistics of after-

shock sequences and from Båth’s law. They arrived at four different estimates of m0

that we employ below to quantify the effects of undetected seismicity on the measured

fraction of triggered events in a seismic catalog. Sornette and Werner [2005a] also dis-

cussed possible scenarios for this break in self-similarity. In this article, we continue

to explore the effects of undetected earthquakes on the observed seismicity.
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3.3 The ETAS Model and the Smallest Triggering Earthquake

3.3.1 Definition of the ETAS Model

To make this discussion precise, let us consider the epidemic-type aftershock sequence

(ETAS) model, in which any earthquake may trigger other earthquakes, which in turn

may trigger more, and so on. Introduced in slightly different forms by Kagan and

Knopoff [1981] and Ogata [1988], the model describes statistically the spatio-temporal

clustering of seismicity. We choose the ETAS model because of its increasing popular-

ity for the statistical description of earthquake interaction [Kagan and Knopoff , 1981;

Ogata, 1988; Console et al., 2003b; Zhuang et al., 2004], its establishment as a pow-

erful null hypothesis for forecasting [Helmstetter and Sornette, 2003d; Schorlemmer

et al., 2007; Helmstetter et al., 2006], its simplicity, and its explanatory power of fea-

tures in catalogs including apparent Gutenberg-Richter b-value variations and Omori

law exponent variations [Helmstetter and Sornette, 2002], foreshocks [Helmstetter and

Sornette, 2003c], and apparent aftershock diffusion [Helmstetter et al., 2005b].

The triggering process may be caused by various mechanisms that either com-

pete or combine, such as pore-pressure changes due to pore-fluid flows coupled with

stress variations, slow redistribution of stress by aseismic creep, rate-and-state depen-

dent friction within faults, coupling between the viscoelastic lower crust and the brittle

upper crust, stress-assisted micro-crack corrosion, and more. The ETAS formulation

amounts to a two-scale description: these above physical processes controlling earth-

quake interactions enter in the determination of effective triggering laws in a first step

and the overall seismicity is then seen to result from the cascade of triggering of events

triggering other events triggering other events and so on [Helmstetter and Sornette,

2002].

The ETAS model consists of three laws about the nature of seismicity viewed as
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a marked point-process. We restrict this study to the temporal domain only, summing

over the whole spatial domain of interest. First, the magnitude of any earthquake,

regardless of time, location, or magnitude of the mother shock, is drawn randomly

from the exponential Gutenberg-Richter (GR) law. Its normalized probability density

function (pdf) is expressed as

P (m) =
b ln(10)10−bm

10−bm0 − 10−bmmax
, m0 ≤ m ≤ mmax, (3.1)

where the exponent b is typically close to one, and the cut-offs m0 and mmax serve to

normalize the pdf. The upper cut-offmmax is introduced to avoid unphysical, infinitely

large earthquakes. Its value was estimated to be in the range 8 − 9.5 [Kagan, 1999].

As the impact of a finite mmax is quite weak in the calculations below, replacing the

abrupt cut-off mmax by a smooth taper would introduce negligible corrections to our

results.

Second, the model assumes that direct aftershocks are distributed in time according

to the modified “direct” Omori law (see Utsu et al. [1995] and references therein).

Assuming θ > 0, the normalized pdf of the Omori law can be written as

Ψ(t) =
θcθ

(t+ c)1+θ
. (3.2)

Third, the number of direct aftershocks of an event of magnitude m is assumed to

follow the productivity law:

ρ(m) = k 10α(m−m0), m0 ≤ m ≤ mmax. (3.3)

Note that the productivity law (3.3) is zero below the cut-off m0, i.e. earthquakes

smaller than m0 do not trigger other earthquakes, as is typically assumed in studies us-

ing the ETAS model. The existence of the small magnitude cut-off m0 is necessary to

ensure the convergence of these types of models of triggered seismicity (in the statis-

tical physics of phase transitions and in particle physics, this is called an “ultra-violet”
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cut-off which is often necessary to make the theory convergent). In a closely related

paper, Sornette and Werner [2005a] showed that the existence of the cut-offm0 has ob-

servable consequences which constrain its physical value. They also discuss possible

scenarios for this break in self-similarity, such as a transition from fracture to friction

dominated earthquakes [Richardson and Jordan, 2002] or a minimum earthquake size

as predicted by rate-and-state friction [Dieterich, 1992; Ben-Zion, 2003].

The key parameter of the ETAS model is defined as the number n of direct af-

tershocks per earthquake, averaged over all magnitudes. Here, we must distinguish

between the two cases α = b and α 6= b:

n ≡
mmax∫
m0

P (m)ρ(m)dm

=
kb

b− α

(
1− 10−(b−α)(mmax−m0)

1− 10−b(mmax−m0)

)
, (3.4)

for the general case α 6= b. The special case α = b gives

n =
kb ln(10)(mmax −m0)

1− 10−b(mmax−m0)
(3.5)

Three regimes can be distinguished based on the value of n. The case n < 1

corresponds to the subcritical, stationary regime, where aftershock sequences die out

with probability one. The case n > 1 describes unbounded, exponentially growing

seismicity [Helmstetter and Sornette, 2002]. In addition, the case b < α leads to

explosive seismicity with finite time singularities [Sornette and Helmstetter, 2002].

The critical case n = 1 separates the two regimes n < 1 and n > 1. Helmstetter

and Sornette [2003b] showed that the branching ratio n is also equal to the fraction

of triggered events in a seismic catalog. We consider the case n < 1 which describes

stationary seismicity. The branching ratio n measures the distance to the critical state

of the crust (n = 1) which may have important implications for the self-organization

of the crust.
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The fact that we use the same value for the productivity cut-off and the Gutenberg-

Richter (GR) cut-off is not a restriction as long as the real cut-off for the Gutenberg-

Richter law is smaller than or equal to the cut-off for the productivity law. In that case,

truncating the GR law at the productivity cut-off just means that all smaller earth-

quakes, which do not trigger any events, do not participate in the cascade of triggered

events. This should not be confused with the standard incorrect procedure in many

previous studies of triggered seismicity of simply replacing the GR and productivity

cut-off m0 with the detection threshold md in equations (3.1) and (3.3) (see, for ex-

ample, [Ogata, 1988; Kagan, 1991; Ogata, 1998; Console et al., 2003b; Ogata et al.,

2003; Zhuang et al., 2004]). The assumption that md = m0 may lead to a bias in

the estimated parameters. Figure 1 of Helmstetter et al. [2005a] shows that events of

magnitude 2 trigger their own aftershock sequences. We thus expect m0 to be smaller

than md.

Without loss of generality, we consider one independent branch (cluster or cascade

of aftershocks set off by a background event) of the ETAS model. We generalize to a

seismic catalog of an arbitrary number of clusters in Appendix A.2. Let an independent

background event of magnitude M1 occur at some origin of time. The mainshock will

trigger direct aftershocks according to the productivity law (3.3). Each of the direct

aftershocks will trigger their own aftershocks, which in turn produce their own, and so

on. Averaged over all magnitudes, an aftershock produces n direct offspring according

to (3.4). Thus, integrating over time, we can write the average of the total number

Ntotal of direct and indirect aftershocks of the initial mainshock as an infinite sum over

terms of (3.3) multiplied by n to the power of the generation [Helmstetter and Sornette,

2003b], which can be expressed for n < 1 as:

Ntotal = ρ(M1) + ρ(M1) n+ ρ(M1) n
2 + ...

=
k 10α(M1−m0)

1− n
(3.6)
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However, since we can only detect events above the detection threshold md > m0, the

total number of observed aftershocks Nobs of the sequence is simply Ntotal multiplied

by the fraction of events above the detection threshold, given by

fobs =
10b(mmax−md) − 1

10b(mmax−m0) − 1
(3.7)

according to the GR distribution. The observed number of events in the sequence is

therefore

Nobs = Ntotal fobs

=
k 10α(M1−m0)

1− n

(
10b(mmax−md) − 1

10b(mmax−m0) − 1

)
. (3.8)

Equation (3.8) predicts the average observed number of direct and indirect aftershocks

of a mainshock of magnitude M1 > md. Sornette and Werner [2005a] showed that m0

may be estimated using fits of Nobs given by (3.8) to observed aftershock sequences

and Båth’s law. The essential parameter needed to constrain m0 is the branching ratio

n. As we demonstrate below, typical estimates of n in the literature obtained from a

catalog neglect undetected seismicity and therefore cannot be used directly to constrain

m0.

Naturally, there is no justification for assuming that md should equal m0, as is

done routinely in inversions of catalogs for the parameters of the ETAS model (see,

for example, [Ogata, 1988; Kagan, 1991; Ogata, 1998; Console et al., 2003b; Ogata

et al., 2003; Zhuang et al., 2004]). First, detection thresholds change over time as

instruments and network coverage become better, while the physical mechanisms in

the Earth presumably remain the same. No significant deviation from the Gutenberg-

Richter distribution or the productivity law has been recorded as the detection threshold

md decreased over time (see for example Figure 3 of Ouillon and Sornette [2005]).

Second, studies of earthquake occurrence at small magnitude levels below the regional

network cut-offs show that earthquakes follow the same Gutenberg-Richter law (for
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a recent study of mining-induced seismicity, see, for example, Sellers et al. [2003]),

while acoustic emission experiments have shown the relevance of the Omori law at

small scales (see, for instance Nechad et al. [2004] and references therein). Within

the assumption of self-similarity, i.e. a continuation of the GR and productivity laws

down to a cut-off, evidence thus points towards a magnitude of the smallest triggering

earthquake and a Gutenberg-Richter cut-off that lie below the detection threshold and

are thus not directly observable.

The effect of undetected seismicity below the detection threshold is fundamentally

different from the effect of earthquakes outside the space-time study window that may

contribute to the seismicity budget inside the region. The event incompleteness below

the magnitude detection threshold md cannot be treated in analogy to the time and

space detection threshold as a finite-size boundary effect problem. While events from

outside the study area have a decreasing influence on the inside in time according to

the Omori law and in space according to a spatial decay function (e.g. Gaussian or

power-law), the influence of the many events below the detection threshold inside the

study area may be very significant because each magnitude range collectively triggers

a roughly equal amount of events of any size. The magnitude detection threshold is

thus of a different nature than boundary effects and must be addressed.

3.3.2 Two Interpretations of the ETAS Model

The ETAS model may be viewed in two mathematically equivalent ways that differ

in their interpretation. In this section, we develop both views to underline that our

results apply in both cases and to stress the equivalence of these two views. The

first describes the model as a simple branching model without loops [Kagan, 1991]:

The independent background events, due to tectonic loading, may each independently

trigger direct aftershocks, each of which may in turn trigger secondary shocks, which
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in turn may trigger more. Because every triggered event, excluding of course the

non-triggered background events, has exactly one mainshock (mother), but the mother

may have many direct aftershocks (children), the model can be thought of as a simple

branching model without loops. The background events are assumed to be a stationary

Poisson process with a constant rate. The rate of the aftershocks of a background

event is a non-stationary Poisson process that is updated every time another aftershock

occurs until the cascade dies out. The intensity is thus conditioned on the specific

history of earthquakes. The expectation of the conditional intensity is an average over

an ensemble of histories. The predicted number of aftershocks of an independent

background event of magnitude M1 as in expression (3.8) is thus averaged over the

ensemble of possible realizations of the aftershock sequence, and it is also averaged

over all possible magnitudes of the aftershocks. The branching ratio n is therefore an

average not only over magnitudes but also over an ensemble of realizations of the non-

stationary Poisson process. In summary, the model consists of statistically independent

Poisson clusters of events, which are, however, dependent within one cluster.

The second view of the ETAS model does not allow a unique identification of

the mother or trigger of an earthquake. Rather, each aftershock was triggered collec-

tively by all previous earthquakes, each of which contributes a weight determined by

the magnitude-dependent productivity law ρ(m) that decays in time according to the

Omori law ψ(t) and in space according to a spatial function R(r), often chosen to be

an exponential or a power law centered on the event. The instantaneous conditional

intensity rate at some time t at location r is given by

λ(t, r) = µ+
∑
i|ti<t

ρ(mi) ψ(t− ti) R(r − ri) (3.9)

where the sum runs over all previous events i with magnitude mi at time ti at location

ri. Thus the triggering contribution of a previous event to a later event at time t is

given by its own weight (its specific entry in the sum) divided by the total seismic-
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ity rate, including the background rate. A non-zero background rate then contributes

evenly to all events and corresponds to an omnipresent loading contribution. In this

way, earthquakes are seen to be the result of all previous activity including the back-

ground rate. This corresponds to a branching model in which every earthquake links

to all subsequent earthquakes weighted according to the contribution to triggering. A

branching ratio can then be interpreted as a contribution of a past earthquake to a fu-

ture earthquake, averaged over an ensemble of realizations and all magnitudes. In

contrast to the independent background events considered due solely to tectonic load-

ing that exist in the first interpretation, all earthquakes are due to a combination of the

background loading and the effect of previous events. This second view becomes the

only possible one for nonlinear models whose triggering functions depend nonlinearly

on previous events (see e.g. the recently introduced multi-fractal earthquake trigger-

ing model [Ouillon and Sornette, 2005; Sornette and Ouillon, 2005] and references

therein).

These two views are equivalent because the linear formulation of the seismic rate

of the ETAS model together with the exponential Poisson process ensures that the

statistical properties of the resulting earthquake catalogs are the same. The linear

sum over the individual contributions and the Poisson process formulation are the key

ingredients that allow the model to be viewed as a simple branching model.

This duality of thinking about the ETAS model is reflected in the existence of two

simulation codes in the community, each inspired by one of the two views. A program

written by K. Felzer and Y. Gu (personal communication) calculates the background

events as a stationary Poisson process and then simulates each cascade independently

of the other branches as a non-stationary process. The second code by Ogata [1998],

on the other hand, calculates the overall seismicity at each point in time by summing

over all previous activity. The latter code is significantly slower because the inde-
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pendence between cascades is not used, and the entire catalog is modeled as the sum

of a stationary and a non-stationary process. Despite the different approach, both re-

sulting earthquake catalogs share the same statistical properties and are thus equally

acceptable.

While the simulation or forward problem is straight-forward when adopting the

view of the ETAS model as a branching model with one assigned trigger for any af-

tershock, the inverse problem of reconstructing the branching structure from a given

catalog can at best be probabilistic. Because aftershocks of one mother cannot be dis-

tinguished from those of another mother except by spatio-temporal distance, we have

no way of choosing which previous earthquake triggered a particular event, or whether

it is a background event. Rather, we must resort to calculating the probability of an

event at time t to be triggered by any previous event according to the contribution that

the previous event has at time t compared to the overall intensity at time t. This prob-

ability is of course equal to the weight or triggering contribution that a previous event

has on a subsequent event when adopting the collective-triggering view. However, the

interpretation remains different since the probability specifies a unique mother in a

fraction of many realizations.

Having determined from catalogs a branching structure weighted according to the

probability of triggering, one may of course choose to always pick as source of an

event the most probable contributor, be that a previous event or the background rate.

Another option is to choose randomly according to the probability distribution and

thus reconstruct one possible branching structure among the ensemble of many other

possible ones. The latter approach has been used by Zhuang et al. [2004] and labeled

stochastic reconstruction.

The key point is that equating the detection threshold with the smallest triggering

earthquake will most likely lead to a bias in the recovered parameters of a maximum
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likelihood analysis as performed by Zhuang et al. [2004] and in many other studies.

Therefore, the weights or probabilities of previous events triggering subsequent events

were calculated from biased parameters.

In the following, we show that the branching ratio and the background source

events are significantly biased when they are estimated from the apparent branching

structure observed above the detection threshold md instead of the complete tree struc-

ture down to m0. We adopt the view of the simple branching model to make the

derivations more illuminating but all results can be reinterpreted as contributions in

the collective-triggering view.

3.4 The Apparent Branching Structure of the ETAS Model

3.4.1 The Apparent Branching Ratio na

Seismic catalogs are usually considered complete above a threshold md, which varies

as a function of technology and location. For instance, md ≈ 2 for modern Southern

California catalogs (and for earthquakes not too close in time to a large mainshock

[Kagan, 2003]). The analysis of the statistics of the Omori and inverse Omori laws

for earthquakes of magnitude down to 3 [Helmstetter, 2003; Helmstetter and Sornette,

2003c] suggests that m0 is smaller than the completeness magnitude md and is thus

not directly observable. Thus, m0 is the size of the smallest triggering earthquake,

which most likely differs significantly in size from the current detection threshold md.

By considering the branching structure of the model, we derive the apparent branching

ratio and the apparent background source that are found if only the observed (detected)

part of the ETAS model is analyzed.

Since aftershock clusters are independent of each other, averages of one cluster

are equal to ensemble averages, as nothing but the inherent stochasticity of the model
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Figure 3.1: Schematic representation of the branching structure of the real ETAS

model: An independent background earthquake triggers direct aftershocks, which in

turn trigger second generation aftershocks, and so on. The structure is complete down

to the magnitude of the smallest triggering earthquake m0.

determines the properties of the clusters. One cluster consists of one independent back-

ground event (source) and its direct and indirect aftershocks (see Figure 3.1). However,

if not all events of the sequence are detected, then there will appear to be less direct

(and indirect) aftershocks, i.e. the branching ratio will appear different. Furthermore,

some observed events will be triggered by mother-earthquakes below the detection

threshold, resulting in apparently independent background events (see Figure 3.2).

This view leads to the conclusion that the average number of direct aftershocks

that are observed will be less than the real branching ratio, since some of the triggered

events of an observed shock will fall below md and hence not be included in the count.

Only the fraction fobs from equation (3.7) abovemd of the total direct aftershocks ρ(m)

will be observed. Moreover, the pdf P (m|m ≥ md) of mother events conditioned on

being larger thanmd is zero form < md and equal to P (m)/fobs formmax > m ≥ md.
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Figure 3.2: Schematic representation of the branching structure of the apparent ETAS

model. The initial mainshock is circled. Only events above the detection threshold

md are observed. The apparent branching ratio does not take into account unobserved

triggered events (dashed lines). An observed event triggered by a mother below md

appears as an untriggered background source event (circled).

We can thus define the apparent branching ratio as

na ≡
mmax∫
m0

P (m|m ≥ md) ρ(m) fobs dm

=

mmax∫
md

P (m) ρ(m) dm (3.10)

=
k b

b− α

(
10−(b−α)(md−m0) − 10−(b−α)(mmax−m0)

1− 10−b(mmax−m0)

)
for the case α 6= b. The special case α = b gives

na =
kb ln(10)(mmax −md)

1− 10−b(mmax−m0)
. (3.11)

Using equation (3.4) and eliminating k, we have na in terms of n:

na = n

(
10(b−α)(mmax−md) − 1

10(b−α)(mmax−m0) − 1

)
, (3.12)
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when α 6= b, and

na = n

(
mmax −md

mmax −m0

)
, (3.13)

when α = b.

According to expression (3.12), na ≤ n, where the equality holds for md equal to

m0. In principle, equation (3.12) also holds for n > 1, but we restrict this study to the

regime n < 1 for mathematical convenience and because this gives rise to statistically

stationary seismic sequences. Figure 3.3 shows na as a function of n for a range of

values ofm0 for the case α = b. It demonstrates that the apparent (measurable) fraction

of aftershocks may significantly underestimate the true fraction of aftershocks even for

m0 not very small. For example, m0 = −5 roughly translates a real branching ratio of

n = 0.9 into an apparent branching ratio na = 0.3. Decreasing α below b places more

importance on the triggering from small earthquakes and therefore strongly amplifies

this effect.

In Figure 3.4, we plot the ratio na/n as a function of the unknownm0. As expected,

when m0 = md, the ratio is one because there is no unobserved seismicity. As m0

goes to minus infinity, na approaches zero since almost all seismicity occurs below the

threshold. We see clearly that unobserved seismicity results in a drastic underestimate

of the fraction of aftershocks.

Given an estimate of the magnitude of the smallest triggering earthquake m0 (see

Sornette and Werner [2005a] and references therein), one can calculate the true branch-

ing ratio from the apparent branching ratio. In fact, Sornette and Werner [2005a] ob-

tained four estimates ofm0 as a function of n by comparing the ETAS model prediction

of the number of observed aftershocks (3.8) from fits to observed aftershock sequences

and from the empirical Båth’s law. Their equations (10), (13), (16), and (18) are the

estimates of m0 as a function of n and a number of known constants specific to the

fits to observed aftershock sequences. We can use these relations of m0 as a function
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Figure 3.3: The apparent fraction of aftershocks (apparent branching ratio) na varies

linearly with the real fraction of aftershocks (real branching ratio) n with a slope fixed

by the smallest triggering earthquake m0. As m0 decreases, the apparent fraction

of aftershocks significantly underestimates the real fraction. As examples, we chose

m0 = md = 3 (solid), i.e. na = n and no events are missed; m0 = 0 (dashed);

m0 = −5 (dotted); and m0 = −10 (dash-dotted). We further assumed parameters

md = 3, mmax = 8, b = α = 1. A small value of α amplifies this effect (see Figure

3.4).
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Figure 3.4: The ratio of the apparent fraction of aftershocks (apparent branching ratio)

na over the real fraction of aftershocks (real branching ratio) n varies as a function

of the smallest triggering earthquake m0. For m0 = md, na = n and all events

are detected above the threshold. For a small value of m0, the ratio becomes small,

indicating that na significantly underestimates n. Decreasing α amplifies this effect.

We used parameters md = 3 (vertical reference line), mmax = 8, b = 1. We varied

α = 0.5 (dash-dotted), α = 0.8 (dashed), α = 1.0 (solid).
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of n to eliminate m0 from equation (3.12) to obtain direct estimates of n as a function

of the measurable na. For simplicity, we restrict the use of their findings to the case

α = b. The estimate resulting from the fits performed by Helmstetter et al. [2005a]

yielded

m0 = mmax −
(

n

1− n

)
θcθ

Kfit

1− 10−b(mmax−md)

b ln(10)
(3.14)

with the values mmax = 8.5, md = 3, θ = 0.1, c = 0.001, b = 1 and Kfit = 0.008.

The study by Felzer et al. [2002] provided another estimate

m0 = mmax −
(

n

1− n

)
(1− 10−b(mmax−md))

b ln(10)

×θT c
θT

AT

10b(M1−md) , (3.15)

where mmax = 8.5, md = 3, θT = 0.08, AT = 0.116 days−θT , b = α = 1, c = 0.014

and M1 = 6.04. Using the declustering performed by Reasenberg and Jones [1989],

Sornette and Werner [2005a] obtained

m0 = mmax −
(

n

1− n

)
θcθ10−a

b ln(10)
(1− 10−b(mmax−md)) (3.16)

where mmax = 8.5, md = 3, θ = 0.08, a = −1.67, c = 0.05 and b = 1. Finally, using

Båth’s law, Sornette and Werner [2005a] found

m0 = mmax −
(

n

1− n

)
(1− 10−b(mmax−md))

b ln(10)
10b(M1−ma) (3.17)

where M1 −ma = 1.2 according to the the law, b = 1, mmax = 8.5, and md = 3.

Substituting these four estimates of m0 from equations (3.14), (3.15), (3.16), and

(3.17) into equation (3.12) for na provides four estimates of na versus n all in terms of

known constants. These four estimates of n as a function of na can be used to find the

correct fraction of aftershocks from the measurable apparent fraction of aftershocks.

Figure 3.5 shows these four estimates with the above constants.

Figure 3.5 can be used to find the real fraction of aftershocks from the measured

apparent fraction by assuming one of the four estimates of m0 as a function of n.
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Figure 3.5: The fraction of aftershocks (branching ratio) n can be estimated from

the apparent fraction of aftershocks (apparent branching ratio) na by using four es-

timates of the smallest triggering earthquake m0 as a function of n as determined in

Sornette and Werner [2005a] (see text). The estimates of m0 as a function of n were

obtained from comparisons of the ETAS model prediction of the number of observed

aftershocks and fits to observed aftershock sequences performed by Helmstetter et al.

[2005a] (solid), Felzer et al. [2002] (dash-dotted),Reasenberg and Jones [1989] (dot-

ted) and from Båth’s law (dashed). The additional diagonal solid line na = n corre-

sponds to m0 = md (no undetected events). Along any of the four lines, m0 varies

from minus infinity to mmax. Given that we can rule out m0 ≥ md, we can restrict the

physical range to the left side of the diagonal na = n.
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For example, Helmstetter et al. [2005a] find that 55 percent of all earthquakes are

aftershocks above md = 3. Using their values to estimate m0 as a function of n,

we can determine that the real fraction of aftershocks is closer to 75 percent. Thus

the size of this effect is significant. Furthermore, having determined a point on the

line estimating n from na for all values of m0 fixes the slope of n(na) and therefore

m0. Using their values, we find m0 ' 1.2. Similar estimates can be made using the

apparent fraction of aftershock values found by Felzer et al. [2002] and Reasenberg

and Jones [1989]. The uncertainty of the parameters estimated in these studies affects

the estimates of m0. Sornette and Werner [2005a] analyzed the error propagation and

found that the estimates of m0 are most likely order of magnitude calculations.

Assuming that current maximum likelihood estimation methods of the ETAS model

parameters, which assume m0 = md, determine a branching ratio that corresponds to

the present apparent branching ratio, we can similarly correct these values to find the

true fraction of aftershocks using Figure 3.5. For example, Zhuang et al. [2004] find

a “criticality parameter” of about 45 percent, which we take as a proxy for na. Figure

3.5 shows that the true branching ratio then lies between 0.45 and 0.80, depending on

which estimate (among the four models (3.14), (3.15), (3.16), and (3.17)) of m0 as

a function of n is chosen. These calculations suggest that previous estimates of the

fraction of aftershocks obtained by various declustering methods significantly under-

estimated its value.

3.4.2 Determination of Apparent Background Events Sa of Uncorrelated Seis-

micity

In order to derive the number of shocks within one cascade that are not triggered by

a mother above the threshold and thus appear as independent background events, we

need to distinguish between the case where the initial (main) shock of magnitude M1
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is observable (i.e. M1 ≥ md) and the case where it is undetected (i.e. M1 < md).

If M1 ≥ md, then the initial background event produces ρ(M1)fobs observed direct

aftershocks. On average, these will in turn collectively produce ρ(M1) fobs na ob-

served second generation aftershocks. We specifically do not consider events abovemd

triggered from below md, which we deal with below in the definition of the apparent

background sources. By continuing this “above-water” or “above-sea-level” cascade

for all generations of aftershocks, we can calculate the number of triggered events that

are in direct lineage above the threshold back to the mainshock as the infinite sum of

terms of ρ(M1) fobs multiplied by the apparent branching ratio na to the power of the

generation. If, on the other hand, the initial background event is below md, then no

such direct “above-water” cascade will be seen. Any observed shock will be triggered

by an event below the water. Thus, for the two cases, the “above-water” sequence is

expressed as:

Nabove =


ρ(M1) fobs

1−na
= Nobs

1−n
1−na

, M1 ≥ md

0 , M1 < md

(3.18)

Furthermore, since in the ETAS model, a small earthquake may trigger large earth-

quakes, an event below md may produce an observed event above md. An inversion

method that reconstructs the entire branching structure of the model from an earth-

quake catalog will identify these shocks as background events. But since in reality

these events were triggered by earthquakes below the detection threshold, we will re-

fer to them as apparent background events. These events can of course trigger their

own cascades. We thus define the apparent background sources Sa as the number of

observed events above md that are apparently not triggered, i.e. have “mothers” below

md. Again, we distinguish between the cases where the background event magnitude

is M1 ≥ md and M1 < md. For the first, Sa is given by the total number of after-

shocks below the threshold multiplied by the average number r of direct aftershocks
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they trigger above the threshold. For the second case, we must also include the direct

aftershocks of the initial background event that are observed:

Sa =


ρ(M1)
1−n

(1− fobs) r , M1 ≥ md

ρ(M1)
1−n

(1− fobs) r + ρ(M1) fobs , M1 < md

(3.19)

Now, the number r of observable directly triggered shocks abovemd averaged over un-

observed mothers between m0 and md is given by the following conditional branching

ratio:

r ≡
md∫

m0

P (m|m < md) ρ(m) fobs dm (3.20)

= (n− na)

(
fobs

1− fobs

)
, (3.21)

where we have used that P (m|m < md) = P (m)/(1 − fobs) for m < md and zero

otherwise. Substituting (3.21) into the expression for the apparent source (3.19) and

re-arranging using (3.8), we obtain

Sa =


ρ(M1)
1−n

fobs (n− na) , M1 ≥ md

ρ(M1)
1−n

fobs (n− na) + ρ(M1) fobs , M1 < md

=

 Nobs(n− na) , M1 ≥ md

Nobs(n− na) + ρ(M1) fobs , M1 < md

(3.22)

Equation (3.22) shows that, for each genuine background event of magnitude M1, a

perfect inversion method would count Sa apparent background events. Figure 3.6 plots

the number of apparent background events Sa as a function of the branching ratio n

for an example aftershock cascade set off by a magnitude m = 5 initial shock. The

figure shows that for one cascade, i.e. one independent background event, hundreds of

earthquakes appear as apparent background events when m0 < md.

In Figure 3.7, we investigate the relative importance of the apparent background

events with respect to the observed number of aftershocks of one cascade. According
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Figure 3.6: The number of apparent background events Sa in an aftershock cascade

due to a single background event of magnitude M1 = 5 as a function of the frac-

tion of aftershocks (branching ratio) n for several values of the smallest triggering

earthquake. For m0 = md, no events are missed. Therefore the number of apparent

background events is zero. As m0 decreases, events below the detection threshold trig-

ger events above the threshold and hence the number of apparent background events

increases. We vary m0 = md = 3 (solid, coinciding with x-axis), m0 = 0 (dash-dot-

ted), m0 = −5 (dashed), and m0 = −10 (upper solid curve). We used parameters

md = 3, mmax = 8, b = 1, and α = 1.0. For very small m0 and n close to 1, almost

all events above the detection threshold are triggered from below and thus Sa becomes

very large (see Figure 3.7). This effect is amplified for decreasing α (not shown).
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to equation (3.22)

Sa/Nobs = n− na , (3.23)

i.e. a significant fraction n − na of events of the actually observed triggered events

are falsely identified as background events (since all events are really triggered from

a single mainshock in our example). For md = m0, the ratio is zero, since no events

trigger below the detection threshold. However, as md increases above m0 and more

and more events fall below md and become unobserved, the fraction increases until

na goes to zero and the ratio approaches n. This effect increases with decreasing α.

Small values of α generally place more importance on the cumulative triggering of

small earthquakes.

Expressions (3.11) and (3.22) show that analyzing the tree structure of triggered

seismicity only above the detection threshold leads to the introduction of an apparent

source Sa and an apparent branching ratio na. It is important to realize that both are

renormalized simultaneously by using catalogs with md > m0. An unbiased inversion

method for the parameters of this averaged, deterministic approximation of the fully

stochastic ETAS model would retrieve our analytical results (3.11) and (3.22). We

conjecture that our time- and space-integrated, magnitude-averaged and clustered ver-

sion approximates the full ETAS model (equation (3.9)) well enough so that this bias

persists for inversions of parameters of the full model. Accordingly, the value of the

background source would be overestimated and the branching ratio underestimated.

In fact, one single true sequence will appear as many different sequences, each appar-

ently set off by an apparent background event. Finally, it can be shown (see Appendix

A.1) that the sum of the “above-water” cascade and the cascades due to the apparent

background events equal the total number of observed earthquakes, demonstrating the

consistency of our decomposition.

Furthermore, we can extend the present approach to a whole catalog that consists
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Figure 3.7: The ratio of the number of apparent background events Sa over the to-

tal observed number Nobs of aftershocks of one cascade varies as n − na. Here, we

show the ratio as a function of the branching ratio n by assuming a particular value of

m0. For m0 = md (solid, coinciding with x-axis), there are no apparent background

sources. For m0 less than md, the ratio increases as more and more of the observed

events are triggered by unobserved events. As examples, we show the ratio Sa/Nobs

for m0 = 0 (upper solid line), m0 = −5 (dashed) and m0 = −10 (dash-dotted) as a

function of the branching ratio n (average number of aftershocks per earthquake also

equal to the fraction of aftershocks in a catalog) for parameters md = 3, mmax = 8,

b = 1, and α = 1.0. For very small m0, na approaches zero and the ratio Sa/Nobs

approaches its limiting value n, meaning that almost all observed earthquakes were

triggered by events below the detection threshold md. The effect of unobserved events

triggering observed quakes resulting in an apparent background source rate is further

amplified by smaller values of α (not shown).
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of many clusters, each of which is analyzed from the same point of view as above. The

calculations are presented in Appendix A.2 and consist simply of summing over all

clusters, each of which has been decomposed into a possible real observed source, its

resulting above-water cascade, the apparent sources and their cascades. We also show

the consistency of this decomposition.

We now come back to examine the assumptions made in this work. First, we as-

sumed that events could be clustered into distinct sets that are set off by a real or an

apparent source. Second, we approximated the number of aftershocks of each real

or apparent source by averaging over the magnitudes of the triggered events. Third,

we integrated over time and space so that we could concentrate on pure numbers of

events only. In other words, we have removed all stochasticity of the model. Under

these assumptions, we have shown that, in introducing a detection threshold md, one

renormalizes the ETAS model onto itself but with effective parameters Sa and na. The

functional form of the model remains the same. However, we have not proved that

the instantaneous and stochastic ETAS model as described by equation (3.9) can be

renormalized exactly onto itself with effective parameters for md > m0. For this, we

would have to check that all fractional moments (that exist) and all distributions de-

scribing the stochastic seismic rates are the same (i) in the catalogs generated by ETAS

with md > m0 and (ii) in the catalogs generated by the effective ETAS with minimum

magnitude of triggering taken equal to md and with the corresponding adequate values

of the effective parameters. Our present paper has just shown the already non-trivial

result that the first-moment (average) of seismic rates of the catalogs of (i) and (ii) are

identical for the choice of the apparent parameters (3.11,3.11) and (3.19).
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3.5 Conclusions

We have shown that unbiased estimates of the fraction of aftershocks and the number

of independent background events are simultaneously renormalized to apparent values

when the smallest triggering earthquakem0 is smaller than the detection thresholdmd.

In summary, mainshocks above the threshold will appear to have fewer aftershocks, re-

sulting in a smaller apparent branching ratio. Meanwhile, unobserved events can trig-

ger events above the threshold giving rise to apparently independent background events

that seem to increase the constant background rate to an apparent rate. Assuming that

current techniques which are used to invert for the parameters of the ETAS model (for

example, the maximum likelihood method) under the assumption md = m0 are unbi-

ased estimators of na and Sa, then the obtained values for the fraction of aftershocks

and the background source rate correspond to renormalized values because of the as-

sumption that the detection thresholdmd equals the smallest triggering earthquakem0.

We predict that n will be drastically underestimated and S strongly overestimated for

m0 much smaller than md.

63



CHAPTER 4

Effects of Undetected Seismicity: Further Implications,

Extensions and Recent Developments

4.1 Introduction

This chapter presents further developments in the study of the effects of undetected

seismicity since the previous two chapters were published in 2005. First, I discuss

the implications of the two previous chapters (for the “mean” ETAS model) on (i)

the geophysical interpretation of clustering parameters, and (ii) declustering methods.

Second, I discuss the extension of the previously obtained results from the analysis

of the first moment properties of the ETAS model to the full distribution (from the

“mean” to the stochastic ETAS model). I will pay particular attention to the condi-

tional intensity function, which completely defines a point process, under a change

of detection threshold. Third, I study the implications for parameter estimation us-

ing likelihood methods. Finally, I discuss a completely self-similar class of branching

models introduced by Vere-Jones [2005], which removes the need for the cut-off m0,

and its relation to the ETAS model.
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4.2 Implications of Undetected Seismicity from Results of the Mean

ETAS Model

In Chapters 2 and 3, we showed that for the “mean” ETAS model the observed clus-

tering parameters (the fraction of triggered events) change with the detection threshold

of a studied catalog. In the following sections, I consider further implications for the

geophysical interpretation of clustering parameters and for declustering.

4.2.1 Geophysical Interpretation of Clustering Parameters

The existence of background rates in seismicity models is often justified by “tectonic

loading”. By this, one proposes that plate tectonic motion is a driving force in the seis-

micity budget. For the ETAS model, the assumed impact on earthquake probabilities

is an additive term, constant in time though perhaps not in space, a term independent

of the triggering (although background events trigger their own aftershocks).

Say we want to test the hypothesis that the background rate increases with plate ve-

locity. We pick regions of the world which are tectonically similar, e.g. the subduction

zones of the Japan Sea and northern South America (e.g. Bird [2003]). Assume for

this thought experiment that other parameters are the same, including corner moment,

b-value and seismic coupling (e.g. Bird and Kagan [2004]). Say an estimation proce-

dure provided values of the apparent background events, SJ
a abovemJ

d in the Japan Sea

and SS
a background events above mS

d in norther South America in the same timeframe.

Assume mJ
d 6= mS

d and that both areas are characterized by a similar lower cut-off m0.

How should one compare the two estimates for the background sources?

A direct comparison can be ruled out because the numbers depend on the detection

threshold. To compare them, it would seem natural to apply the Gutenberg-Richter

law to calculate the fraction fd of SS
a above mJ

d and to compare fd · SS
a with SJ

a on a
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common basis mJ
d . But this is wrong according to the results of Chapter 3. There, it is

shown that the apparent sources actually increase in number with increasing detection

threshold, because their mothers go undetected. Instead, one would need to compare

the true background sources sJ and sS above m0. Equivalently, one could compare

the apparent background sources above a common md, say mJ
d . In that case, how to

scale SS
a ? In principle, equation (3.32) tells us how to relate the different scales. But

the variables in that equation are unknown, in particular the parameters m0, s (true

background events), k (productivity constant) and of course the magnitudes of the

unobserved events. One can attempt to replace unknowns by averages or estimates, but

this immediately introduces further complications. Therefore, it is utterly non-trivial

to compare clustering parameters from different magnitude thresholds.

Rather, clustering parameters are meaningful only in relation to the detection thresh-

old above which they were estimated. The non-uniqueness of the clustering parameters

in terms of the “true” parameters and the detection threshold seems irresolvable.

Furthermore, while differences between background rates at a fixed md indeed in-

dicate real differences of the background rate, it remains difficult to interpret individual

values in an absolute sense. An example is provided by Hainzl and Ogata [2005]. The

region of Vogtland/NW Bohemia in central Europe is known for episodic swarm-like

seismicity, which were linked with local measurements of increased isotopic content

of CO2, presumed due to degassing of an active magma body in the upper mantle. The

hypothesis was thus formed that the swarm activity is triggered by fluid overpressure.

Hainzl and Ogata [2005] assume that the background rate in the ETAS model ade-

quately captures events triggered by the fluid signal, but that aftershocks are solely due

to “stress-triggering” (by which they mean previous earthquakes). They concluded

that “external forcing, identified with pore pressure changes due to fluid intrusion, is

found to trigger only a few percent of the total activity.” In light of our discussion
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above, they need to qualify the statement by attaching an observer’s scale, which in

their case was md ∼ 0.2. More importantly for their conclusion (and always following

their logic), the most precise statement that can be made is that at most a few percent

were triggered by external forcing. The formulation of the model does not allow for

an absolute value. A similar problem emerges when attempting to decluster catalogs

using the ETAS model.

4.2.2 Declustering

Guided by the idea that main shocks are driven by different mechanisms than trig-

gered events, there have been many attempts to single out main shocks in catalogs and

to study their statistics in isolation. The elimination of aftershocks from catalogs is

also called declustering, as triggered events are assumed to cluster around independent

events. However, there is no accepted physical mechanism separating aftershocks from

main shocks that would lead to a unique method of discrimination. In fact, declustering

is often motivated by attempts to constrain such a mechanism by the statistical prop-

erties of main shocks, e.g. their frequency-magnitude relationship [Knopoff , 2000].

Therefore, declustering methods have been devised that identify aftershocks based on

belonging to a set of earthquakes defined by a space-time window around presumed

mainshocks [Utsu, 1969; Gardner and Knopoff , 1974; Felzer et al., 2004; Helmstet-

ter, 2003] or by a link-based method Reasenberg [1985]; Frohlich and Davis [1990];

Davis and Frohlich [1991]; Hainzl et al. [2006].

Declustering and modeling should be equivalent, or at least consistent, since the

declustering is an expression of some belief about seismicity relations that are also

captured by the model. To use different models for predicting and declustering, for

instance, only makes sense if the two are consistent with each other. This approach

was followed explicitly by Kagan [1991] and Zhuang and co-authors [Zhuang et al.,
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2002, 2004] because an available likelihood model could be fit to the catalog to esti-

mate the probability of independence of a given quake. Zhuang and co-authors coined

the term stochastic declustering to underline that only probabilities can be estimated,

not the deterministic branching structure. A probability of being triggered by previous

events and of belonging to the background is estimated. One may then roll a die to

randomly choose mothers and daughters and create many replicas of declustered cat-

alogs. Stochastic declustering in particular is often considered state-of-the-art declus-

tering because the equivalence of the model of seismicity and the declustering go hand

in hand. Veen and Schoenberg [2007] recently provided an expectation-maximization

(EM) parameter estimation procedure which iterates between the branching structure

and parameters until convergence, thereby also estimating a branching structure.

The influence of boundaries was studied to some extent by Kagan [1991], though

he concentrates on space-time boundaries. The influence of the third boundary, in the

magnitude dimension, was investigated briefly with respect to changes in the num-

ber of independent events, the constant in the productivity law, the Gutenberg-Richter

exponent and the information content. His results showed that some values differed

drastically, while others were more stable. He did not interpret his results in terms of

the consequences for declustering or the physical interpretation of the triggering pa-

rameters. The nature of the magnitude boundary condition is fundamentally different

from the space-time boundaries, because being sufficiently away from the boundary

does not guarantee that results are free of its influence. This can be seen by measur-

ing the influence of events outside the boundaries on seismicity inside the boundaries.

Although the spatio-temporal trigger function decays slowly (power law in time and

often power law in space), their influence relative to closer events is often small. How-

ever, if many events just below the magnitude threshold occurred close in space and

time, their collective influence can be significant (I will make these statements precise

in section 4.3.3, where I quantitatively measure the contribution from small earth-
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quakes). Furthermore, most evidence suggests that the magnitudes of triggered events

are independent of the magnitude of the triggering event (REFS and as assumed in the

ETAS model), so that while the spatio-temporal location is clustered, the magnitude

“location” is uncorrelated or weakly correlated. It should be stated, however, that the

development of models that test for this independence of the magnitude distribution is

very important and was pursued, for example, by Schoenberg [2003].

If the influence of small earthquakes cannot be ignored, how can it be dealt with?

There are in principal three options. The first option would attempt to correct for the

bias due to undetected seismicity, for instance by estimating their average effect in the

likelihood formulation (this simple solution fails, see section 4.4.2).The second option

is to use different models for forecasting or modeling and for declustering. Consider

the suggestion to use a magnitude branching model (from large to small) (e.g. Ka-

gan [1973]) for declustering. This method would be stable with respect to a change

in detection threshold. However, because it is acausal in the time domain, it is awk-

ward for prediction in that it involves many integrals. Note that the large-to-small

branching allows the declustering to be robust, in contrast to the idea that small earth-

quakes can trigger larger earthquakes. This highlights the general property that makes

declustering problematic. In any model in which undetected earthquakes contribute

significantly to the seismicity budget of observable events, in particular when mag-

nitudes are unpredictable, declustering is intrinsically tied to the detection threshold.

Therefore, it would be interesting to study whether it is possible to formulate a time-

and magnitude-branching model with (near-) identical properties, one for prediction

and one for declustering.

The third option is to abandon the idea of “unbiased” declustering altogether and

to understand the “background” rate as a quantity due to a combination of model mis-

specification and potentially physics. Indeed, Brémaud and Massoulié [2001] proved
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the existence of a Hawkes process without immigrants under a condition of heavy-

tailedness of the trigger function. If this model were fit above a detection threshold, the

introduction of a background rate may approximate the influence of undetected events

to first order (in section 4.4.2 I will test whether a change in the constant background

rate suffices to fit the ETAS model to a different detection threshold and show that it

fails). This model removes the suggestion that some earthquakes are different from the

others, being triggered by “tectonic loading”. Rather, it treats all quakes on the same

footing. Clustering appears on all temporal scales, so that the background rate of the

ETAS model may solely be a place holder for the model misfit and the triggering due

to undetected events.

4.3 Analysis of the Stochastic ETAS Model

Since the publication of the previous two chapters, Saichev and Sornette [2006a] an-

alyzed the statistics of the fully stochastic ETAS model, extending the study to the

full distribution of the statistics, rather than looking at just the mean. After reviewing

their results, I will examine the conditional intensity of the ETAS model with respect

to changes of the detection threshold. It is the natural object to study because it com-

pletely determines the finite-dimensional distributions of the point process.

4.3.1 Summary of Results by Saichev and Sornette [2006a]

Saichev and Sornette [2006a] applied the formalism of probability generating func-

tions to investigate how the statistical properties of observable earthquakes differ from

the statistics of all events. They show that, to a good approximation, the statistical dis-

tribution of seismic rates of events with magnitudes above md generated by an ETAS

model with branching ratio n is the same as that of events generated by another ETAS
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model with effective branching ratio n(md). For these time-independent statistics,

Saichev and Sornette [2006a] thus recover the results of Sornette and Werner [2005b]

in the previous chapter, based solely on the average seismic rate (first moment of the

statistics). They further show that the correspondence is not exact, as there are small

corrections that can be mapped onto a different branching model. Importantly, they

show that the approximate correspondence holds only for the number statistics, but

not the (spatio-) temporal properties. Loosely speaking, because the magnitude of an

earthquakes is randomly chosen, observed and unobserved events have the same dis-

tribution in time and space. Therefore the branching parameter n controls the time

and spatial decay of the aftershock rate after a mainshock. For instance, the time t?

at which the global Omori law crosses over to the local Omori law [Helmstetter and

Sornette, 2002] is determined by the true branching ratio. The effect of changing the

local magnitude cut-off from m0 to md is only to rescale the the seismicity rate by

the fraction of observed events, without changing the decay of aftershocks with time.

The next section provides an intuitive explanation of the latter result in terms of the

conditional intensity function.

4.3.2 Analysis of the Conditional Intensity under a Change of Detection Thresh-

old

The conditional intensity uniquely defines all distributions of a point process [Daley

and Vere-Jones, 2003]. It is therefore the natural object to study under a change in

detection threshold. Recall that the conditional intensity of the temporal ETAS model

is defined by:

λ0(t,m|H0) = pm(m) ·

µ+
∑
i|ti<t

k ea(mi−m0)

(t− ti + c)p

 (4.1)
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where pm(m) = β exp(−β(m−m0)) and H0 is the history of event times and marks

down to m0. The total rate above some minimum threshold m0 is found by integrating

over m:

λ0(t|H0) = µ+
∑
i|ti<t

k ea(mi−m0)

(t− ti + c)p
(4.2)

while the rate above md is given by:

λd(t|H0) =

∫ ∞

md

pm(m)dm ·

µ+
∑
i|ti<t

k ea(mi−m0)

(t− ti + c)p


= fd

µ+
∑

j|mj≥md

k ea(mj−m0)

(t− tj + c)p
+

∑
l|ml<md

k ea(ml−m0)

(t− tl + c)p


= µe−β(md−m0) +

∑
j|mj≥md

k ea(mj−m0)−β(md−m0)

(t− tj + c)p

+
∑

l|ml<md

k ea(ml−m0)−β(md−m0)

(t− tl + c)p
(4.3)

where the undetected events l with ml < md were separated from the detected events

j with mj ≥ md and the fraction of observed events is fd = exp(−β(md−m0)). Now

consider the conditional intensity above md given only the history above md:

λ′d(t|Hd) = µ′ +
∑

j|mj≥md

k′ ea′(mj−md)

(t− tj + c′)p′
(4.4)

Is there a way of mapping λd(t|H0) → λ′d(t|Hd) by redefining the parameters only

while preserving the functional dependencies? One may redefine the parameters k′ =

k exp[−(β − a)(md −m0)], a′ = a, c′ = c, p′ = p. But this forces the mapping:

µ′ = µe−β(md−m0) +
∑

l|ml<md

k ea(ml−m0)−β(md−m0)

(t− tl + c)p
(4.5)

which implies that the background rate is no longer a time-independent quantity. This

failure to map the constant background onto a different, but still constant background

is important because it means that one cannot reapply the ETAS model at different
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thresholds by a simple redefinition of the parameters. In this sense, the model cannot be

renormalized onto itself. It is not a fixed-point of the renormalization process operating

via magnitude coarse-graining. The functional form of the model must change under a

change in the detection threshold. In other words, if earthquakes occur according to an

ETAS model above some cut-off m0, then earthquakes above md cannot be described

by the ETAS model in a mathematically exact way. In practice, of course, the ETAS

model may provide an excellent fit (as we will see in section 4.4.2).

Deleting unobserved events together with the fact that events have independent

and identically distributed magnitudes is equivalent to randomly deleting (“thinning”)

events from the process. Since randomly deleting points destroys correlations, the

limiting process of a highly thinned process is the Poisson process (see Daley and

Vere-Jones [2003], for a rigorous derivation). This argument illustrates that as md →

∞, the observed process is Poissonian, so that the conditional intensity is reduced to

a constant. Fitting an ETAS model to highly thinned earthquake data would result

in a non-zero background rate together with vanishing triggering. This is consistent

with observations that the largest earthquakes (worldwide and regional) are less and

less clustered as the threshold is raised (although Kagan and Jackson [1991a] found

some evidence of long-term clustering of large earthquakes). One may thus guess

that undetected earthquakes contribute a constant to the observable seismicity budget,

i.e. as m0 → md, µ → fd · µ + A. The next section will calculate the contribution

of undetected events to observed seismicity by calculating (i) the time-independent

average, and (ii) the exact contributions to observed events in a simulated catalog.

4.3.3 Contribution of Undetected Events to the Observable Seismicity Budget

The third term in (4.3) quantifies the influence of unobserved events to observed seis-

micity. In this section, I will first calculate the average contribution, demonstrating that
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for reasonable parameter values, their influence is significant. Secondly, I will simulate

a catalog and calculate their contribution to the occurrence of observed events exactly.

The influence of undetected events on the observable seismicity budget can be esti-

mated by the average observed number of direct aftershocks from undetected mothers

divided by the total observed seismicity. Denote the average number of direct after-

shocks from undetected mothers by n< and the productivity law by ρ(m). Assume

for simplicity that the Gutenberg-Richter law p(m) is truncated at an upper magnitude

mmax as in Chapters 2 and 3 (see equation 3.1). Then the branching ratio of undetected

mothers is given by, assuming α < b:

n< ≡
∫ md

m0

p(m|m < md)ρ(m)dm = n

[
1− 10−(b−α)(md−m0)

(1− 10−(b−α)(mmax−m0))(1− fobs)

]
(4.6)

where we have used the fact that P (m|m < md) = P (m)/(1− fobs) for m < md and

zero otherwise. Also, n is the branching ratio of all mothers and fobs is the fraction of

observed events above md, given by

fobs =
10−b(md−m0) − 10−b(mmax−m0)

1− 10−b(mmax−m0)
(4.7)

The expressions (4.6) and (4.7) reduce to simpler, more familiar forms when mmax →

∞. When α = b, n< reduces to:

n< =
n

1− fobs

[
md −m0

mmax −m0

]
(4.8)

The total average seismicity per background event in a catalog is given by 1/(1 −

n). The influence of undetected earthquakes can be measured by the ratio 〈r〉 of the

observed direct and indirect aftershocks from undetected mothers fd ·n</(1−n) over

all observed seismicity fd/(1− n) per mother, given by:

〈r〉 =
n< · fobs

1− n
/

(
fobs

1− n

)
= n< (4.9)

Expression (4.9) shows that the fraction of observed events due to undetected mothers

is directly equal to the average number of direct aftershocks of undetected mothers
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given by (4.6). n< is smaller than n because the magnitudes of the undetected mothers

are smaller than all magnitudes. Figure 4.1 shows the values of n</n as a function of

α, for maximum magnitude mmax = 9, md = 3 and various choices of m0. I assumed

b = 1 and used expressions (4.6) for α < b and (4.8) for α = b. The influence of small

earthquakes becomes larger for small α because the rareness of large earthquakes is

not compensated by more productive triggering. Small earthquakes also become more

influential as m0 decreases, simply because there are more potential mothers. For

instance, for α = 0.8 andm0 = 0, undetected seismicity on average accounts for about

70% of all observed triggered events. If n is close to one, then the 70% also describe

the fraction of the total observed seismicity due to undetected events. The abundant

triggering we observe (0.5 < n < 1, although calculated from biased parameters),

together with the commonly found maximum likelihood estimates of 0.5 < α < 1,

implies that small earthquakes trigger a substantial part of the observed seismicity.

Even if α = 1, as suggested by Felzer et al. [2003] and Helmstetter et al. [2005a],

earthquakes in the range 0 < m < 3 still trigger more than 30% of observed events

above md = 3. Therefore, their contribution to the conditional intensity in the third

term of expression (4.3) is highly significant.

Thus far, we only analyzed the average contribution n< of undetected events to

the observable seismicity budget. To better understand the temporal evolution of this

contribution to the observable rate, I analyzed the fraction r(ti) of the observed con-

ditional intensity due to undetected events at the observed event times ti in a sim-

ulated catalog. I generated a catalog in the interval [0, 1000] days with parameters

{k = 0.475, α = 0.5, c = 0.001, p = 1.2, b = 1} above m0 = 0, shown in Figure

4.2. The simulated catalog contained 6402 events, while 64 events were larger than

md = 2. The parameters imply that the branching ratio is n = 0.95 and that n< = 0.86

(neglecting the upper cut-off mmax). I calculated the conditional intensity λ(ti|H0
t ) at

each observed event ti such that mi ≥ md. Then I calculated the rate λ<(ti|H<
t ) due
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Figure 4.1: The fraction of triggered events due to undetected mothers divided by

the total fraction of triggered events as a function of the parameter α and for several

choices of m0. I assumed that b = 1, the maximum magnitude mmax = 9 and the

detection thresholdmd = 3. Filled markers calculated from expression (4.6) for α < b,

open markers from (4.8) for α = b.

to unobserved events using only undetected events ml < md. The fraction r(ti) of the

total intensity due to unobserved events at each observed event measures the influence

of undetected mothers in triggering observed events. Figure 4.3 shows this ratio r(ti).

The average 〈r(ti)〉ti = 0.76, not too far from the theoretical n< = 0.86 given that only

64 events were sampled. However, the ratio r(ti) clearly fluctuates strongly between

20% and 100% from event to event.

This section demonstrated clearly that small earthquakes contribute significantly to

the observed seismicity budget. A natural next question is to investigate their impact

on model fits to observed seismicity. Can their contribution be well-approximated by

the correct parameters, or by effective parameters, or is the ensuing fit simply unac-
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Figure 4.2: Simulated catalog with parameters k = 0.475, α = 0.5, c = 0.001,

p = 1.2, b = 1 in time interval [0, 1000] days.

4.3.4 Residual Analysis of Observed Seismicity

Having demonstrated that the observed seismicity budget seems largely controlled by

undetected earthquakes, one may wonder whether their contribution will show up as

unexpected clustering, measured, for instance, by strong misfits of the model to ob-

served events. The answer to this question is important because ETAS is increasingly

being used as a null hypothesis and deviations are sometimes interpreted as signifi-

cant indicators of activation or quiescence that may be used for prediction (a hypoth-

esis defended in particular by Y. Ogata [Ogata, 1988, 1989, 1992, 2001, 2004, 2005,

2006a,b]. Do undetected earthquakes add a general time-independent contribution

to the observed seismicity, quantified by the above average n<, or are their effects

strongly time-dependent?

In the following, I will begin to answer this question concerning the effect of un-
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Figure 4.3: Fraction of total conditional intensity λ(ti|H0
t ) at observed events

mj ≥ md = 2 due to unobserved mothers 0 ≤ m < md from the simulated cata-

log in Figure 4.2.

detected seismicity on model fits. In the first part, I will fit the model to observed

seismicity above md using the original parameters used to simulate the catalog above

m0 and using parameters that were scaled using the Gutenberg-Richter relationship. I

will show that these simple guesses fail to fit the observed catalog. This exercise proves

that, if even one or two magnitude units of earthquakes exist below routinely detected

thresholds, then all parameters that are estimated from the data are purely effective

parameters that bear little or no relation to the “true” parameters and are intrinsically

tied to the detection threshold. In the second part, I will test whether estimated param-

eters provide even acceptable fits. For this second part, I will use maximum likelihood

to estimate the parameters. This is presented in section 4.4.1, after which I return in

section 4.4.2 to address the question raised here.
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The fit of the ETAS model to data can be assessed through the analysis of resid-

uals. It can be shown [Papangelou, 1972; Ogata, 1988; Daley and Vere-Jones, 2003;

Schoenberg, 2002] that, if 0 < t1 < t2 . . . is an unbounded, increasing sequence of

time points on the half-line, N? is a simple point process with internal history Ht and

a monotonic, continuous Ht compensator Λ?(t) such that Λ?(t) → ∞ almost surely

(a.s.), then, with probability one, the transformed sequence

τi = Λ?(ti) =

∫ ti

0

λ(u|Ht)du (4.10)

is a realization of a unit-rate Poisson process if and only if the original sequence {ti} is

a realization from the point process defined by Λ?(t). Therefore τi should be uniformly

distributed in the studied catalog time interval (0,Λ?(T )). If the model or parameters

are misspecified, there will be detectable deviations from the Poisson process with unit

rate, quantified for instance by the Kolmogorov-Smirnov test.

To illustrate quantitatively the discussion regarding biased parameter estimated be-

cause of undetected seismicity, I simulated a catalog using the ETAS model with pa-

rameters θ = {µ = 1, b = 1, k = 0.477, α = 0.5, p = 1.2, c = 0.001}. These

parameters ensured a high branching ratio of n = 0.95 and that small earthquakes con-

tribute strongly to the seismicity budget, although by no means unrealistic. I generated

a catalog of length T = 100, 000 days, resulting in 1, 277, 028 events. To check that

the original catalog transforms correctly with its original parameters, I transformed the

times of the first 100, 000 events according to (4.10). As can be seen from Figure 4.4,

the resulting process is a Poisson process with unit rate (its dashed line for comparison

completely coincides with the transformed times). The Kolmogorov-Smirnov test can-

not reject the hypothesis that the two curves are from the same distribution (p-value of

p = 0.977). (Since the simulation and residual analysis codes were written separately,

this result helps verify the simulation code, too.)

What happens when we introduce a detection threshold md > m0? According to
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Figure 4.4: Transformed times versus event numbers and their comparison with a unit

rate Poisson process: original catalog with original parameters.

equation (4.3), the only correct way for transforming the observed occurrence times tj

for which mj ≥ md is to use the true conditional intensity multiplied by the fraction

of observed events λ(t) · fd (i.e. scaling µ → fdµ and k → fdk) together with the

complete catalog history H0. Setting md − m0 = 2, we are left with 12, 666 events

of the original catalog. Figure 4.5 shows the resulting transformed times (solid) along

with a unit rate Poisson process (dashed). Again, the Kolmogorov-Smirnov (KS) test

cannot reject the hypothesis that both curves are of the same distribution (p = 0.92).

In reality, of course, we do not have information about unobserved events. The

question then becomes whether we can use the original parameters together with the

observed catalog to transform the occurrence times correctly. Figure 4.6 shows clearly

that this is not so (K-S test rejects the common-distribution hypothesis with p essen-
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Figure 4.5: Transformed times versus event numbers and their comparison with a unit

rate Poisson process: Transforming observed events mj ≥ md = 2 using “scaled” true

parameters (with µ and k scaled by fd) and full history Hd above m0 in conditional

intensity.

tially zero). The model expects too many events compared to the actual occurrence

rates. The original parameters would have produced many more events, as expected

given that they actually did produce the original, much more populated catalog.

One may be tempted to try scaling the conditional intensity function by fd (equiva-

lently, scaling the background rate µ and k) when using the observed catalog to trans-

form occurrence times. But, given that these are the correct parameters to use when the

entire catalog is available to transform observed occurrence times, one expects that too

few events are predicted. Indeed, the transformed times do not form a Poisson process

with unit rate, as shown in Figure 4.7. The K-S test rejects this hypothesis entirely.
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Figure 4.6: Transformed times versus event numbers and their comparison with a unit

rate Poisson process: Transforming observed events mj ≥ md = 2 using the true

parameters and the observed history Hd above md in the conditional intensity.

An interesting feature of Figures 4.6 and 4.7 is that the transformed times seem to

follow approximately straight lines (at this resolution). This suggests that the trans-

formed times may follow a Poisson process, but with a different rate, which in turn

suggests that there exists a simple way of scaling the parameters to account for unde-

tected seismicity. For instance there may be a constant, different from fd, by which

the parameters µ and k can be multiplied in order to approximately fit the observed

catalog. Or there may exist a constant which can be added to the background rate

µ → fd · µ + A so as to account for undetected events, replacing the time-dependent

triggering from undetected events to observable seismicity with a time-independent

constant, for instance by their average contribution n<. The latter is also supported by
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Figure 4.7: Transformed times versus event numbers and their comparison with a unit

rate Poisson process: Transforming observed events mj ≥ md = 2 using the “scaled”

true parameters (with µ and k scaled by fd) and the observed history Hd above md in

the conditional intensity.

the earlier observation that thinning leads to Poisson processes. Such a simple solution

seems to contradict the suggestion that the effect of undetected seismicity on observed

events is time-dependent and clustered which an effective ETAS model may not be able

to capture (section 4.3.2). These questions cannot be answered without estimating pa-

rameters. However, they are important because deviations from the ETAS fit may be

expected solely because of the model formulation and the effect of undetected mothers

triggering observable aftershock sequences. The next section presents the maximum

likelihood estimation procedure before trying to address these questions.
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4.4 Parameter Estimation

4.4.1 Maximum Likelihood Parameter Estimation

Parameter estimates are usually obtained by maximizing the likelihood function of the

point process under consideration. Ozaki [1979] provided a first explicit algorithm

for the Hawkes’ self-exciting process [Hawkes, 1971a,b; Hawkes and Oakes, 1974],

a direct ancestor of the ETAS model. Ogata [1988] provided a likelihood estimation

procedure for the ETAS model. Recently, Zhuang et al. [2002, 2004] and Veen and

Schoenberg [2007] performed iterative estimation procedures that use the branching

structure of the ETAS model as well as the partial likelihood to converge to stable

parameter estimates.

The likelihood of the temporal ETAS model is a special case of the more general

likelihood of any marked temporal point process [Daley and Vere-Jones, 2003] given

by:

L(θ) =

N(T )∏
i=1

λθ(ti,mi|Ht)

 exp

(
−
∫ ∞

m0

∫ T

0

λθ(u,m|Hu)dudm

)
. (4.11)

The parameters θ̂ which maximize the likelihood “best” explain the given data by mak-

ing the observed data the most probable given the model (e.g. Kay [1993]).Maximiz-

ing the likelihood is equivalent to maximizing the log-likelihood `, being a monotonic

function of the likelihood:

`(θ) =
∑
i|ti<t

log λθ(ti,mi|H0
t )−

∫ T

0

∫ ∞

m0

λθ(t,m|H0
t )dtdm (4.12)

where the conditional intensity is replaced by the specific point process under study.

The dependence of the conditional intensity on the full data historyH0
t = {ti,mi}i|ti<t

down to m0 is made explicit. For unpredictable marks (i.e. independently and iden-

tically distributed marks independent of time), one can separate or factorize the de-
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pendence of the likelihood function on the marks from the temporal “ground” process

λ(m, t|H) = pm(m)λ(t|H) and estimate the parameters of the mark distribution and

the ground process separately. We often assume that the Gutenberg-Richter value b

is known or estimated separately from the temporal model. Assuming b is known,

expression (4.12) simplifies to:

`(θ) =
∑

mi≥m0

log λθ(ti,mi|H0
t )−

∫ T

0

λθ(t|H0
t )dt (4.13)

Before the introduction of the above-mentioned iterative estimation procedures which

make use of the branching structure representation of the ETAS model, the log-likelihood

was usually maximized by grid search or steepest descent methods. Ogata et al. [1993]

proposed a method to speed up the likelihood calculation.

4.4.2 Parameter Bias Due to Undetected Seismicity

In practice, one replaces m0 with the detection threshold md, so that the conditional

intensity is replaced by λ′d(t|Hd
t ) given the history above md only. The likelihood is

then calculated from:

`′(θ′) =
∑

mk≥md

log λ′θ′(tk,mk|Hd
t )−

∫ T

0

λ′θ′(t|Hd
t )dt (4.14)

λ′θ′(t|Hd
t ) = µ′ +

∑
j|mj≥md

k′ ea′(mj−md)

(t− tj + c′)p′
(4.15)

This should be contrasted with the correct likelihood function:

`(θ) =
∑

mk≥md

log(fd · λθ(tk,mk|H0
t ))−

∫ T

0

fd · λθ(t|H0
t )dt (4.16)

λ0(t|H0
t ) = µ+

∑
i|mi≥m0

k ea(mi−m0)

(t− ti + c)p
(4.17)

which contains information about events below md through its history H0
t , i.e. while

the conditional intensity is evaluated at observed events, it is calculated from all events.
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If the ETAS model description is reasonable for even one or two magnitude units below

the detection threshold md, then the wrong conditional intensity is used to estimate

parameters. Therefore, one can expect biased parameters.

Which of the assumptions in the derivation of the consistency of the maximum

likelihood estimator fail? The (true) conditional intensity is no longer predictable.

More precisely, the true conditional intensity is not available because of unavailable,

unobserved events. As a consequence, the difference between the point process N(t)

and the compensator ∆(t) =
∫ t

0
λ(u)du based on the assumed (wrong) intensity is no

longer an F-martingale, which is a necessary assumption in the derivation of asymp-

totic normality and consistency [Ogata, 1978; Rathbun, 1996]. In [Ogata, 1978], as-

sumption B2 (that λθ is predictable) is violated. In reality, λθ(t,H
d
t ) is distributed

because the unknown history below md, if left unspecified, can lead to many different

values of the intensity with different probabilities.

As mentioned above, the deviation of the true intensity from the estimated intensity

is not limited to areas close to the boundary (as for time and space), but pervades

the entire space-time-magnitude space because marks are unpredictable and can be

triggered by the numerous small earthquakes.

We return to the question posed in section 4.3.4 whether the addition of a constant

to the background rate to account for the influence of undetected events is sufficient to

fit an ETAS-simulated catalog above a threshold, while only scaling k → k · fd. Using

the catalog simulated in section 4.3.2, I performed a maximum likelihood inversion

for the parameter µ of the catalog above md = 3 (1254 events) while constraining α, c

and p to their true values but rescaling k → k · fd = 0.00047. 10 different random

initial values all converged to very similar values, showing that the value obtained for

µ̂ was robust. The value obtained was µ̂ = 0.0117± 0.0001 (here and below the errors

are based solely on the ten different µ̂). The likelihood values of the resulting fits
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were LL = −6547.21 ± 0.005. I then performed a residual analysis of the observed

occurrence times with the true parameters, rescaled k and the inverted µ̂. Figure 4.8

shows that the fit is approximate and not terrible. However, the K-S test rejects the

hypothesis that the transformed times are from the same distribution (p = 0.002). This

suggests that to approximate the influence of undetected seismicity with a constant is

not terrible to first order (visually), but by no means sufficient, as the K-S test easily

rejects the model. The implication is that thinning small events does not lead solely to a

higher background rate, it also impacts the triggering parameters beyond the expected

Gutenberg-Richter rescaling.
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Figure 4.8: Transformed times versus event numbers and their comparison with a unit

rate Poisson process: Transforming observed events mj ≥ md = 3 with estimate

µ̂ = 0.0117, scaled fd · k and true α, c and p, using the observed history Hd above md.

In the spirit of the previous two chapters, one may expect a trade-off between µ
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and k (a proxy for the branching ratio n = kb/(b − α)). I therefore repeated the pre-

vious estimation procedure but allowed k to be determined by MLE as well. The first

ten random initial starting values for the parameters µ and k were distributed widely,

and the estimation procedure estimated µ = 0 in two cases and k = 0 in two further

cases, indicating poor convergence. Only six of the ten converged to acceptable values

µ̂ = 0.01135 ± 0.00005 and k̂ = 0.0514 ± 0.001. A second run with ten more nar-

rowly distributed initial values all converged to the same estimates, demonstrating a

dependence on initial values even for estimating only two of the five parameters. The

likelihood values of the acceptable results were LL = −6510.729±0.003, an improve-

ment over the likelihood value achieved with just one parameter. Using k̂ = 0.0514

and µ̂ = 0.01134, the K-S test cannot reject the hypothesis that the two curves belong

to the same distribution (see Figure 4.9). This suggests that the observed catalog can

be fit by using true values for α, p and c, while allowing µ and k (the triggering pa-

rameters) to adjust. As predicted in Chapter 3, I find that the background rate and the

branching ratio change simultaneously under a change of detection threshold and seem

sufficient to provide an acceptable fit for this particular catalog. Both the background

rate and the constant k are elevated with respect to their GR-scaled values, in order to

make up for the contribution from undetected mothers. But while the background rate

is within 20% of its GR-scaled value, k̂ is larger by a factor of ten than its GR-scaled

value. The nature of this relative increase and its dependence on other parameters and

md −m0 needs to be investigated in more detail.

In practice, the “true” values of the parameters α, p and c are unknown and all five

parameters need to be estimated. It is therefore of interest to compare the values of the

estimates with the true values, i.e. their bias. I will first allow a third parameter α to

be estimated simultaneously before estimating all five parameters.

The third parameter essential for the number statistics is α. Again starting from
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Figure 4.9: Transformed times versus event numbers and their comparison with a unit

rate Poisson process: Transforming observed events mj ≥ md = 3 with estimates

µ̂ = 0.01134 and k̂ = 0.0514 and true α, c and p, using the observed history Hd above

md.

ten initial points, k̂ = 0 occurred in three cases, while α turned negative in two. Only

six of the ten initial values converged to reasonable estimates µ̂ = 0.01135± 0.00001,

k̂ = 0.053 ± 0.002 and α̂ = 0.475 ± 0.003 with a log-likelihood value of LL =

−6510.675 ± 0.004. The increase in likelihood gained by allowing α to be estimated

is extremely small. There is a small trade-off between k and α which is to be expected.

The transformed times are shown in Figure 4.10 and are consistent with a unit rate

Poisson process.

The estimation of all five parameters using maximum likelihood abovemd = 3 was

highly unstable. From 10 initial (random) starting points close to the true (but scaled)
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Figure 4.10: Transformed times versus event numbers and their comparison with a

unit rate Poisson process: Transforming observed events mj ≥ md = 3 with estimates

µ̂ = 0.01134 and k̂ = 0.0514 and true α, c and p, using the observed history Hd above

md.

parameters, two failed to converge in 1000 iterations. Only four of the ten inversions

estimated non-zero k̂ (the others resulted in a zero branching ratio). Four inversions

gave a negative α̂ and five gave p̂ < 1. The inversion with the highest likelihood value

set k̂ = 0. Only two inversions resulted in subcritical but non-zero branching ratio.

Of these, only one performed satisfactorily in a K-S test against a unit Poisson process

(Figure 4.11). The other one (not shown) strongly deviated. Furthermore, the only

satisfactory inversion was beaten heavily in likelihood value by two others, both of

which set k̂ = 0. The relative abundance of events (1254) together with such poor

convergence results is a reminder of the strong non-linearity of the problem. We will
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come back to the general estimation problem below.

The only acceptable inversion estimated the following parameters: µ̂ = 0.008564,

k̂ = 0.05884, α̂ = 0.405, ĉ = 0.000988, p̂ = 0.917. Figure 4.11 shows the transformed

times of this model. For this particular catalog, the bias ε in the parameters calculated

by εγ = 100 ∗ (γ̂ − γ)/γ̂ where γ is the “true” parameter, is therefore: εµ = 88%

too large with respect to the GR-scaled background, and εµ = −116% too small with

respect to the original background, εk = 92% too large with respect to the GR-scaled

k and εk = −700% too small with respect to the original k, εα = −23% too small,

εc = −1% too small and εp = −31% too small. The log-likelihood value of this

solution was LL = −6486.391.

For completeness, one may consider the relative improvement of the model fit that

one attains by allowing more parameters to be estimated. The Akaike Information

Criterion (AIC) [Akaike, 1974] provides a measure of such improvement, justified the-

oretically as an asymptotically unbiased estimate of the Kullback-Leibler information

loss [Anderson and Burnham, 2002; Burnham and Anderson, 2004]. It is defined by

AIC = −2`(θ) + 2K (4.18)

where `(θ) is the log-likelihood of the model and K is the number of parameters of

the model. Here, model refers to the ETAS model fit using estimated parameters and

the number of parameters is the number of estimated parameters, treating the other

parameters as fixed. Table 4.1 summarizes the above estimation procedures and gives

their AIC score. Clearly, allowing all five parameters to be determined by the model

fit greatly enhances the AIC score. However, it is interesting to note that the two-

parameter fit scores better than the three-parameter fit. I note that the derivation of the

AIC is based on asymptotic properties: for non-linear, non-Gaussian and finite-sample

conditions, this estimate of the Kullback-Leibler information may be problematic.

We can draw several conclusion from the maximum likelihood inversions. Firstly,
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Figure 4.11: Transformed times versus event numbers and their comparison with a

unit rate Poisson process: Transforming observed events mj ≥ md = 3 with estimates

µ̂ = 0.008564, k̂ = 0.05884, α̂ = 0.405, ĉ = 0.000988, p̂ = 0.917, using the observed

history Hd above md.

Estimated Parameters `(θ) AIC

µ̂ -6547.21 13095.42

µ̂, k̂ -6510.73 13023.46

µ̂, k̂, α̂ -6510.68 13024.35

µ̂, k̂, α̂, ĉ, p̂ -6486.49 12977.78

Table 4.1: Improvement of model fit measured by AIC.
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it is demonstrated that estimated parameters above a detection threshold md are signif-

icantly different from those above a different threshold m0. One cannot really speak

of bias in the parameters because no threshold is a priori the correct one that would

give unbiased parameters. Secondly, to account for undetected seismicity, it seems

sufficient to let k and µ adapt while fixing the other parameters. This corroborates

the predictions in Chapter 3 that the (inferred) branching ratio and background rate

estimates trade off. Thirdly, if p, c and α can be estimated separately and fixed during

the MLE, then the specific nature of the trade-off between µ and k should be inves-

tigated further to understand the role of undetected earthquakes triggering observable

seismicity.

Another lesson from this chapter concerns the parameter estimation problem. As

seen in this chapter, the five-parameter inversions using maximum likelihood are of-

ten unstable, may not converge or converge to the wrong or unreasonable estimates,

in particular when the initial values are far from the true values. The stability of the

estimates should therefore always be carefully tested. These issues call for better tech-

niques than gradient based search algorithms. As already mentioned, Zhuang et al.

[2002] and Veen and Schoenberg [2007] developed new techniques that take into ac-

count the branching structure of the model. After comparisons with gradient-based

methods, Veen and Schoenberg [2007] concluded that their expectation-maximization

procedure was slightly more robust. But the estimation problem involves highly non-

linear and non-Gaussian data, which make estimation procedures based on asymptotic

normality and linearity less reliable. In particular, the confidence bounds on param-

eter estimates are usually calculated from the Hessian, which assumes a linear and

Gaussian problem and is accurate only asymptotically. Therefore, the development of

Bayesian or simulation-based approaches to the parameter estimation and confidence

limit estimation problem need to be developed. Werner and Jackson [2007] have taken

first steps towards a simulation-based approach.
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4.4.3 Discussion of Preliminary Results of Schoenberg, Chu and Veen (2007)

Schoenberg et al. [2007] are currently systematically investigating the mean bias in

parameter estimates by simulating a space-time ETAS model above a cut-off m0 and

then re-inverting for the seven parameters of their model [Ogata, 1998] using the

expectation-maximization algorithm [Veen and Schoenberg, 2007] above a higher thresh-

old md > m0, analogous to the results above. This procedure was repeated over a

thousand times (simulated catalogs) to obtain a mean bias. An interesting feature of

their results is that the parameter bias does not monotonically increase with md for

some parameters, although all parameters show bias. This may indicate the flexibility

of the model to offset misfits by adjusting other parameters. Further simulations will

give more definite answers.

4.5 Vere-Jones’ Self-Similar Branching Model: An Epidemic-Type

Model Without a Lower Threshold

The theory of point processes is intimately interwoven with the theory of random mea-

sures. Loosely stated, a random measure is a generalization from a point process

(integer) counting measure to non-integer nonnegative counting measures [Daley and

Vere-Jones, 2003]. Until recently, known examples of self-similar random measures

(defined by the invariance of their distributions under renormalization group transfor-

mations) were limited to the class of completely random stable measures. The self-

similar random measure can be constructed by summing the (self-similar) marks of a

Poisson process, whence the name completely random. Vere-Jones [2005] extended

the class of self-similar random measures by showing that the restriction to Poisson

processes was not necessary. He derived conditions for the point process so as to sat-

isfy existence, stationarity and self-similarity of the associated random measure. In
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particular, he showed that if the point process is biscale-invariant (invariant under a

transformation involving time and marks), then the associated random measure is self-

similar. As an example, he constructed a biscale-invariant version of the ETAS model:

λ†(t,m) = βe−βm

ν + η
∑
i|ti<t

e−βmi−δ|m−mi|
[
1 +

t− ti
σeβm

]−(1+p)
 (4.19)

where the quantities p, ν, η, σ, β and δ are positive constants that constitute the param-

eters of the model. Vere-Jones proved that the process exists (is stationary) and has

finite first moment under a sub-criticality condition ρ < 1, where ρ depends on the

parameters of the model. If ρ < 1, the number of cluster members from a given an-

cestor is infinite in total, but most have very small marks, so that only a finite number

fall into a bounded set when the space of marks is bounded away from −∞ (bounded

away from zero energy, which is proportional to the exponential of the magnitude).

The model (4.19) is completely self-similar in the sense that all distributions of its

associated random measure are completely self-similar (invariant under the group of

biscale transformations). In less technical language, the model necessarily removes

the existence of a lower cut-off m0, which would otherwise introduce a minimum step

size in the associated random measure and therefore break self-similarity. In order to

eliminate m0, a number of changes had to be made to the traditional ETAS model: (i)

the distribution of the daughter magnitudes had to be made dependent on the mother

magnitude through exp(−δ|m −mi|) so that each generation does not obey the pure

GR law, although their superposition may come close (see below); (ii) α equals β; (iii)

the Omori parameter c depends on the magnitude of the daughter c→ σ exp(βm).

Are these conditions consistent with observations? Condition (ii) seems to have

been validated by Felzer et al. [2004] and Helmstetter et al. [2005a] amongst others.

Condition (i) was studied by Saichev and Sornette [2005b] and is the subject of the

next paragraph. Condition (iii) involving a dependence of the Omori law parameter
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c→ c(m) on mainshock magnitude is indeed well-observed [Kagan, 2004]. However,

there is debate whether this variation has a physical meaning [Shcherbakov et al., 2004]

or is due solely to detection limitations after large events [Kagan, 2004; Kagan and

Houston, 2005].

Saichev and Sornette [2005b] investigated the number statistics and magnitude dis-

tributions of the Vere-Jones model. They studied the conditions and nature of the

sub-critical, critical and super-critical regimes in this model and a generalized ver-

sion which includes the Vere-Jones model. As can be seen from the definition of the

Vere-Jones model (4.19), the magnitude-frequency distributions of first generation af-

tershocks triggered by a mother of magnitude m have two branches: for aftershock

magnitude m′ < m, the GR exponent is β − δ, while it is β + δ for m′ > m. Saichev

and Sornette [2005b] showed that, accounting for the contributions of all generations

of triggered events, this distribution is renormalized into another two-sided law: for

aftershock magnitudes m′ < m, the renormalized exponent is β − h, while it is β + h

for m′ > m, where h depends on model parameters and its criticality regime and

0 ≤ h ≤ δ. The authors suggested testing for different magnitude distributions within

generations by adapting the stochastic declustering method [Zhuang et al., 2002, 2004]

to the Vere-Jones model.

Remarkably, Saichev and Sornette [2005b] also found that the distribution of mag-

nitudes over a stationary catalog is a pure GR law and solely depends on the distribu-

tion of the background sources, which may, in general, be different be different from

the exponent β involved in the triggered events. The explanation for this result lies

in the effect of the cascading generations of aftershock distributions, each conditioned

on their mother magnitude. They conclude that for a significant part of the param-

eter space, the predicted magnitude distribution above a detection threshold may be

compatible with observations.
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Simulation and estimation algorithms for the Vere-Jones model are not yet avail-

able. Likelihood estimation in particular seems problematic as the conditional inten-

sity depends on unobserved marks, thereby creating the same problems as discussed in

this and the previous two chapters. Vere-Jones [2005] speculates that a self-similarity

property with respect to the inter-event statistics (time and distances between events),

instead of with respect to the underlying space as in his model, may open up routes

to simulation algorithms. If and when these algorithms become available, the study of

this completely self-similar branching model may be a strong alternative to the ETAS

model, because it can be defined without a magnitude cut-off m0.

4.6 Conclusions

1. Clustering parameters and background rates are difficult to interpret in terms of

geophysical quantities. Rather, they are intrinsically dependent on the detection

threshold above which they were estimated. Comparing estimates from different

thresholds is highly non-trivial.

2. Declustering using the ETAS model is strongly dependent on the detection thresh-

old. Results are expected to change drastically under a change of the detec-

tion threshold, making the interpretation and usefulness of declustering methods

doubtful. Studying the equivalence of temporal and magnitude branching pro-

cesses may provide two consistent models which can be used for prediction and

declustering separately.

3. The extension of the results of Chapter 3 to full time-independent distributions

by Saichev and Sornette [2006a] recover the results of Chapter 3 up to a small

correction. However, Saichev and Sornette [2006a] also show that the spatio-

temporal properties cannot be mapped onto a renormalized model.
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4. The conditional intensity is not strictly invariant under a change of detection

threshold due to time-dependent contributions from undetected earthquakes to

observable seismicity. I calculated the average contribution and illustrated their

role by calculating their fraction of the intensity in a simulated catalog. It is

likely that small earthquakes contribute strongly to the observed seismicity bud-

get.

5. The parameters of the ETAS model are sensitively dependent on the detection

threshold. I have shown that the effect of unobserved earthquakes on observable

seismicity must be more than just add a time-independent constant, as would

be expected from thinning. However, based on the results presented here, it is

likely that the background rate and the branching ratio together can account for

the influence of unobserved mothers, trading off as predicted in Chapter 3. This

relationship should be investigated in more detail. However, if all five parame-

ters are estimated simultaneously, then the bias can be very large.

6. The current maximum likelihood estimation method is not wholly satisfactory

as it may not converge, or it may be trapped in local minima with unrealistic

parameter values. Furthermore, confidence intervals are often based on the Hes-

sian, which is correct only asymptotically. Therefore, the development of robust

methods that also allow accurate confidence limit estimates are important. This

is especially true given the increasing popularity of the ETAS model as a null

hypothesis and its potential use for detecting differences in triggering properties

in different tectonic regions of the world (see, e.g. [Bird et al., 2007]).

7. The Vere-Jones model [Vere-Jones, 2005] provides an attractive alternative as

a model that does not need a detection threshold. However, the development

of simulation and estimation algorithms may not be trivial. But the Vere-Jones

model, which is renormalizable, provides the first wholly self-similar point pro-
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cess model. This development suggests that the statistical seismology commu-

nity and the part of statistical physics community working on seismicity may

begin to coalesce in their conceptual approaches. Indeed, the topic of the next

chapter is an approach to seismicity data analysis inspired by the theory of criti-

cal and renormalizable phenomena in statistical physics.
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CHAPTER 5

Hypothesis Testing of a Proposed “Universal” Scaling

Law in Earthquake Recurrence Statistics ∗

5.1 Introduction

Over the last five years, a group of statistical physicists, interested in earthquakes as a

potential instance of Self-Organized Criticality (SOC), have claimed “novel”, “univer-

sal” and “robust” scaling laws from their analysis of the spatio-temporal organization

of seismicity. The authors purport to have discovered universal and hitherto unknown

features of earthquakes that give new insights into the dynamics of earthquakes and

add to the evidence that earthquakes are self-organized critical. This chapter focuses

on one of these recent studies to add to the growing recognition that some or per-

haps most of these ”novel scaling laws” can be explained entirely by known statistical

seismicity laws.

Much of the recent interest of the statistical physics community focused on apply-

ing scaling techniques, which are common tools in the study of critical phenomena, to

the statistics of inter-event recurrence times or waiting times [Bak et al., 2002; Corral,

2003, 2004a,b, 2005a,b; Corral and Christensen, 2006; Davidsen and Goltz, 2004;

Livina et al., 2006]. The lively debate over the relevance of critical phenomena to

earthquakes stretches back as far as 30 years [Vere-Jones, 1977; Allègre et al., 1982;

∗An edited version of section 5.3.3 of this chapter was published in Werner, M. J. and D. Sor-
nette, Phys. Rev. Lett., 99, 179801, 2007. Copyright (2007) by the American Physical Society.
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Smalley et al., 1985; Kagan, 1989; Sornette and Sornette, 1989; Bak and Tang, 1989;

Sornette and Sornette, 1999a; Kagan, 1992; Olam et al., 1992; Kagan, 1994; Sornette

and Sammis, 1995; Saleur et al., 1996a; Bak, 1996; Jensen, 1998; Nature Debates,

1999; Hergarten, 2002; Sornette, 2002, 2004; Kagan, 2006]. The current debate on

recurrence statistics is the latest tack in the evolving string of arguments. As discussed

below, many of the claims made in the recent articles on recurrence statistics have ei-

ther been challenged, refuted or explained by previously known facts about earthquake

statistics [Lindman et al., 2005, 2006; Molchan, 2005; Saichev and Sornette, 2006b,

2007]. This chapter focuses on the work by Davidsen and Paczuski [2005], who ex-

tended the analysis from recurrence times to the spatial dimension and to the statistics

of the spatial distances between successive earthquakes. As will be discussed below,

this debate in the literature is important because of the potential consequences for un-

derstanding earthquakes, but it needs to be pursued with rigorous scientific arguments

accessible to both the seismological and the statistical physics communities.

Davidsen and Paczuski [2005] (hereafter DP) claimed that (i) the probability den-

sity function of the spatial distances between successive earthquakes in southern Cal-

ifornia obeys finite size scaling with a power law scaling function, (ii) the associated

critical exponent δ ' 0.6 is a novel dynamical scaling exponent that characterizes the

critical behavior of seismicity, (iii) the scale-free statistics of the distribution contradict

the theory of aftershock zone scaling, and (iv) their results are consistent with SOC.

Their results are a priori interesting for a variety of reasons. First, they present a new

turn in the debate on the relevance of non-equilibrium statistical mechanics to earth-

quake seismology. Second, they contradict the idea that main shock rupture lengths

strongly influence the spatial distribution of aftershocks. These claims will be ana-

lyzed in detail in this chapter.

We will show that (i) if there truly were a dynamical exponent, it would have to
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equal 1, based on the recent results by Christensen et al. [2007]; but (ii) the power law

scaling function breaks down in other regions of the world; (iii) the results obtained

by DP for southern California depend crucially on a single earthquake (the June 28,

1992, M7.3 Landers earthquake): Without Landers and its aftershocks, the power law

disappears; (iv) a model of clustered seismicity, with aftershock zone scaling explicitly

built in, is able reproduce the apparent power law, indicating that an apparent lack

of scales in the data does not necessarily contradict aftershock zone scaling and the

existence of scales associated with mainshock rupture length scales.

The last point, in particular, underlines the strength of testing hypotheses with

simulations to establish null hypotheses and benchmarks: seismicity patterns are suffi-

ciently stochastic and earthquake catalogs contain a sufficient amount of observational

uncertainties so as to make inference difficult. It is often not straightforward to predict

the signal of well-known statistical features such as clustering in new data analysis

techniques. Therefore, testing the purported claims by realistic simulations of earth-

quake catalogs can provide a strong benchmark against which the claims can be eval-

uated. This view and its criticism of many studies has been put forward and defended

for a long time by Y. Kagan [Kagan, 1999b].

Such a model-dependent approach may be at odds with the philosophy of a so-

called ”model-free” analysis, which the community of statistical physicists claim to

take in their analysis. For instance, network theory-based approaches, space-time

window-based finite size scaling, box-covering methods and other techniques used

in the study of critical and fractal phenomena are said to be ”model-free” because no

assumptions about seismicity are supposedly made at the outset. By using model-free

analysis techniques, the often uncertain and sometimes clearly wrong assumptions of

flawed models and resulting biased results are meant to be circumvented.

However, as is almost always the case in statistical hypothesis testing, the less
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assumptions are made about the test, the less powerful the test statistic. More im-

portantly, seismicity is sufficiently stochastic so that well-known features may appear

as novel in new analysis methods. Furthermore, to convince the seismological com-

munity of new data analysis techniques, the methods need to be tested on established

knowledge and show the improvement over traditional methods. These types of initial

tests are rarely performed by the statistical physics community. This chapter provides

an example of how useful such tests can be.

The chapter is organized as follows. In section 5.2, I attempt to convey the strong

appeal that motivates the application of methods from statistical mechanics and criti-

cal phenomena to earthquake seismology. To understand this appeal and its potential,

I will briefly review elements of the theory of critical phenomena, such as phase tran-

sitions, finite size scaling and SOC, which will become important in section 5.3. After

this short introduction, I will summarize the recent work on recurrence time statistics

and SOC, which sets the stage for the main topic of this chapter in section 5.3: testing

the hypotheses and claims by Davidsen and Paczuski [2005] as already stated above.

5.2 Critical Phenomena, Self-Organized Criticality, and Earthquakes

A comprehensive review of any of these topics is outside the scope of this thesis. I

shall only introduce the minimum necessary for understanding the motivation for the

research into the proposed link between earthquakes and SOC. The technical language

of finite size scaling, in particular, will be useful for section 5.3. More comprehen-

sive, excellent introductions on these topics can be found in many texts, for instance

in [Cardy, 1996; Jensen, 1998; Landau and Lifshitz, 1980; Sornette, 2004; Stanley,

1999; Yeomans, 1992]. Hergarten [2002] and Sornette [2004] focus on applying these

concepts to earth sciences.
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• Phase transitions: In (equilibrium) statistical mechanics, a phase transition oc-

curs when there is a singularity in the free energy or one of its derivatives. Ex-

amples include the freezing of water, the transition from ferromagnetic to para-

magnetic behavior in magnets, and the transition from a normal conductor to a

superconductor [Landau and Lifshitz, 1980; Yeomans, 1992].

• Continuous phase transitions: If there is a finite discontinuity in the first

derivative of the thermodynamic potentia, then the phase transition is termed

first-order. During such a transition, a system either absorbs or releases a fixed

amount of latent heat (e.g. the freezing/melting of water/ice). If the first deriva-

tive is continuous but higher derivatives are discontinuous or infinite, then the

phase transition is called continuous, of the second kind, or critical. Examples

include the critical point of the liquid-gas transition, the Curie point of the fer-

romagnetic transition, or the superfluid transition [Landau and Lifshitz, 1980;

Yeomans, 1992].

• Critical phenomena: Phenomena observed in systems that undergo a continu-

ous phase transition. They are characterized by scale invariance: the statistical

properties of a system on one scale are related to those at another scale only

through the ratio of the two scales, not on the scales themselves. The scale in-

variance is a result of fluctuations and correlations at all scales, all of which are

important and in no way diminished [Cardy, 1996; Sornette, 2004; Yeomans,

1992].

• Critical exponents: Near the critical point, various thermodynamic quantities

diverge as power laws with associated critical exponents. In equilibrium sys-

tems, there are scaling relations that connect some of the critical exponents of

different thermodynamic quantities [Cardy, 1996; Landau and Lifshitz, 1980;

Sornette, 2004; Stanley, 1999; Yeomans, 1992].
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• Universality: In systems with little or no frozen disorder, equilibrium contin-

uous phase transitions fall into a small set of universality classes that are char-

acterized by the same critical exponents and certain scaling functions become

identical near the critical point. The class depends only on the dimension of the

space and the dimension of the order parameter. For instance, the critical point

of the liquid-gas transition falls into the same universality class as the 3D Ising

model. Even phase transitions occurring in high-energy physics are expected to

belong to the Ising class. Universality justifies the development and study of

extremely simplified models (caricatures) of Nature, since the behavior of the

system at the critical point can nevertheless be captured (in some cases exactly).

Non-universal features remain even at the critical point but are less important,

e.g. amplitudes of fluctuations or system-specific corrections to the scaling that

appear to sub-leading order [Cardy, 1996; Stanley, 1999; Yeomans, 1992; Zee,

2003].

• Renormalization group theory: A mathematical theory built on the idea that

the critical point can be mapped onto a fixed point of a suitably chosen transfor-

mation on the system’s Hamiltonian. It provides a foundation for understanding

scaling and universality and provides tools for calculating exponents and scaling

functions. Renormalization group theory provides the basis for our understand-

ing of critical phenomena [Cardy, 1996; Stanley, 1999; Yeomans, 1992].

• The thermodynamic limit and criticality: The thermodynamic limit corre-

sponds to an infinite system size or an infinite number of particles, such that the

correlation length is truly infinite at the critical point and not cut short by the

finite system size. Any finite physical system therefore cannot be truly critical.

However, one may pretend that the system is critical and apply, in this ther-

modynamic limit, renormalization group techniques to calculate exponents and
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obtain scaling functions, and then apply finite size corrections that are system

specific [Cardy, 1996; Pruessner, 2004; Yeomans, 1992]. The concept of the

thermodynamic limit will be used in section 5.3.

• Finite size scaling: If a thermodynamic or other quantity is investigated at the

critical point under a change of the system size, the scaling behavior of the quan-

tity with respect to the system size is known as finite size scaling [Cardy, 1996].

The quantity may refer to a thermodynamic quantity such as the free energy or

it may refer to an entire probability distribution function. At criticality, the sole

length scale in a finite system is the upper cut-off sc, which diverges in the ther-

modynamic limit L → ∞. Assuming a lower cut-off s0 � sc, s, a finite size

scaling ansatz for the distribution P (s; sc) of the observable variable s, which

depends on the upper cut-off sc is then given by:

P (s; sc) = as−τG(s/sc) fors, sc � s0 (5.1)

where the parameter a is a non-universal metric factor, τ is a universal (critical)

exponent, and G is a universal scaling function that decays sufficiently fast for

s � sc [Cardy, 1996; Christensen et al., 2007]. Pruessner [2004] provides a

simple yet instructive and concise introduction to scaling theory and finding as-

sociated exponents. As already stated above, system-specific corrections appear

to sub-leading order. Finite size scaling will play an important role in section

5.3.

• Non-equilibrium phase transitions: In contrast to systems at equilibrium, non-

equilibrium phase transitions involve dynamics, energy input and dissipation.

Detailed balance is violated and no known equivalent of the partition function

exists, from which all thermodynamic quantities of interest derive in equilib-

rium. Examples of non-equilibrium phase transitions include absorbing state
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phase transitions, reaction-diffusion models, morphological transitions of grow-

ing surfaces, and percolation in porous media [Hinrichsen, 2000; Luebeck, 2004].

• Dynamical scaling and exponents: Non-equilibrium critical phase transitions

are also characterized by scale invariance, scaling functions and critical expo-

nents. Furthermore, some evidence supports the claim that universality classes

also exist for non-equilibrium phase transitions (e.g. the directed percolation

and the Manna universality class), although a complete classification of classes

is lacking and may in fact not exist at all. Much interest has recently focused on

directed percolation, which, as the most common universality class of absorb-

ing state phase transitions, is expected to occur in many physical, chemical and

biological systems [Hinrichsen, 2000; Luebeck, 2004; Sornette, 2004].

• Self-Organized Criticality (SOC): Despite almost two decades of research since

its inception by Bak et al. [1987] and the ambitious claim by Bak [1996] that, as

a mechanism for the ubiquitous power laws in Nature, SOC was ”How Nature

Works”, a commonly accepted definition along with necessary and sufficient

conditions for SOC is still lacking [Jensen, 1998; Pruessner, 2004; Sornette,

2004]. A less rigorous definition may be the following: Self-organized crit-

icality refers to a non-equilibrium, critical and marginally stable steady-state,

which is attained spontaneously and without (explicit) tuning of parameters. It

is characterized by power law event distributions and fractal geometry and may

be expected in slowly driven, interaction-dominated threshold systems [Jensen,

1998]. Some authors additionally require that temporal and/or spatial correla-

tions decay algebraically (e.g. [Hergarten, 2002], but see Pruessner [2004]).

Definitions in the literature range from broad (simply the absence of character-

istic length scales in non-equilibrium systems) to narrow (the criticality is due

to an underlying continuous phase transition with all of its expected properties)
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(see, e.g., Peters and Neelin [2006] for evidence that precipitation is an instance

of the latter definition of SOC in which a non-linear feedback of the order param-

eter on the control parameter turns a critical phase transition into a self-organized

one attracting the dynamics [Sornette, 1992]).

• Other mechanisms for power laws: Power laws may be the hallmark of critical

phenomena, but there are a host of other mechanisms that can lead to power

laws (see Chapter 14 of Sornette [2004] for a list of power law mechanisms).

Observations of scale invariant statistics therefore do not necessarily imply SOC,

of course.

The abundance of power laws in earthquake seismology ignited a keen interest

amongst statistical physicists to explain the spatio-temporal organization of earth-

quakes by the theory of critical phenomena and, in particular, by SOC. Sornette and

Sornette [1989] and Bak and Tang [1989] first suggested that SOC may be relevant

for earthquakes. The appeal of placing the study of earthquakes in the framework of

critical phenomena may perhaps be summarized as follows. Power law distributions

can be understood as a result of an underlying continuous phase transition into which

the crust has organized itself. Applying the methods of renormalization group theory

may help calculate exponents and scaling functions and rationalize the spatio-temporal

organization of seismicity along with its highly correlated structures. Perhaps earth-

quakes fall into a universality class which can be solved exactly and/or investigated in

toy models. Moreover, studying the detailed and highly complicated microphysics in-

volved in earthquakes may not lead to insights about the spatio-temporal organization,

because, as a critical phenomenon, the traditional approach of separating length scales

to describe systems is inadequate. As another reason for the importance of the topic,

interesting consequences for the predictability of earthquakes might be derived, for

instance by mapping earthquakes to a genuine critical point (the accelerating moment
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release hypothesis, e.g. [Sornette and Sammis, 1995; Sornette, 2002]) or by mapping

earthquakes to SOC (e.g. [Geller et al., 1997a; Nature Debates, 1999]).

It should be noted at this point that the statistical physics approach to earthquake

science is not limited to SOC. Various mechanisms drawn conceptually from statisti-

cal mechanics but not necessary even limited to critical (phase transition) phenomena

have been proposed and are being pursued. Such approaches include the concept of the

critical point earthquake related to accelerated moment release, network theory, perco-

lation and fiber models as models for fracture, and many more, some of which can be

found in [Hergarten, 2002; Sornette, 2004; Turcotte, 1997; Turcotte et al., 2000].

A slightly different approach has been favored by Yan Kagan [Kagan, 1989, 1992,

1994, 2006], who described seismicity as the turbulence of solids - attesting to the

potentially far more complex problems that need to be solved than SOC promises to

deliver, although renormalization group methods and scaling theory have contributed

immensely to the study of turbulence [Frisch, 1995].

We are not going to settle the issue here, of course. However, in our opinion, this

discussion is highly relevant to earthquakes and therefore needs to be pursued with

rigorous scientific arguments that are accessible to both the seismological and the sta-

tistical physics community. The present chapter aims to contribute to this discussion

by testing some of the claims made by Davidsen and Paczuski [2005] that the proba-

bility density function of spatial distances between successive earthquakes obeys finite

size scaling with a novel dynamical scaling exponent, suggesting that earthquakes are

self-organized critical.

5.2.1 “Unified” Scaling Laws of Recurrence Times of Earthquakes

Davidsen and Paczuski [2005] followed a recent interest in inter-event statistics, started

by Bak et al. [2002], who analyzed the scaling of the probability density function of
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waiting times between successive earthquakes in southern California as a function of

”box size” or small regions in which subsequent earthquakes are considered. They

found an approximate collapse of the pdfs for different magnitude thresholds S and

box sizes L which suggested the following scaling ansatz for the waiting times T :

TαPS,L(T ) = f(TS−bLdf ) (5.2)

where b = 1 is the Gutenberg-Richter exponent, df ' 1.2 was claimed to be a spatial

fractal dimension of seismicity (see Molchan and Kronrod [2005] and Kagan [2007]

for more in-depth studies), α = 1 was identified as the exponent in the Omori law and

f(·) is a scaling function which was proposed to be roughly constant up to a constant

(“kink”) beyond which it quickly decays. The scaling (5.2) was claimed to be a unified

law for earthquakes that revealed a novel feature in the spatio-temporal organization of

seismicity in that the Gutenberg-Richter, the Omori law and the spatial distribution of

earthquakes were unified into a single picture that made no distinction between fore-,

main- and aftershocks. The scaling relations and critical exponents were claimed to be

contained in the scaling ansatz. Corral [2003, 2004a,b, 2005a] and others broadened

the analysis to other regions of the world. Corral [2004a] proposed a slightly different

scaling ansatz for a modified data analysis.

Early criticism came from Lindman et al. [2005], who noted that generating syn-

thetic data using a non-homogeneous Poisson process derived from Omori’s law was

able to reproduce some of the results of Bak et al. [2002], indicating a rather trivial ori-

gin of the unified scaling law. Molchan [2005] showed that, if at least two regions in

the data set are independent, then, if a scaling relation were to hold exactly, this scaling

function could only be exponential. All other functions could only result in approxi-

mate data collapses. Proponents of the unified scaling law, e.g. Corral [2005b], argued

that indeed all regions were correlated, as expected by systems near a critical point so

that the assumption of independence between different regions should not hold. But
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Molchan also showed that a simple Poisson cluster model (Poissonian mainshocks

that trigger Omori-type aftershock sequences) could reproduce the short and long time

limits of the observed statistics, indicating that the Omori law, the Gutenberg-Richter

relationship and simple clustering were the sole ingredients necessary for the observed

short and long time limit, and no spatial correlation was needed.

Saichev and Sornette [2006b, 2007] extended Molchan’s arguments to show that

the approximate data collapse of the waiting times could be explained completely by

the Epidemic-Type Aftershock Sequence (ETAS) model of Ogata [1988]. This pro-

vided further evidence that the apparent data collapse was only approximate. Remark-

ably, the theoretical predictions of the ETAS model seem to fit the observed data better

than the scaling function postulated by Corral [2004a]. Saichev and Sornette [2006b,

2007] thus showed that a benchmark model of seismicity was able to reproduce the ap-

parent unified scaling law and that therefore the distribution of interevent times did not

reveal new information beyond what was already known via statistical laws: The com-

bination of the Gutenberg-Richter law, the Omori law, and the concept of clustering

suffice to explain the apparent ”universal” scaling of the waiting times.

In the next section, we will extend this debate to the spatial dimension where simi-

lar claims of universal scaling functions and novel features of the organization of seis-

micity have been made [Davidsen and Paczuski, 2005; Davidsen et al., 2006; Corral,

2006].

5.3 On The Spatial Distances Between Successive Earthquakes

The search for robust features in seismicity that are independent of the model as-

sumptions and space-time window boundaries (not unlike the problem of the detection

threshold and its influence on the parameters in chapters 2, 3 and 4) is motivated by

111



the concepts introduced in the last section. As an analogy, the length of the coast of

Britain depends on the size of the ruler, but the exponent (fractal dimension) which

relates the coastal length to the size of the ruler is independent of the resolution. The

approach of Davidsen and Paczuski [2005] followed in this line of thought by asking

whether the distance to the next earthquake depends solely on the observer’s resolution

(i.e. the spatial window).

This section is organized as follows. In section 5.3.1, we review their results and

conclusions. Next, we comment on their finite size scaling ansatz and the proposed

scaling exponent in section 5.3.2. In section 5.3.3, we criticize some of their conclu-

sions regarding the ”universal” scaling law and the purported evidence contradicting

the theory of aftershock zone scaling. Finally, we summarize DP’s reply [Davidsen

and Paczuski, 2007] to our comment [Werner and Sornette, 2007a] before concluding

the chapter.

5.3.1 Results by Davidsen and Paczuski (2005) (DP): Scale-Free Distribution

Contradicting Aftershock Zone Scaling Consistent with SOC

Davidsen and Paczuski [2005] (hereafter DP) analyzed the spatial distances between

subsequent earthquake epicenters in southern California. Their data set included 23, 374

earthquakes above md = 2.4 from January 1984 to December 2000 in the region

(120.5oW, 115.0oW ) × (32.5oN, 36.0oN). Their major results can be summarized as

follows:

• DP found that spatial distances between subsequent earthquakes in southern Cal-

ifornia exhibit scale-free (power-law) statistics with a critical exponent δ ' 0.6

in the range 2 km to ∼ 500 km. Their results are shown in Figure 5.1.

• The probability density function (pdf) pmd,L(∆r) of the spatial distances ∆r =
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Figure 5.1: The probability density function Pm,L(∆r) of the spatial distances between

successive earthquakes in southern California as a function of the scaled variable ∆r/L

for various magnitude thresholds and linear box sizes L. This figure was copied from

Davidsen and Paczuski [2005] (their Figure 1).

|ri+1− ri| between successive earthquakes obeys finite size scaling (FSS) under

a change of the linear extent L of the box in which earthquakes are studied. The

proposed scaling ansatz is:

pmd,L(∆r) =
f(∆r/L)

L
(5.3)

where the scaling function f(x) decays as x−δ with δ ' 0.6 for x < 0.5. For x >

0.5, it decays quickly since the finite cell size requires that f(x) = 0 for x >
√

2.

The subscripts md = (2.4, 3.0, 3.4) and L = (20km, 100km, 200km, 448.5km)

indicate the detection threshold above which the pdf was estimated and the linear

size of the boxes in which subsequent earthquakes were defined. For a given L,

the distances between successive earthquakes in each box were concatenated,

i.e. the successive-event distances from different boxes were mixed together
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to compute the overall pdf. They claimed that the pdf did not depend on the

different thresholds md.

Based on these observations, the authors made the following conclusions:

1. DP claim that “the appearance of FSS precludes the existence of any other length

scale over the range where FSS holds. Thus no physical length scale exists in

the range from 20 km to ' 500 km, in contrast to the theory of aftershock zones

[Kagan, 2002a]. According to this theory, main shocks generate aftershocks

within finite aftershock zones, whose extent is comparable to the rupture length

lr = 0.02× 100.5m km of the main event. This implies that the distance between

subsequent aftershocks would be limited to the size of the largest aftershock

zone, which is less than 90 km for the catalog analyzed here.” Using their for-

mula for the rupture length lr, they find that the largest rupture lengths of this pe-

riod are given by the M7.3 Landers and M7.1 Hector Mine earthquakes, both of

which are smaller than 90 km. “However, we find no break or change in scaling

behavior for larger distances extending all the way up to the size of the region

considered, of the order of 500 km.” They thus claim that “these observations

contradict the theory of aftershock zone scaling with main shock magnitude.”

2. The exponent δ ' 0.6 is claimed to be a dynamical critical exponent character-

izing the dynamical features of (self-organized) critical seismicity, rather than

the static, geometrical features. The latter was recovered in the form of the

correlation dimension by temporally randomizing the catalog, thereby destroy-

ing any temporal correlations. The critical exponent δ is thus purported to be

a novel, dynamical exponent describing the finite size scaling of the underlying

self-organized critical phenomenon.

In section 5.3.3, it will be shown that their model-free method of analysis is not
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sensitive enough to sustain the claim in DP’s conclusion 1 that aftershock zone scaling

does not exist. But first, DP’s conclusion 2 is examined in section 5.3.2.

5.3.2 On DP’s Proposed Finite Size Scaling and the Dynamical Exponent

Assume for a moment that the pdf of distances between successive earthquakes really

did obey finite size scaling with a power law scaling function. Although section 5.3.3

will cast doubt on this hypothesis, this exercise provides insight into the pitfalls of

finite size scaling. The authors note that “as δ is unambiguously less than one, the dis-

tribution pmd,L(∆r) becomes non-normalizable for large L. Extrapolating our results,

the finite size of the earth may play an important role in the definition of distances

between subsequent earthquakes.”

As discussed in section 5.2, the thermodynamic limit is a central pillar in the study

of critical phenomena. If indeed functions obey FSS and the physical system is critical,

then the thermodynamic limit must be well defined. Else, there is a problem, either

with the criticality hypothesis or the FSS and most likely both. In the present case, the

thermodynamic limit corresponds to L → ∞, i.e. the linear size of the spatial area

tends to infinity. In other words, if the limit L → ∞ cannot be taken, something is

wrong.

It is important to distinguish between a well-defined thermodynamic limit (in a

mathematical sense) and the finiteness of any physical system. Since only an infinite

system can be truly critical without any finite size corrections, no physical system can

ever attain that status. However, while there is a physical size of any real critical system

which restricts its properties strictly to off-but-near criticality, the thermodynamic limit

can (mathematically) be taken, so that the toolbox of critical phenomena can be applied

in the (abstract) thermodynamic limit. In principle, renormalization group theory can

be used to derive the exponent of the moments of the pdf in this abstract limit. One
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can then introduce system-specific corrections to the scaling, including the finite size

effects of the observed system.

A geophysical example is provided by the Gutenberg-Richter distribution, whose

probability density function is a power law with exponent 1 + µ ' 1 + 2/3 after

changing variables from magnitudes to moments (we use the non-standard terminology

of the full exponent 1 + µ here to enable a direct comparison with DP’s δ). The law

cannot extend to infinite magnitudes because of the finite size of the Earth. But its

exponent is larger than one so that, in principle, the same pdf can be normalized in the

thermodynamic limit as the size of the Earth tends to infinity. However, the infinite

mathematical expectation for µ < 1 would require an infinite amount of energy to be

available in the Earth [Knopoff and Kagan, 1977], which has led to the debate over

whether the observed roll-off in the distribution may be due to something other than

finite size effects [Knopoff and Kagan, 1977; Sornette et al., 1996; Kagan, 1999a;

Pisarenko and Sornette, 2003; Pisarenko et al., 2004, 2008].

With this discussion in mind, I return to the statement by DP that the pdf becomes

“non-normalizable” because the supposed scaling exponent δ is less than one. As just

mentioned, if the thermodynamic limit cannot be taken or if the pdf cannot be normal-

ized, this constitutes a very serious problem for the proposed criticality and FSS. Rec-

ognizing a potential issue, the authors state that “the finite size of the earth may play

an important role in the definition of distances between subsequent earthquakes.” The

thermodynamic limit corresponds to an infinite-size critical “Super-Earth” on which

earthquakes occur. In the following it is shown that (i) the pdf can always be normal-

ized so that the thermodynamic limit is well-defined and there is no need to (wrongly)

invoke the finite size of the Earth, and (ii) the true scaling exponent δ† equals one under

a more rigorous scaling ansatz. The latter is an application of the results on the FSS of

pdfs by Christensen et al. [2007].
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Assume that the power law scaling function holds above a fixed minimum thresh-

old r0 (I will henceforth denote ∆r by r for notational simplicity). In fact we know

that the pdf must tend to zero for r → 0 because the probability of a subsequent earth-

quake occurring at the same exact point vanishes (assuming a point source nature of

earthquakes). For any L > r0, the normalization of the unnormalized pdf is given by

the zeroth moment:

〈r0〉L =

∫ +∞

−∞
pL(r)dr (5.4)

where pL(r) = f(r/L)/L with f(x) ∼ x−δ for 2 km < r < 0.5L km, as reported by

DP and given by expression (5.3). I will show that limL→∞〈r0〉L exists and is finite so

that the pdf never becomes “non-normalizable.”

The normalization can be performed in three parts:

〈r0〉L =

∫ r0

0

pL(r)dr +

∫ L/2

r0

pL(r)dr +

∫ ∞

L/2

pL(r)dr (5.5)

We have already argued that pL(r) decays to zero for r → 0 so that the first integral is

always a finite constant, say c1. Furthermore, the third integral is taken over the range

in which the scaling function f(x) is quickly decaying until x =
√

2L, after which the

pdf is zero. Therefore, the third integral is also a finite constant, say c3, unless L =∞,

in which case the third integral is zero because the entire support of the pdf is taken

up by the first and second integral. The second integral can be evaluated as follows

(where A is a constant of proportionality that depends on L and δ but not r):∫ L/2

r0

pL(r)dr =

∫ L/2

r0

AL−1f(
r

L
)dr =

∫ L/2

r0

AL−1
( r
L

)−δ

dr

= ALδ−1

[
r1−δ

1− δ

]L/2

r0

, δ 6= 1

=
A

1− δ

(
1/21−δ −

(r0
L

)1−δ
)

(5.6)

which is positive since r0 < L/2 and δ < 1.

117



Taking the limit L→∞ of the three integrals gives the following result:

lim
L→∞
〈r0〉L = lim

L→∞
c1 + lim

L→∞

[
A

1− δ

(
1/21−δ −

(r0
L

)1−δ
)]

+ lim
L→∞

c3

= c1 +
1/21−δ

1− δ
· lim

L→∞
A+

r1−δ
0

1− δ
· lim

L→∞

(
A

L1−δ

)
+ 0

= c1 + c′ lim
L→∞

A+ c′′ lim
L→∞

(
A

L1−δ

)
(5.7)

where c′ and c′′ are finite constants. Expression (5.7) shows that as long as limL→∞(A) <

∞, the normalization constant can be calculated. Therefore, the pdf in expression (5.3)

can always be normalized, even in the thermodynamic limit. Hence, the statement by

DP that the pdf becomes “non-normalizable” for large L is wrong and there is no need

to wrongly invoke the finite size of the Earth.

Let us briefly consider a more rigorous scaling ansatz, which further clarifies the

the perceived problem of the non-normalizability and demonstrates that the apparent

scaling exponent δ < 1 should be absorbed into the scaling function, while the true

scaling exponent δ† = 1. This presentation follows Christensen et al. [2007].

We begin by repeating the finite size scaling ansatz for probability density functions

already introduced in section 5.2:

P (s; sc) = as−τG(s/sc) for s, sc � s0 (5.8)

where the parameter a is a non-universal metric factor, τ is a universal (critical) expo-

nent, and G is a universal scaling function that decays sufficiently fast for s � sc. In

the regime s0 � s� sc, the pdf shows power law behavior:

P (s; sc) ∝ s−τ̃ (5.9)

where the apparent exponent τ̃ is the slope of the fit to the data when plotting logP (s; sc)

versus log s, as is the case in DP’s work (see Figure 5.1). In the informal expression

(5.9), the scaling function is missing, so that to derive (5.9), one needs to assume that
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the scaling function is roughly constant in this regime. If that is indeed the case, then

the apparent exponent equals the true exponent τ̃ = τ . But if the scaling function is

itself a power law in the scaling regime, then τ̃ 6= τ . To illustrate, one can define a

“cut-off” function G̃, which can be a Heaviside step function H(1 − s/sc) which is

constant up to sc and zero for s > sc, and assume that the scaling function is of the

form G(x) = xαG̃(x). Hence, the pdf behaves as as−τ (s/sc)
α in the scaling regime,

so that the actual scaling exponent is given by τ = τ̃ + α.

Christensen et al. [2007] demonstrate that, if the apparent exponent τ̃ is less than

one, then the scaling exponent τ = 1 exactly. This can be seen from the following.

Assume the pdf has the form:

P (s; sc) = ãs−τ̃ G̃(s/sc) fors, sc � s0 (5.10)

which corresponds exactly to the ansatz by DP. Naively, one would equate τ̃ = τ ,

but for τ̃ < 1, this is incorrect. The unknown prefactor ã can be derived from the

normalization condition:∫ sc

s0

ãs−τ̃ds =
ã

1− τ̃
(s1−τ̃

c − s1−τ̃
0 ) ≡ 1 for τ̃ 6= 1 (5.11)

Note that if τ̃ < 1, then ã → 0 as sc → ∞. By comparison with the normalization

constant A above in expressions (5.6) and (5.7), we can identify ã = AL−1, which

indeed decays to zero as L→∞. This provides another way to show that the pdf form

proposed by DP in (5.3) can always be normalized.

Now substitute (5.11) into (5.10), and simplify for τ̃ < 1 to obtain:

P (s; sc) = (1− τ̃)s−1(s/sc)
−τ̃ G̃(s/sc) (5.12)

By comparison with the original scaling ansatz (5.8), we can identify a = (1 − τ̃),

τ = 1 and G = (s/sc)
−τ̃ G̃. We can then make the identifications δ = τ̃ and G(·) =
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f(·), proving that DP’s δ ' 0.6 is an apparent exponent that is in reality related to the

scaling function, while the scaling exponent is δ† = 1.

In summary, we have clarified the finite size scaling ansatz of DP by showing

(i) the pdf can always be normalized so that there is no need to wrongly invoke the

finite size of the Earth, and (ii) if finite size scaling were to hold, the scaling exponent

would equal one exactly, while the apparent exponent δ is part of the power law scaling

function. Issues such as the two discussed here appear rather frequently in the literature

(see the discussion by Christensen et al. [2007] and Chapter 2 of Pruessner [2004]),

which justified the lengthy treatment. In particular, this section serves as an example

of potential pitfalls and is not intended solely as a critique of DP because, as we will

see in the next section, we will present evidence that challenges the existence of DP’s

proposed power law finite size scaling and the universal scaling law.

5.3.3 Comment on “Analysis of the Spatial Distribution Between Successive Earth-

quakes” by Davidsen and Paczuski (2005) ∗

Davidsen and Paczuski [2005] claim evidence contradicting the theory of aftershock

zone scaling (AZS) in favor of scale-free statistics. DP cite Kagan [2002a] on AZS but

their definition differs: DP claim the“theory” states “main-shocks generate aftershocks

within finite [...] zones [...] comparable to the [main-shock’s] rupture length lr =

0.02 × 100.5m”. Kagan [2002a] fit aftershocks with a Gaussian and found scaling of

the standard deviation (a proxy for rupture length) with moment. He did not dispute

the well-known fact that aftershocks occur far beyond lr [Hill et al., 1993]. We further

present three elements showing that DP’s analysis may not detect rupture length scales.

First, their power law depends on one single earthquake. We use the same data

∗An edited version of this section was published in Werner, M. J. and D. Sornette, Phys. Rev.
Lett., 99, 179801, 2007. Copyright (2007) by the American Physical Society.
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as Davidsen and Paczuski [2005] but contrast in Figure 5.2 the active 6-month period

from June 1 until December 31, 1992 including the June 28 M7.3 Landers earthquake

(crosses) with the remaining catalog (circles). First, removing only 6 months from a 17

year period causes the power law to disappear. Second, the Landers aftershocks show

clear signs of scales, such as the bump marked by an arrow, which may be due to the

simultaneous aftershocks of the June 28 M6.4 Big Bear and the July 11 M5.7 Mojave

earthquake and the rupture length of Landers. Rather than a period of “heterogeneous”

rates, DP’s results are dominated by a single event.
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Figure 5.2: Distribution of the epicentral distances between successive quakes in

southern California: (crosses) Landers and its aftershocks; (circles) the remainder of

the 17 year catalog.

Second, we find no power laws in other regions. For Japan (Figure 5.3, cir-

cles), we use the JMA catalog from Jan 1984 to Dec 2001 within (120oE, 150oE) by

(25oN, 45oN). Despite being more seismically active (and hence “heterogeneous”, as

DP require), no power law emerges. For northern California (Figure 5.3, crosses), we
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use NCSN data from Jan 1984 until Dec 2004. We did not repeat DP’s analysis for

smaller boxes because without a power law at the largest scale, DP’s finite size scaling

(of a power law scaling function ∼ x−δ) cannot hold.
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Figure 5.3: Same as Figure 5.2 for Japan (circles) and northern California (crosses).

Inset: ETAS model simulation.

Third, we show in Figure 5.3 (inset) that a model [Ogata, 1988] with explicit AZS

consistent with Kagan’s definition can reproduce the power law. Therefore, an ap-

parent power law in interevent distances does not necessarily contradict AZS. We

simulated a catalog of comparable duration and number of events as in DP’s data

set with an ETAS model [Ogata, 1988], explicitly including rupture length scales

lr(m) = 0.02 × 100.5m in the spatial aftershock decay with distance d according to

P (d) ∼ (lr(m)+d)−(1+µ) (e.g. Helmstetter et al. [2005a]) and constrained the catalog

to include a Landers-like M7.3 main-shock. We used the parameters (b = α = 1, p =

1.1, c = 0.0001, k = 0.0025, µ = 2, background=1.0 per day, md = 2.4 in a 500 km

by 500 km window). We observe an apparent power law irrespective of the largest
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aftershock zone scale lr ∼ 90 km.

5.3.4 DP’s Reply and Discussion

Davidsen and Paczuski [2007] (hereafter DP2) composed a reply to our comment

[Werner and Sornette, 2007a] (hereafter WS). Their reply consists of four arguments,

which we summarize briefly and discuss point by point.

• DP2 reply that “almost all of [WS’] arguments are based on an analysis that is

completely insensitive to finite size scaling [. . . ]. While we studied the probabil-

ity density function (PDF) PL(∆r) of spatial distances over all boxes of a given

linear size L and its variation with L, WS do not take into account any variation

with box size. Instead, they consider all events in the given catalog being in a

single “box” whose size and shape is determined by the catalog. Since the scal-

ing function f is not constrained to a particular form a priori, the presence or

absence of finite size scaling cannot be established by considering a single scale

L as claimed by WS. Thus, they cannot make any statements about the variation

with linear size L and the existence of finite size scaling.”

DP2 are wrong in saying that we cannot make any statements about FSS: we

can say that the scaling function cannot be a power law, as already stated in our

comment. It is true that, in principle, there could indeed be FSS, but without a

power law at our chosen scale, there cannot be a data collapse onto a power law

and hence no FSS with a power law scaling function, as claimed by DP. Thus,

at the very least, the “universal” scaling function was reduced to a “regional”

scaling function that changes shape from a power law in southern California to

something different in Japan and northern California. This strongly challenges

the idea that universal features are being observed that may be related to the

criticality in the earth’s crust. To support their claim, DP must now find and
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explain FSS with a different scaling function in different regions of the world.

• DP claim that our results for Japan and northern California are “strikingly simi-

lar for periods of quasistationary seismic activity”, as defined by Corral [2006].

“This suggests that the observation periods in Japan and northern California

[. . . ] show rates of seismic activity which are rather homogeneous” compared to

the “heterogeneous” southern California data set. DP repeat that their proposed

power law scaling ansatz “only holds for very long observation periods where

the rate of earthquake activity is highly heterogeneous in space and time”.

As already stated in the comment, Japan is more seismically active than southern

California. Therefore, Japan is expected to be more heterogeneous in terms

of seismic rates. As a consequence, the power law scaling should be easily

observed in Japan. The fact that we do not observe a power law is therefore

a direct contradiction of their qualification (that heterogeneous rates must be

present for the power law to appear). This observation, in turn, suggests that

the power law in southern California is a coincidence rather than a universal

feature that seems difficult to reproduce elsewhere. This point also highlights

the subjective definition of homogeneous and heterogeneous rates.

• Their third point is as follows: “Another point raised by WS is that aftershocks

occur at distances larger than the main shock’s rupture length. This is well

known, yet the vast majority of what are typically considered aftershocks occur

within distances which are comparable to and no more than a few times the rup-

ture length (see, for example, [Shcherbakov et al., 2005] and references therein).

In particular, the largest rupture length in the catalog from southern California

we studied is ' 90 km. This is significantly less than the spatial extent of the

area studied (' 500 km), which allows us to test the hypothesis of aftershock

zone scaling with magnitude. As our results [. . . ] show, no physical length scale
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exists in the range from 20 to ' 500 km”.

We are not entirely sure about the argument of DP here. Perhaps they are calling

attention to the fact that many other authors do assume that aftershocks occur

within a few rupture lengths of the main shock, so that their definition of after-

shock zones was indeed justified. In that case, the misunderstanding of after-

shock zone scaling is that of the authors of such studies, not ours, and presents a

weak and uninformative null hypothesis to test.

• Finally, DP state that “While [WS] claim that this extended [ETAS] model is an

accurate description of aftershock zone scaling with main shock magnitude, a

comparison of the Landers sequence shown in [Figure 5.2] and the ETAS model

in [Figure 5.3] suggests otherwise. More importantly, the particular form of

P (d) is speculative - it does not follow from the work by Kagan – and it is by

no means generally accepted. Despite some indication for a power law with

µ ' 1.35 for short times after the main shock [Felzer and Brodsky, 2006],

other results even directly contradict the form of a power-law decay for dis-

tances larger than the main shock rupture length [Davidsen et al., 2006, 2007]

if the activity is considered over the long time scales relevant for our study in

[Davidsen and Paczuski, 2005]. To summarize, the behavior of a model, which

is not an accurate description of aftershock zone scaling, cannot prove that our

earlier results are insensitive to the existence of physical length scales associated

with aftershock zones.”

First, we do not claim that the extended ETAS model is an accurate description

of aftershock zone scaling. Rather, we show simply that a particular (reasonable)

form of aftershock zone scaling is not inconsistent with the apparent power law.

This suggests that aftershock zones may be present in the power law, but that

DP’s power of resolution is not good enough to resolve these scales. The idea
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is to challenge DP into thoroughly testing their results based on simulations.

Second, the simulations are supposed to reproduce the entire data set, not simply

the Landers sequence, as DP seem to believe. As stated in the comment, we use

a similar number of earthquakes in a similar period of time as for the original DP

data set for southern California and constrain the catalog to include a Landers-

like event, thereby modeling the entire data set, not just subsections. Third, as

already stated, it is true that the spatial kernel of the ETAS model which we use

does not follow from Kagan’s work: in fact no particular form follows from his

work, except that the kernel must decay somehow with distance and contain a

scale associated with the main shock rupture length that scales with magnitude.

Neither do we claim that the spatial kernel is a highly accurate or accepted form.

In fact, the spatial kernel in the ETAS model is perhaps the least agreed upon

building block of the model. It is a testament of the lack of power of DP’s data

analysis that we can nevertheless reproduce the observations. But our point is

different: we have shown that aftershock zones can be hidden in the apparent

power law, so that an apparent power law does not imply that aftershock zone

scaling is wrong. It is now in DP’s hands to resolve this non-uniqueness to

continue their claim that their results contradict aftershock zone scaling.

We did not attempt to settle the question of how aftershocks distribute spatio-

temporally around main shocks. This is an important topic that needs to be addressed.

In our comment [Werner and Sornette, 2007a], we solely intended to challenge DP to

test their results elsewhere and by simulations. As long as finite size scaling has not

been shown to hold in other regions of the world, and as long as a reasonable model

with explicit aftershock zone scaling can reproduce their observations, their claims do

not stand.
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5.4 Conclusion

This chapter contributed to the ongoing debate in the literature on the hypothesis that

earthquakes are self-organized critical and on the existence, validity and interpreta-

tion of finite size scaling relations and universal scaling laws of probability density

functions of inter-earthquake statistics. In agreement with previous criticism of the

purported scaling laws, we find little evidence that supports such a claim for the spa-

tial distances between successive earthquakes. Rather, previously known statistical

laws about seismicity are sufficient to explain the apparently novel features.

In particular, we closely analyzed the work of Davidsen and Paczuski [2005], who

extended the analysis from temporal recurrence times to the spatial dimension by sug-

gesting that the probability density function of spatial distances between successive

earthquakes obeyed finite size scaling with a power law scaling function. This result

was interpreted to contradict aftershock zone scaling. First, we analyzed the proposed

scaling ansatz and were able to clarify a perceived problem regarding the normaliza-

tion of the pdf. We used the results of Christensen et al. [2007] to show that the actual

scaling exponent must equal 1 and that the proposed exponent δ ' 0.6 is an apparent

exponent. However, a re-analysis of the data challenges the claim of finite size scaling

itself and suggests that the scales associated with main shock rupture lengths may be

hidden in the data and that the analysis is not sensitive to their existence.

The conclusion is therefore that the results of Davidsen and Paczuski [2005] do

not add to our knowledge, similar to previous criticism of universal scaling laws in

seismicity. The study highlights the need for thorough testing of new data analysis

methods before claims are made contradicting established knowledge. By simulating

data that was analyzed in the same way as the real data, we showed that the null hy-

pothesis could reproduce the data, which were supposed to be evidence contradicting

the null hypothesis. This underlines the need for rigorous testing of hypotheses on
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simulated benchmark data. Models with realistic clustering, such as the ETAS model,

can provide powerful null hypotheses against which observed patterns can be tested.

To provide better and better benchmarks, the null hypotheses must themselves be well-

understood, tested and calibrated. This is the topic of the next chapter.
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CHAPTER 6

Magnitude Uncertainties Impact Seismic Rate

Estimates, Forecasts and Predictability Experiments ∗

6.1 Abstract

The Collaboratory for the Study of Earthquake Predictability (CSEP) aims to prospec-

tively test time-dependent earthquake probability forecasts on their consistency with

observations. To compete, time-dependent seismicity models are calibrated on earth-

quake catalog data. But catalogs contain much observational uncertainty. We study

the impact of magnitude uncertainties on rate estimates in clustering models, on their

forecasts and on their evaluation by CSEP’s consistency tests. First, we quantify mag-

nitude uncertainties. We find that magnitude uncertainty is more heavy-tailed than

a Gaussian, such as a double-sided exponential distribution, with scale parameter

νc = 0.1 − 0.3. Second, we study the impact of such noise on the forecasts of a

simple clustering model which captures the main ingredients of popular short term

models. We prove that the deviations of noisy forecasts from an exact forecast are

power law distributed in the tail with exponent α = (aνc)
−1, where a is the expo-

nent of the productivity law of aftershocks. We further prove that the typical scale

of the fluctuations remains sensitively dependent on the specific catalog. Third, we

study how noisy forecasts are evaluated in CSEP consistency tests. Noisy forecasts are

∗A differently formatted version of this chapter was submitted to J. Geophys. Res. on October
9, 2007 and is currently under review. A preprint is available from http://arxiv.org/abs/0710.4196
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rejected more frequently than expected for a given confidence limit. The Poisson as-

sumption of the consistency tests is inadequate for short-term forecast evaluations. To

capture the idiosyncrasies of each model together with any propagating uncertainties,

the forecasts need to specify the entire likelihood distribution of seismic rates.

6.2 Introduction

Earthquake prediction experiments such as the recently formed Collaboratory for the

Study of Earthquake Predictability (CSEP) [Jordan, 2006] and the Working Group on

Regional Earthquake Likelihood Models (RELM) Schorlemmer et al. [2007] aim to

investigate scientific hypotheses about seismicity in a systematic, rigorous and truly

prospective manner by evaluating the forecasts of models against observed earthquake

parameters (time, location, magnitude, focal mechanism, etc) that are taken from earth-

quake catalogs. After the optimism of the 1970s followed by pessimism on earthquake

prediction [e.g. Geller [1997], the lesson for the next generation of earthquake fore-

casters is clear: model formulation, calibration and hypothesis testing must be robust,

especially with respect to data quality issues.

Paleoseismology provides a good example of the importance of uncertainties in

data analysis and hypothesis testing. Rhoades et al. [1994] showed that the hazard rate

on the Pallett Creek segment of the San Andreas fault can vary by a factor of three

depending on parameter estimates of any chosen model for the earthquake cycle, all

consistent with the data. Davis et al. [1989] showed that parameter uncertainties and

their continuous updating with time lead to vastly different probability forecasts of the

Parkfield segment. In the context of renewal processes, Sornette and Knopoff [1997]

showed that different distributions of inter-event times, which may all be compatible

with the data, have drastically diverging implications for the conditional waiting time

until the next earthquake. Ogata [1999a, 2002] concluded that uncertainties in the
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occurrence times of historical quakes make differentiating between different renewal

distributions for the hazard on one fault inconclusive.

CSEP and RELM and future experiments have at their disposal earthquake catalogs

of much higher quality than paleoseismic studies, of course. Nevertheless, these mod-

ern earthquake catalogs are ridden with their own observational uncertainties, biases,

arbitrary conventions and spatio-temporally varying quality characteristics. While

RELM acknowledges data problems and plans to simulate so-called “modified ob-

servations” from the actual observations and their error estimates in order to test the

forecasts against these alternative, potentially equally likely scenarios, their proposed

statistics and tests were not shown to be sufficient to solve data quality issues at the

various stages of the hypothesis testing process, in particular with respect to the gen-

eration of model forecasts.

But models for short-term forecasts are typically quite sensitive to recent earth-

quake catalog data that the models are calibrated on. For instance, the seismic rate

forecasts in popular clustering and aftershock models are exponentially dependent on

main shock magnitudes. These models include the Epidemic Type Aftershock Se-

quence (ETAS) Model [Ogata [1988]; see Helmstetter et al. [2006] for an implemen-

tation], Short Term Earthquake Probabilities (STEP) [Gerstenberger et al., 2005], the

model by Reasenberg and Jones [1989, 1994], the Epidemic Rate and State (ERS)

model by Console et al. [2007] and the model by Kagan and Knopoff [1987]. Small

errors in reported magnitudes can therefore have a large, detrimental effect on fore-

casts. Rather than entering at the evaluation phase, the magnitude uncertainties impact

during the input or calibration stage - not accounted for by the current RELM/CSEP

evaluation tests. To the best of our knowledge, no study has addressed the impact of

data quality on seismic rate estimates, model forecasts and their evaluation.

Here, we analyze how observational errors in magnitude estimates propagate to
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seismic rate estimates and forecasts in common aftershock models. While other data

quality issues are certainly important, we focus here on magnitude uncertainties, which

seem to be the most important source of noise for short term clustering models because

of the models’ exponential sensitivity on past magnitudes. However, because magni-

tude uncertainties are not routinely reported in earthquake catalogs, we first study the

accuracy of magnitude estimates in section 6.3. In section 6.4, we then use a sim-

ple aftershock model containing the basic ingredients of most operational short term

clustering models and investigate the impact of the magnitude errors on seismic rate es-

timates and forecasts. Finally, we conduct a numerical experiment in which we mimic

the RELM/CSEP testing center to investigate the impact of noise on the evaluation of

forecasts generated from noisy magnitude data.

6.3 Magnitude Uncertainties

6.3.1 Different Types of Magnitudes and their Errors

Magnitude is a measurement unit originally introduced by Charles Richter and Beno

Gutenberg during the 1930s at the California Institute of Technology to measure the

“size” of earthquakes. Different magnitudes measure different characteristics of seis-

mic waves (or of earthquake-generated tsunamis or surface deformation), although all

aim to quantify the “size” of an earthquake. For example, the original Richter mag-

nitude (ML) uses the maximum amplitude of seismic waves and the time difference

between P and S waves recorded on a Wood-Anderson seismograph along with cor-

rection factors for geometric spreading and attenuation. Body wave magnitudes (mb)

and surface wave magnitudes (MS) are based on amplitudes of P and surface waves

often near periods of 1s and 20s, respectively. Both may include corrections for fo-

cal depth, the period used, the attenuation and potentially a station correction for the
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inhomogeneity of the soil.

The moment magnitude [Kanamori, 1977; Hanks and Kanamori, 1979] is based on

the scalar seismic moment, which is the magnitude of the seismic moment tensor. The

moment tensor, in turn, is a representation of the equivalent body forces that would

produce the same radiated seismic wave pattern as the observed one. Under a point

source approximation, the seismic moment is equal to the product of the rigidity of

the material, the average displacement on the fault and the average fault area that

slipped. The moment is a long period (zero frequency) measure of the total energy

of the earthquake and in theory does not saturate. The moment magnitude has a clear

physical interpretation, while the relationship of other magnitudes to earthquake source

parameters is less (if at all) established.

Many other definitions and conventions exist for magnitudes. For instance, the

Advanced National Seismic System (ANSS) [Benz et al., 2005] reports various mag-

nitudes, including local (Richter-type) magnitudes, body wave magnitudes, moment

magnitudes and coda duration magnitudes. Few earthquake catalogs homogeneously

use the same magnitude type to measure earthquakes. The (Harvard) Centroid Mo-

ment Tensor (CMT) project catalog [e.g. Ekstrom et al. [2005]] is a rare exception of

a relatively uniform global catalog.

In principle, each magnitude type needs to be addressed separately to establish un-

certainties. For non-physics-based magnitudes (i.e. all but the moment magnitude),

this can be particularly difficult as they are conventions by definition and cannot be

verified independently. However, even in these cases it is possible to establish esti-

mates of the errors in the convention-based magnitude estimate. For instance, it is

possible to analyze the effects of discretization of media and equations, of the mea-

surement precision of seismometers, of the assumed velocity and attenuation models

of the Earth (spherically symmetric, 3D, etc) and of the resolution of the inversion
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algorithm depending, e.g., on station coverage. We will use the term intra-magnitude

uncertainties to refer to such individual magnitude error estimates. These uncertainties

measure how close a magnitude estimate may be to its convention-based “true” value.

More fundamentally, the definition of an earthquake “event” (and hence an as-

sociated magnitude) can be questioned. The identification of one earthquake seems

inherently tied to the particular time, space and frequency resolution of the observer.

Kagan and Knopoff [1981] constructed a branching model which mimics a continu-

ous deformation flow. When a Green’s function is applied to the deformation and a

scale imposed, the resulting seismograms seem to show separate events. Peng et al.

[2007] analyzed the properties of catalogs after large earthquakes and found by hand-

picking events from the waveforms that many more events are present than detected by

catalog routines, providing further observational evidence to the idea that the scale of

the observer may determine the definition of an event. In this article, we will assume

that listed catalog magnitudes are nevertheless useful for extrapolating and forecast-

ing seismic rates. This is the working assumption of all seismicity-based earthquake

forecasting experiments.

Earthquake prediction experiments such as RELM and CSEP use a so-called “au-

thorized data stream” for their “natural laboratories” [Schorlemmer et al., 2007]. For

California, this data stream is the ANSS catalog. Models accept the listed magnitudes

to generate forecasts of future events, irrespective of the type of magnitude listed. The

forecast validation is also performed against the listed magnitudes. Apart from the

intra-magnitude uncertainties, one should therefore also consider the uncertainties of

one particular magnitude estimate in relation to the magnitude that best forecasts fu-

ture events (if there exists such a “forecast magnitude”). For instance, the moment

magnitude may be more relevant in predicting aftershocks than a body wave magni-

tude: A. Helmstetter (personal communication, 2007) observed unbroken scaling of
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the number of aftershocks with moment magnitude ∝ 10αMW up to MW = 9.3 (the

great December 26 2004 Sumatra-Andaman earthquake). Physical mechanisms for

earthquake triggering might also be constrained by the knowledge of the “forecast

magnitude.”

But lacking this magnitude, we need to consider the uncertainties between the dif-

ferent types of magnitudes: the inter-magnitude uncertainties. We will study both

inter- and intra-magnitude uncertainties to get a sense of the scale of the uncertain-

ties. We then use these error estimates to simulate noisy magnitudes and to study their

impact on seismic rate estimates and forecasts in section 6.4.

6.3.2 Intra-Magnitude Uncertainties

Ideally, intra-magnitude uncertainties are reported by earthquake catalogs based on

knowledge about the seismic instruments and the inversion algorithm. Unfortunately,

such information is often lacking in catalogs. A rare exception is provided by the

Northern California Seismic Network (NCSN) catalog operated by the U.S. Geological

Survey (USGS) and the Berkeley Seismological Laboratory at UC Berkeley. We study

the reported uncertainties in section 6.3.2.2.

A simple alternative to studying these errors independently is to compare the mag-

nitude estimates for the same event from different networks and inversion algorithms,

e.g. from different catalogs. While one cannot assume that one measure is correct and

indicative of the error in the other, one can make some inferences, especially if the

catalogs seem uniform and trustworthy (established, e.g., by verifying completeness,

stability and other known statistical properties). We therefore study the differences

in moment magnitudes as reported by two relatively well-studied and trusted cata-

logs: the (Harvard) Centroid Moment Tensor (CMT) catalog [Dziewonski et al., 1981;

Dziewonski and Woodhouse, 1983; Ekstrom et al., 2005] and the USGS moment tensor

135



(MT) catalog [Sipkin, 1986, 1994].

6.3.2.1 Moment Magnitude Uncertainty From the (Harvard) CMT and USGS

MT Catalogs

Sipkin [1986] (his Figure 7) compared the CMT scalar moment tensor with the USGS-

MT scalar moment tensor. He generally found comparable values, but CMT moments

were smaller by a factor of two for small events and slightly larger for the largest

events. The scatter shows deviations of 0.25 in logarithmic moment units. Helffrich

[1997] compared the moment tensor solutions provided by three organizations: the

Harvard group, the USGS and the Earthquake Research Institute of the University of

Tokyo. He found a standard deviation of 0.21 in log10 moment units between the

three data sets. He also showed that the moment estimates systematically improved

(converged) for deeper events. Kagan [2003] found that the differences in moment

magnitude estimates of matched events reported by the Harvard CMT and the USGS

MT catalog have a standard deviation of 0.08 and 0.12 for deep and shallow events,

respectively. If both catalogs contain an equal amount of noise, then the standard

deviation of each estimate is equal to 0.05 and 0.08. Kagan [2002b] concluded that

the standard deviations for moment magnitude estimates in California was 0.08, while

conventional (first motion) catalogs provided less accurate estimates with a standard

deviation equal to 0.23. Since we are interested in simulating noisy magnitudes to

study their impact on seismic rate forecasts and prediction experiments, we update and

expand these analyses of moment magnitude to determine the entire distribution.

We used the Harvard CMT catalog from 1 January 1977 until 31 July 2006, which

contains 25066 events above MW ≥ 3 and wrote an algorithm to match its events with

the USGS MT catalog from January 1980 until 31 July 2006, which contains 4952

events above MW ≥ 3. Both catalogs are available from http://neic.usgs.

136



gov/neis/sopar/. Neither catalog contains events between 1 December 2005

and 31 March 2006. But since we are not interested in temporal properties of the

catalogs, this gap should not bias our results.

We consider two listings from the two catalogs to refer to the same event if they

are separated in time by less than 1 minute and in space by less than 150 km. Kagan

[2003] used the same definitions. In agreement with his findings, the matches are quite

robust with respect to space but less robust with respect to the condition on time.

Using these conditions, we match 4923 pairs of events. Only 29 events listed in

the USGS MT catalog cannot be matched with events in the Harvard CMT catalog. Of

these, 5 events pass the time requirement but fail the spatial condition. Thus one might

suspect extreme errors in locating the events. However, increasing the spatial limit up

to 1000 km does not change the results, i.e. the differences do not seem to be due

simply to large location errors. They seem to be events listed in the USGS MT catalog

that are entirely absent from the Harvard CMT catalog. Most of the other 24 events

listed in the USGS MT that could not be matched with events Harvard CMT seem to

be events in complex aftershock sequences where the identification of single events

may sensitively depend on certain different network characteristics and on choices in

the two computer algorithms. Vice versa, many events listed in the Harvard CMT are

absent from the USGS MT, often due to a lower detection threshold in the Harvard

CMT catalog.

For matched events, we calculate the moment magnitude MW from the scalar mo-

ment M0 (in Newton-meter) using the relation MW = 2/3 log10(M0) − 6 [Kagan,

2003] and analyze the differences in MW between Harvard CMT and USGS MT esti-

mates. Figure 6.1 shows the distribution of the differences in the moment magnitude

estimates from the two different catalogs. Figure 6.1a) shows a fixed kernel density

estimate [e.g. Izenman [1991]] of the probability density function (pdf) of the mag-
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nitude uncertainties (solid). Figure 6.1b) shows the same data in a semi-logarithmic

plot. Figures 6.1c) and d) show semi-logarithmic plots of the survivor function and

cumulative distribution function, respectively, in order to emphasize both tails.
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Figure 6.1: Estimating intra-magnitude uncertainty by comparing moment magnitude

estimates for the same event from the Harvard CMT and the USGS MT catalogs. a)

Fixed kernel density estimate (solid) of the probability density function of the dif-

ferences in moment magnitudes and maximum likelihood fit (dashed) of a Laplace

(double-sided exponential) distribution given by equation (6.1) with scale parameter

νc = 0.07. b) Same as a) but in semi-logarithmic scale. c) Semi-logarithmic plot of

the survivor function (complementary cumulative distribution function). d) Semi-log-

arithmic plot of the cumulative distribution function.

We performed a maximum likelihood fit of the data to a Laplace distribution (a
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double-sided exponential distribution), defined by:

pε(ε) =
1

2νc

e(−
|ε−〈ε〉|

νc
) (6.1)

where νc is the scale (e-folding) parameter indicating the strength of the noise and 〈ε〉

is a shift parameter equal to the median and mean of the distribution. The maximum

likelihood estimate of 〈ε〉 = 0.006 is given by the median and essentially indistin-

guishable from zero. To estimate the scale parameter νc (e-folding scale), we then

took absolute values of the deviations from the median and fit the resulting positive

data set to an exponential using maximum likelihood. We find that νc = 0.07 for the

entire data set. The dashed lines in all plots of Figure 6.1 correspond to this maximum

likelihood fit (using 〈ε〉 = 0.006 and νc = 0.07). The fit approximates the data well in

the body, but underestimates the tails as can be seen in Figure 6.1b), c) and d).

To estimate the effect of the tails which are fatter than exponential, we determined

the scale parameter νc as a function of the threshold above which we fit the distri-

bution. We determined the median of the data (corresponding to the threshold “0”),

took absolute values of the data and performed a maximum likelihood fit to an ex-

ponential distribution. We then increased the threshold (with respect to the median)

and re-calculated the scale parameter for each threshold value. Figure 6.2 shows the

resulting maximum likelihood estimates of νc as a function of the threshold. The error

bars show estimated 95 percent confidence bounds. Confirming the presence of the fat

tails, the estimated e-folding scale νc increases with the threshold from about 0.07 to

about 0.1.

The distribution of the differences between magnitude estimates is not the same

as the distribution of the individual magnitude uncertainties in one estimate (see the

next section 6.3.2.2 for such a direct estimate). To obtain individual uncertainties, one

can assume, for instance, that both uncertainties are identically and independently dis-

tributed (i.i.d.). In this case, the distribution of the differences can be assumed to be the
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Figure 6.2: Estimates of the e-folding scale parameter νc of the Laplace (double-sided

exponential) distribution of equation (6.1) as a function of the threshold above which

the data is fit. νc increases from 0.07 to about 0.1 due to fatter-than-exponential tails

before starting to fluctuate more strongly due to finite sample effects. Error bars show

95% confidence intervals.

convolution of the two individual distributions. In the case of Gaussian distributions,

the convolution is also a Gaussian with variance equal to the sum of the individual

variances. Unfortunately, the Laplace distribution is not endowed with the same prop-

erty. The difference between two Laplace distributed random variables is not exactly

another Laplace distributed random variable.

While we cannot determine the distributions of the individual uncertainties ex-

actly, we can, however, constrain them. For instance, they cannot be Gaussian for the

above-mentioned property that their differences would be Gaussian. The presence of
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exponentially or even more slowly decaying tails indicates that the individual uncer-

tainties have at least exponentially decaying tails. For instance, to obtain a distribution

for the difference of two random variables which looks approximately Laplace with

scale parameter 0.1, we found that using Laplace distributions for the individual vari-

ables requires them to have an e-folding parameter equal to 0.07. We even found that

the convolution of power law distributions was able to produce the observed tails more

accurately. In summary, the individual uncertainty distributions must have tails that

decay as slowly as or more slowly than exponential.

6.3.2.2 Intra-Magnitude Uncertainties Reported by the NCSN

In the context of the CSEP earthquake prediction experiment, the important intra-

magnitude uncertainties should be evaluated in California and in the regions where

natural laboratories are being established around the world (e.g. Europe, New Zealand,

West Pacific). For California, the earthquake catalog that provides the data for the

RELM and CSEP experiments is the ANSS composite catalog.

Many regional networks feed their data into the ANSS composite catalog. It is

essentially a computer program with rules for merging the data [e.g. Oppenheimer

[2007]]. The ANSS assigns so-called “authoritative” regions to each seismic network,

meaning that in those regions only data from its designated network is accepted into

the composite catalog. The Northern California Seismic Network (NCSN) fulfills this

role for northern California. The earthquake data that is passed on to the ANSS by the

NCSN in turn comes from two sources: the Berkeley Seismological Laboratory at the

University of California, Berkeley (UCB) and the USGS at Menlo Park.

The UCB reports mainly moment magnitudes and local magnitudes, while the

USGS reports coda duration magnitudes. Their policy for merging into ANSS is:

moment magnitude supercedes local magnitude supercedes coda duration magnitude
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(David Oppenheimer, 2007, personal communication). UCB does not report uncer-

tainties, but the moment magnitude is believed to be the most stable with uncertain-

ties around 0.1, while the scatter in local magnitudes is strongly affected by radiation

pattern (approximately 0.15 magnitude units) and can be as large as ±0.5 (Margaret

Hellweg, 2007, personal communication).

The USGS, on the other hand, does provide uncertainties to the ANSS catalog,

based on inversions by the Hypoinverse program, written by Fred W. Klein of the

USGS [Klein, 2002]. The Hypoinverse code “processes files of seismic station data

for an earthquake (like P-wave arrival times and seismogram amplitudes and durations)

into earthquake locations and magnitudes.” The summary magnitude for an event is the

weighted median of the station magnitudes. Each station can report a magnitude for

an event if its user-specified weight is non-zero. The final reported magnitude is the

value for which half of the total weights are higher and half lower.

The measure of uncertainty reported by the Hypoinverse program, available from

the NCSN in its hypoinverse format output and from the ANSS in its “raw” format,

is the Median Absolute Difference (MAD) between the summary magnitude and the

magnitudes from the other reporting stations.

The MAD value measures the variability of the magnitude estimates across several

stations. It therefore probes the assumed velocity, attenuation and geometrical spread-

ing models and the differences in station properties (e.g. frequency response, gain etc).

Systematic biases due to other reasons in the magnitude inversion, however, cannot be

captured by this measure. For instance, phase picking or instrument calibration may

be systematically biased. Furthermore, only one measure (the median) of the entire

distribution of the magnitudes from the different stations calculated for one event is

reported. If the distributions are heavy-tailed, then the median may give a false sense

of good measurement in the presence of large variability.
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Nevertheless, some inference can be made about the accuracy of determined mag-

nitudes. We collected all earthquakes in the NCSN’s authoritative region of the ANSS,

defined by a polygon with the following latitude and longitude coordinates: { 34.5,

-121.25, 37.2167, -118.0167, 37.75, -118.25, 37.75, -119.5, 39.5, -120.75, 42.0, -

121.4167, 42.0, -122.7, 43.0, -125.0, 40.0, -125.5, 34.5, -121.25 }. We selected data

from 1/1/1984 to 31/12/2006 (inclusive) above a magnitude threshold mth = 3. The

data with MAD values can be retrieved from the website http://www.ncedc.

org/ncedc/catalog-search.html by selecting output in the “raw” format.

This yielded 6125 earthquakes. But, as already mentioned, only the USGS reports

MAD values for its magnitudes, leaving 3073 events.
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Figure 6.3: Median Absolute Differences (MAD) versus their associated coda duration

magnitudes as reported by the NCSN in its authoritative region of the ANSS composite

catalog. MAD values measure the variability of the magnitude estimates for the same

event from different stations as computed from the HYPOINVERSE program of the

USGS.
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In Figure 6.3, we show a scatter plot of the MAD versus their associated duration

magnitudes. To test for a decrease of MAD with increasing magnitude, we divided the

magnitudes into bins of size 0.5 and calculated the mean MAD for each bin. In the

range 3.5 < m < 4.0 (2420 events), the mean MAD was 0.15; for 4.0 < m < 4.5 (372

events), the mean was 0.16; for 4.5 < m < 5.0 (22 events), the mean was 0.20. The

bin 5.0 < m < 5.5 had mean 0.27 but counted only 2 events. Rather than a decrease

of MAD with increasing magnitude, we see some evidence for an increase.

Figure 6.4 shows the kernel density estimate of the probability density function

(pdf) of the MAD values, the cumulative distribution function (cdf) and the survivor

function. For reference, we also included the 99% confidence limit (the MAD value

for which 99% of all reported MAD values are smaller). While the mean of the values

was 0.15 and the standard deviation 0.1, the 99% confidence limit was only reached at

0.59. That the distribution is strongly non-Gaussian can also be seen from the bottom

panel. The tails decay more slowly than an exponential, indicating that outliers occur

relatively frequently. Indeed, the maximum MAD value was 1.72.

Figure 6.5 shows a scatter plot of the MAD values versus the number of stations

involved in the computation of each coda duration magnitude and its MAD value.

When the number of stations involved is very small, we see large scatter - very small

MAD values of less than 0.1 and very large values above 0.5. On the other hand,

as more stations are involved, the smallest MAD values increase to about 0.1. This

may indicate that MAD values less than 0.1 are due to too few stations involved in the

computation and probably unreliable. (At the same time, we note that a MD = 5.32

event with MAD 0.38 was recorded by 328 stations, suggesting that large MAD values

are real.)

When the number of stations registering an event is small, this presumably implies

that the event is small and/or remote. Given that many events are located by less
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Figure 6.4: Median Absolute Differences (MAD) reported by the NCSN in its author-

itative region of the ANSS composite catalog. Top: kernel density estimate of the

probability density function (pdf). Middle: cumulative distribution function (CDF).

Bottom: survivor function plotted on logarithmic axes. The dashed line at MAD=0.59

corresponds to the 99th percentile of the distribution.

than 10 stations, we may have detected evidence that the ANSS is not complete in the

authoritative region of the NCSN down to m = 3, because even some MD ∼ 5 events

are constrained only by few stations.

Finally, it is difficult to interpret the group of large MAD values reported when

few stations are involved. Perhaps the events belong to a particular group defined by a

region or period with special properties that are not well modeled by the Hypoinverse

program.
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Figure 6.5: Median Absolute Differences (MAD) reported by the NCSN in its author-

itative region of the ANSS composite catalog as a function of the number of stations

involved in the computation of the magnitude and the MAD value.

6.3.3 Inter-Magnitude Uncertainties

As was mentioned before in this article, models in earthquake prediction experiments

indiscriminately use whatever type of magnitude is listed in the authorized data stream.

Given the random and systematic differences between the magnitudes, the relevant

magnitude uncertainties in the context of forecasting are in fact inter-magnitude uncer-

tainties. Many studies have investigated the relation of one magnitude scale to another

and their random scatter. We review some of those here. We then analyze two data

sets: (i) the differences between the CMT moment magnitudes and their correspond-

ing body or surface wave magnitudes from the catalog provided by the Preliminary

Determination of Epicenters [Preliminary Determination of Epicenters (PDE), 2001]

(section 6.3.3.1); and (ii) the differences between duration and local magnitudes in the

NCSN (section 6.3.3.2).
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Sipkin [1986] (his Figures 1 and 2) compared the body wave magnitudes mb and

surface wave magnitudes MS from the PDE catalog with early USGS scalar moments.

Body wave magnitudes were scattered by up to one magnitude unit for the same value

of the seismic moment, while surface wave magnitudes were less scattered but also

substantial. Dziewonski and Woodhouse [1983] (their Figures 14a and 14b) compared

the CMT moment with the PDE body wave magnitudes and found a similar amount of

scatter.

Harte and Vere-Jones [1999] compared the properties of the local New Zealand

catalog with the data from the PDE catalog, made available by the National Earthquake

Information Center (NEIC). They concluded that the differences between the PDE’s

mb and the local catalog’s ML were random for shallow events, but up to 1 unit of

magnitude in size. For deeper events, mb was systematically smaller than the local

ML.

Kuge [1992] found a systematic bias in the body wave magnitude mb reported

by the International Seismic Center (ISC) and the converted seismic moment taken

from the Harvard CMT catalog for intermediate and deep earthquakes in Japan. He

computed a “theoretical” mb based on the CMT seismic moment and regression rela-

tionships between the moment and NEIS (National Earthquake Information Service)

and ISC body wave magnitudes [Giardini, 1988]. The systematic differences were on

the order of 0.2 to 0.3 units.

Patton [2001] investigated the transportability of the Nuttli magnitude scale based

on 1-Hz Lg waves to different regions of the world. He routinely found differences of

different types of body wave magnitudes on the order of 0.3 magnitude units.

Kagan [2003] found that mb to MW conversions could result in scatter with a

standard deviation of 0.41. He also concluded that converting conventional magnitudes

into moment magnitude leads to uncertainties which are three to four times the errors
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in moment magnitude estimates (0.05 to 0.08).

6.3.3.1 Moment Magnitude vs Body and Surface Wave Magnitude in the CMT

and PDE Catalogs

The Harvard CMT catalog calculates moment magnitudes when it receives notifica-

tion of a large event either from the NEIC via the PDE system or from the ISC. We

compared the seismic moments of the Harvard CMT with the original PDE body (mb)

and/or surface wave (MS) magnitudes. That large systematic differences exist between

these magnitudes is well-known. Here, we look at the differences between the Harvard

MW and the PDE mb and MS estimates to evaluate their scale.

We used the global Harvard CMT catalog from 1 January 1976 until 31 Decem-

ber 2005 (available from http://www.globalcmt.org/CMTfiles.html in gzipped “ndk”

format). We found 24583 events listed. Of these, we selected all events that were as-

signed the source “PDE” (21450 events) and converted their scalar seismic moments

to moment magnitudes using the equation MW = 2/3 log10(M0)− 6 [Kagan, 2003].

We found 21435mb and 13363MS values which we subtracted from their correspond-

ing MW magnitudes. Figure 6.6 shows the resulting differences as a function of the

Harvard CMT MW . There are systematic trends and random scatter. The body-wave

magnitude mb systematically underpredicts MW for about MW > 5.2. Since mb is

based on relatively short periods, the energy in these frequency bands does not in-

crease beyond this value and the scale saturates. The S-wave magnitude MS , on the

other hand, underpredicts MW systematically but especially for MW < 7.

Figure 6.7 shows fixed kernel density estimates of the probability density functions

(pdfs) of the two sets of differences. The systematic shifts of both pdfs indicate sys-

tematic under-estimation of MW . The means of the data are 0.26 for mb and 0.42 for

MS . The widths of the pdfs indicate the random scatter. The standard deviations are
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Figure 6.6: Estimating inter-magnitude uncertainties by comparing the CMT moment

magnitude MW with its corresponding body wave magnitude mb (a) and surface wave

magnitude MS (b) from the PDE catalog.

approximately 0.29 for mb and 0.26 for MS .

For context, an ETAS model would predict 10 times as many aftershocks if the

magnitude unit were inflated spuriously by one magnitude unit! These differences can

have a profound impact on global testing experiments.

6.3.3.2 Duration Magnitude vs. Local Magnitude in the NCSN Catalog

The NCSN catalog reports both coda duration magnitude MD and maximum ampli-

tude (local) magnitude ML in its Hypoinverse output format, available from http:

//www.ncedc.org/ncedc/catalog-search.html. We used data from 1

January 1984 until 31 December 2006 in the region 33o to 43o latitude and -120o to -
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Figure 6.7: Kernel density estimates of the probability density functions of the dif-

ferences between the Harvard CMT moment magnitudes MW and their corresponding

body wave mb (dashed) and surface wave MS (solid) magnitude estimates from the

PDE. The means of the data are 0.26 for mb and 0.42 for MS . The standard deviations

are about 0.29 for mb and 0.26 for MS .

115o longitude. We selected earthquakes larger than the magnitude threshold mth = 3,

leaving a total of 4679 events. We found 4595 reported MAD values for duration

magnitudes Md and 2711 MAD values reported for local magnitudes ML.

Whenever both magnitudes were available for the same event, we compared their

values. However, we additionally required that at least one of the two magnitudes be

equal to or larger than M(·) = 3. Despite selecting a magnitude cut-off mth = 3 in the

search algorithm on the website http://www.ncedc.org/ncedc/catalog-search.

html, we found 74 events out of the total 4679 where both MD and ML were smaller

than the prescribed cut-off. The extreme case was an event with MD = 0.35 and

ML = −0.43 (we presume that the cut-off magnitude corresponds to the magnitude
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reported to the ANSS, which may be different, see beginning of section 6.3.2.2). Re-

moving these 74 events, we are left with 4605 events which obey the condition that at

least one of the two magnitudes be equal to or larger than 3. Out of these events, we

found 2733 events for which both MD and ML were reported. We then calculated the

difference ∆ = MD −ML for these 2733 events.

Figure 6.8 shows the differences as a function of MD. Recall that at least one of

the two magnitudes must be larger than 3 (but not necessarily both). Few events are

reported with ML > 3 and MD < 3. On the other hand, many events are reported

with ML < 3 and MD > 3. It is hard to discern a trend visually, but ML seems to

under-predict MD up to about MD = 3.5, then over-predict until about MD = 5.5.
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Figure 6.8: Differences between the coda duration magnitude MD and the local am-

plitude magnitude ML versus MD in the NCSN catalog whenever at least one is larger

than 3.

Figure 6.9 shows a fixed kernel density estimate (solid) of the probability density

function of the differences ∆. The largest difference between the two was 2.87 mag-
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nitude units (note that the x-axis was cut at ±1). The mean of their differences was

−0.015, essentially showing no systematic bias. The standard deviation was 0.3, while

the e-folding scale parameter is 0.2. Also shown are fits of the data to a Gaussian dis-

tribution (dashed; mean equal to −0.015 and standard deviation equal to 0.3) and to

a Laplace distribution (dash-dotted; median equal to −0.04 and scale parameter equal

to 0.2). While neither fit approximates well the central part of the pdf, the Laplace

distribution provides much better fits to the bulk and tails of the data. The Gaussian

distribution significantly underestimates the probability of outliers.
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Figure 6.9: Kernel density estimate (solid) of the probability density function of the

differences ∆ between the duration magnitude MD and the local magnitude ML re-

ported by the NCSN. Also shown are a Gaussian fit with mean −0.0153 and standard

deviation 0.3 (dashed); and a fit to a Laplace pdf with median −0.04 and e-folding

scale parameter 0.2 (dotted).
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6.3.4 Summary of Magnitude Uncertainty

Firstly, we compared estimates of the moment magnitude from the CMT and USGS

MT catalogs. We found that the Laplace distribution is a good approximation to the

bulk of the magnitude differences but it underestimates the tails. Our characterization

of the entire distribution of the magnitude differences implies that individual uncer-

tainties are distributed with tails that decay exponentially or even more slowly.

Secondly, we analyzed a data set directly relevant to CSEP predictability experi-

ments. We analyzed MAD values, a magnitude uncertainty measure, reported in the

NCSN’s authoritative region in the ANSS. We found (i) MAD values fluctuate up

to 1.71 with an average of 0.15, (ii) there is no evidence that magnitude uncertainty

decreases with increased magnitude, (iii) the region may not be complete down to

md = 3, (iv) MAD values less than 0.1 seem unreliable, and (v) the 99th percentile of

MAD values is only reached at 0.59.

We also considered inter-magnitude uncertainties. These can be extremely large

and include systematic differences. We found that PDE body and surface wave magni-

tudes are systematically smaller (with mean 0.26 and 0.42, respectively) and randomly

scattered (with standard deviations 0.29 and 0.26, respectively).

Finally, we studied the differences between NCSN’s duration and local magni-

tudes. We found that the Laplace distribution again provided an adequate fit to the

differences with scale factor 0.2 so that individual uncertainties have exponential or

fatter-than-exponential tails.

6.4 Impact of Magnitude Noise on Seismic Rate Estimates

In the previous section, we studied magnitude uncertainties. How do these magnitude

uncertainties propagate to seismic rate estimates and to forecasts? How can they in-
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fluence forecast evaluation tests and the rate of type I and II errors? In particular, how

could they influence the CSEP predictability experiments? In this section, we address

the first question of the impact of magnitude noise on the estimates of seismic rates

in short term clustering models. We use the knowledge of magnitude uncertainties

we have gained in the previous section to model to simulate magnitude noise. In sec-

tion 6.5, we conduct a numerical experiment to begin answering the second and third

question.

6.4.1 A Simple Aftershock Clustering Model

Most short term seismicity models use three statistical laws to extrapolate rates into

the future. These are the Gutenberg-Richter law for magnitude-frequency statistics,

the Omori-Utsu law for the temporal distribution of aftershocks and the productivity

law for the expected number of offspring of a mother-shock. Models based on these

laws include the Epidemic Type Aftershock Sequence (ETAS) Model [Ogata, 1988],

Short Term Earthquake Probabilities (STEP) [Gerstenberger et al., 2005], the model

by Reasenberg and Jones [1989, 1994], the Epidemic Rate and State (ERS) model by

Console et al. [2007] and the model by Kagan and Knopoff [1987]. Although there are

important differences between these models, all of them employ the above-mentioned

three laws to forecast events. In particular, all of them use the so-called productivity

law, defined below in equation (6.3), in which the number of expected aftershocks is

an exponential function of the mother magnitude.

We choose the Poisson cluster model as the basis of our analysis [see Daley and

Vere-Jones [2003]]. It is simpler than the above models, yet it captures the essence of

the clustering phenomenon through the above three laws. In particular, it preserves the

exponential sensitivity of the number of expected aftershocks on the magnitude of the

mother-shock. We expect that the conclusions obtained below concerning the impact
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the magnitude errors on the uncertainty of predicted seismic rates carry over to the

above mentioned models. For models that include secondary triggering, the impact of

magnitude noise may even be strongly amplified.

The model can be described as follows. It consists of two processes: a cluster

center process and an aftershock process. The cluster center process creates the mother

events (also called main shocks or background) which have not been triggered. This

process is Poissonian and governed by a homogeneous rate λc. The magnitudes (or

marks) of the cluster centers are drawn independently from the Gutenberg-Richter

distribution [Gutenberg and Richter, 1944]:

pm(m) = βe−β(m−md), m ≥ md (6.2)

wheremd is an arbitrary cut-off determined by the detection threshold and β = b log(10)

is a constant. We denote the marked cluster center process by {tic ,mic}1≤ic≤Nc . Each

of these mothers can trigger direct aftershocks. In contrast to cascading models such as

ETAS, there is no secondary triggering, allowing for a simplified analytical treatment

and faster simulations. The number of aftershocks is a random number drawn from a

Poisson distribution with expectation given by the productivity law:

ρ(mic) = k ea(mic−md) (6.3)

where k and a are constants and mic are the magnitudes of the mothers. The pro-

ductivity law captures the exponential dependence of the number of aftershocks on

the magnitude of the mother. This exponential dependence suggests that fluctuations

in the magnitudes due to noise will strongly affect any forecast, as we are going to

demonstrate analytically and by numerical simulations.

The threshold md, which measures the size of the smallest triggering earthquake

below which earthquakes do not trigger, is arbitrarily set to the detection threshold.
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This unjustified assumption is known to bias the clustering parameters [Sornette and

Werner, 2005a,b].

The triggered events are distributed in time according to the Omori-Utsu law [Utsu

et al., 1995]:

Φ(t− tic) =
1

(t− tic + c)p
(6.4)

where c and p are constants and the tic are the occurrence times of the cluster cen-

ters. The marks of the aftershocks are distributed in the same manner as their mothers

according to the Gutenberg-Richter law (6.2).

In summary, the rate of events (including aftershocks) of the marked Poisson clus-

ter process is completely defined by its conditional intensity (or rate) [see Daley and

Vere-Jones [2003]]:

λ(t,m|Hc
t , θ) = pm(m)

λc +
∑

ic|tic<t

k ea(mic−md)

(t− tic + c)p

 (6.5)

where Hc
t is the history up to time t which need only include information about the

cluster centers {tic ,mic}1≤ic≤Nc , as aftershocks do not trigger their own aftershocks

and do not influence the future. The set of parameters θ = {β, λc, k, a,md, c, p} are

assumed to be known.

The (unmarked) intensity above the detection threshold md is simply given by

integrating over m:

λ(t|Hc
t , θ) = λc +

∑
ic|tic<t

k ea(mic−md)

(t− tic + c)p
(6.6)

In section 6.5, we will use a spatio-temporal Poisson cluster process to mimic the

CSEP experiment and its evaluation as closely as possible. The model is defined by

the conditional intensity at time t and location r:

λ(t, r,m|Hc
t ) = pm(m)×
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λc +
∑

ic|tic<t

k ea(mic−md)

(t− tic + c)p

µ (0.02 · 100.5mic )µ

(0.02 · 100.5mic + | r− ric |)1+µ

 (6.7)

where we added a commonly used spatial decay function [see e.g. Helmstetter et al.

[2005a]].

6.4.2 Magnitude Noise

To study the impact of magnitude noise on seismic rate estimates and forecasts, we

assume that each (true) magnitude is perturbed identically and independently by an

additive noise term ε

mo
ic = mt

ic + εic . (6.8)

We do not need to perturb the magnitudes of the aftershocks because they have no

influence on the future seismicity rate.

We use our results on magnitude uncertainties from section 6.3 by modeling noise

according to a Laplace distribution characterized by zero mean (unbiased) and a scale

(e-folding) parameter νc:

pε(ε) =
1

2νc

e(−
|ε|
νc

) (6.9)

We believe that this is a conservative estimate of the distribution of the magnitude

noise because the Laplace distribution under-estimates the occurrence of large error

outliers. In general, therefore, the fluctuations of the seismic rate are likely to be even

larger than calculated below.

We assume the parameters are known. In particular, we assume below that the

seismic rate estimates from noisy magnitudes use the same parameters as the “true”

rate. We do so to isolate the effect of magnitude uncertainties. A comprehensive

analysis of uncertainties including trade-offs between parameter and data uncertainty

is beyond the scope of this article and is most likely extremely model-dependent.
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6.4.3 Fluctuations in the Seismic Rates Due to Noisy Magnitudes

To investigate the fluctuations of the seismic rate estimates due to noisy magnitudes,

we compare the seismic rates estimated from perturbed magnitudes with the true seis-

mic rate. The perturbed rates from the observable, noisy magnitudes mo
i are given

by:

λp(t|Hc
t ) = λc +

∑
ic|tic<t

k ea(mo
ic
−md)

(t− tic + c)p
(6.10)

We consider the deviation ∆λ(t) of the perturbed rates from the true rate, given by:

∆λ(t|Hc
t ) = λp(t|Hc

t )− λ(t|Hc
t ) (6.11)

In the remainder of this section, we characterize the fluctuations p(∆λ) of the devia-

tions from the true rate ∆λ(t|Hc
t ). In particular, we would like to know how strong the

deviations can be for a given catalog and whether one can make general statements for

any catalog.

To obtain some properties of the distribution of ∆λ(t|Ht), we rewrite equation

(6.11) as a finite sum over the product wi · zi (see Appendix B.1):

∆λ(t|Hc
t ) =

∑
ic|tic<t

wizi (6.12)

where

wi =
kea(mt

i−md)

(t− ti + c)p
(6.13)

are quenched weights that depend on the true magnitudes and occurrence times of the

cluster centers, while

zi = eaεi − 1 (6.14)

are random variables due to the random noise ε. From equation (B.7) in Appendix B.2,

we see that the zi are power-law distributed with an exponent α = 1/νca that depends

inversely on the size of the noise νc and the exponent of the productivity law a. In
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Figure 6.10, we show the theoretical and simulated pdf of the random variable z for

several values of the noise level νc.
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Figure 6.10: Theoretical and simulated probability density function (pdf) of the ran-

dom variable z = (exp(a · ε) − 1) for various choices of the scale parameter of the

noise νc and assuming a = 2.3. The curves are shifted for clarity.

Equation (6.12) together with the knowledge that the random variables zi’s are

power law distributed implies that the following proposition is true:

Proposition 1: The deviations ∆λ(t|Hc
t ) of the perturbed seismic rates from the true

seismic rate due to magnitude noise converge to bounded random variables with a

distribution having a power law tail for ∆λ→∞:

p(∆λ) ∼ C∆λ

(∆λ)1+α
with α =

1

νca
(6.15)

and with a scale factor given by
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C∆λ =
Nc∑
i=1

wα
i , (6.16)

where the sum is over theNc earthquakes in the catalog that occurred before the present

time t and the wi’s are given by (6.13).

Proof: See Appendix B.3.

Remarks:

1. The deviations of a rate estimate based on noisy magnitudes from the exact rate

are power-law distributed in the tail. Estimates of a seismic rate may therefore be

wildly different from the “true” rate, simply because of magnitude uncertainties.

2. The exponent α determines how broadly the seismic rate estimates are dis-

tributed around the “true” rate. The exponent sensitively depends on the noise

level νc and the productivity exponent a. For the often quoted value a = ln(10) =

2.3 [e.g. Felzer et al. [2004]] and for νc = (0.1, 0.2, 0.3, 0.5), one obtains

α = (4.34, 2.17, 1.45, 0.87), respectively. Even for relatively small levels of

noise νc ≥ 0.22, the variance of ∆λ does not exist (α ≤ 2), while for νc ≥ 0.44,

the average of ∆λ does not exist (α ≤ 1)!

3. The power law tail does not depend on the specific history of the magnitudes and

occurrence times. The same power law tail holds for any catalog. On the other

hand, the scale factor C∆λ depends sensitively on the specific realization via the

magnitudes and occurrence times (see Proposition 2).

4. Short term earthquake forecasts are directly (sometimes indirectly) taken from

such seismic rate estimates. The accuracy of the forecasts cannot be better than

the seismic rate estimates.
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As a demonstration of the strong fluctuations, Figure 6.11 shows simulations of

the seismic rate deviations for various levels of noise νc = (0.1, 0.2, 0.3, 0.5). In each

case, we simulate Nc = 100 cluster centers according to a Poisson process and ran-

domly draw their magnitudes from the GR law. We then choose a time lag dt (days)

between the last event in the cluster center process and the time at which we want to

evaluate (forecast) the seismic rate. We calculate the “true” seismic rate from equa-

tion (6.6), using the parameter set θ = {β = 2.3, λc = 1, k = 0.01, a = 2.3,md =

3, c = 0.001, p = 1.2} and using the “true” simulated magnitudes. Next, we generate

“perturbed” catalogs by adding noise to the simulated magnitudes 100, 000 times ac-

cording to the double exponential noise defined in (6.1). For each perturbed catalog,

we recalculate the “perturbed” seismic rate as before using equation (6.6) but replacing

the “true” magnitudes by noisy magnitudes.

Figure 6.11 shows fixed kernel density estimates of the normalized differences

between the perturbed and the true rates. In each panel, the deviations are shown for

four different noise levels νc = (0.1, 0.2, 0.3, 0.5). The different panels (top to bottom)

are different choices of the time lag dt = {0.0001, 0.1, 1, 10} days since the last event

in the process at which the rates are calculated. Figures 6.12 and 6.13 show double

logarithmic plots of the survivor functions for the two extreme cases dt = 0.0001 and

dt = 10, respectively.

The seismic rate estimates are very broadly distributed, but with different de-

pendence on the specific catalog, depending on the time horizon dt. For small dt

(smaller than the average inter-event time 1/λc between successive main shocks),

the only relevant event that determines the distribution of the perturbed rates is the

last one. Therefore, the (normalized) distributions for small dt are almost identi-

cal to the distribution of the random variable z (up to the weight pre-factor associ-

ated with the last event). However, as dt increases to become comparable to and
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Figure 6.11: Simulated probability density functions of the “perturbed” seismic rates

due to noisy magnitudes shown as a percent deviation from the true rate for noise

levels νc = (0.1, 0.2, 0.3, 0.5). We calculate seismic rates at a time lag dt after the

100th cluster center event. From top to bottom, dt = (0.0001, 0.1, 1, 10). Seismic

rate estimates (and hence forecasts) are wildly distributed around the true value (solid

vertical lines).

larger than 1/λc, the rate is no longer dominated solely by the last event. Previ-

ous events can become increasingly significant in determining the sum compared to

the last event. Consider two earthquakes of similar magnitudes occurring at t1 = 0

and t2 = 10 respectively. At time t = 11, t − t2 = 1 and t − t1 = 11 so that

earthquake 2 will dominate at early times by the effect of the Omori law on the

weights, since w2/w1(t = 11) = (11 + c)p/(1 + c)p ∼ 11. But at t = 20, say,

the weight w1 of the first earthquake has decreased only by a factor 2p while the
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Figure 6.12: Survivor functions of the simulated “perturbed” seismic rate estimates

(and forecasts) shown as a deviation in percent from the simulated “true” rate for

noise levels νc = (0.1, 0.2, 0.3, 0.5) and time lag since the last event in the pro-

cess dt = 0.0001. The survivor functions are approximately parallel to the straight

lines which are guides to the eye with theoretically predicted exponents given by

α = (4.34, 2.17, 1.45, 0.87), respectively. Even for small noise level νc = 0.2, 10

percent of the rate estimates over-predict the rate by 100 percent!

weight w2 of the second earthquake has decreased by a factor 10p, so that the ratio

is now w2/w1(t = 20) = (20 + c)p/(10 + c)p ∼ 2. Since the weights are so strongly

stochastic, each particular catalog realization will have a different number of events

with vastly different weights that are “felt” by the rate as dt increases.

We give some concrete numbers for illustration for two cases, dt = 0.0001 (Figure

6.12) and dt = 10 (Figure 6.13). With our parameter choices c = 0.001 and λc = 1,
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Figure 6.13: Same as Figure 6.12 except that perturbed and true rates are evaluated at

dt = 10: log-log plots of the survivor functions of the simulated “perturbed” seismic

rate estimates (and forecasts) shown as a deviation in percent from the simulated “true”

rate for noise levels νc = (0.1, 0.2, 0.3, 0.5). The slopes of the straight lines are given

by the asymptotic predicted exponents α = (4.34, 2.17, 1.45, 0.87), respectively.

this ensures that dt = 0.0001 corresponds to the regime dominated by the last event

in the catalog while the case dt = 10 will show the impact of many past events. For

dt = 0.0001 and realistic νc = 0.2, 80% of the seismic rate estimates (and hence

forecasts) deviate by more than 10%; almost two thirds are off by more than 20%;

and almost one third are off by more than 50%. Even fluctuations of 100% occur

11% of the time. For larger levels of noise, much stronger fluctuations can occur. For

instance, 28% of rate estimates are off by more than 100% for νc = 0.5. For the case

where seismic rate estimates (forecasts) are made for dt = 10 after the last event, the
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percentages depend strongly on the particular cluster center realization.

Apart from the dependence on a particular realization, there is another consequence

of the increasing importance of previous events with time since the last event. As

previous events are summed over, the distribution of the sum tends towards its stable

law (either Gaussian or Lévy). For α > 2 (νc < 0.22), the central limit theorem applies

to the body of the distribution (though not the tails, see e.g. Sornette [2004]) and tends

to organize the distribution of the deviations towards a Gaussian. At the same time,

only a finite number of terms effectively control the rate so that there is no asymptotic

convergence. Nevertheless, there may be a tendency for the body of the distribution

to become Gaussian. For 0 < α < 2 (νc > 0.22), in contrast, the distribution will

tend towards a Lévy law with a power law tail exponent equal to α, keeping intact the

original power law tail.

This discussion can be summarized by the following proposition, which empha-

sizes that the scale factor C∆λ is “non-self-averaging” [Mézard et al., 1987].

Proposition 2:

1. For pα = p
νca

> 1, the scale factor C∆λ =
∑Nc

i wα
i given in Proposition 1 (or

the typical scale C1/α
∆λ ) of the distribution of the deviations of the perturbed rates

from the true rate converges to a finite value as Nc →∞.

2. For pα = p
νca
≤ 1, the scale factor C∆λ =

∑Nc

i wα
i diverges→∞ as Nc →∞.

This means that the deviations ∆λ(t|Ht) of the perturbed rates from the true rate

diverge as the duration of the catalog used to calculate them increases without

bound.

3. In the regime pα > 1 for which C∆λ converges almost surely to a finite value as

Nc → ∞, C∆λ remains a random variable sensitively dependent on the specific
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catalog, C∆λ being distributed according to a non-degenerate distribution. In

symbols,

C∆λ → 〈C∆λ〉 as Nc →∞ , (6.17)

where 〈C∆λ〉 denotes the average of C∆λ over many different catalogs. This

means that the value C∆λ is catalog specific and changes from catalog to catalog

and from realization to realization. This property is known as “lack of self-

averaging” [Mézard et al., 1987].

Proof: See Appendix B.4.

The divergence of the scale factorC∆λ and of the deviations ∆λ(t|Ht) described by

item 2 of Proposition 2 occurs only for rather large magnitude errors. For instance, for

p = 1.2 and a = 2.3, the noise level needs to be larger than νc = 0.52 for pα = p
νca
≤ 1

to hold. According to our previous analysis in Section 2, we can expect νc to lie in the

range 0.1− 0.3 typically, so that the regime pα = p
νca

> 1 in Proposition 2 is likely to

be the most relevant one.

In summary, for large dt, there is a trade-off between some averaging for small

noise levels (i.e. a tendency towards a Gaussian shape), the dependence on the specific

catalog realization (in particular, the last few events) and the power law tail proven

in Proposition 1. These effects can be seen by comparing the survivor functions in

Figure 6.12, which for dt = 0.001 are pure power laws for ∆λ > 0, with Figure 6.13

for dt = 10. For νc = 0.3 and νc = 0.5 (Lévy regime), the power law remains largely

intact even for the body of the distribution. For νc = 0.1 and νc = 0.2, the body is

not well approximated by the power law, while the tails still show significantly larger

outliers than expected from a Gaussian.

We now return to the explicit values and percentages of the deviations for the case
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dt = 10. For realistic νc = 0.2, about 70% are off by more than 10%; 45% − 55%

deviate by more than 20%; roughly 20% of seismic rate estimates over-predict the true

value by more than 50%.

In contrast to the noise levels for which α > 2, the fluctuations actually increase

for νc = 0.3 and νc = 0.5 compared to the case dt = 0.0001. For νc = 0.5, 90%−95%

are off by more than 10%; 80%− 90% are off by more than 20%; 70%− 75% are off

by more than 50%; and roughly one half are off by more than 100%!

To conclude this section, we restate the main results: (i) Seismic rates estimated

from noisy data deviate strongly from their “true” value; (ii) If magnitude uncertainties

are exponentially distributed (or more broadly), as we have shown in section 2, then

these deviations are power law distributed in the tail with an exponent α = 1/aνc;

(iii) We believe there is no law of large numbers that can adequately describe the en-

tire distribution of the deviations. However, the scale factor (or the typical size of the

deviations) can be shown to diverge almost surely if pα < 1 and to be distributed ex-

tremely broadly if pα > 1. These results demonstrated rigorously have been illustrated

with numerical simulations. The next section investigates the impact of the propagat-

ing uncertainties on the test scores that forecasts receive in earthquake predictability

experiments such as CSEP.

6.5 Impact of Magnitude Uncertainties on Model Forecasts and

Their Evaluation in Consistency Tests

Seismic rates estimated via some probabilistic model at time t in the future as a func-

tion of past seismicity are routinely used as direct estimates of a forecast (the ex-

pected number of events at time t) [e.g. Helmstetter et al. [2005a]; Gerstenberger et al.

[2005]]. In rare cases, forecasts are generated by averaging over Monte Carlo simula-
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tions which nevertheless remain parametrized by the estimated seismic rate. Forecasts

are therefore either equal to, proportional to or strongly correlated with seismic rate

estimates. As a consequence, they suffer from the same fluctuations as seismic rate

estimates.

How important are these spurious fluctuations in the evaluation of forecasts in

prediction experiments? Can good forecasts perform poorly solely due to magnitude

noise? Can accurate models be rejected by test scores because noisy magnitudes in-

fluenced the rate estimation? How sensitive are evaluation procedures to this source of

noise?

We address these questions by designing the following numerical experiment: We

test forecasts based on noisy magnitudes against a hypothetical “reality”, chosen as

the rate based on exact magnitudes, to see whether the noisy forecasts are rejected.

We pretend that the exact seismic rate as calculated from the model equation (6.7) in

each space-time bin is “reality” according to which earthquakes actually occur. Since

the exact rate is not an integer, we assume that observations are drawn from a Poisson

distribution with mean equal to the seismic rate in each bin. We further call the noisy

forecasts “models” (j = 1 . . .M ). We then constructed a miniature CSEP testing cen-

ter which tests these “models” against “reality” according to their consistency with the

“observations” in a manner entirely equivalent to the proposed scenario [Schorlemmer

et al., 2007; Schorlemmer and Gerstenberger, 2007].

The testing center uses the likelihood (L) and number (N) tests as consistency crite-

ria for evaluating forecasts. These are currently used for the five year time-independent

forecasts which have already been submitted [Schorlemmer et al., 2007]. The test were

used in previous studies of forecasting [Kagan and Jackson, 1994, 1995] and were fur-

ther explained by Jackson [1996].

We calibrated the numerical experiment to mimic California as much as possible to
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create realistic conditions under which actual forecast evaluation will take place. This

meant choosing a realistic model, realistic model parameters and realistic space-time

bins.

If we find that “models” (i.e. forecasts based on noisy data) are rejected more

frequently by the consistency tests than according to the chosen confidence limit, we

can draw the following conclusions: (i) the “true” model with “true” parameters may

be rejected in a realistic one year test period because noisy magnitude observations

affected its forecasts, (ii) the outcomes of the likelihood and number consistency tests

are therefore sensitive to observational uncertainties that affected the generation of the

forecasts.

First we describe the simulations and their evaluation by likelihood methods before

presenting our results. Our numerical experiment can be separated into two steps: (i)

the simulation of the exact seismic rates in each space-time bin and the correspond-

ing noisy forecasts, and (ii) the evaluation of the noisy forecasts with respect to the

exact forecast using likelihood tests. Figure 6.14 graphically explains our numerical

experiment and should be used for reference.

6.5.1 Simulation of Exact Seismic Rates and Noisy Forecasts

The simulation of the exact seismic rates and the noisy forecasts proceed according to

the following steps.

1. Choose a model, its parameters and the test area: The impact of magnitude

uncertainties on forecasts will depend on the specific model and potentially its

parameters. We chose a spatio-temporal Poisson cluster model defined in equa-

tion (6.7) to capture the main ingredients of the popular short-term forecasting

models. We used parameters and a spatial test area consistent with Californian
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Figure 6.14: Diagram explaining the numerical experiment designed to study the influ-

ence of magnitude noise on forecasts and their evaluation in daily earthquake forecast

experiments such as RELM or CSEP. We mimic California both in spatial test area

and in model parameters and perform the likelihood (L) and number (N) test for daily

forecasts over the period of one year using a spatio-temporal Poisson cluster center

model that captures essential ingredients of most short-term seismicity models. The

abbreviations mod., sim. and obs. stand for modified, simulated and observations,

respectively.
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earthquake data to create realistic conditions (see section 6.5.3 below for param-

eter values).

2. Simulate a “learning” catalog: Using a set of parameters and the model (6.7),

we simulate a “learning” catalog from which forecasts are to be generated. Be-

cause aftershocks of the cluster centers do not trigger their own aftershocks, they

do not affect future seismicity and do not need to be simulated for the “learning”

catalog. Only the Poisson cluster center process needs to be simulated. It is a

homogeneous space-time Poisson process of constant rate λc (per unit time and

area). Independent magnitudes are drawn from the Gutenberg-Richter law (6.2).

See Figure 6.15 for an example of a simulated cluster center process.

3. Calculate the exact daily seismic rate over one year in each space-time bin i:

Divide the test area into spatial cells (bins). Use equation (6.7) and the original

parameters to calculate the intensity λ(t, r|Hc
t ) for every day over the course

of one year at the centers of the spatial cells. Past seismicity (times, locations

and magnitudes) enter into equation (6.7). The rate in each space-time bin is

calculated by multiplying the rate at the center by the area of the spatial cell for

simplicity. Pretend these rates are “reality”: the number of actually observed

events is drawn from a Poisson distribution with mean equal to this rate (see

below).

4. Create M noisy replicas of the “learning” catalog by perturbing the magni-

tudes: Generate j = 1 . . .M different noisy replicas of the original catalog by

adding random noise to each magnitude. The random noise is simulated from

the Laplace distribution defined in (6.1) characterized by the scale parameter νc.

5. GenerateM “noisy” forecasts based on theM noisy catalogs: Using equation

(6.7) and the original parameters, calculate the daily seismic rate for the whole
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year in the same manner as the exact rate but using the noisy catalogs. Denote

these noisy forecasts as “models” j = 1 . . .M which we want to compare to the

exact seismic rate in a mock CSEP/RELM testing center.

6.5.2 Evaluation of the Noisy Forecasts in a Hypothetical RELM/CSEP Testing

Center

In the evaluation of the “models” (or noisy forecasts), we follow the recipe of the

RELM/CSEP testing procedures, as described below. But first we address an important

issue regarding our choice not to use magnitude bins.

When we simulate the learning catalog above, we must choose a magnitude thresh-

old. We set md = 4 as for the proposed daily forecast competition. Magnitudes for

the simulated cluster center events were drawn from the Gutenberg-Richter distribu-

tion with md = 4. We then perturbed this catalog according to a symmetric Laplacian

distribution. As a result, some of the simulated cluster centers now have magnitudes

that are smaller than the magnitude threshold md = 4. We note that their influence is

very small in the calculation of the noisy seismic rates (forecasts) with respect to the

events above the threshold because of the exponential dependence of the productivity

on the difference exp(a(mic −md)). Rather than re-applying the cut-off md = 4 after

the perturbation, we kept the number of events in the learning catalog fixed. We there-

fore also did not take into account the possibility of magnitudes originally below the

threshold becoming “visible” above the threshold due to the addition of noise. These

more realistic conditions should be pursued as a next step. In our scenario, the mean

magnitude before and after the perturbation remains constant. Any results in the per-

formance of the forecasts are therefore not due to an overall shift in the magnitude

distribution.

As a consequence, we did not introduce magnitude bins at the testing stage. Rather,
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we assumed that the seismic rates and the forecasts were for one and the same large

magnitude bin. This also meant that we did not need to generate magnitudes of the

aftershocks of the cluster centers, neither of the exact catalog nor of the noisy catalogs.

This helped the numerical efficiency of the computer program. Furthermore, by not

testing the magnitude values, we effectively assumed that all simulated magnitudes

were completely consistent with the “observed” ones, as the sum over the likelihood

values of the magnitude bins equals 1. In other words, we are less stringent than

the CSEP/RELM center by not rejecting models because of under- or over-predicted

magnitudes.

The CSEP/RELM testing procedure acknowledges the existence of observational

uncertainties in the observed earthquake parameters such as magnitude, location or

focal parameters. The test center therefore creates so-called “modified” observations

from the actually observed earthquake parameters by sampling parameters that are

consistent with the observed ones and their uncertainties. In this way, many alternative

“realities” or observations are created that are consistent with the actual observations

and their uncertainties. The forecasts are tested against each alternative reality and the

final rejection is based on the average performance of the forecast against all alternative

“realities”.

In our hypothetical center, we should therefore create many “modified” observa-

tions consistent with the actual observation in the same manner. However, as just stated

above, we did not actually generate magnitudes of the events and do not test a forecast’s

ability to predict magnitudes. The magnitude dimension is effectively eliminated from

the evaluation phase by assuming that all simulated magnitudes are consistent with the

“observed” ones.

At the same time, we did generate “modified” observations in each space-time bin

according to the following logic. The CSEP/RELM test center generates so-called
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“simulated” observations from a model’s forecast that are consistent with the forecast

by drawing numbers from a Poisson distribution with mean equal to the forecast in

each space-time bin. This assumes that earthquakes are independent and occur ac-

cording to a Poisson process in each space-time bin. This is not true for the Earth.

However, we decided to assume that our “reality” did indeed occur according to a

Poisson process in each bin so that we create favorable conditions for the test to work

and to be sure that “models” were not rejected because they violate this assumption of

the test.

We therefore created many alternative realizations of observed earthquakes that are

consistent with the exact seismic rate in each bin according to a Poisson distribution

with mean equal to the seismic rate. In analogy with the RELM/CSEP terminology, we

called these alternative “realities” modified observations. For the Earth, these favorable

conditions do not hold and may also influence whether a model is rejected.

With reference to Figure 6.14, the various steps of the RELM/CSEP testing proce-

dure are described below. We follow the notation of Schorlemmer et al. [2007].

1. For each of the {j = 1 . . .M} “models”, generate {k = 1 . . .m} “simu-

lated” observations: The RELM/CSEP test center assumes that earthquakes

are independent in each space-time bin i and generates Poisson distributed ran-

dom variables ŵj
k,i with mean equal to the model’s forecast λj

i in that bin. This

is repeatedm-times to generate {k = 1 . . .m} sets of simulated observations for

each model.

2. For each of the M “models”, calculate the likelihoods of the m simulated

observations: Assume that the “model” is true and calculate the likelihood of

each of the {k = 1 . . .m} sets of observations generated from its forecast λj
i

and sum over all space-time bins. These are the simulated likelihood values

{L̂j
k, k = 1 . . .m} consistent with a particular model j which will be tested
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against the likelihood of the observations below. The simulated likelihood of the

jth model of the kth observation set is given by:

L̂j
k =

∑
i

−λj
i + ŵk,i log λj

i − log(ŵk,i!) (6.18)

3. Generate {q = 1 . . . s} “modified” observations (“alternative realities”) from

the exact seismic rate: In each space-time bin i, generate a “modified” obser-

vation w̃q
i by drawing a random variable from a Poisson distribution with mean

equal to the exact seismic rate in that bin. Repeat s-times to generate s sets of

“modified observations” against each of which each “model” is tested.

4. For each of the M “models”, calculate the likelihoods of the s “modified”

observations: Assume that the jth “model” is true and calculate the likelihood

L̃j
q of observing each of the {q = 1 . . . s} “modified” observations w̃q

i :

L̃j
q =

∑
i

−λj
i + w̃q

i log λj
i − log(w̃q

i !) (6.19)

5. For each of the M “models”, calculate the fraction γj
q of simulated likeli-

hoods L̂j
k less than each of the s observed likelihoods L̃j

q: For each model j

and each set q of modified observations, compute the fraction γj
q of simulated

likelihoods {L̂j
k, k = 1 . . .m} less than the observed likelihood L̃j

q. Repeat for

each of the q = 1 . . . s observed likelihoods for each of the M “models”. The

fraction γj
q measures whether an observed likelihood value is consistent with the

values expected from a particular “model”.

6. For each of the M “models”, calculate the mean fraction 〈γj〉 from the s

values of γj
q : Because many “modified” observations are consistent with our

chosen “reality”, we average the fraction γj over all sets of “modified” observa-

tions for each model (noisy forecast). The mean fraction 〈γj〉 measures whether
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the observed likelihood values fall within the center of the simulated likelihoods

given a particular model.

7. For each of the M “models”, calculate the simulated total number of events

N̂ j
k from each of the {k = 1 . . .m} simulated observations: Generate the

distribution of the simulated total number of events in the test region consistent

with each model.

8. Calculate the “modified” total number of events Ñq from each of the {q =

1 . . . s} modified observations: For each of the possible “realities” or modified

observations, sum the modified observations over all bins to obtain the modified

total number of events Ñq.

9. For each of the M “models”, calculate the fraction δj
q of simulated total

numbers of events N̂ j
k less than the modified number of events Ñq for each

of the {q = 1 . . . s} modified observations: Compute the fraction δj
q of sim-

ulated numbers of events {N̂ j
k , k = 1 . . .m} less than the qth modified total

number of events Ñq for each modified observation and each model. The frac-

tion δj
q measures whether the simulated numbers of events are consistent with

the observed number.

10. For each of the M “models”, calculate the mean fraction 〈δj〉 from the s

values of δj
q : Again, because many modified observations are consistent with

the actual observation, average the fraction δj
q over all of its s values for each

model (noisy forecast). The mean fraction 〈δj〉 measures whether the modified

observations are on average consistent with the simulations.

11. Perform L test: Reject model j if 〈γj〉 < 0.05. This indicates that the observed

likelihood values are inconsistent with the model. According to Schorlemmer et

al. (2007), the L test is one-sided.
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12. Perform N test: Reject model j if 〈δj〉 < 0.05 or if 〈δj〉 > 0.95. This indicates

that the observed number of events are inconsistent with the model.

6.5.3 Test Area and Model Parameter Choices

To simulate catalogs and generate exact forecasts, we needed to choose the spatial test

area, the number of spatial bins, the parameters of the model and the temporal bins (for

which forecasts are issued and evaluated). To mimic a daily forecast competition in

California in an earthquake prediction experiment such as RELM, we chose temporal

bins of one day and issued forecasts over the course of an entire year always using all

information available up to the day of the forecast. We assumed a square spatial area

of 700 km by 700 km to approximate the size of California.

To generate synthetic catalogs and forecasts, we needed to decide on a set of param-

eters θ = {β,md, λc, k, a, c, p, µ} for the model (6.7). We decided onmd = 4 to mimic

the proposed RELM/CSEP daily forecast competition and on β = 2.3. Inverting the

parameters of the Poisson cluster process requires knowledge of the entire branching

structure (being able to identify which events are cluster centers and which are their

dependent aftershocks). Lacking such knowledge, the maximization of the likelihood

must be performed over all possible branching structures. Given the complexity, we

decided instead to use parameter values based on an ETAS model inversion for south-

ern California by Helmstetter et al. [2006] [their model 2 in Table 1] and adjusted

them appropriately for our model, magnitude threshold and spatial test area. Their

background rate was multiplied by 10−2 to adjust to the higher magnitude threshold,

and multiplied by 3 for the increased spatial area, resulting in λc = 0.063. We also

multiplied k by 10−2 to obtain k = 0.013. We used their other parameters without

change {a = 0.43 × log(10), c = 0.0035, p = 1.19, µ = 2}. We checked that the
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simulated total number of expected events per year over the entire region given these

parameter choices was comparable to yearly rates above M4 in California over the last

twenty years (from about 50 up to 250).

Because of computational limitations, we had to restrict the number of spatial bins

to 30 by 30 and the number of perturbations of the original catalog to M=10. However,

we were still able to generatem = 1000 simulated observations for each noisy forecast

and s = 1000 modified observations for the exact forecast.

In this article, we aim to establish only whether examples exist in which good

models are rejected based solely on realistic magnitude uncertainties. A more in-

depth study which explores the model, parameter and bin space is certainly required to

establish robust confidence limits for testing the consistency of model forecasts with

observations.

6.5.4 Simulations and Results

Figure 6.15 shows an example of a simulated cluster center catalog: the top panel

shows the spatial distribution of the cluster centers in the spatial test area 700 km by

700 km. The middle panel shows the magnitudes of the cluster centers against time

in days over the course of one year. The bottom panel shows the rate for both cluster

centers and their aftershocks calculated from the model (6.7), summed over all spatial

bins.

We checked that setting the noise level to zero νc = 0.0 does not result in any

“models” being rejected. Table 6.1 shows the results of the mock RELM/CSEP eval-

uation of the daily forecasts of 10 unperturbed forecasts over the period of one year.

None of the “models” are rejected by the L and N tests. Apart from the mean fractions

〈δj〉 and 〈γj〉, we also calculated their standard deviations σγ and σδ. Table 6.1 shows

both fractions to be right in the middle of the simulated distributions, indicating strong

178



0 100 200 300 400 500 600 700
0

500

Distance [km]
D

is
ta

nc
e 

[k
m

]

0 50 100 150 200 250 300 350
4

5

6

Time [Days]

M
ag

ni
tu

de

0 50 100 150 200 250 300 350
10

−2

10
0

10
2

Time [Days]

R
at

e 
[#

/d
ay

]

Figure 6.15: Example of a simulated cluster center catalog and resulting conditional

intensity including aftershocks. Top: spatial distribution. Middle: Magnitudes of

cluster centers against time over the course of one year. Bottom: Conditional intensity

rate per day calculated using the model equation (6.7) but summed over all bins. The

rate is used as the “exact forecast” from which modified observations are generated.

consistency between the models and the observations, as should be expected.

Introducing just a little bit of noise changes the situation. For νc = 0.1, we found

that the N test rejects 2 models at the 90 % confidence limit (see Table 6.2). We

found that the difference between the simulated total number of expected events of a

model and the actual expected number based on the exact rate was a good indicator

for the model’s performance in the N test, as should be expected. In keeping with the

statement by Schorlemmer et al. [2007] that the L test is one-sided, we do not reject

models for which 〈γj〉 > 0.95. In this case, the (two-sided) L test would have rejected
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“Model” E(N) 〈γ〉 σγ 〈δ〉 σδ

1 143.61 0.4996 0.2835 0.5361 0.2849

2 143.61 0.5106 0.2795 0.5162 0.2866

3 143.61 0.4895 0.2887 0.5279 0.2866

4 143.61 0.5051 0.2791 0.5274 0.2841

5 143.61 0.5028 0.2837 0.5185 0.2910

6 143.61 0.5138 0.2864 0.5177 0.2870

7 143.61 0.4913 0.2897 0.5350 0.2975

8 143.61 0.5131 0.2882 0.5157 0.2921

9 143.61 0.4948 0.2866 0.5136 0.2870

10 143.61 0.5110 0.2848 0.5154 0.2846

Table 6.1: Results of the mock RELM/CSEP experiment of daily forecasts over the

period of one year for νc = 0.0: We checked that “models” are not rejected by the

tests when the data is exact and no noise is present. “Models” are forecasts generated

from equation (6.7) using a noisy cluster center process which was perturbed from

the original one by adding random noise of scale νc to the magnitudes. The first col-

umn contains different perturbations of the original catalog corresponding to different

forecasts or “models” (which, for νc = 0.0, are all equal). The second column is

the total expected number of events obtained by summing all daily forecasts over all

spatial bins over the one year period. The expected number of events of the original

catalog was 143.61. The third column shows the fraction 〈γ〉 of the m simulated like-

lihoods less than the observed likelihood, averaged over all s modified observations.

The fourth column shows the standard deviation of the γ values. The fifth column

shows the fraction 〈δ〉 of the m simulated numbers of events less than the observed

number of events, averaged over all s modified observations. The sixth column shows

the standard deviation of the δ values.
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“Model” E(N) 〈γ〉 σγ 〈δ〉 σδ

1 117.31 0.3361 0.2647 0.9011 0.1552

2 187.36 0.9546 0.0880 0.0018 0.0109

3 150.23 0.5262 0.2921 0.2038 0.2106

4 145.38 0.5981 0.2729 0.2858 0.2461

5 665.09 1.0000 0.0000 0.0000 0.0000

6 143.25 0.4935 0.2870 0.3321 0.2574

7 139.40 0.4826 0.2812 0.4335 0.2749

8 162.28 0.6158 0.2705 0.0627 0.1054

9 124.38 0.2920 0.2573 0.7817 0.2321

10 130.70 0.3203 0.2639 0.6454 0.2759

Table 6.2: Same as Table 6.1 but now perturbing the original catalog from which

forecasts (“models”) are generated by introducing noise νc = 0.1. The total expected

number of events based on the exact forecast was E(N) = 136.31. The L test does not

reject any models while the N test rejects 2 models.

the same models as the N test. Because rejecting 2 models out of 10 at 90% confidence

may simply be the expected false negative errors, we additionally performed simula-

tions for 50 models. Of these, 8 models were rejected by the N test, none by the L test.

Thus in total, 10 models out of 60 models were rejected, indicating slightly higher than

expected rejections at 90% confidence.

Table 6.3 shows the results for simulations with the noise level set to νc = 0.2.

The cluster center process of this simulation is shown in Figure 6.15 along with the

calculated seismic rate according to model (6.6). The N test rejects 9 out of 10 models

because they over-predict the number of observed events. A two-sided L test would

have rejected 3 models, but the one-sided L test does not reject any models. In contrast
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“Model” E(N) 〈γ〉 σγ 〈δ〉 σδ

1 124.11 0.8077 0.2072 0.0292 0.0577

2 120.29 0.5917 0.2845 0.0495 0.0892

3 135.62 0.8260 0.1984 0.0042 0.0133

4 98.97 0.3816 0.2730 0.4288 0.2813

5 156.55 0.9810 0.0547 0.0000 0.0004

6 170.75 0.9949 0.0222 0.0000 0.0000

7 246.27 1.0000 0.0000 0.0000 0.0000

8 128.59 0.8307 0.2033 0.0150 0.0369

9 121.60 0.7972 0.2208 0.0367 0.0713

10 139.99 0.8710 0.1719 0.0020 0.0074

Table 6.3: Same as Table 6.2 but now perturbing with stronger noise νc = 0.2. The

total expected number of events based on the exact forecast was E(N) = 95.81. The

L test does not reject any models while the N test rejects 9 models.

to the case for νc = 0.1, the fluctuations strongly impact the forecasts.

Results for simulations with noise level νc = 0.3 are summarized in Table 6.4.

Note that the values of 〈γj〉 are now fluctuating very strongly. The one-sided L test now

rejects one model while the N test rejects 7 models. Clearly, the noisy forecasts are no

longer consistent with the observed likelihood values and numbers of events. Note that

model 5 predicts more than 10 times the actually expected number of events, reflecting

the extreme fluctuations we proved in the previous sections. It is also interesting that

the L test rejects model 2, which passes the N test. This shows that the daily expected

numbers can fluctuate but in a sense “average out” over the course of one year, but the

likelihood scores of each day keep a “memory” of the bad predictions. This exemplifies

the complementary properties of the two tests.
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“Model” E(N) 〈γ〉 σγ 〈δ〉 σδ

1 329.28 1.0000 0.0007 0.0000 0.0000

2 179.76 0.0406 0.0714 0.6250 0.2806

3 398.07 1.0000 0.0000 0.0000 0.0000

4 162.82 0.0932 0.1311 0.8936 0.1533

5 3258.11 1.0000 0.0000 0.0000 0.0000

6 249.14 0.8388 0.1896 0.0015 0.0058

7 323.39 0.9863 0.0418 0.0000 0.0000

8 204.90 0.1300 0.1600 0.1853 0.2159

9 257.31 0.8528 0.1830 0.0007 0.0021

10 288.11 0.6957 0.2588 0.0000 0.0000

Table 6.4: Same as Table 6.2 but now perturbing with stronger noise νc = 0.3. The

total expected number of events based on the exact forecast was E(N) = 186.65. The

L test rejects 1 model while the N test rejects 7 models.

The case νc = 0.5 is shown in Table 6.5. All models are rejected by the N test,

indicating systematically larger forecasts.

These simulations show that, as νc increases, the models tend to forecast numbers

of events that are larger than the true value: the larger νc, the larger the effect, and

therefore the more probable the rejection by the N test. This results from the fact that,

while the distribution (6.1) of magnitude errors is found (and assumed in our sim-

ulations) to be approximately symmetric, the impact of a magnitude error is strongly

asymmetric when comparing negative and positive deviations from the true magnitude,

due to the exponential dependence of the productivity law (6.3).

Because the tests rejected more models for νc = 0.2 than for νc = 0.3, we believe

that we are not sampling the actual fluctuations with 10 models. More models (per-
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“Model” E(N) 〈γ〉 σγ 〈δ〉 σδ

1 349.73 1.0000 0.0000 0.0000 0.0000

2 11715.37 1.0000 0.0000 0.0000 0.0000

3 691.43 1.0000 0.0000 0.0000 0.0000

4 9150.17 1.0000 0.0000 0.0000 0.0000

5 1248.60 1.0000 0.0000 0.0000 0.0000

6 341.29 1.0000 0.0000 0.0000 0.0000

7 457.51 1.0000 0.0000 0.0000 0.0000

8 645.55 1.0000 0.0000 0.0000 0.0000

9 5593.47 1.0000 0.0000 0.0000 0.0000

10 217.19 0.4032 0.2537 0.0000 0.0000

Table 6.5: Same as Table 6.2 but now perturbing with stronger noise νc = 0.5. The

total expected number of events based on the exact forecast was E(N) = 92.15. The

L test does not reject any models while the N test rejects all 10 models.

turbed catalogs) are needed to characterize precisely how the confidence limits of the

tests are affected. In this article, we showed simply that the stated confidence limits as

we would like to interpret them (that the model is inconsistent with 90 % confidence)

are clearly not adequate.

6.5.5 Discussion of Mock RELM/CSEP Predictability Experiment

The results from the mock RELM/CSEP evaluation of forecasts generated from noisy

data against the exact seismic rate based on exact data indicate that noisy forecasts

fluctuate wildly and may therefore be rejected by the RELM/CSEP consistency tests.

Even conservative levels of magnitude noise of νc = 0.2 impact forecasts so strongly
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that they are easily rejected by the likelihood and number tests. In other words, the L

and N tests are sensitive to observational uncertainties that entered in the creation of the

forecasts. As a consequence, when considering actual results from L and N tests based

on comparing a real model with real data, one should keep in mind the possibility that

the forecast contains noise which may influence severely the performance of a short-

term model. The supposed confidence limits may be misleading as they do not take

into account uncertainties in the forecast. Some models may be rejected purely because

of forecasts generated from noisy earthquake catalogs, while others may appear to be

consistent with the data (more often than expected given the RELM/CSEP confidence

limits).

We do not expect these “wrongful” rejections to stop if the tests are performed

over a longer period of time. Each day is separately scored according to forecast and

observations and the daily forecast will always be strongly fluctuating. Extending the

evaluation period to two years, for instance, would not solve the problem.

We emphasize that we have completely isolated the effect of magnitude uncertain-

ties and assumed everything else to be known. We have shown that, in this scenario,

magnitude uncertainties lead to strongly fluctuating forecasts. While a comprehensive

study of uncertainty in data, parameters, forecasts, observations and their trade-offs

should be encouraged, we expect that there will be no simple formula to “correct” the

forecasts, tests or interpretations.

Rather, the propagation of data and parameter uncertainties needs to be carefully

examined in each specific model and accounted for in the forecasts. The resulting

distribution of forecasts can most likely not be captured by one value such as the ex-

pectation. In fact, we have shown above that, depending on the noise, we should expect

extremely large variations that cannot be represented by one number per bin.

The L and N tests both assume that earthquakes are independent in each space-time
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bin and that observations consistent with the forecast are Poisson distributed random

variables. In this article, we did not study the implications of the first assumption. It

would seem, however, that the assumption of independence will be strongly violated

during active aftershock sequences - the days when clustering models can actually be

tested on observed clustering.

But from the standpoint of our results, the second assumption (that observations

consistent with a model are Poisson distributed with mean equal to the forecast) may

need to be relaxed because of uncertainties in the forecasts, whether due to noisy mag-

nitudes used to generate forecasts, parameter uncertainties or other sources. Instead,

models will need to provide the entire likelihood distribution in each space-time bin.

Apart from likelihood and number consistency tests, methods for alarm-based earth-

quake predictions are also equipped to deal with full forecast distributions [see, e.g.,

Zechar and Jordan [2007]].

There is a second reason for allowing forecasts to be specified as full distributions.

The idiosyncrasies of a model may cause consistent observations to be distributed com-

pletely differently than a Poisson distribution. While a certain actual observation may

not be consistent with a Poisson distribution given the mean rate of a model forecast,

the observation may still be consistent with the model. Specifying the entire distribu-

tion of a forecast is computationally much more demanding, but it is the only way to

guarantee that forecasts accurately reflect the scientific hypotheses of the model along

with all sources of uncertainties involved in the generation of the forecast.

The power of the “non-Poisson” L and N tests may appear weaker because less

models are rejected, but this is simply a reflection of the potential stochasticity of the

model and its real uncertainties. If the tests are adjusted to the distribution of each

forecast, then the confidence limits can be interpreted appropriately.

A trivial way for a model to pass the “non-Poisson” consistency tests would be to
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specify extremely broad distributions so that whatever is observed falls into the center

of the distribution. Most clustering models are in fact already very broadly distributed

so that this may reflect some scientific truth about seismicity. But in case these distri-

butions are too broad, there exists also the likelihood ratio test, which compares models

against each other and would be able to reject overly “dilute” forecasts against peaked

ones that are accurate.

Before concluding, we briefly mention two techniques that seem suitable for gener-

ating the entire distribution of forecasts from a model. The first is a simple simulation-

based method and is essentially an extension of the method by Rhoades et al. [1994]

from renewal processes to clustering models. The idea is to acknowledge that data and

parameters are uncertain and hence distributed and then to repeatedly sample parame-

ters and data randomly from these distributions to generate many forecasts.

The simulation-based method is simple but computationally expensive. Further-

more, past forecasts of the model are “thrown away” whenever new observations be-

come available. A second method, data assimilation, provides an optimal and more

efficient solution by making use of all available information, including previous model

forecasts [see e.g. Kalnay [2003]]. The goal of data assimilation is to estimate the

state of the physical system (and/or parameters) through a statistical combination of

the noisy observation and the distributed model forecast according to Bayes’ theorem.

The state (e.g. past earthquake data and parameters of the model) are sequentially up-

dated through time by correcting the model forecast (the prior) with the observations

(the likelihood).
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6.6 Conclusions

In this article, we analyzed magnitude uncertainties and their impact on seismic rate

estimates in short-term clustering models, on their forecasts and on their evaluation in

predictability experiments such as RELM or CSEP. In the first part, we quantified mag-

nitude uncertainties. We estimated moment magnitude uncertainties by comparing the

estimates for the same events from the CMT and USGS MT catalogs. We found that a

double-sided exponential (Laplace) distribution with a scale parameter 0.1 fit the dis-

tribution of the estimate differences significantly better than a Gaussian, reflecting the

higher probability of outliers. If the distributions of independent, individual magnitude

uncertainties decay much more slowly than a Gaussian, they have at least exponential

or fatter-than-exponential tails. We also analyzed MAD values, a measure of magni-

tude uncertainty, reported by the NCSN in its authoritative region of the ANSS. We

found that MAD estimates below 0.1 may be unreliable. Typical values were between

0.1 and 0.3 but outliers occur often.

Because short-term seismicity models indiscriminately use any listed magnitude in

earthquake catalogs for seismic rate projections, inter-magnitude uncertainties reflect

the true errors better. We compared the CMT moment magnitudes with the PDE body

and/or surface wave magnitudes and found scatter with standard deviations of 0.29 and

0.26, respectively. We further found that the NCSN local and coda duration magnitude

estimates for the same events fit a Laplace distribution with scale parameter 0.2 better

than a Gaussian (with standard deviation 0.3).

The relative lack of available quantitative magnitude uncertainty estimates coupled

with their importance for hypothesis testing underscore the need for increased (funding

for) data quality assessment and control by network operators.

In the second part, we studied the impact of magnitude noise on seismic rate projec-
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tions in a simple clustering model that captures the main ingredients of popular short-

term models. We proved that seismic rate estimates based on noisy catalog data deviate

from their exact rate by power law fluctuations in the tail with exponent α = (aνc)
−1,

where a is the exponent of the productivity law of aftershocks and νc is the scale param-

eter of the Laplace distribution of the magnitude noise. Thus seismic rate projections

and forecasts can fluctuate extremely due to magnitude noise. We further proved that

the scale factor C∆λ, which characterizes the typical scale of the fluctuations, remains

a random variable and does not converge to a unique, fixed constant. Rather, there are

subtle trade-offs between the power law tail, a tendency for the sum of random vari-

ables to converge to its stable law (Gaussian or Levy) and the strong quenched disorder

due to particular catalog realizations and the stochasticity of the model.

In the last part, we studied how forecasts based on noisy data would fare in RELM/CSEP

predictability experiments. We conducted a numerical experiment in which we con-

structed a hypothetical testing center and performed a one year test of daily forecasts.

We assumed that earthquakes happen according to the seismic rate of a simple cluster-

ing model calibrated on an exact catalog data set. We then perturbed the catalog but

used the same model to generate forecasts from the noisy data. These were submitted

to the mock testing center as “models” that were tested for the consistency with the

hypothetical observations. We found that noisy forecasts were rejected much more

frequently than would be expected for a given confidence limit. We concluded that

the current RELM number and likelihood consistency tests were sensitive to noisy

forecasts and could wrongly reject the “true” model due to magnitude noise.

To robustly reject models at specified confidence limit, tests cannot assume that ob-

servations consistent with a model are Poisson distributed about its mean rate forecast.

To properly capture the idiosyncrasies of each model together with all propagating

uncertainties, the forecasts need to specify the entire distribution for each space-time-
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magnitude bin. Based on our results that forecasts are power law distributed, we expect

the deviations from a Poisson distribution to be severe. We noted that data assimila-

tion techniques were particularly useful for propagating entire probability distributions

while taking into account all uncertainties.
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CHAPTER 7

Earthquake Forecasting Based on Data Assimilation

7.1 Introduction

This chapter focuses on the development of earthquake forecasting methods that sys-

tematically account for observational uncertainties, such as the magnitude uncertain-

ties presented in Chapter 6. We use the framework of Bayesian data assimilation, a

general method for estimating evolving quantities in the presence of noise and prior

(model) information. In particular, we implement sequential Monte Carlo methods, a

set of simulation-based techniques for estimating posterior distributions, to estimate

occurrence times and magnitudes from noisy (synthetic) data in point process models

relevant to seismicity.

The chapter is structured as follows. Section 7.2 explains the motivation for pur-

suing earthquake forecasting based on data assimilation. Sections 7.3 and 7.4 give

a broad but brief overview over the different types of observational uncertainties in

earthquake catalogs and over the different point process models that are used for fore-

casting. Due to the interdisciplinary nature of this chapter, these sections are primarily

intended for non-seismologists.

Section 7.5 reviews some of the existing methods that have been applied to treat

uncertainties in earthquake “hindcasting” (retrospective forecasting) using point pro-

cess models. The techniques are currently limited to renewal processes, the sim-

plest class of point processes, and were applied in a static setting. Section 7.5.4 thus
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states the general problem of developing sequential (near real-time) methods for multi-

dimensional marked point processes of clustered seismicity.

Section 7.6 introduces the concept of data assimilation. Due to the non-Gaussian,

nonlinear nature of seismicity models, we immediately use the language of proba-

bilistic methods to set the stage. In particular, we discuss sequential Monte Carlo

(SMC) methods, a set of simulation-based techniques for estimating posterior distri-

butions that have recently been quite successful at making sequential Bayesian estima-

tion problems feasible. Section 7.7 describes several such methods, known as particle

filters, along with their algorithms. The two sections 7.6 and 7.7 are intended as an in-

troduction to data assimilation and SMC methods for seismologists and others. SMC

methods are relatively new even in applied statistics.

Section 7.8 presents a brief review of the literature in which point process models

are used in data assimilation applications. Although very recent work involves (sim-

ple) point processes in SMC methods, research does not seem to have involved more

complex processes or applications in seismology.

After this review, the remainder of the chapter is devoted to extending the SMC

methods to point process models for earthquake forecasting. In section 7.9, we contrast

the mathematical framework of state-space models, which underlie most data assimila-

tion methods, with point processes. We note that noisy occurrence times together with

renewal processes present some theoretical challenges, which do not present them-

selves for more general processes and/or other noisy observations such as location or

magnitude. Section 7.10 presents an implementation of several particle filters for a

renewal process under noisy occurrence times. We use a lognormal model, which is

relevant to earthquakes, and compare the improvement of the particle filter over the

benchmark forecast, which ignores uncertainties. Section 7.11 discusses the general-

ization to multi-dimensional marked point processes. It presents the Bayesian solution
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for estimating noisy magnitudes in a marked cluster process with exact occurrence

times. Section 7.12 concludes.

7.2 Motivation

This section summarizes some of the motivational grounds for pursuing earthquake

forecasting based on data assimilation.

1. Earthquake forecasting under observational uncertainties: As already empha-

sized in the last chapter, the current surge in earthquake predictability experi-

ments [Schorlemmer et al., 2007; Schorlemmer and Gerstenberger, 2007; Jor-

dan, 2006] provides strong motivational grounds for developing earthquake fore-

casting methods that are robust with respect to observational uncertainties in

earthquake catalogs. As was partially established in the last chapter, the uncer-

tainties in earthquake catalogs are sufficiently serious to call for the development

of a general framework that quantifies our degree of confidence in both forecasts

and observations.

2. Seismic hazard calculations under observational uncertainties: On a practical

level, the inclusion of uncertainties for seismic hazard calculations may provide

better scientific support for the decision-making in the insurance industry, gov-

ernmental and non-governmental disaster agencies, and risk mitigation strate-

gies.

3. Scientific hypothesis testing under observational uncertainties: Observational

uncertainties may bias conclusions regarding scientific hypotheses. The only

way to accurately provide confidence limits to test our ideas about earthquakes

is to take uncertainties into account – data assimilation provides the ideal vehicle

for such a systematic treatment.
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4. The development of a powerful null hypothesis: Seismicity forecasts are often

compared to uninformative null hypotheses. The class of epidemic-type trig-

gering models is fast gaining momentum as a powerful null hypothesis against

which new claims can be tested (as seen in Chapter 5). However, there are out-

standing issues in the formulation and understanding of this null hypothesis that

have led to a variety of different implementations. Some of the differences may

be insignificant in the face of data uncertainty.

5. Model development: Data assimilation can be used as a framework for likelihood-

based model testing and development, fully accounting for uncertainties.

6. Estimating physical quantities of physics-based models from seismicity: In its

general formulation as a state and parameter estimation problem, data assimila-

tion may also be viewed as a method for estimating physical quantities (“states”)

and model parameters, directly related to physics-based models.

7. Optimally integrating different types of data for earthquake forecasts: The mod-

els submitted to the five-year forecast competition of the Working Group on

Regional Earthquake Likelihood Models (RELM) contain a variety of data from

which forecasts are generated. In the future, the coupled integration of several

types of different data is highly desirable. Numerical weather prediction has a

long history of integrating such different types of data – earthquake seismology

may be able to adapt these methods.

8. Developing statistical theory and methodology for noisy point processes: The

theory of point processes has so far largely focused on exact data (with some

notable exceptions). The development of the statistical theory and practical

methodology for taking into account noisy observations is therefore interesting

in its own right.
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9. Applications beyond earthquake forecasting: Point process models are being

increasingly used in a large variety of fields. Much of the methodology is likely

to be directly applicable in those fields.

7.3 Observational Uncertainties in Earthquake Catalogs

This section presents a brief overview of the observational uncertainties in earthquake

catalogs. The discussion is kept broad but short since the implemented techniques in

sections 7.7 and 7.11 are restricted to random occurrence times and magnitudes and

the emphasis in this chapter is on the development of the methodology. In fact, each

point below may be (and is) the subject of many articles.

Uncertainties often include both systematic and random errors; uncertainties due to

the point source representation of earthquakes; uncertainties due to the very definition

of earthquakes; and the list goes on. Uncertainty estimates were compiled from the

following articles and references therein: [Harte and Vere-Jones, 1999; Kagan, 2002b,

2003; Werner and Sornette, 2007b]. Note that uncertainties vary strongly between

different catalogs, which may measure different quantities (e.g. moment magnitude

versus body wave magnitude, or earthquake centroids versus hypocenters).

• Occurrence times: The standard deviation of reported occurrence times depends

on the type of catalog (centroid or first motion). Estimates vary between 1 − 3

seconds depending on the catalog and the geographical location (i.e. the seismic

network coverage).

• Magnitudes: Magnitude uncertainty was discussed in detail in Chapter 6. Ran-

dom errors seem to be distributed more broadly than a Gaussian distribution. A

Laplacian distribution with scale parameter 0.1−0.3 seems to capture the errors.
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• Locations: Location uncertainties strongly depend on the location method. From

cross-correlated catalogs to global catalogs, the range spans from several meters

to dozens of kilometers. Depth uncertainty is even harder to constrain: it ranges

from hundreds of meters to essentially impossible to constrain, typically on the

order of several to tens of kilometers.

• Focal mechanisms: The orientation of the moment tensor of earthquakes may be

wrong by as much as 15− 20o in terms of a 3D rotation angle.

• Missing events (missing observations): Earthquake catalogs, even during opti-

mal conditions, can only report earthquakes down to the size that can be detected

by their networks. This optimum threshold varies strongly depending on the net-

work. Regional catalogs may detect earthquakes as small as magnitude 0 while

global catalogs usually do not report below M5. However, this detection thresh-

old can vary strongly spatially, due to uneven network coverage, and temporally,

due to strong shocks that “swamp” the instruments so that even large events may

go unnoticed.

• Historical seismicity (initial conditions): Large earthquakes influence seismicity

for years and decades (and, in some cases like the 1891 Nobi earthquake in

Japan, for centuries). Reliable homogeneous catalogs are usually only available

for several decades at best (depending on the required threshold). The lack of

precise information about large earthquakes prior to a catalog start date may thus

influence model calibration and forecasts.

• Uncertainties due to the catalog representation: Catalogs list earthquakes as

points, while of course they are spatio-temporally extended objects. The very

definition of an earthquake event may be questioned as the identification de-

pends on the temporal and spatial resolution of seismic instruments. Further-
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more, other moment-releasing events (slow earthquakes, tremors, etc) are not

yet included in catalogs.

• Non-catalog-based data: Earthquakes leave clear imprints on other observables,

such as deformation measurable by GPS and InSAR, permeability changes in the

crust, and are expected to be strongly influenced by pore-fluids, stress changes

etc. The inclusion of such (equally uncertain) data may help improve forecasts.

7.4 Earthquake Forecasting and Point Process Models of Seismic-

ity

In this section we can only give a brief flavor of some of the models used for the fore-

casting of earthquakes. Obviously there are an enormous range of models that can

be and are being used to forecast earthquakes, ranging from deterministic to proba-

bilistic, from alarm-based to likelihood-based, from physics-based to empirical, mod-

els that predict from past seismicity or from other data. Reviews, debates and views

on earthquake prediction can for instance be found in [Geller, 1997; Geller et al.,

1997a,b; Helmstetter and Sornette, 2003d; Jordan, 2006; Kagan, 1997b, 1999b, 2006;

Keilis-Borok and Soloviev, 2003; Nature Debates, 1999; Sammis and Sornette, 2002;

Sornette, 2002]. The famous failed Parkfield prediction is discussed in [Harris and

Arrowsmith, 2006; Kagan, 1997a; Jackson and Kagan, 2006; Davis et al., 1989]. We

restrict this brief overview to seismicity-based forecasting with a bias towards point

process models. Thorough treatments of the theory of point processes can be found in

[Daley and Vere-Jones, 2003; Karr, 1986].

Vere-Jones [1970] and Kagan [1973] were among the first to study seismicity using

point processes. Other early stochastic models were developed in [Vere-Jones, 1978;

Kagan and Knopoff , 1981; Kagan, 1982]. Since then, many different models of point
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processes have been proposed and used in studies of seismicity. Reviews are provided

by [Kagan, 2006; Ogata, 1988, 1999a; Utsu et al., 1995] and especially in [Vere-Jones,

1995]. Vere-Jones [2000, 2006] provided personal accounts of the development of

statistical seismology.

Simple models include renewal processes, often used for the seismic gap hypoth-

esis [McCann et al., 1979; Nishenko, 1991; Kagan and Jackson, 1991b, 1995; Rong

et al., 2003], models of characteristic earthquakes [Wesnousky, 1994; Bakun et al.,

2005; Scholz, 2002; Kagan, 1993], seismic hazard [Field, 2007] and earthquakes on a

particular fault segment [Bakun et al., 2005; Davis et al., 1989; Rhoades et al., 1994;

Ogata, 1999a, 2002].

Long term probabilistic models were provided for example by [Vere-Jones, 1978;

Kagan and Jackson, 1994; Jackson and Kagan, 1999; Kagan and Jackson, 2000] and

[Evison and Rhoades, 2004; Rhoades and Evison, 2004].

Recently, five-year probabilistic forecasts were submitted to the Collaboratory for

the Study of Earthquake Predictability (CSEP) and the Working Group on Regional

Earthquake Likelihood Models (RELM) for community-agreed prospective testing

[Schorlemmer et al., 2007; Jordan, 2006]. The 19 submitted models are time-independent

(Poissonian) and based on a variety of data and models, including past seismicity and

constitute some of the current state of the art in time-independent forecasts.

Short-term models include non-homogeneous poisson processes (i.e. Poisson pro-

cesses with a time-varying rate), which are often used for modeling individual after-

shock sequences to mimic Omori’s law of the power law decay of aftershocks [Utsu

et al., 1995; Ogata and Katsura, 2006].

Cluster or triggering models in which a renewal process generates its own off-

spring, are often used to model entire earthquake catalogs [Vere-Jones, 1970; Kagan,

1973; Kagan and Knopoff , 1987; Ogata, 1988, 1998, 1999b; Felzer et al., 2002; Helm-
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stetter and Sornette, 2002; Console et al., 2003b; Felzer et al., 2003; Zhuang et al.,

2004; Gerstenberger et al., 2005; Hainzl and Ogata, 2005; Sornette and Ouillon, 2005;

Ouillon and Sornette, 2005; Helmstetter et al., 2006; Console et al., 2007].

Many studies have focused on accelerating seismicity before major earthquakes or

volcanic eruptions [Voight, 1988; Sykes and Jaumé, 1990; Bufe and Varnes, 1993], the

concept of large earthquakes as genuine critical points [Sornette and Sammis, 1995;

Saleur et al., 1996a,b; Johansen et al., 1996; Huang et al., 1998; Bowman et al., 1998]

and accelerating moment release [Vere-Jones et al., 2001; Mignan et al., 2006].

Other physics-based models based on rate-and-state friction and/or Coulomb stress

transfer were for instance studied by [Dieterich, 1994; Stein, 1999; Stein et al., 1997].

Methods for the difficult task of assessing probabilistic earthquake forecasts in-

clude likelihood-based methods [Bebbington, 2005; Harte and Vere-Jones, 2005; Ka-

gan and Jackson, 1994, 1995; Jackson, 1996; Schorlemmer et al., 2007; Werner and

Sornette, 2007b], and alarm-based methods [Molchan, 1990; Molchan and Kagan,

1992; Zechar and Jordan, 2007].

7.4.1 Some Basic Notions and Classes of Point Processes

[Daley and Vere-Jones, 2003] provide a rigorous development of the theory of point

processes. Here, we solely introduce the conditional intensity function and some stan-

dard classes of point processes that will be relevant in this chapter.

• Conditional intensity function: A point process is completely defined by its

conditional intensity function (an instantaneous probability of an event occur-

ring), defined here for a one-dimensional, temporal point process

λ(t|Ht) = lim
∆→0

P ( event occurs in [t, t+ ∆]|Ht)/∆ (7.1)
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where Ht is the entire history up to time t, which includes all previous occur-

rence times.

Let f(t|Ht) denote the probability density function (pdf) time until the next event

(potentially dependent on more than just the last event, i.e. non-Markovian)

and let F (t|Ht) be the corresponding survivor function. The relationship given

between the conditional intensity and these two quantities is given by

λ(t|Ht) = f(t|Ht)/F (t|Ht) (7.2)

and the probability of an event in the time interval (tc, tc + s) is given by

P (tc; s|Ht) = 1− exp

(
−
∫ tc+s

tc

λ(u|Htc)du

)
(7.3)

When an event occurs, the historyHt changes and therefore λ(t|Ht) may change

in form - it is defined piecewise continuously between events. Finally, another

useful relationship is that the pdf f(ti|Ht) can be directly related to the condi-

tional intensity by differentiating the equation (7.3):

f(ti|Ht) = λ(ti|Ht) exp

(
−
∫ ti

ti−1

λ(u|Ht)du

)
H(ti − ti−1) (7.4)

where H(·) is the Heaviside step function. The conditional intensity can be

generalized to include locations and marks.

• Renewal Processes: A renewal process is a particular class of temporal point

process in which the probability of occurrence of the next event only depends on

the time since the last event. Their pdf for the occurrence time of the ith event

given Ht is simply given by:

f(ti|Ht) = f(ti|ti−1) = f(ti − ti−1)H(ti − ti−1) (7.5)

where, again, H(·) is the Heaviside step function. Here, the dependence on Ht

is reduced to ti−1.
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Renewal processes are the simplest class of point processes. One can equiva-

lently define them by the class of conditional intensities that depend only on the

time of the last event:

λ(t|Ht) = λ(t− tl) (7.6)

where tl is the time of the last event and the rest of the history Ht is irrelevant

for the probability of the next event. One can also define the interval τ = t− tl

as the relevant variable. Examples of such processes in terms of their pdf are:

fPoisson(τ ;λ) = λ exp(−λτ) (7.7)

flognormal(τ ;µ, σ) =
1

τ
√

2πσ
exp(−(log τ − µ)2/2σ2) (7.8)

fWeibull(τ ; k, s) =
k

s
(
τ

s
)k−1 exp−(τ/s)k (7.9)

where the quantities after the colon are parameters of the pdf, and τ is strictly

positive. For the Poisson process, the parameter λ is equal to its (constant) haz-

ard rate or conditional intensity. Note that the Poisson process, because of its

lack of memory, is a special case of the renewal processes: if parameters are

known, then more accurate estimates of past occurrences do not lead to a differ-

ent forecast. The Poisson process is hence trivial in data assimilation methods.

• Clustering Models: Clustering models are usually constructed from two pro-

cesses: a cluster center process, which is often a renewal or Poisson process, and

a cluster member process. The cluster member process consists of events that are

triggered by the cluster center via a triggering or response function h(t− tic , ξ)

which usually depends only on the time since the cluster center and a stochas-

tic amplitude ξ drawn from a usually time-invariant distribution. An example is

given by the simple aftershock model considered in Chapter 6. A generic form

is given by

λ(t|Hc
t , θ) = λc +

∑
ic|tic<t

h(t− tic , ξic) (7.10)
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where Hc
t is the history up to time t which need only include information about

the cluster centers {tic , ξic}1≤ic≤Nc , as cluster members do not trigger their own

events and do not influence the future. Here, the cluster center process is a Pois-

son process with rate λc and the model is characterized by a set of parameters θ.

In contrast to shot noise models, λ is not the observable, but drives the observed

point process characterized by λ as a conditional intensity function.

• Self-Exciting Models: Self-exciting models were first proposed by [Hawkes,

1971a,b; Hawkes and Oakes, 1974]. They are a generalization of the cluster

models by allowing each event, including cluster members, to trigger their own

events according to some response function or kernel h(t− ti):

λ(t|Ht, θ) = λc +
∑
i|ti<t

h(t− ti) (7.11)

where the history Ht = {ti}1≤i≤N now includes all events and the sum in equa-

tion (7.11) runs over all events. The major introduction in the model is a (linear)

dependence on all previous activity. The model can equivalently be viewed as

a branching model [Hawkes and Oakes, 1974]. Nonlinear generalizations are

much more difficult to handle analytically (see, for instance, [Ouillon and Sor-

nette, 2005; Sornette and Ouillon, 2005].

• Marked Self-Exciting Point Processes: This class is a multidimensional ex-

tension of the self-exciting process obtained by associating with each point ti a

random mark m drawn from a usually invariant distribution p(m):

λ(t,m|Ht, θ) = p(m)

λc +
∑
i|ti<t

h(t− ti,mi)

 (7.12)

where the stochastic amplitude in the response function h(t − ti,mi) is usually

the mark of the ith event and the history is given by Ht = {ti,mi}1≤i≤N . This
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class can be further extended to include locations in space. Under a particu-

lar choice of the response function and the mark distribution, one recovers the

Epidemic-Type-Aftershock-Sequence (ETAS) model [Ogata, 1988, 1998]:

λ(t,m|Ht, θ) = p(m)

λc +
∑
i|ti<t

k ea(mi−md)

(t− ti + c)p

 (7.13)

where p(m) is given by the Gutenberg-Richter law and the model is character-

ized by the set of parameters θ = {β, λc, k, a,md, c, p}.

These basic ideas suffice for the remainder of the chapter. A more comprehensive

treatment can be found in [Daley and Vere-Jones, 2003].

7.5 Existing Methods for Uncertainties in Point Process Seismicity

Models

Little research seems to have been devoted to dealing explicitly and systematically with

observational uncertainties in point process models of seismicity. Notable exceptions

are [Rhoades et al., 1994; Ogata, 1999a, 2002]. These authors focused exclusively on

paleoseismological data and their impact on renewal process forecasts for individual

faults and fault segments. As opposed to more ad hoc approaches to uncertainties (e.g.

California or national seismic hazard estimates), these authors introduced systematic

and rigorous methods, which are reviewed briefly below.

7.5.1 Ignoring Observational Uncertainties: The “Benchmark”

The obvious first approach to uncertainties is, of course, to ignore them. We mention

this “benchmark” method here solely to introduce the “straw man”, against which

improvements are to be considered. Most if not all current operational earthquake
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forecasts based on marked point processes follow this “strategy” (e.g. [Gerstenberger

et al., 2005; Helmstetter et al., 2006]). It should be noted, however, that the parameters,

which are estimated from earthquake catalog data, may be able to adjust to some of the

uncertainties. Such effective parameters may appear to reduce the effects of errors. It is

therefore important to consider the joint parameter estimation and forecasting problem.

Such a comprehensive approach should be developed, but is outside the scope of this

dissertation: In our numerical experiments, we consider parameters as known.

7.5.2 Sampling from the Uncertainty Distribution: The “Bootstrap”

In an application to the hazard calculations of earthquakes on individual faults from

paleoseismic data, Rhoades et al. [1994] average the probability P (tc; s|yo) of an event

in the interval [tc, s], given by equation (7.3), which is conditional on the data set yo

(the occurrence times of the earthquakes in the data set), over the data uncertainty

distribution fy(y
o):

P (tc; s|Ht) =

∫
P (tc; s|yo)fy(y

o)dyo (7.14)

which is equivalently to averaging the hazard (conditional intensity) rate:

λ(t|Ht) =

∫
λ(t|yo)fy(y

o)dyo (7.15)

where the (multidimensional) data uncertainty distribution may contain correlations

between the uncertainties in the data. Rhoades et al. [1994], while outlining the gener-

ality of the approach, apply their method to un-correlated data uncertainties, i.e. each

occurrence time uncertainty is independent of the others. It is not a recursive approach.

Ogata [2002] also considered uncertain paleoseismic data and used renewal pro-

cesses to attempt to identify which process fit the data significantly better. This may

provide insight into the nature of earthquake recurrences on individual faults. Ogata
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[2002] averaged the pdf’s instead of the probability distribution or the conditional in-

tensity:

f(t|Ht) =

∫
f(t|yo)fy(y

o)dyo (7.16)

Rhoades et al. [1994] commented on the difference between averaging over the hazard

functions as opposed to the probability density functions.

7.5.3 Informing the Data Uncertainty via the Model Forecast: A Static Bayesian

Method

Ogata [1999a] presented a Bayesian approach including parameter estimation for an

uncertain paleoseismic data set assumed to be governed by a renewal process. He

considered the entire data set at once:

φ(t1, ..., tn|to1, ..., ton) = L(t1, ...., tn)Πn
i=1ψi(ti)/N (7.17)

where the product of the independent data uncertainty densities ψi is the prior, N

is a normalization constant and the “likelihood” L is defined by the product of the

individual interval densities given by equation (7.5). This approach does not integrate

or take averages but multiplies the densities directly for the entire data set. This allows

an estimation of a Bayesian likelihood, which was used to evaluate the goodness of fit

between different models.

7.5.4 Towards Sequential Bayesian Methods for General Point Processes: Prob-

lem Statement

The methods by Rhoades et al. [1994], Ogata [1999a] and Ogata [2002] were ap-

plied to simple renewal processes and to an entire data set at once. Only Ogata [2002]

made optimal use of his proposed models by “correcting” the observation by the model

forecast in a Bayesian framework. First, we would like to generalize the approach to
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general marked point processes that are relevant to time-dependent earthquake fore-

casting today (e.g. in the framework of RELM/CSEP). Second, we would like to use

a sequential method that recursively assimilates observations into the model forecast

so as to optimally estimate the actual occurrence times, magnitudes, locations, focal

mechanisms, and potentially other data. We can thus state the general statistical prob-

lem that will be addressed in this chapter:

Estimate as best as possible and sequentially in time, earthquake parameters such

as occurrence time, magnitude, location, focal mechanism etc, using all available in-

formation, including noisy observations of these parameters and statistical laws com-

bined into spatio-temporal marked point processes that govern their behavior.

Data assimilation provides the ideal vehicle for such an approach, as we shall see

in the next section.

7.6 A Brief Introduction to Data Assimilation

Data assimilation is a statistical technique that integrates observations with model-

based forecasts in an optimal way [Kalnay, 2003; Daley, 1991]. Data assimilation

came about in dynamical meteorology and physical oceanography, but has quickly

spread into an active and growing research field in engineering, mathematics, finance

and geophysics (see, for example, the references in Ide et al. [1997]). Numerical

weather prediction provides the prime example for the method: an uncertain estimate

of the state of the atmosphere, characterized by e.g. temperature, pressure, and ve-

locities, is evolved according to physical model, e.g. the Navier-Stokes equation, to

produce an uncertain forecast of the state for the next discrete time step. Observations,

which are also characterized by uncertainty, are made at this new time step. Data as-

similation then statistically combines both observation and forecast in an optimal way
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so as to estimate the current state of the atmosphere as accurately as possible using

all available information. Here, the available information consists of both the actual

observations and the physical laws that govern the evolution of the atmospheric flow.

A variety of specific data assimilation methods exist, which differ in their practical

implementation of the optimal combination and in their assumptions about the model,

the observations and their uncertainties. The most general approach in state evolution

problems of the kind found in numerical weather prediction combines the Liouville

equation for the model forecast together with Bayes’ theorem for the assimilation (or

analysis) of the observations [Ehrendorfer, 1994]. A review of methods from early

techniques to current weather forecast methods of national agencies to 4D variational

approaches, Kalman filtering, extended Kalman filtering and ensemble Kalman filter-

ing can be found in Chapter 5 of Kalnay [2003]. The Kalman filter presents the optimal

solution to the data assimilation problem under the assumptions of linear models with

Gaussian observation and model noise. These assumptions are strongly violated in

stochastic point process models for earthquake forecasting. We therefore need a more

general approach based on propagating the entire probability distribution, rather than

solely mean and covariance. Such a scheme is presented in detail in the next section.

7.6.1 Bayesian Data Assimilation

In this section, we state the general problem of Bayesian data assimilation that will be

solved for specific model and observation assumptions in section 7.10. The presenta-

tion borrows from [Doucet et al., 2000, 2001] and [Arulampalam et al., 2002].

For ease of presentation, we restrict ourselves to signals modeled as Markovian,

nonlinear, non-Gaussian state-space models. The unobserved signal (hidden states)

{xt}t≥1 is modeled as a Markov process (xt may be a vector). The initial state x0 has

initial distribution p(x0). The transition from xt to xt+1 is governed by a transition
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probability distribution p(xt+1|xt). The observations {yt}t≥1 are assumed to be con-

ditionally independent given the process {xt}t≥1 and of marginal distribution p(yt|xt)

(the observations may also be vectors, in general of different dimension than the state).

The model can be summarized by

Initial condition: p(x0)

Model forecast: p(xt+1|xt) t ≥ 1

Data likelihood: p(yt|xt) t ≥ 1

We denote x0:t = {x0, . . . , xt} and y1:t = {y1, . . . , yt}. The problem statement is

then as follows: the aim is to estimate sequentially in time the posterior distribution

p(x0:t|y1:t), its associated features (e.g. the marginal distribution p(xt|y1:t), also known

as the filtering distribution) and potentially the expectation (mathematical average)

I(ft) = Ep(x0:t|y1:t)[ft(x0:t)] ≡
∫
ft(x0:t)p(x0:t|y1:t)dx0:t (7.18)

where the function ft may be chosen to obtain the conditional mean of x0:t or other

quantities of interest such as the covariance. For broadly distributed posteriors, the

mean may not be particularly meaningful and is therefore largely ignored here.

At any time t, the posterior distribution is given by Bayes’ theorem

p(x0:t|y1:t) =
p(y1:t|x0:t) p(x0:t)∫
p(y1:t|x0:t) p(x0:t)dx0:t

(7.19)

A recursive or sequential formula is given by

p(x0:t+1|y1:t+1) = p(x0:t|y1:t)
p(yt+1|xt+1) p(xt+1|xt)

p(yt+1|yt)
(7.20)

The marginal distribution p(xt|y1:t−1) also satisfies the following recursion:

Prediction: p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (7.21)

Updating: p(xt|y1:t) =
p(yt|xt) p(xt|y1:t−1)∫
p(yt|xt) p(xt|y1:t−1)dxt

(7.22)
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Expressions (7.21) and (7.22) are the essential steps in sequential data assimilation.

Using the last update (the posterior, also often called analysis) as initial condition, the

Chapman-Kolmogorov (prediction) equation is used to forecast the state at the next

time step. When observations yt become available, they are assimilated into the model

forecast by the update equation. This cycle constitutes data assimilation.

Only in very special cases are the prediction and update equations (7.21) and (7.22)

amenable to analytical solutions. When the model is linear with Gaussian system noise

and the observations are Gaussian, the analytical and optimal solution is given by the

Kalman filter. The extended Kalman filter, the ensemble Kalman filter and the Kalman-

Levy filter [Sornette and Ide, 2001] generalize the setting of models and distributions

somewhat, but remain limited to near-Gaussian models or at least locally Gaussian

models (extended and ensemble Kalman filter), and a Gaussian model with Levy-like

errors (Kalman-Levy filter).

In general, however, such a simplification is impossible. Furthermore, one cannot

usually calculate the normalizing constant p(y1:t), the marginal p(xt|yt) of the poste-

rior or I(ft), since one needs to evaluate complex high-dimensional integrals. Thus,

the recurrence relations (7.21) and (7.22) only form a conceptual solution, since in

practice they cannot be determined analytically and one needs to resort to sub-optimal

approximation methods such as extended Kalman filtering, ensemble Kalman filtering,

approximate grid-based methods or sequential Monte Carlo methods.

7.6.2 Sequential Monte Carlo (SMC) Methods

Earthquake statistics clearly violate Gaussian approximations in terms of their tempo-

ral, spatial and magnitude occurrences, so much so that approximate algorithms based

on local Gaussian approximations (e.g. the extended Kalman filter) are highly unlikely

to produce good results. Furthermore, the continuous state space of seismicity rules

209



out methods in which that space is assumed to be discrete (such as grid-based meth-

ods). This leaves us with numerical integration techniques and Monte Carlo methods.

The former are numerically accurate but computationally expensive in problems with

high dimensionality.

Sequential Monte Carlo (SMC) methods bridge the gap between these cost-intensive

methods and the methods based on Gaussian approximations. They are a set of simulation-

based methods that provide a flexible alternative to computing posterior distributions.

They are applicable in very general settings, parallelisable and often relatively easy

to implement. Early methods were developed in the 70s, but only with the advent of

cheap computational power in the mid 90s did they become a widespread tool. Since

then, however, SMC methods have been applied in target tracking, financial analysis,

diagnostic measures of fit, missing data problems, communications and audio engi-

neering, population biology, neuroscience, and many more. SMC methods are also

known under the names of particle filters, bootstrap filters, condensation, Monte Carlo

filters, interacting particle approximations and survival of the fittest. Good introduc-

tions can be found in [Arulampalam et al., 2002; Doucet et al., 2000, 2001; Liu, 2001;

Liu and Chen, 1998] and, in particular, in Chapter 6 of de Freitas [1999].

In the following, we describe some of the central building blocks of SMC meth-

ods, including Monte Carlo sampling, importance sampling and sequential importance

sampling. For a more comprehensive introduction, we refer the interested reader to the

above references, from which this presentation borrows.

7.6.2.1 Monte Carlo Sampling

In Monte Carlo (MC) simulation, a set of N weighted “particles” (samples) x(i)
0:t are

drawn identically and independently from a distribution (say, the posterior p(x0:t|y1:t).
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Then, an empirical estimate of the distribution is given by

p̂N(x0:t|y1:t) =
1

N

N∑
i

δ
x
(i)
0:t

(x0:t) (7.23)

where δ
x
(i)
0:t

(x0:t) denotes the Dirac mass located at xi
0:t. The essential idea of Monte

Carlo sampling is to convert an integral into a discrete sum. One is often interested in

some function of the posterior distribution, say its expectation, covariance, marginal

or another distribution. Estimates of such functions I(ft) can be obtained from

IN(ft) =

∫
ft(x0:t)p̂N(x0:t|y1:t)dx0:t =

1

N

N∑
i

ft(x
(i)
0:t) (7.24)

This estimate is unbiased. If the posterior variance of ft(x0:t) is finite, say σ2
ft

, then the

variance of IN(ft) is equal to σ2
ft
/N . From the law of large numbers,

IN(ft)
a.s.−−−→

N→∞
I(ft) (7.25)

where a.s. denotes almost sure convergence. That is, the probability that the estimate

IN(ft) converges to the “true” value I(ft) equals one in the limit of infinite number of

particles. Furthermore, if the posterior variance σ2
ft
<∞, then a central limit theorem

holds:
√
N(IN(ft)− I(ft)

∆−−−→
N→∞

N (0, σ2
ft

) (7.26)

where ∆−−−→
N→∞

denotes convergence in distribution and N (0, σ2
ft

) is the normal (Gaus-

sian) distribution with mean zero and variance σ2
ft

). The advantage of this perfect

Monte Carlo method is therefore that the rate of convergence of the MC estimate is

independent of the dimension of the integrand. This stands in contrast to any deter-

ministic numerical integration method, whose rate of convergence increases with the

dimensionality of the integrand.

Unfortunately, because the posterior distribution is usually highly complex, multi-

dimensional and only known up to a normalizing constant, it is often impossible to
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sample directly from the posterior. One very successful solution for generating sam-

ples from such distribution is Markov Chain Monte Carlo (MCMC). Its key idea is to

generate samples from a proposal distribution, different from the posterior, and then

to cause the proposal samples to migrate, so that their final distribution is the target

distribution. The migration of the samples is caused by the transition probabilities of

a Markov chain (see Appendix D of de Freitas [1999] for an introduction that is easy

to follow). However, MCMC are iterative algorithms unsuited to sequential estima-

tion problems and will not be pursued here. Rather, SMC methods primarily rely on a

sequential version of importance sampling.

7.6.2.2 Importance Sampling (IS)

Importance Sampling (IS) introduced the idea of generating samples from a known,

easy-to-sample probability density function (pdf) q(x), called the importance den-

sity or proposal density, and then ”correcting” the weights of each sample so that

the weighted samples approximate the desired density. As long as the support of the

proposal density includes the support of the target density, one can make use of the

substitution

p(x0:t|y0:t) =
p(x0:t|y0:t)

q(x0:t|y0:t)
q(x0:t|y0:t) (7.27)

to obtain the identity

I(ft) =

∫
ft(x0:t)w(x0:t)q(x0:t|y0:t)dx0:t∫

w(x0:t)q(x0:t|y0:t)dx0:t

(7.28)

where w(x0:t) is known as the importance weight

w(x0:t) =
p(x0:t|y0:t)

q(x0:t|y0:t)
(7.29)

Therefore, if one can generate N independently and identically distributed samples

x
(i)
0:t from the importance density q(x0:t|y0:t), a Monte Carlo estimate of I(ft) is given
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by

ÎN(ft) =
1
N

∑N
i ft(x

(i)
0:t)w(x

(i)
0:t)

1
N

∑N
i w(x

(i)
0:t)

=
N∑
i

ft(x
(i)
0:t)w̃

(i)
t (7.30)

where the normalized importance weights w̃(i)
t are given by

w̃
(i)
t =

w(x
(i)
0:t)∑N

j=1w(x
(j)
0:t)

(7.31)

For finite N , the estimate ÎN(ft) is biased, as it is the ratio of two estimates. However,

it is possible to obtain asymptotic almost sure convergence ÎN(ft)
a.s.−−−→

N→∞
I(ft) and a

central limit theorem provided (i) the importance density support contains the posterior

density support, and (ii) the expectations of the weights wt and wtf
2
t (x0:t) exist and

are finite.

Thus, the posterior density function can be approximated arbitrarily well by the

point-mass estimate

p̂(x0:t|y1:t) =
N∑
i

w̃
(i)
t δ

x
(i)
0:t

(x0:t) (7.32)

7.6.2.3 Sequential Importance Sampling (SIS)

In its simplest form, IS is not adequate for sequential estimation. Whenever new data

zt become available, one needs to recompute the importance weights over the entire

state sequence. Sequential Importance Sampling (SIS) modifies IS so that it becomes

possible to compute an estimate of the posterior without modifying the past simulated

trajectories. It requires that the importance density q(x0:t|y1:t) at time t admits as

marginal distribution at time t− 1 the importance function q(x0:t−1|y1:t−1):

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t) (7.33)

after iterating, one obtains:

q(x0:t|y1:t) = q(x0)
t∏

k=1

q(xk|x0:k−1, y1:k) (7.34)
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Assuming that the state evolves according to a Markov process and that the observa-

tions are conditionally independent given the states, one can obtain

p(x0:t) = p(x0)
t∏

k=1

p(xk|xk−1) and p(y1:t|x0:t) =
t∏

k=1

p(yk|xk) (7.35)

Substituting (7.34) and (7.35) into (7.31) and using Bayes’ theorem, we arrive at a

recursive estimate of the importance weights

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, y1:t)

(7.36)

where the normalization is provided by
∑N

j=1 w̃
(j)
t . Equation (7.36) provides a mech-

anism for sequentially updating the importance weights. In summary, SIS provides a

method to approximate the posterior density function (7.32) (or some function thereof)

sequentially in time without having to draw samples directly from the posterior. All

that is required is (i) sampling from the importance density and evaluating it up to some

constant, (ii) evaluating the likelihood p(yt|x(i)
t ) up to some proportionality constant,

(iii) evaluating the forecast p(x(i)
t |x

(i)
t−1) up to some constant, and (iv) normalizing the

importance weights via
∑N

j=1 w̃
(j)
t . SIS thus makes sequential Bayesian estimation

feasible.

7.6.2.4 Choice of the Importance Density and Resampling

The problem encountered by the SIS method is that, as t increases, the distribution of

the importance weights becomes more and more skewed. For instance, if the support

of the importance density is broader than the posterior density, then some particles will

have their weights set to zero in the update stage. But even if the supports coincide

exactly, many particles will over time decrease in weight so that after a few time steps,

only a few lucky survivors have significant weights, while a large computational effort

is spent on propagating unimportant particles. It has been shown that the variance of
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the weights can only increase over time, thus it is impossible to overcome the degen-

eracy problem [Kong et al., 1994]. Two solutions exist to this minimize this problem:

(i) a good choice of the importance density, and (ii) resampling.

• Importance Density: The optimal importance density is given by the posterior

itself:

qopt(xt|x0:t−1, y1:t) = p(xt|x0:t−1, y1:t) =
p(yt|xt, x

(i)
t−1)p(xt|x(i)

t−1)

p(yt|x(i)
t−1)

(7.37)

because it can be proven to minimize the variance of the importance weights

(see Kong et al. [1994] and in particular Chapter 6 of de Freitas [1999] for an

insightful discussion). However, using the optimal importance density requires

the ability to sample from p(xt|x(i)
t−1, yt) and to evaluate the integral over the

new state p(yt|x(i)
t−1) [Arulampalam et al., 2002; Doucet et al., 2001; de Freitas,

1999]. In many situations, this is impossible or very difficult, prompting the use

of other importance densities. Perhaps the simplest and most common one is

given by the prior:

q(xt|x0:t−1, y1:t) = p(xt|xt−1) (7.38)

which, although resulting in a higher variance of the Monte Carlo estimator, is

usually easy to implement. Many other choices are possible, including addi-

tional MCMC steps to sample from the importance density and bridging densi-

ties and progressive corrections to herd the particles to the important part of the

state space [Arulampalam et al., 2002; Doucet et al., 2001; Liu, 2001].

• Resampling: Even the optimal importance density will lead to this “degener-

acy” of the particles (few important ones and many unimportant ones). One

therefore introduces an additional selection or resampling step, in which parti-

cles with little weight are eliminated and new particles are sampled in the impor-
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tant regions of the posterior. de Freitas [1999] and Arulampalam et al. [2002]

provide an overview of different resampling methods.

Resampling introduces its own problems. Since particles are sampled from dis-

crete approximations to density functions, the particles with high weights are

statistically selected many times. This leads to a loss of diversity among the par-

ticles as the resultant sample will contain many repeated points. This is known

as “sample impoverishment” [Arulampalam et al., 2002] and is severe when the

model forecast is very narrow. There are various methods to deal with this prob-

lem, including sophisticated methods that recalculate past states and weights via

a recursion and MCMC methods. Systematic techniques include the Resample-

Move algorithm and the Regularized Particle Filter (RPF). The popular RPF

uses a kernel estimation of the discrete posterior so that samples can be gener-

ated from a smoothed, continuous posterior.

Because of the additional problems introduced by resampling, it makes sense to

resample only when the variance of the weights has decreased appreciably. A

suitable measure of degeneracy of an algorithm is the effective sample size Neff

introduced by Liu and Chen [1998] and defined by

Neff =
N

1 + var(w?i
t )

(7.39)

where w?i
t = p(x

(i)
t |y1:t)/q(x

(i)
t |x

(i)
k−1, yk) is referred to as the true weight. This

may not be available, but an estimate N̂eff can be obtained by:

N̂eff =
1∑N

i=1(w
(i)
t )2

(7.40)

Thus, resampling can be applied when N̂eff falls below a certain threshold

N̂eff < Nthres.
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7.7 Particle Filters and Algorithms

This section outlines a few choices for the importance density and resampling strategy

of particle filters. More on particular particle filters can be found in [Arulampalam

et al., 2002; de Freitas, 1999; Doucet et al., 2000, 2001; Liu, 2001]. We present four

particle filters.

1. The Simple Sequential Importance Sampling (SSIS) particle filter: The simplest

particle filter, it uses the prior (7.38) as the (sub-optimal) importance density and

does not include a resampling step.

2. The Optimal Sequential Importance Sampling (OSIS) particle filter: This filter

improves on the SSIS by using the optimal importance sampling density (7.37),

but does not include resampling.

3. The Sequential Importance Resampling (SIR) particle filter: This filter improves

on the SIS filters by including a resampling step to counteract the degeneracy of

particles. The importance density may either be the prior or the optimal impor-

tance density.

4. The Regularized Particle Filter (RPF): This filter improves on the SIR filters

by resampling from a smoothed, continuous posterior based on a kernel density

estimate of the discrete posterior. It thereby counteracts the problem of sample

impoverishment. The importance density may either be the prior or the optimal

importance density.
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7.7.1 Simple Sequential Importance Sampling (SSIS) Filter

The Simple SIS (SSIS) particle filter is characterized by the lack of resampling and by

choosing the prior p(xt|x(i)
t−1) as the importance density:

q(xt|x0:t−1, y1:t) = p(xt|x(i)
t−1) (7.41)

It can be shown [Arulampalam et al., 2002] that the SSIS can be reduced to the

pseudo-code given by Algorithm 7.1, where the weights are given by:

w
(i)
t ∝ w

(i)
t−1p(yt|x(i)

t ) (7.42)

where p(yt|x(i)
t ) is simply the likelihood and the weights are normalized by

w̃
(i)
t =

w
(i)
t∑N

j=1w
(j)
t

(7.43)

Algorithm 7.1 Simple SIS Particle Filter

[{x(i)
t , w

(i)
t }Ni=1] =SSIS[{x(i)

t−1, w
(i)
t−1}Ni=1, yt]

for i=1 to N do

Draw xi
t ∼ p(xt|xi

t−1)

Assign the particle a weight, wi
t, according to (7.42)

end for

This filter is simple and easy to implement. However, if the likelihood has a much

narrower support than the importance density, then weights of many particles will

be set to zero so that only few active particles are left to approximate the posterior.

Depending on the overlap of the support of the two density functions, this particle

filter may quickly degenerate in quality.
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7.7.2 Optimal Sequential Importance Sampling (OSIS) Filter

The Optimal Simple SIS (OSIS) improves on the SSIS by using the optimal sampling

density:

qopt(xt|x0:t−1, y1:t) = p(xt|x0:t−1, y1:t) =
p(yt|xt, x

(i)
t−1)p(xt|x(i)

t−1)

p(yt|x(i)
t−1)

(7.44)

Then the algorithm of the OSIS filter is given by Algorithm 7.2, where the weights are

given by substituting the optimal importance density (7.44) into the recursive weight

equation (7.36) to obtain:

w
(i)
t ∝ w

(i)
t−1p(yt|x(i)

t−1) = w
(i)
t−1

∫
p(yt|x′t)p(x′t|x

(i)
k−1)dx

′
t (7.45)

Weights are normalized as in equation (7.43). As was already mentioned, the optimal

density suffers from two difficulties: (i) generating samples from the posterior (7.44),

and (ii) calculating the integral in (7.45).

Algorithm 7.2 Optimal SIS Particle Filter

[{x(i)
t , w

(i)
t }Ni=1] =OSIS[{x(i)

t−1, w
(i)
t−1}Ni=1, yt]

for i=1 to N do

Draw x
(i)
t ∼ qopt(xt|x(i)

t−1, yt) ∝ p(yt|xt, x
(i)
t−1)p(xt|x(i)

t−1)

Assign the particle a weight, w(i)
t , according to (7.45)

end for

7.7.3 Optimal Sampling Importance Resampling (OSIR) Filter

To counter the inevitable problem of particle degeneracy, we can use resampling to

generate a new set of particles from the (discrete) posterior. Setting the importance
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density equal to the optimal importance density as in the OSIS particle filter described

above, we recover the Optimal Sampling Importance Resampling (OSIR) algorithm

given by Algorithm 7.3.

In the literature, the SIR filter is usually an implementation with the prior as the

(suboptimal) importance density. Such a filter is called the “bootstrap” filter by Doucet

et al. [2001].

Algorithm 7.3 Optimal SIR Particle Filter

[{x(i)
t , w

(i)
t }Ni=1] =SIR[{x(i)

t−1, w
(i)
t−1}Ni=1, yt]

for i=1 to N do

Draw x
(i)
t ∼ qopt(xt|x(i)

t−1, yt) ∝ p(yt|xt, x
(i)
t−1)p(xt|x(i)

t−1)

Assign the particle a weight, w(i)
t , according to (7.45)

end for

Calculate total weight: W =SUM[{w(i)
t }Ni=1]

for i=1 to N do

Normalize: w(i)
t = W−1w

(i)
t

end for

Calculate N̂eff = 1PN
i=1(w

(i)
t )2

if N̂eff < Nthres then

Resample using Algorithm 7.4: [{x(i)
k , w

(i)
t ,−}Ni=1] =RESAMPLE[{x(i)

t , w
(i)
t }Ni=1]

end if

There are many methods to resample from the posterior (see Doucet et al. [2001]

or Chapter 6 of de Freitas [1999] for a discussion of methods, and Arulampalam et al.

[2002] for a brief overview). The basic idea is to eliminate particles that have small

weights and to concentrate on particles with large weights. It involves generating a new
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set of particles and associated weights by resampling (with replacement)N times from

an approximate discrete representation of the posterior. The resulting sample is an

independently and identically distributed sample so that the weights are reset to 1/N .

The method of choice in Arulampalam et al. [2002] is systematic resampling since

”it is easy to implement, takes O(N) time and minimizes the Monte Carlo variation.”

Its operation is described in Algorithm 7.4, where U [a, b] is the uniform distribution

on the interval [a, b]. For each resampled particle xj?
t , this resampling algorithm also

stores the index of its parents, which is denoted ij . This is unnecessary and can easily

be suppressed, but may be useful in some situations.

7.7.4 Regularized Particle Filter (RPF)

We introduced resampling to counter particle degeneracy. However, resampling intro-

duces the problem of a loss of diversity among the particles. This arises due to the fact

that in the resampling stage, samples are drawn from a discrete distribution rather than

a continuous one. If this problem is not addressed properly, it may lead to ”particle col-

lapse,” which is a severe case of sample impoverishment where all N particles occupy

the same point in the state space, resulting in a poor representation of the posterior.

The regularized particle filter was introduced as a potential solution to this problem.

The RPF filter is identical to the (O)SIR filter, except for the resampling. The RPF

samples from a continuous approximation of the posterior density, whereas the (O)SIR

samples from the discrete one. Specifically, samples in the RPF are drawn from the

approximation:

p(xt|y1:t) ≈
N∑
i

w
(i)
k Kh(xt − x(i)

t ) (7.46)
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Algorithm 7.4 Systematic Resampling

[{x(j?)
t , w

(j)
t , ij}Nj=1] =RESAMPLE[{x(i)

t , w
(i)
t }Ni=1]

Initialize the CDF: c1 = 0

for i=2 to N do

Construct CDF: ci = ci−1 + w
(i)
t

end for

Start at the bottom of the CDF: i = 1

Draw a starting point: u1 ∼ U [0, N−1]

for j=1 to N do

Move along the CDF: uj = u1 +N−1(j − 1)

while uj > ci do

i = i+ 1

end while

Assign sample: x(j?)
t = x

(i)
t

Assign weight: w(j)
t = N−1

Assign parent: ij = i

end for

where

Kh(x) =
1

h
K(

x

h
) (7.47)

is the rescaled Kernel densityK(·), h > 0 is the Kernel bandwidth (a scalar parameter)

and w(i)
t are normalized weights. The Kernel density is symmetric such that its average

(over x) is zero and its variance is finite. The Kernel K(·) and bandwidth h are cho-

sen to minimize the mean integrated square error (MISE) between the true posterior

density and the corresponding regularized empirical representation in equation (7.46),
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which is defined as

MISE(p̂) = E

[∫
[p̂(xt|y1:t)− p(xt|y1:t)]

2dxt

]
(7.48)

where p̂(·|·) denotes the approximation to p(xt|y1:t) given by the right hand side of

equation (7.46). In the special case of all the samples having the same weight, the

optimal choice of the kernel is the Epanechnikov kernel. Taking its expression from

equation (76) of Arulampalam et al. [2002] and setting the dimensionality of the state

vector x to nx = 1 and substituting the volume of the unit hypersphere cnx = 1 for a

1D sphere gives

Kopt =

 3
4
(1− ||x||2) if ||x|| < 1

0 otherwise
(7.49)

Furthermore, when the underlying density is Gaussian with a unit covariance matrix,

the optimal choice for the bandwidth is

hopt = AN1/5 (7.50)

A = [40
√
π]1/5 (7.51)

Although the results of equations (7.49), (7.50) and (7.51) are optimal only in the spe-

cial case of equally weighted particles and underlying Gaussian density, these results

can still be used in the general case to obtain a suboptimal filter. Note that the choice

of kernels is less important than the choice of bandwidth. One may have to experi-

ment with several bandwidths (and kernels) to gain experience. One iteration of the

RPF is described by Algorithm 7.5. Here, we did not specify the importance density,

so that the weights are calculated by the general equation (7.36), reproduced here for

convenience:

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1, y1:t)

(7.52)
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Algorithm 7.5 Regularized Particle Filter

[{x(i?)
t , w

(i)
t }Ni=1] =RPF[{x(i)

t−1, w
(i)
t−1}Ni=1, yt]

for i=1 to N do

Draw x
(i)
t ∼ q(xt|x(i)

t−1, yt)

Assign the particle a weight, w(i)
t , according to (7.52)

end for

Calculate total weight: W =SUM[{w(i)
t }Ni=1]

for i=1 to N do

Normalize: w(i)
t = W−1w

(i)
t

end for

Calculate N̂eff = 1PN
i=1(w

(i)
t )2

if N̂eff < Nthres then

Calculate the empirical covariance matrix St of {x(i)
t , w

(i)
t }Ni=1

Compute Dt such that DtD
T
t = St

Resample using Algorithm 7.4:

[{x(i)
t , w

(i)
t ,−}Ni=1] =RESAMPLE[{x(i)

t , w
(i)
t }Ni=1]

for i=1 to N do

Draw ε(i) ∼ K from the Epanechnikov Kernel

x
(i)?

t = x
(i)
t + hoptDtε

(i)

end for

end if
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In terms of complexity, the RPF is comparable to the SIR since it only requires

N additional generations from the kernel K(·) at each time step. The RPF has the

theoretic disadvantage that the samples are no longer guaranteed to asymptotically

approximate those from the posterior. In practical scenarios, the performance is better

than the SIR in cases where sample impoverishment is severe, for example, when the

process noise is small.

While there are of course many more particle filters, each suited to particular appli-

cations, we have here presented the standard algorithms. For more advanced particle

filters, see for instance [Arulampalam et al., 2002; de Freitas, 1999; Doucet et al.,

2000] and references therein. The particle filters described above will be used below

for seismicity models based on point processes.

7.8 A Brief Literature Review of Point Process Models in Data As-

similation Applications

Section 7.6 provided an introduction to data assimilation and sequential Monte Carlo,

while section 7.7 illustrated some examples of standard particle filters, which will be

used later in section 7.10. This section briefly reviews the relatively scarce literature

in which point process models appeared in data assimilation problems.

There has been some interest in estimation problems for filtered point processes

that are observed in noisy conditions [Andrieu et al., 2001; Hero, 1991; Kwakernaak,

1980]. Filtered point processes are often of the form

x(t) =
k∑

j=1

h(t− tj;χj) (7.53)

where the occurrence times tj belong to an underlying point process (e.g. Poisson or

renewal process) and the amplitude of the resulting signal is given by the response
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function h(·) which may depend on a stochastic variable χ. Noisy filtered point pro-

cesses are then given by:

G(t) =
k∑

j=1

h(t− tj;χj) + nk(t) (7.54)

where nk(t) is a random noise term, often assumed to be Gaussian white noise. This

class is closely related to shot noise processes [Daley and Vere-Jones, 2003]. The filter-

ing problem is then to estimate parameters, including the number of events k and their

arrival times tj given the observations (either discrete or continuous) of G(t). Many

estimation methods, including SMC, have been applied to these types of problems.

However, in contrast to seismicity models, the signal y(t) is the observable, unlike the

(unobservable) conditional intensity function that drives another (seismologically ob-

servable) point process. (Note that fractal shot noise [Lowen and Teich, 1990], when

driving another point process, is indeed highly relevant for seismicity).

Neural spike trains in rats show modified behavior depending on the animals spa-

tial position and its experience with its spatial environment. Barbieri et al. [2001] and

Brown et al. [1998, 2001] developed point process models and sequential filter algo-

rithms that can be summarized in two steps: (i) the modeling of the firing patterns

based on a biological signal, and (ii) the estimation of the biological signal based on

neural spike observations. Thus the conditional intensity of the point process is a func-

tion of an underlying state (the biological signal), which is usually assumed to evolve

as a Markov state-space model. The authors developed adaptive estimators that were

based on Gaussian approximations. Wang et al. [2006] implemented a particle filter

based on sequential Monte Carlo methods that outperformed their method. These stud-

ies did not explicitly include uncertainties in their estimation problems. Furthermore,

their point processes were usually non-homogeneous Poisson processes (Poisson pro-

cesses with a time-dependent rate) or Markov renewal processes. We mention these

studies because they highlight that point processes are usually assumed to be driven
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by an underlying state. In the Earth’s crust, the underlying state may be related to the

stress field, rate-and-state friction, chemical and physical properties of rock, etc. The

further development of probabilistic point process models that relate these states to

seismicity (e.g. estimating the frictional rate-and-state properties of faults from seis-

micity observations) remain an interesting future avenue. Some work in this vein was

reported in [Vere-Jones, 1978; Zheng and Vere-Jones, 1991; Dieterich, 1994; Bebbing-

ton and Harte, 2003; Ouillon and Sornette, 2005].

Estimation procedures have also been applied to partially observed queues. Doucet

et al. [2006] developed a trans-dimensional SMC method that was designed to estimate

the number of clients in a queue based on the observations of customer departure

times. Arrivals to the queue were based on a Poisson process, as were the service

times, and the maximum waiting times for customers before they decided to leave.

This example seems to be the only article (published in conference proceedings in

2006) known to us in which the occurrence (arrival) times are estimated based on

some perturbed observation thereof. Their method is thus the closest in spirit to our

approach to estimate true occurrence times, magnitudes and locations of earthquakes.

Finally, it is worth mentioning that in the spatial point process community, several

papers have been published on estimating the type of noisy perturbations in the setting

where both perturbed and original data are given (see [Lund and Rudemo, 2000] and

references therein). It should be possible to generalize their approach to the case where

the perturbation and the perturbed data is known to estimate the original data in a

marked spatio-temporal context.

The relative scarcity of literature in which point process models are applied in a

data assimilation setting may be related to two factors. First, the mathematical and

computational techniques for Bayesian data assimilation have only become available

to a broad community over the last ten years or so. Secondly, the theory of point
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processes is also a relatively new field, especially outside the mathematical statistics

community.

The remainder of this chapter is our contribution to the implementation of sequen-

tial Monte Carlo methods for point process models. Sections 7.9 and 7.10 concern the

simplest class of point processes: renewal processes under noisy occurrence times ob-

servations. While section 7.9 discusses their mathematical formulation as a state-space

model (which is the preferred representation in SMC methods), in section 7.10 we will

implement particle filters on synthetic data and test their improvement over techniques

that neglect uncertainties in numerical experiments. Finally, section 7.11 will discuss

the generalization to general marked point processes before concluding the chapter.

7.9 Renewal Point Processes with Noisy Occurrence Times as State-

Space Models: On the Mathematical Framework

In section 7.10, we will present an implementation of a particle filter for a 1D tem-

poral renewal process under noisy observation of occurrence times. In this numerical

experiment, we will simply assume that the SMC methods presented in section 7.7 are

applicable to point processes. One particular assumption is that occurrence times can

be described in the framework of state-space models. This section discusses this as-

sumption, as it leads to some theoretical challenges in the particle filter. The challenges

arise from the particular combination of renewal processes and noisy occurrence times

and do not present a problem when (i) occurrence times are assumed to be exact and

other variables (magnitude, locations, focal mechanisms) are noisy, or (ii) occurrence

times are noisy but the point process model does not care about the particular ordering

of events, including which event is the last one. The latter condition precludes renewal

processes. This section thus discusses theoretical problems from the perspective of
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temporal point processes with noisy occurrence times, which may not apply to other

point process models or when the state estimation problem does not involve occurrence

times. The issues can be traced back to the issue that point processes are not naturally

state-space models.

State-space models are a mathematical representation of physical systems as cou-

pled first order differential equations. The state-space refers to the space whose axes

are the state variables (known as phase-space in dynamical systems theory). An exam-

ple of such a model is

xt = ft(xt−1, ηt) (7.55)

yt = gt(xt, νt) (7.56)

where xt (potentially a vector) is called the state and yt (potentially a vector of different

dimensionality) is called the observation, and where the (deterministic) functions ft

and gt may in general be nonlinear and depend on time. The measurement noise νt

and the process noise ηt are random variables that are often modeled as Gaussian. This

particular example model is Markovian as the state xt only depends on xt−1. The state

space model usually contains parameters that may need to be estimated (including the

parameters of the distributions of the measurement and process noise).

Although a more general approach exists (using Liouville’s equation together with

Bayesian updating [Ehrendorfer, 1994]), most sequential data assimilation methods

rely on the representation given by (7.55) and (7.56), including nonlinear/non-Gaussian

“stochastic” methods [Liu and Chen, 1998; Miller et al., 1999; Pham, 2001; Alexan-

der et al., 2005; Doucet et al., 2001; Sornette and Ide, 2001]. Given the field’s origins

in numerical weather prediction, physical oceanography, and object tracking, it is not

surprising that model representations based on differential equations underlie much of

data assimilation [Ide et al., 1997; Kalnay, 2003].

When the occurrence times, locations and marks represent the “state”, as in our
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problem statement, then point process models do not seem to be naturally formu-

lated as in equation (7.55). Unlike continuous stochastic processes such as Wiener

or Ornstein-Uhlenbeck processes, occurrence times are discrete and random. Assume

the last event occurred at time tk, where k marks the number of the event, rather than

the discrete observation interval tt = tt−1 + dt, where dt is a small fixed interval,

which is often the case in methods that periodically measure and update the state via

equations (7.55) and (7.56). As stated in section 7.4.1, the probability density function

of the time until the next event is was given by equation (7.5):

f(tk|Htk) = λ(tk|Htk) exp

(
−
∫ tk

tk−1

λ(u|Hu)du

)
tk > tk−1 (7.57)

where Htk = {tj}kj=1 is the history of the process and we have for this discussion

assumed that the process is temporal. The distribution (7.57) is determined by the

particular conditional intensity function (i.e. the point process) and is of a wide variety.

The evolution of the process in terms of the state (the occurrence times), may perhaps

be written as

tk = tk−1 + τk(Htk) (7.58)

where τk(Htk−1
) is the random interval between the (k − 1)st and the kth event that

depends on the history Htk up to time tk.

Data assimilation methods often assume that the true dynamics of the system can

be separated into a deterministic (large scale) evolution and a stochastic (small scale)

evolution. For example, the large scale climate (deterministic) may be locally changed

by turbulent structures. Hence, the state evolution is often separated into a determinis-

tic part and a small perturbative stochastic part (process noise). For the point process

models under considerations for earthquakes, this separation of scales is no longer pos-

sible. The dynamics is entirely stochastic and discrete. For illustrative purposes, we
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may write

xt = ft(xt−1, ηt) ←→ tk = tk−1 + τk(Htk) (7.59)

state-space model ←→ point process

Remarks:

1. The state is given by occurrence times: The state, usually assumed to be a

physical quantity to evolve as a function of time, is now a temporal quantity

itself. The index k refers to the kth event and not the standard kth discretized

time interval. Thus the state evolves discretely, but in unequal intervals, which

are given by the pdf of the point process.

2. The state strictly increases: Since τk(Htk) > 0, the state is monotonically

increasing so that tk > tk−1 ∀ k > 1. The support of the posterior distribution of

the kth occurrence time is always on the same space as the posterior of previous

occurrence times.

3. Markov point processes: Many data assimilation methods, including sequential

Monte Carlo methods, assume that the state-space model is a Markov process,

i.e. that xt only depends on xt−1 and not previous states. Only a small class

of point processes, renewal processes, are Markovian in the sense that the next

occurrence time depends solely on the last occurrence time.

4. Overlapping posteriors (important for noisy occurrence times in Markov

point processes): Suppose that the occurrence times of the temporal point pro-

cess are noisy. A comparison with the state space model yields:

yt = gt(xt, νt) ←→ to = tt + ε (7.60)

state-space model ←→ noisy temporal point process
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where ε is an additive noise term distributed according to some distribution pε(ε).

If occurrence times are narrowly-spaced and the noise term is large, we are faced

with the possibility of two posteriors of estimated occurrence times overlapping.

If, additionally, the chosen model is Markovian (renewal process), then identi-

fying the last event is no longer trivial. There is a finite probability for each of

the two posteriors to represent the last event. One can in principle compute the

probability of each event being the last one, but this can result in a major com-

binatorial challenge when several posteriors overlap. However, this does not

present a problem for point processes with long memory, such as those used for

short-term earthquake forecasting that include clustering, since all occurrence

times determine the future, not just the last one.

5. True versus observed ordering of events (important for noisy occurrence

times in Markov point processes): Suppose again that the occurrence times are

narrowly-spaced and the observational noise is large. In principle, it is possible

that the observed ordering of events is not equal to the true ordering of events.

As above, epidemic-type models are not affected by the re-ordering, but other

models, especially renewal processes, are. The theoretical challenge is then to

solve the general mathematical problem of devising a forecasting technique that

takes into account the possibility of re-ordering. Depending on the application,

this effect may be negligible.

6. The completeness of the observational history and conditioning forecasts

(important for uncertain occurrence times in all point processes): Depend-

ing on the particular application, the history of observations may not be com-

plete. By this, we mean that information about an occurrence time tk < t may

only be available to us at a later time t (say, the present). This is the standard

situation for earthquake catalogs: there is always a time lag between the end of
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the observational period during which information is available in catalogs, and

the present. Worse still, some but not all information might be available about

the recent past. Finally, one may wish to truly forecast from the present for the

next 24 hours, but if information is only available up to some time in the past,

then one needs to condition the forecast on the forecast window. Any of these

issues may not be trivial to solve exactly or approximately.

As can be seen from this discussion, it is not wholly satisfactory to use the state-

space model representation for temporal renewal point processes when the occurrence

times are noisy. However, we underline that most of the issues discussed are only

relevant in the context of this particular class of process and uncertain occurrence

times. In the case of self-exciting processes or in situations where the occurrence times

can be treated as exact, all but the last issue no longer present obstacles. Finally, it may

be noted that the particular impact on the performance of the filters and forecasts may

be negligible depending on the application. We thus side-step these issues for now and

present in section 7.10 an implementation of a particle filter for a lognormal process.

7.10 A Particle Filter for Estimating Noisy Occurrence Times in

Renewal Processes

This section presents numerical implementations of particle filters for renewal pro-

cesses under noisy occurrence times. Although we want to formulate, in general, an

algorithm for sequentially estimating the occurrence times, locations and magnitudes

of earthquakes from noisy observations of the same quantities using relevant earth-

quake models, our strategy is to begin with the simplest models relevant for earth-

quakes and to later add complexity. This dissertation will only present various particle

filters for a renewal process and comment in section 7.11 on generalizing the point
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process models.

The simplest models relevant to earthquakes are one-dimensional (temporal) re-

newal processes. The models are designed to capture large earthquakes, effectively

eliminating all the small (and not so small) events following big quakes. They are

routinely used for purposes of seismic hazard analysis, including, for example, the US

national seismic hazard map. Furthermore, renewal processes and their underlying

scientific hypotheses are often compared on paleoseismological data.

This section is organized as follows. We discuss the particular renewal process in

section 7.10.1 and the noisy observations in section 7.10.2. In section 7.10.3, we state

the Bayesian solution of the sequential estimation problem as a special case of the gen-

eral results of 7.6.1. Section 7.10.4 presents the results of the numerical experiments.

7.10.1 The Model: Lognormal Renewal Process

Motivated by its relevance to seismicity on fault segments and in seismic hazards (see

section 7.4), we use a lognormal renewal process as our model of intervals between

subsequent earthquakes:

flognormal(τ ;µ, σ) =
1

τ
√

2πσ
exp(−(log τ − µ)2/2σ2) (7.61)

where we shall assume for simplicity that the parameters µ and σ are known.

7.10.2 The Observations: Noisy Occurrence Times

We suppose that the observed occurrence times are noisy:

to = tt + ε (7.62)

where ε is an additive noise term distributed according to some distribution pε(ε).

Typically, earthquake catalogs report root-mean-square uncertainties calculated
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from P-wave arrivals at different stations under a crustal velocity model. These are

on the order of milliseconds to a few seconds (see section 7.3).

What is the appropriate density of the occurrence time uncertainty? An unbounded

distribution is clearly wrong: When the earthquake is registered by seismometers, it

must have happened before that time with probability one. One can probably make

more accurate absolute limits, given that the velocity structure of the Earth is known

to within a few percent. The distribution is necessarily bounded on both ends, say

−a < ε < b where the constants a, b > 0. Simple densities are the uniform (uni)

density, a triangle (tri) density, and a truncated Gaussian (tg) density:

po
uni(ε) =


1

b−a
, if a < ε < b

0, otherwise
(7.63)

po
tri(ε) =


2

b+a
(ε/a+ 1), for − a < ε < 0

2
b+a

(−ε/b+ 1), for 0 < ε < b

0, otherwise

(7.64)

po
tg(ε) =


C exp(−ε2/2σ2

ε ) for − a < ε < b

0, otherwise
(7.65)

where C is a normalization constant so that
∫ b

a
po

tg(ε)dε = 1. The limits a and b may

be chosen as multiples of the root-mean-square error reported in catalogs, which also

determines σε. For simplicity, we choose as a first step the uniform distribution given

by

pε(ε) =
1

∆
H(ε+

∆

2
)H(

∆

2
− ε) (7.66)

where H(·) is the Heaviside step function. Substituting ε = to − tt gives the densities

(likelihoods) of the data given the true occurrence time:

po
(ε)(ε)↔ pL(to − tt) (7.67)
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7.10.3 The Bayesian Solution

The Bayesian solution presented here is a straightforward application of the general

solution presented in section 7.6.1. The prior (forecast) can be written using the

Chapman-Kolmogorov equation:

p(ttk|tok−1, . . . , t
o
1) =

∫
p(ttk|ttk−1, t

o
k−1, . . . , t

o
1) · p(ttk−1|tok−1, . . . , t

o
1)dt

t
k−1(7.68)

=

∫
p(ttk|ttk−1) · p(ttk−1|tok−1, . . . , t

o
1)dt

t
k−1 (7.69)

Note that in (7.69), use has been made of the fact that p(ttk|ttk−1, t
o
k−1, . . . , t

o
1) =

p(ttk|ttk−1) for a renewal (Markov) process. Non-Markov models (e.g. ETAS) will

need to integrate over the joint pdf.

The update equation is given by

p(ttk|tok, . . . , to1) =
p(tok|ttk) · p(ttk|tok−1, . . . , t

o
1)

p(tok|tok−1, . . . , t
o
1)

(7.70)

where the prior is given by the forecast equation (7.69), the likelihood is given by the

noise process (7.67) and the normalization constant is given by

p(tok|tok−1, . . . , t
o
1) =

∫
p(tok|ttk) · p(ttk|tok−1, . . . , t

o
1)dt

t
k (7.71)

The recurrence relations (7.69) and (7.70) form the basis for the optimal Bayesian

solution.

7.10.4 Numerical Experiments

7.10.4.1 SSIS Filter for the Lognormal Renewal Process

We first present results for the simple sequential importance sampling (SSIS) algo-

rithm, given by Algorithm 7.1 defined in section 7.7.1. We will find that the SSIS filter

deteriorates quickly, as discussed below. We therefore only include it as a pedagogical

example.
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We initialized the algorithm with 1000 particles with a perfectly observed event at

time t = 0. We used the parameters µ = 2 and σ = 1/8 for the lognormal model

(7.61). The uniform noise distribution (7.66) is parametrized by the parameter ∆ = 1.

We introduce the “naive” forecast, which assumes that observed occurrence times are

exact and uses the analytical form (7.61), as the benchmark against which the SSIS

filter should be evaluated. Because the first event at t1 = 0 is perfectly observed,

the “naive forecast” for the second event t2 is actually entirely correct. This quickly

changes as noise is introduced for the second event.

Figure 7.1 shows the results for step 1. The left panel shows the forecast for the

second event obtained by propagating the particles from the perfectly observed first

event t1 = 0. Black crosses underneath the histogram refer to active particles with

non-zero weight. The true event (dashed) and the observed event (dotted) almost co-

incide. The “naive” forecast (solid curve) should coincide with the discrete Monte

Carlo estimate, since we assumed no noise for the initial event. It is apparent that

1000 particles are not sufficient to obtain a good approximation. Although increasing

the number of particles to 100,000 does not present a computational problem and can

indeed approximate the analytical forecast very well (not shown), there is little reason

to attempt it, because the number of active particles decays very quickly, as discussed

below.

In the right panel of Figure 7.1 we show the posterior (analysis) obtained by com-

bining the forecast with the likelihood. Since the SSIS filter uses the prior (forecast) as

the importance density to sample from the posterior, most of the particles “die” (grey

crosses) at this point and only about 400 of the original 1000 particles remain active

(black crosses). In situations where the forecast is broad and the likelihood narrow,

most of the particles will “die” in this sampling scheme.

Figure 7.2 shows the forecast and the posterior for the third event. Since there is
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Figure 7.1: Step 1 of the SSIS filter to forecast and estimate the exact occurrence time

from a noisy observation and a model prior (forecast). Left panel: “naive” forecast

(solid curve) and discrete particle filter approximation using 1000 particles. Black

crosses indicate active particles. Right panel: posterior after assimilating the noisy

observation into the model prior. Grey crosses indicate particles with zero weight,

indicating rapid particle loss.

no resampling to replenish the active particles in the SSIS filter, all particles, whether

dead or alive, are propagated by the model forecast, but only active particles (black

crosses) contribute to the forecast density. The “naive” forecast is now no longer cor-

rect, because it is based on a noisy observed event. However, the discrete particle

filter is clearly having difficulty approximating the “true”, smooth forecast. Again,

increasing the number of particles is feasible but would only lead to a delayed effect.

Nevertheless, we can see a marginal improvement of the particle filter over the naive
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Figure 7.2: Step 2 of the SSIS filter: Only 20 of the original 1000 particles remain

after the analysis in step 2.

forecast, because allowing for uncertainty in the last step broadened the particle filter

forecast.

The right panel shows the analysis after combing the forecast and the likelihood

for the third event. Only about 20 particles remain active. We can conclude that a more

sophisticated filter is needed for the scenario of broad forecasts and narrow likelihoods

in order to keep the particles alive. Nevertheless, increasing the number of particles

to 100,000 can already provide substantial improvement over the naive forecast for a

dozen or so steps (not shown).
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Figure 7.3: Identical twin experiment used as demonstration of the OSIS filter: Real-

ization of the true process (crosses) and the perturbed, noisy observations (circles).

7.10.4.2 OSIS Filter for the Lognormal Renewal Process

We can improve on the SSIS filter by using the optimal importance density to sample

from the posterior, i.e. using the OSIS filter defined by Algorithm 7.2 in section 7.7.2.

It is usually impossible to sample directly from the optimal importance density (see

section 7.6.2.4), but our choice of a truncated, uniform likelihood makes this possible.

To use the optimal density, we need to overcome two problems (see section 7.6.2.4):

(i) sampling from the optimal density p(xt|x(i)
t−1, yt), and (ii) performing the integral

p(yt|x(i)
t−1).

To overcome (i), in the case of a uniform, truncated likelihood, one can use re-

jection sampling to sample from the optimal density: sample a candidate x̃(i)
t from

the forecast p(xt|x(i)
t−1 but accept the candidate only if it falls into the interval [yt −

∆/2, yt + ∆/2], as dictated by the likelihood p(yt|xt); otherwise reject the candidate
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Figure 7.4: Step 1 of the OSIS filter: Same as Figure 7.1, but now all particles remain

active (black crosses) during the sampling from the posterior.

and start over.

Moreover, the integral p(yt|x(i)
t−1) can be analytically transformed into error func-

tions, which can easily be numerically solved in standard software packages such as

Matlab or Mathematica. This opens the path for implementing the OSIS filter.

We again use an identical twin experiment in which we simulate the true process

and then perturb it to obtain the observed process. As above, we assume that the first

event t1 = 0 is observed exactly, i.e. to1 = tt1. We then simulate 10 additional points

(t2, . . . , t11) according to the lognormal model equation (7.61) with parameters µ = 2

and σ = 1/8. Next, we perturb these 10 points using to = tt + ε and the uniform,

truncated noise distribution (7.66) with ∆ = 3 to generate the noisy observations. The

resulting true and noisy processes are shown in Figure 7.3.

Figure 7.4 presents the forecast and the analysis of step 1. All particles remain
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Figure 7.5: Step 2 of the OSIS filter.

active because of the new method of sampling from the posterior. Step 2 already

shows a small improvement of the particle filter forecast over the benchmark forecast

(see Figure 7.5). Step 5, shown in Figure 7.6, demonstrates that the particle filter

forecast can significantly outperform the benchmark forecast, by placing more weight

near the true and observed events.

We introduce one potential complication by using the rejection sampling scheme

to sample from the posterior: it may be computationally very costly if the rejection

rate is high. The rejection rate is high in the following scenario. Say in step k − 1, the

observation tok−1 was much larger than the true event ttk−1. The support of the posterior

is symmetric around the observation, so that a particle of the posterior, say p1, may be

as large (late) as ttk−1+∆. Now suppose that the mean of the lognormal forecast model

is on the order of or even smaller than ∆, then the situation may arise in which ttk <

ttk−1+∆ and perhaps even ttk < tok−1. If, by chance, the observation tok is also small, e.g.
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Figure 7.6: Step 5 of the OSIS filter: The particle filter forecast significantly outper-

forms the benchmark forecast by placing much more weight near the true and observed

events.

tok < ttk, then it may be extremely difficult to propagate particle p1 from ttk−1 + ∆ into

the next posterior, which is bounded (in its support) from above by tok + ∆/2, because

the probability of propagating p1 from its old position to an allowed new position is

nearly zero. In fact, in the case where the observation occurs before the location of

particle p1, i.e. when tok < ttk−1 + ∆, it is impossible to propagate the particle. This

discussion is intricately connected to the issue of overlapping posteriors, as discussed

in section 7.9, and arises from the particular combination of renewal processes and

noisy occurrence times in a filter for state-space models. Depending on the parameters

of the noise and the model, our rejection sampling scheme may not be feasible in its

current form.

Moreover, despite the fact that all particles remain active throughout the proce-

dure, many particles will nevertheless see their weights significantly reduced over time,
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while a few lucky survivors dominate the weights. Figure 7.7 shows the cumulative

distribution function of the weights of the particles for each of the 10 steps. At first,

all particles have equal weight, but after several steps, the distribution becomes more

and more skewed. As discussed in section 7.6.2.4, it is impossible to overcome the

problem of particle degeneracy, to which Figure 7.7 attests. To counter the problem,

we can only resort to resampling.

However, the OSIS filter presented here is already an enormous improvement over

the SSIS filter. Depending on the application, the OSIS filter may be more than suf-

ficient and can also easily be upgraded to 100,000 particles on a standard personal

computer. Furthermore, one may easily augment the OSIS filter in cases where the

rejection rate is high. If a certain time threshold is surpassed attempting to sample

from the posterior by using rejection sampling, one may resort to another importance

density, such as the model prior or slightly more favorable densities, for the particular

step, before resorting back to the optimal importance density. The OSIS filter pre-

sented here is thus a powerful, flexible and computationally inexpensive method for

sequentially estimating noisy occurrence times in a renewal process.

7.11 Towards General Marked Point Process Models

Section 7.10 addressed noisy occurrence times in renewal processes. Here, we gen-

eralize to marked point processes that have an arbitrary temporal structure and unpre-

dictable marks (defined below). We present the (conceptual) Bayesian solution for

estimating true magnitudes from noisy magnitude observations but exact occurrence

times, with marks that are independently and identically distributed to an invariant

distribution p(m). Based on the results of Chapter 6, it is likely that (random) magni-

tude errors distort forecasts of clustering models significantly more than the (random)

temporal errors of section 7.10. Furthermore, we would like to use more realistic clus-
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Figure 7.7: Evolution of the cumulative distribution function of the particle weights

in the OSIS filter: At first, all particles have equal weight, but as the filter updates the

weights at each analysis step, the distribution of the weights becomes more and more

skewed at each analysis step.

tering models than the class of renewal processes to produce forecasts. The conceptual

solution presented here can be used as the basis for implementing particle filters that

estimate posterior distributions of the magnitudes in the ETAS model [Ogata, 1988],

defined in equation (7.13) in section 7.4.1.

First, we state for clarity the model assumptions, the observational uncertainty

assumptions, and the estimation goal. Then we show that estimators without memory

are bound to fail. Next, we present the Bayesian solution. We then examine some

limiting cases to guide our intuition before concluding.
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7.11.1 Unpredictably Marked Temporal Point Processes

Point processes are completely defined by their conditional intensity λ(t,m|H) which

is the instantaneous probability of an event occurring at time t given the history H

which contains all information about previous occurrence times and associated marks.

Unpredictable marks are those that do not depend on the history H , i.e.

λ(t,m|H) = pm(m) · λ(t|H) (7.72)

independently of the so-called ground process λ(t|H). Note, however, that the occur-

rence times ti are dependent on previous marks because the time to the next event ti

given the history is equal to:

f(ti|H) = λ(ti|H)e
−

R ti
ti−1

λ(u|H)du
H(ti − ti−1) (7.73)

where H(·) is the Heaviside step function.

7.11.2 Noisy Marks and Exact Occurrence Times

We assume that marks are noisy according to

mo = mt + ε (7.74)

where ε is an additive noise term drawn independently from some distribution pε(ε).

At the same time, we assume that occurrence times are exact, such that

toi = tti ∀ i (7.75)

7.11.3 Goal

The goal of using data assimilation is hence to obtain better estimates (posterior dis-

tributions) of the marks {mt
j}1≤j≤i up to the current event i, using all available in-

formation contained in the entire history and in the model. The outcome of this goal

246



is further to provide better forecasts for occurrence times based on a more accurate

representation of the marks.

7.11.4 Estimator Without Memory

We will show in this section that a sequential estimator without memory cannot help

us achieve our goal.

The most general updating is achieved via Bayes’ theorem:

p(tti,m
t
i|toi ,mo

i ) =
p(toi ,m

o
i |tti,mt

i) · p(tti,mt
i)

p(toi ,m
o
i )

(7.76)

We know that tti and mt
i are mutually independent, i.e. the left hand side is a prod-

uct p(tti|toi ,mo
i ) · p(mt

i|toi ,mo
i ). The first term in this product does not depend on mo

i

because of independence and, in any case, equals δ(tti − toi ) as there is no noise. The

second term of the product, on the other hand, does not depend on toi , i.e. the left

hand side of equation (7.76) equals δ(tti − toi ) · p(mt
i|mo

i ), showing that the problem

reduces to estimating the true mark from the observed mark. This estimation prob-

lem, however, is completely independent from anything else and trivial: Rewriting

p(mt
i|mo

i ) ∝ p(mo
i |mt

i)pm(mt) = pε(m
t − m0)pm(mt) we see that the forecast and

likelihood do not depend on previous steps. While this is a perfectly legitimate esti-

mator for marks given observations, it is trivial in that there is no updating.

7.11.5 Estimators With Memory

In the previous section, we saw that we need to introduce memory in the estimation

problem. There are some choices we need to make. We can estimate the joint pdf

of past magnitudes or we can estimate marginal pdfs of each one of the magnitudes.

Naturally, the joint pdf determines the marginal. Furthermore, we can use observations

up to time tk to constrain magnitudes up to mk−n where n is not restricted to 1.
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While we may be interested in the marginal pdfs, we will start by determining

the joint pdf of magnitudes given occurrence times and observed magnitudes one step

ahead of the magnitudes we want to determined (the lag is 1).

Note that the entire history must be estimated, because updating only previous, say,

the (i− 1)st mark does not respect the dependence of the ith observation on the entire

history (for the most general temporal point process). This means that the dimension-

ality of (really, number of entries in) the state vector (the true history {ttj,mt
j}1≤j≤i)

increases at each step i by one. Of course, the marginals can be computed after this

step.

7.11.6 Bayesian Solution for Estimating Magnitude Posteriors from Noisy Mag-

nitudes and Exact Occurrence Times in an Unpredictably Marked, Tem-

poral Point Process

This section presents the solution for estimating {mt
j}1≤j<i−1 from {toj ,mo

j}1≤j≤i.

At time step i, we want to estimate {mt
j}1≤j<i given the observed history {tj,mo

j}1≤j≤i.

Using Bayes’ theorem and neglecting for now the normalization constant, we can

write:

P a
i ≡ pa

i (mi−1, . . . ,m1|ti, . . . , t1,mo
i−1, . . . ,m

o
1)

∝ p(ti|mi−1, . . . ,m1, ti−1, . . . , t1,m
o
i−1, . . . ,m

o
1)

×p(mi−1, . . . ,m1|ti−1, . . . , t1,m
o
i−1, . . . ,m

o
1) (7.77)

The likelihood can be simplified by noting that conditioning on mo
i−1, . . . ,m

o
1 cannot

lead to better information about ti than conditioning on mi−1, . . . ,m1, thus making

this conditioning redundant. Furthermore, we can rewrite the prior using conditional
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probability P (A,B) = P (A|B)P (B) to separate out mi−1:

P a
i ∝ p(ti|mi−1, . . . ,m1, ti−1, . . . , t1)

×p(mi−1|mi−2, . . . ,m1, ti−1, . . . , t1,m
o
i−1, . . . ,m

o
1)

×p(mi−2, . . . ,m1|ti−1, . . . , t1,m
o
i−1, . . . ,m

o
1) (7.78)

where we can identify in line 1 of equation (7.78) the conditional probability of the

ith occurrence time given the true previous history as given by equation (7.73). Fur-

thermore, the only relevant information for mi−1 in the second line of equation (7.78)

is its observed value mo
i−1, because the marks are unpredictable and occurrence times

larger than ti−1, which could help constrain mi−1, are not included in the condition-

ing. Finally, note that the third line of equation (7.78) is actually P a
i−1 as defined in

expression (7.77). Thus

P a
i ∝ λ(ti|Hi−1)e

−
R ti

ti−1
λ(u|Hi−1)du

×p(mi−1|mo
i−1)

×P a
i−1 (7.79)

Now we can use Bayes’ theorem again to compute the second line p(mi−1|mo
i−1) to

obtain

P a
i ∝ λ(ti|Hi−1)e

−
R ti

ti−1
λ(u|Hi−1)du

×p(mo
i−1|mi−1)pm(mi−1)/p(m

o
i−1)

×P a
i−1 (7.80)

where pm(mi−1) is given by the model prior (the exact Gutenberg-Richter law, as it

does not depend on the past).

Now we can identify p(mo
i−1|mi−1) as the distribution of the noise pε(m

o
i−1 −

mi−1) introduced below equation (7.74). Furthermore, the distribution of the marks
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pm(m) was introduced in equation (7.72). Therefore, the joint pdf of the magni-

tudes mi−1, . . . ,m1 given the occurrence times ti, . . . , t1 and the observed magnitudes

mo
i−1, . . . ,m

o
1 is given by

P a
i ∝ λ(ti|Hi−1)e

−
R ti

ti−1
λ(u|Hi−1)du

×pε(m
o
i−1 −mi−1)pm(mi−1)/p(m

o
i−1)

×P a
i−1 (7.81)

If we include the normalization constants, we obtain our main result:

P a
i =

λ(ti|Hi−1)e
−

R ti
ti−1

λ(u|Hi−1)du
pε(m

o
i−1 −mi−1)pm(mi−1)

p(ti|ti−1, . . . , t1,mo
i−1, . . . ,m

o
1)p(m

o
i−1)

P a
i−1 (7.82)

where P a
i ≡ pa

i (mi−1, . . . ,m1|ti, . . . , t1,mo
i−1, . . . ,m

o
1). Equation (7.82) is the exact

distribution of the joint pdfs of the magnitudes given the observed magnitudes and the

occurrence times up to ti. We thus used the fact that tj depend on previous marks, to

obtain better estimates of those marks than simply mj
o.

7.11.7 Limiting Cases and Discussion

Let us examine some limiting cases. First, consider the case where the occurrences

times do not depend on past magnitudes, e.g. a Poisson process. Then,

P a
i (Poisson) =

pε(m
o
i−1 −mi−1)pm(mi−1)

p(mo
i−1)

P a
i−1 (7.83)

where the dependence on occurrence times cancelled with the normalization constant

and we are left solely with a product over p(mt|to) for each magnitude. It is clear from

expression (7.83) that we have used the information that marks are distributed a priori

according to pm(m). This is the essence of data assimilation.

In the limit of vanishing noise, we obtain simply a product of Dirac functions of
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the observed magnitudes, as expected:

P a
i ( Poisson, no noise) =

δ(mo
i−1 −mi−1)pm(mi−1)

p(mo
i−1)

P a
i−1

=
δ(mo

i−1 −mi−1)pm(mi−1)

pm(mo
i−1)

P a
i−1 (7.84)

Furthermore, note that even if the occurrence times depend on past marks as in ex-

pression (7.82) but there is no noise, then the joint pdf will be zero everywhere except

at mj = mo
j . At those values, the quantitites in the numerator and denominator that

depend on ti cancel. Thus we retrieve the intuition that the joint pdf of marks cannot

be influenced by the occurrence times if there is no noise in the observations. On the

other hand, when noise is so large that the observations cannot tell us anything about

the true marks, e.g. by a flat pε(m
o −m), then the best knowledge we have about the

system is simply given by the combination of the occurrence times and the a priori

distribution of the marks.

In summary, this section presented the (conceptual) Bayesian solution for obtain-

ing the posterior distributions of the exact magnitudes up to time ti−1 given noisy

magnitudes and exact occurrence times up to time ti. Given the impact that magnitude

errors can have on forecasts, as we demonstrated in Chapter 6, an implementation of

this solution may drastically improve forecasts. It remains to be implemented using

the particle filters described in section 7.7.

7.12 Conclusions

This chapter provided a conceptual foundation for basing earthquake forecasting on

data assimilation so as to systematically account for uncertainties in forecasting and

estimation problems. We began with a discussion motivating the development of this

foundation. To introduce non-seismologists to the problem of earthquake forecasting,

we briefly reviewed: (i) the observational uncertainties in earthquake catalogs; (ii) the
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types of models used for forecasting; and (iii) some basic notions of the classes of

point process models relevant to earthquakes. We showed that existing methods in

statistical seismology for dealing with uncertainties are limited to simple models and

unsuitable for sequential, near-real-time forecasting.

We then proposed the framework of data assimilation as the ideal vehicle for ad-

dressing uncertainties and for expanding the toolbox of methods. After reviewing

the basic concepts and methods of sequential Bayesian data assimilation, we argued

that sequential Monte Carlo methods (particle filters) are a convenient, flexible and

easy-to-implement way of estimating posterior distributions of desired quantities. We

presented several such particle filters along with algorithms.

The literature on data assimilation methods for point process models is relatively

scarce, but progress in developing methods for point processes is being made in spatial

statistics, applications to queueing and in situations where the point process is driven

by an underlying state-space model. The formulation of state-space models presents

some obstacles for the combination of renewal processes and noisy occurrence times,

the gravity of which depends on the particular application.

We presented numerical implementations of particle filters for lognormal renewal

processes and noisy occurrence times. Using identical twin experiments, we showed

that the particle filter outperforms the common method of neglecting uncertainties.

Finally, we generalized the setting to unpredictably marked temporal point pro-

cesses, which include the class of short-term clustering models popular in time-dependent

earthquake forecasting. We presented a conceptual Bayesian solution for estimating

magnitude posteriors from exact occurrence times and noisy magnitudes.

Much work remains to be done on this topic. The particle filters for renewal pro-

cesses should be applied to (real) earthquake data on faults. The conceptual solu-

tion for marked point processes needs to be implemented numerically and tested on
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synthetic and real data. Both methods should be compared with existing methods

to quantify the improvement. Furthermore, the framework needs to be extended to

spatio-temporal marked point processes and noisy locations, especially depth, which

is another large source of uncertainty in earthquake catalogs. Thus, a complete ETAS

model entirely based on particle filters should be run in near-real-time to provide a gold

standard of short-term earthquake forecasting that systematically accounts for uncer-

tainties. Such a model would provide a truly powerful null hypothesis against which

other hypotheses can be tested.

According to the literature on particle filters, parameter estimation does not seem

to be difficult to include (at least conceptually) in the algorithms. Parameter estima-

tion also opens the path toward introducing additional dependencies of the model on

different information, the strength of which can be estimated to test scientific ideas.

On the theoretical side, the restriction to state-space models needs to be overcome.

A potential candidate might be the trans-dimensional sequential Monte Carlo method

discussed by Doucet et al. [2006].

Another exciting avenue of research lies in the adaption of physics-based models,

such as rate-and-state friction models or Coulomb stress transfer models, to state-space

models in which the observations are a noisy point process and the state corresponds

to a physical quantity. Similar existing models in neuroscience need to be generalized

to the non-Markovian nature of earthquakes.

Finally, data assimilation provides a framework for combining different types of

data, e.g. GPS and InSAR data, into a single forecast model. Such a combination

requires the development of models that relate observable seismicity to such data.

In summary, we believe that the framework of data assimilation provides a solid

conceptual foundation not just for dealing with uncertainties but also for developing

models and testing scientific hypotheses.
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CHAPTER 8

Conclusions

The characterization of seismicity as a highly stochastic process in which all scales

contribute to the fluctuations led us to investigate the role of the smallest length scales,

in the form of earthquakes too small to be detected by seismic networks. Much evi-

dence suggests, including some of the points made in this dissertation, that the influ-

ence of small, undetected earthquakes on observed seismicity is substantial. The char-

acterization of interacting seismicity via the concept of triggering has so far neglected

their effects. We introduced a formalism that explicitly recognized this short-coming.

We showed that, as a result of the common neglect of small scales, the geophysical

interpretation of clustering and triggering parameters that characterize models of trig-

gered seismicity tied intricately to the ability of instruments to measure small earth-

quakes, rather than physical fact. As a consequence, declustering methods that use

temporal branching models, including state-of-the-art stochastic declustering, cannot

even in theory be physically sound. We mentioned the development of magnitude-

branching models with similar probability structures as temporal-branching models as

a potential way to make declustering more robust.

Furthermore, we noted the failure of the maximum likelhood estimator, proving

parameter bias when undetected events are not included, and discussing the violation

of assumptions that are required to prove consistency and asymptotic normality for the

estimator. It is in principle possible to devise methods that begin to account for the

effect of small earthquakes, in an attempt to recover unbiased parameters [Helmstetter
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et al., 2005c] – but these must necessarily remain approximations. Furthermore, the

concept of unbiased parameters may simply not be useful: rather, a more practical

interpretation of triggering models, in terms of effective parameters that adjust in a

complex fashion to model misfit, clustering and the detection threshold, may be more

relevant.

The estimation of effective parameters can, when recovered from the same detec-

tion threshold, indicated real relative differences between different regions, but the cur-

rent direct-search or gradient-based algorithms are neither robust nor do the Hessian-

derived confidence limits adequately account for the nonlinearity and non-Gaussianity

of the estimation problem. The development of more robust methods, for instance

Bayesian or simulation-based, remains an important task for the future [Werner and

Jackson, 2007].

We discussed the Vere-Jones model [Vere-Jones, 2005] because it can be formu-

lated without recourse to a detection threshold. While the model generalizes the class

of self-similar random measures, simulation and parameter estimation procedures are

currently still lacking. Moreover, undetected events will remain a source of uncer-

tainty in the calibration of the model. However, while the improved development of

point process models may indeed provide more robust models, the detection thresh-

old is just one of the observer scales that limit our ability to measure earthquakes.

As has been argued by Yan Kagan [Kagan and Knopoff , 1981; Kagan, 2004; Kagan

and Houston, 2005], earthquakes seem to be fractal objects which cannot uniquely be

defined as events – one first must impose a (temporal, spatial, energy) scale, which

is set by our instruments. Rather, the micro-physical modeling of earthquakes needs

to extend point processes to continuum stochastic processes in a tensorial stress field,

characterized by intermittent but continuous catastrophic deformation flows, which are

retrospectively termed events. The emphasis must lie on physical quantities in a more
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physics-based modeling approach, e.g. on moment rate rather than number of events.

The search for robust, scale-independent features of seismicity in the statistical

physics community continues to stir the debate on the relevance of critical phenomena

to the earthquake process. We presented an example which, like many of the recently

claimed discoveries of universal scaling laws, did not stand scrutiny. By repeating

the analysis, which led to the “discovery”, on a set of simulations produced by a null

hypothesis in the form of a clustering model, we were able to reject the necessity for

such a law. Nevertheless, the discussion raises the question of the role of spatial corre-

lations in self-organized criticality and the role of quenched disorder, heterogeneities

and elasticity theory. These are problems that are only beginning to be understood (see

e.g. [Kagan, 1987a,b,c; Miltenberger et al., 1993; Sornette et al., 1994; Ouillon and

Sornette, 1996; Sornette and Ouillon, 2005]).

Throughout much of this dissertation, we have focused on the Epidemic-Type Af-

tershock Sequence (ETAS) model, or slightly simpler models of a similar class, as it is

rapidly becoming a gold standard in hypothesis testing, parameter estimation, model-

ing and forecasting. We discussed an example of its use as a benchmark in Chapter 5.

Much of the discussion here may therefore be viewed as deeper investigations into the

formulation of this null hypothesis, which contributes to our overall understanding and

the development of improved benchmarks. Perhaps the most direly needed improve-

ment in the ETAS model is the spatial kernel for aftershocks and its representation

of the fault network. Recent papers are beginning to address this issue [Felzer and

Brodsky, 2005; Schoenberg, 2003; Ogata and Zhuang, 2006].

In Chapter 6, we saw that our understanding of the effects of catalog uncertainties

on the null hypothesis are not yet well understood. There, we focused on the quantifi-

cation of magnitude uncertainties, on their impact on forecasts and on their evaluation

in predictability experiments in a simple aftershock clustering model, which captures
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the main ingredients of most popular short-term forecasting models. We proposed

that, as a first step, the forecast evaluation methodology must drop the assumption of

Poisson likelihoods and allow the model itself to specify the likelihood of observa-

tions. Much work remains to be done in this area. There are many other uncertainties

and biases that were not taken into account in our study. We did not examine the

combined effect of uncertainties and parameter estimation. Our mock RELM/CSEP

experiment was not fully to scale and one would like to use the actual models along

with actual data to perform synthetic tests for different scenarios. Such large-scale

simulations may answer many of the following questions: How much time (and data)

is needed before we can reject models, under realistic treatment of the uncertainties?

At what confidence limits? Where are the largest uncertainties? Which aspects of the

data should be focused on? What is the impact of the many missing aftershocks after

large earthquakes in the evaluation of aftershock clustering models? What are optimal

tests for time-dependent short-term earthquake forecasts? The science of earthquake

predictability is still in a very young stage and much work remains to be done.

Chapter 7 presented a framework that may help address some of these problems.

Numerical weather prediction was and is faced with similar questions. Out of this need

developed the concept of data assimilation, which, in its general form, is a Bayesian

method for estimating as best as possible a desired quantity by using a statistical com-

bination of noisy observations and short-term model forecasts. More generally, data as-

similation is a conceptual framework that allows a systematic treatment and discussion

of uncertainties. For the strongly nonlinear and non-Gaussian statistics in earthquake

seismology, traditional methods based on linear, Gaussian assumptions (e.g. Kalman

filtering) must be generalized to Bayesian methods, which characterize the entire dis-

tribution function. Sequential Monte Carlo methods, a flexible set of simulation-based

techniques for estimating posterior distributions, may be an easy-to-implement, com-

putationally efficient method for Bayesian earthquake forecasting. We discussed some
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standard particle filters and presented their algorithms. Using numerical experiments,

we demonstrated their use for a lognormal renewal process under noisy occurrence

times, motivated by the relevance for seismic risk calculations and model identifica-

tion based on paleoseismic data. We further presented the conceptual Bayesian solu-

tion for the estimation of posterior distributions of magnitudes in an arbitrary temporal

point process with unpredictable marks. The implementation of the latter particle filter

would provide a first sequential Bayesian method for generating realistic earthquake

forecasts in near-real-time that systematically includes (random) magnitude uncertain-

ties. On a theoretical level, the representation of the state-space model is not entirely

satisfactory and should be supplanted by a more general one.

But well beyond the goal of including uncertainties in forecasts, the framework

of data assimilation allows a focused discussion of states, be they physical quantities

such as frictional properties or improved estimates of magnitudes, and observations,

which are related to the states through likelihood distributions. The combination of

noisy point process models as the observational process of a physical (state) model of

the Earth, including additional types of data and models, can be approached concep-

tually and technically in the general setting of data assimilation. Lastly, it is worth

mentioning that progress in seismology will likely stimulate research in mathematical

statistics and in other areas of applications.
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APPENDIX A

Apparent Branching Structure Calculations

A.1 Consistency check: Nobs as the sum of “above-water” cascades

triggered by the mainshock and by the apparent background

events

To complete the calculations and show consistency of the results, we demonstrate that

the observed cascades set off by the apparent background events, when added to the

original “above-water” cascade, add up to the total observed number of aftershocks of

the whole sequence. Each apparent source event will trigger its own cascade above the

threshold md with branching ratio na. The total number of events due to the apparent

background events and their cascades above the threshold is

Nsource = Sa + Sa na + Sa n
2
a + ... =

Sa

1− na

. (A.1)

Substituting expression (3.22) and using (3.8) gives

Nsource =

 Nobs
(n−na)
1−na

, M1 ≥ md

Nobs
(n−na)
1−na

+ ρ(M1−m0) fobs

1−na
, M1 < md

(A.2)
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Combining the direct “above-water” cascade (3.18) with the apparent source cascades

(A.2) gives the total amount of apparent events observed after the initial event

Na = Nsource +Nabove

=

 Nobs
(n−na)
1−na

+ ρ(M1−m0) fobs

1−na
, M1 ≥ md

Nobs
(n−na)
1−na

+ ρ(M1−m0) fobs

1−na
+ 0 , M1 < md

= Nobs, (A.3)

where Nobs is given by (3.8). The last equality confirms the consistency of our decom-

position into apparently-triggered earthquakes and apparent sources.

A.2 Generalization to a catalog of an arbitrary number of clusters

In this section, we generalize our analysis of the apparent branching structure of one

cluster to that of a whole catalog consisting of an arbitrary number of clusters. The

reasoning developed in section 3.1 can be directly applied as follows.

We begin by writing the instantaneous seismicity rate at time t:

λ(t, r) = µ+
∑
i|ti<t

ρ(mi) ψ(t− ti) R(r − ri) (A.4)

We integrate this expression over time to obtain the total number N of earthquakes in

the catalog. We restrict this demonstration to the temporal domain. In order to have a

finite catalog, we assume that the integral over the background source rate µ is finite so

that the total number s of background events is finite. Stated differently, the integration

could also be over a finite but very long period T so that the sources s = µ T are finite

but the Omori law decays have effectively ended. We thus obtain

N tot = s+
∑
i|ti<t

k 10α(mi−m0) (A.5)

where the index i runs over all events.
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We now express the total number of earthquakes by grouping each event into one of

the s distinct clusters and by averaging over the magnitudes of the indirectly triggered

events of the initial background event that set off the cascade. Now the total number is

simply the s background events plus the triggered events in their kth cluster, which are

averaged over the aftershock magnitudes in the same way as for one cluster in equation

(3.6):

N tot ' s+
s∑

k|tk<t

k 10α(mk−m0)

1− n
(A.6)

where the index k now only runs over the background events.

The observed number of shocks is expression (A.6) multiplied by the fraction of

observed events:

N tot
obs ' s fobs +

s∑
k|tk<t

k 10α(mk−m0)

1− n
fobs (A.7)

Now we can apply to each cluster the same arguments as we did in section 3.1. Let

us denote the number of unobserved background events below the detection threshold

md by u = 1, . . . U , so that U = s (1 − fobs), while we call the number of observed

background events l = 1, . . . , L, i.e L = s fobs. Then, the total number of events from

all the L above-water sequences due to the observed real sources is

N tot
above '

L∑
l=1

ρ(ml)

1− na

fobs (A.8)

where the index l runs over all observed real sources.

The number of apparent sources for each cluster is given by equation (3.22) in

section 3.1. For the whole catalog, the total number of apparent sources is thus the

sum of observed real sources, the apparent sources in clusters due to observed sources
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and the apparent sources from clusters of unobserved sources:

Stot
a = L+

L∑
l=1

ρ(ml)

1− n
fobs (n− na) +

U∑
u=1

(
ρ(mu)

1− n
fobs (n− na) + ρ(mu) fobs

)
(A.9)

This expression shows that the apparent branching structure renormalizes L = s fobs

observed background events into Stot
a apparent background events. Together with the

apparent branching ratio, this completely determines the renormalization of the model

when going from m0 to md.

As for the one cluster case, we can check the consistency of our decomposition by

testing whether the apparent number of events Na is equal to the observed number of

events N tot
obs given by (A.7). From our decomposition, Na is given by

Na = L+N tot
above +

Stot
a − L
1− na

(A.10)

Substituting the relevant expressions, one can easily show that Na = N tot
obs and that our

decomposition is consistent. Note that we have to subtract the real observed sources

L from the apparent sources Stot
a because the cascades they set off have already been

taken into account in the above-water cascade N tot
above.

In summary, we have generalized the approach to the case of many cascades. We

have shown that analyzing the branching structure above the detection threshold of a

complete catalog leads to a renormalized ETAS model (for the averaged rates) with an

apparent branching ratio na and an apparent number of sources Stot
a .
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APPENDIX B

Proofs and Calculations of Chapter 6

B.1 The Deviation of the Perturbed Rate from the True Rate as a

Sum of Weighted Random Variables

This section shows how the deviation of the perturbed rate due to noisy magnitudes

from the true rate can be written as a sum over weighted random variables.

The perturbed rate is given by

λp(t|Hc
t ) = λc +

∑
ic|tic<t

k ea(mo
ic
−md)

(t− tic + c)p
(B.1)

while the true rate is given by

λt(t|Hc
t ) = λc +

∑
ic|tic<t

k ea(mt
ic
−md)

(t− tic + c)p
(B.2)

where mo = mt + ε and pε(ε) is the distribution of the noise given by

pε(ε) =
1

2νc

e(−
|ε|
νc

) (B.3)

Hence, given any catalog realization Hc
t (of cluster centers), the deviation of the per-
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turbed rate from the true rate is:

∆λ(t|Hc
t , θ) = λp(t|Hc

t , θ)− λ(t|Hc
t , θ)

=
∑

ic|tic<t

k ea(mo
ic
−md)

(t− tic + c)p
− k ea(mt

ic
−md)

(t− tic + c)p

=
∑

ic|tic<t

k ea(mt
ic

+εi−md)

(t− tic + c)p
− k ea(mt

ic
−md)

(t− tic + c)p

=
∑

ic|tic<t

k ea(mt
ic
−md)

(t− tic + c)p
· (eaεi − 1)

=
∑

ic|tic<t

wi · zi (B.4)

where the last equality expresses the deviation as a sum over a product of two terms: a

quenched weight wi (i.e.. which is fixed for a given catalog but unknowable)

wi =
k ea(mt

ic
−md)

(t− tic + c)p
(B.5)

and a random variable zi

zi = eaεi − 1 (B.6)

The weight wi measures the influence of the ith cluster center according to its magni-

tude mt
ic through the productivity law ρ(mic) = exp(a(mt

ic −md)) and its occurrence

time according to the Omori-Utsu law φ(t − tic) = (t − ti + c)−p. The weights wi

thus depend sensitively on the specific catalog realization {mt
ic , t

t
ic}1≤ic≤Nc and the

parameters θ.

The weights wi are “quenched” or “frozen” because they are fixed for a realization

but result from a random process. In statistical physics of spin glasses (a similar situ-

ation because of the frozen random variables), there are two types of disorder that are

treated differently: quenched disorder, where the average is taken over the logarithm

of the partition function; and annealed disorder, where the average is taken directly

over the partition function. The latter case would correspond in our context to looking
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at the full distribution of weights, rather than assuming they are fixed. However, we

are interested in the fluctuations of the perturbed rate given a fixed catalog.

The random variables zi = (exp(aεi)− 1) modulate the weights due to the magni-

tude noise εi. Without noise, ε = 0 and hence zi = 0 so that ∆λ = 0. Their distribution

is the subject of the next section.

B.2 The Distribution of the Random Variables z

Using the distribution of ε from equation (6.1), we can determine the distribution of

the zi:

pz(z) = pε(ε)

∣∣∣∣dεdz
∣∣∣∣ =

 1
2νc

e−ε/νc
∣∣ dε
dz

∣∣ , 0 ≤ ε <∞
1

2νc
e+ε/νc

∣∣ dε
dz

∣∣ ,−∞ < ε < 0

=

 1
2aνc(z+1)

e(− log(z+1)/aνc), 0 ≤ z <∞
1

2aνc(z+1)
e(log(z+1)/aνc), −1 < z < 0

=

 α
2

1
(z+1)1+α , 0 ≤ z <∞

α
2

1
(z+1)1−α , −1 < z < 0

where α =
1

aνc

=
α/2

(z + 1)1±α

(+) : 0 ≤ z <∞

(−) : −1 < z < 0
(B.7)

Figure 6.10 shows a double logarithmic plot of the pdf of the random variable z for

several choices of the noise scale parameter νc = (0.1, 0.2, 0.3, 0.4, 0.5). We assumed

a = ln(10) = 2.3 so that the exponent α = (4.34, 2.17, 1.45, 1.09, 0.87), respectively.

B.3 Proof of Proposition 1

In this section, we prove that the deviation ∆λ(t|Ht) of the perturbed seismic rates

from the true seismic rate due to magnitude noise is a random variable with a distri-
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bution having a power law tail with exponent α and scale factor C∆λ. Equation (B.4)

shows that ∆λ can be written as a finite sum of weighted random variables z, where

the z are distributed according to (B.7). The proof follows in two steps. First, we show

that z is regularly varying. Second, we invoke the result that the sum of weighted, reg-

ularly varying variables is equally regularly varying in the tail with the same exponent.

We will frequently refer to the rigorous Jessen and Mikosch [2006] (hereafter JM),

but the definitions and proofs can equally be found in other sources. Sornette [2004]

provides a heuristic and intuitive development of the results we use.

DEFINITION 2.1 of JM: One-dimensional regularly varying random variables X

with distribution function P (X > x) are defined by

P (X > x) ∼ q′x−αL(x) and P (X ≤ −x) ∼ q′′x−αL(x)

q′ + q′′ = 1 (B.8)

where L is a slowly varying function, i.e. L(cx)/L(c)→ 1 as x→∞ for every c > 0.

Condition (B.8) is also referred to as a tail balance condition. The cases q′ = 0 or

q′′ = 0 are not excluded. Here and in what follows we write f(x) ∼ g(x) as x → ∞

if f(x)/g(x)→ 1.

z is power-law distributed with exponent α for z > 0 so that the slowly varying

function L(z) is simply a constant. For z < 0, the power law is truncated at −1, so

that q′′ = 0. Hence the tail balance condition is easily verified for the positive tail of z.

Therefore, the tail of z is regularly varying with index α. This concludes the first part

of the proof.

To prove that the finite, weighted sum of regularly varying variables z is also a

regularly varying function with the same exponent, we invoke Lemma 3.3 of JM:
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LEMMA 3.3 of JM: Let (Zi) be an independently and identically distributed se-

quence of regularly varying random variables satisfying the tail balance condition

(B.8). Then for any real constants ψi and m ≥ 1,

P (ψ1Z1+ · · ·+ ψmZm > x)

∼ P (|Z1| > x)
m∑
i

[
q′(ψ+

i )α + q′′(ψ−i )α
]

(B.9)

where ψ+
i and ψ−i are defined by P (ψiZi > x) = P (ψ+

i Z
+
i > x) + P (ψ−i Z

−
i > x)

where x± = 0 ∨ (±x) (where ∨ means “or”).

In our case, the constants ψi are given by the weights wi. Plugging in q′′ = 0 (i.e.

q′ = 1) from above and using our notation, we have shown that

p(∆λ) ∼ pz(z) ·
m∑
i

(wi)
α (B.10)

Denoting C∆λ =
∑Nc

i (wi)
α, we have shown that

p(∆λ) ∼ C∆λ

(∆λ)1+α
for ∆λ→∞ (B.11)

which completes the proof of Proposition 1.

B.4 Proof of Proposition 2

We first state well-established results for a slightly different definition of the scale

factor (denoted by C(t), where the time t of evaluation is fixed) for which Proposition

2 can be easily proven (section A4.1). In section A4.2, we consider the more difficult

case for our definition of the scale factor (C(N) where the number of cluster centers

is fixed).
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B.4.1 Results for Fixed-Time Scale Factor C(t)

Recall that the scale factor is defined by:

C∆λ =
N∑

i=1

kαeaα(mt
i−md)

(t− ti + c)pα
. (B.12)

When we simulate catalogs, perturb them and calculate the differences between the

perturbed rates and the true rate, we are interested in the deviations from the true

rate given a fixed number of events. We did not constrain the time t to a fixed value

because a more useful and practical result would be the deviations for a fixed number

of events. We therefore let t adjust according to when the Nth main shock happened.

We then evaluated the rates at time t = tN + dt just after the Nth main shock. Since

the Nth occurrence time is random, t is therefore also random (for different catalogs or

realizations of the Poisson process). Let us denote our scale factor by C(N) to stress

the fact that the number of main shocks is fixed, not the time t.

On the other hand, a wealth of results is available for the scale factor C(t), for

which the time t is fixed and N fluctuates. The scale factor is then defined by:

C(t) =

N(t)∑
i=1

kαeaα(mt
i−md)

(t− ti + c)pα
. (B.13)

where N(t) is a now random variable for fixed t. Now we make the crucial identifica-

tion of the scale factor C(t) as the intensity of power law shot noise [e.g. Lowen and

Teich [1990]], defined in general by

I(t) =
∑

j|tj<t

Kjh(t− tj) (B.14)

where I(t) is the “current” or noise, tj are Poisson occurrence times with rate λ <

∞, the Kj are i.i.d. stochastic amplitudes and the “impulse” function h(t) = t−δ

is an inverse power law function on the interval [A,B] and zero otherwise. These

correspond exactly to the fixed-time scale factorC(t), the main shock occurrence times
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at rate λc, the productivities kα exp(−aα(mj − md)) and the Omori-like decay (t −

tj + c)−pα, respectively. Note that in our case A = c, B =∞ and δ = αp.

The cumulants cn of I(t), which determine the moments of the shot noise, are

given by the following equations [Rice, 1945]. For δ 6= 1/n:

cn = λ〈Kn〉 × A1−nδ −B1−nδ

nδ − 1
(B.15)

while for δ = 1/n:

cn = λ〈Kn〉 × ln(B/A) (B.16)

The nth cumulant is hence infinite if the nth moment 〈Kn〉 of the stochastic amplitudes

is infinite, if A = 0 and δ ≥ 1/n, or if B =∞ and δ ≤ 1/n.

Since earthquakes cannot have infinite moment (magnitude), their distribution is

truncated and hence all moments of the stochastic amplitudes are finite: 〈Kn〉 <

∞ ∀n. However, the productivities are power law distributed up to the truncation

with an exponent β/a which lies in the range 1 < β/a < 2. Therefore, the ampli-

tudes fluctuate as if power-law distributed until the sampling actually “feels” the cor-

ner magnitudes. For specific regions of the world, it may take millenia for these corner

magnitudes to occur. Therefore, while mathematically all moments of the stochastic

amplitude are finite, fluctuations will be power-law like with infinite variance until the

upper truncation is actually felt.

Using results from Rice [1945] and Lowen and Teich [1990], we now prove the

three elements of Proposition 2 for the fixed-time scale factor C(t):

1. First, we show that C(t) < ∞ almost surely (a.s.) even as t → ∞ if pα > 1.

For this, we only need to demonstrate that all cumulants cn of C(t) given by

(B.15) or (B.16) are finite. We already stated that the moments of the stochastic

amplitudes are mathematically finite because the Gutenberg-Richter distribution
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is truncated. Furthermore, by definition δ = pα > 1 ≥ 1/n ∀ n, and A = c > 0.

Therefore, cn <∞ ∀ n, which in turn implies that C(t) <∞ a.s. ∀ t.

2. Second, we show that C(t) diverges a.s. as t → ∞ if pα < 1. To prove

this, we will bound C(t) from below and show that this lower bound diverges

a.s. As noted above, only magnitudes down to md are included in the process.

Therefore, the smallest productivity is given by kα. We create a lower bound for

C(t) by replacing all productivities by their lower bound kα, i.e.

C(t) ≥ D(t) =

Nc(t)∑
i=1

kα

(t− ti + c)pα
(B.17)

Now the process D(t) has moment generating function Q(s) that is equal to

equation (A1) in Lowen and Teich [1990] [their Appendix A]. There, the authors

show that, for δ ≤ 1, Q(s) = 1 for s = 0 and zero otherwise, so that

Pr{Dt < x} = 0, for all x <∞

which proves the a.s. divergence of C(t) as t→∞.

3. Third, in the regime pα > 1 for which C(t) < ∞ almost surely, we show that

C(t) remains a random variable with a non-degenerate distribution. For this,

we only need to state that the variance of C(t) is non-zero as t → ∞. We can

actually calculate the variance explicitly, being equal to the second cumulant c2

given by equation (B.15):

Var(Ct) =
λc〈K2〉

(2αp− 1)c2αp−1
(B.18)

As stated above, the second moment of the amplitude is mathematically finite.

However, if the earthquake catalog under study does not actually sample the

upper magnitude cut-off, the variance will behave as if infinite. Thus, not only

is C(t) a random variable, it fluctuates wildly. Sampling the corner magnitude
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may take hundreds to thousands of years even in relatively active regions like

California. To get a sense of the numbers, set λc = 0.01, 〈K2〉 = 1 and αp = 2

for simplicity, neglecting for a moment the large second moment ofK. For these

values, the variance is on the order of 106, far larger than typical earthquake

rates of e.g. 1 per day above md = 4 in California. This completes the proof of

Proposition 2 for the fixed-time scale factor C(t).

In fact, more results are known about the statistical properties of C(t) [e.g. Lowen

and Teich [1990], their Figure 3, and references therein]. If A > 0 and δ > 1 so

that cumulants exist (assuming the stochastic amplitudes have finite moments), then

in the limit of infinite Poisson driving rate λ → ∞, the intensity C(t) is distributed

according to a Gaussian with mean equal to the first cumulant and variance equal to

the second cumulant. Even in this limit (which is not directly relevant to earthquakes

since there λ is small) the variance remains huge. Furthermore, if A = 0 and δ > 1,

the distribution of C(t) is Levy-stable for all Poisson rates with exponent 1/δ. Since

for earthquakes, A = c is very small, we expect the distribution of C(t) to be close

to Levy with exponent 1/αp = aνc/p. For reasonable values a = 2.3, νc = 0.2 and

p = 1.2, this results in an extremely small Levy exponent 0.4.

B.4.2 Results for Fixed-Number Scale Factor C(N)

Results do not seem widely established for the fixed-number scale factor. Note, how-

ever, that both the mean number and the variance of the number of events in a Poisson

process diverge as t → ∞. The higher moments of degree n of the Poisson process

are Touchard polynomials of degree n of the variable λt. For t → ∞, they also di-

verge. Furthermore, the probability of having a finite number k of events in an infinite

interval Pr{N(0, T ] = k} = (λT )k exp(−λT )/k! is zero for T →∞. And vice versa,

the probability of having an infinite number of events k = ∞ in a finite interval T is
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equally zero. Therefore, the limit t→∞ andN →∞ are equivalent so that we expect

the same results to hold for C(N) as for C(t). Without a more formal statement of this

equivalence, however, we proceed to consider separately C(N) as N →∞.

Let us rewrite expression (6.16) for C(N) explicitly as

C(N) =
N∑

i=1

kαeaα(mt
i−md)

(tN − ti + c′)pα
. (B.19)

where c′ = c + dt is a constant since t = tN + dt. We bound C(N) from below and

from above by noting that

kα ≤ kαeaα(mt
i−md) ≤ kαeaα(M−md) . (B.20)

since md ≤ mt
i ≤ M , where M is an upper magnitude bound, which always exists

due to the finiteness of the Earth. Thus,

kα

Nc∑
i=1

1

(tN − ti + c′)pα
≤ C(N) ≤ kαeaα(M−md)

Nc∑
i=1

1

(tN − ti + c′)pα
. (B.21)

1. First, we show that, when pα > 1, the scale factorC∆λ converges to a finite value

as Nc →∞ under the assumption of an arbitrary small but finite minimum time

interval 0 < τmin << 1/λ between events. In this case, we can further bound the

right-hand-side of equation (B.20) from above by replacing the intervals tN − ti

by (N − i)τmin:

C(N) ≤ kαeaα(M−md)

Nc∑
i=1

1

((N − i) · τmin + c′)pα
(B.22)

The sum in (B.22) is in turn bounded from above by the Riemann zeta function

ζ(αp) =
∑∞

j 1/jαp, which converges absolutely for αp > 1. This completes

the proof that the scale factor C∆λ converges to a finite value as Nc → ∞ if

pα > 1.
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2. Second, we show, when pα ≤ 1, that (i) the expectation of the scale factor C(N)

diverges as Nc →∞ using Jensen’s inequality and (ii) C(N) diverges under the

assumption of an arbitrarily large but finite maximum interval τmax between

events. In the latter case (ii), we can bound C(N) from below by replacing the

intervals tN − ti by (N − i)τmax:

C(N) ≥ kα

Nc∑
i=1

1

((N − i) · τmax + c′)pα
(B.23)

for which the right-hand-side diverges for pα < 1 so that C(N) diverges. In

the other part (i), we show that the expectation of C∆λ diverges using Jensen’s

inequality [e.g. Durrett [2005]]. Jensen’s inequality theorem states that for any

convex function g(x) (i.e., with non-negative second derivative g′′(x) ≥ 0, ∀ x,

if the second derivative exists) and for any random variable ξ with finite expec-

tation, the following inequality holds true:

E[g(ξ)] ≥ g(E[ξ]) , (B.24)

where E[x] denotes the expectation of the random variable x. The equality sign

holds true in (B.24) only for a degenerate distribution of ξ. Now we use g(x) =

1/xαp, having checked that its second derivative is positive g′′(x) > 0, and let

the random variable be ξ = t− ti + c. Using Jensen’s inequality:

E
[

1

(t− ti + c)αp

]
≥ 1

(E[t− ti + c])αp
. (B.25)

Now if the ti’s are assumed to be a stationary sequence (not even necessarily

Poissonian), then E[t − ti + c] = const · (N − i) + c. Using this argument on

each term in the sum leads to

E

[
N∑

j=1

1

(t− ti + c)αp

]
≥

N∑
j=1

1

(const · (N − j) + c)αp
(B.26)
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But the term on the right hand side diverges→∞ as N →∞ for αp < 1 so that

the expectation of the scale factor also diverges. This proves the second element

of Proposition 2.

3. Finally, in the regime pα > 1 for which C(N) converges almost surely to a finite

value as N →∞, we show that C(N) remains a random variable dependent on

the specific catalog distributed according to a non-degenerate distribution. We

rewrite (B.19) as

C(N) =
N∑

i=1

ωiXi , (B.27)

where ωi ≡ 1/(t − ti + c)pα and Xi ≡ kαeaα(mt
i−md). The scale factor C(N)

is rewritten in (B.27) as a randomly weighted sum of i.i.d. random variables

Xi, where the random weights are functions of the random occurrence times and

the random variables are the magnitude-dependent productivities. The weights

are non-identically distributed and dependent while the Xi are i.i.d. We will

show that for any fixed configuration of occurrence times and random Xi, C(N)

remains distributed. For pα > 1, we have shown in 1. that WN ≡
∑N

i=1 ωi <

∞ for N → ∞. We then use the result quoted from Jamison et al. [1965]:

“[if the sum WN of the weights converges, then] C(N)/WN [the normalized

weighted sum] either fails to converge in probability or converges almost surely

to a non-degenerate limit.” In plain words, in the latter case, this means that

the random variable Sn/Wn remains distributed according to a non-degenerate

probability distribution, even in the limit N → ∞. Thus, in both cases, the

variance of the scale factor remains non-zero. The intuition behind this result is

that the convergence of the weights ensures that there are only a finite number of

terms in the infinite sum that contribute to it. This implies that, notwithstanding

the existence of an infinite number of contributions, the sum remains a random

variable controlled by a finite number of them. This completes the proof that the
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scale factor does not converge to a unique constant (a degenerate limit) when the

exponent p/(a · νc) > 1.
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richter law and from aftershock properties, Geophys. Res. Lett., 30(11), 2069, doi:

10.1029/2003GL018186.

Helmstetter, A., and D. Sornette (2003b), Importance of direct and indirect triggered

seismicity, Geophys. Res. Lett., 30(11), 1576, doi:10.1029/2003GL017670.

Helmstetter, A., and D. Sornette (2003c), Foreshocks explained by cascades of trig-

gered seismicity, J. Geophys. Res., 108(B10), 2457, doi:10.1029/2003JB002409.

Helmstetter, A., and D. Sornette (2003d), Predictability in the etas model of interacting

triggered seismicity, J. Geophys. Res., 108(B10), 2482, doi:10.1029/2003JB002485.

Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2005a), Importance of small earth-

quakes for stress transfers and earthquake triggering, J. Geophys. Res., 110, doi:

10.1029/2004JB003286.

287



Helmstetter, A., G. Ouillon, and D. Sornette (2005b), Are aftershocks of large cal-

ifornian earthquakes diffusing?, J. Geophys. Res., 108(B10), 2483, doi:10.1029/

2003JB002503.

Helmstetter, A., D. Sornette, and M. J. Werner (2005c), Unbiased likelihood analysis

of earthquake catalogs, unpublished.

Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006), Comparison of short-term and

time-independent earthquake forecast models for southern california, Bull. Seismol.

Soc. Am., 96(1), doi:10.1785/0120050067.

Hergarten, S. (2002), Self-Organized Criticality in Earth Systems, Springer, Berlin.

Hero, I., A.O. (1991), Timing estimation for a filtered Poisson process in Gaussian

noise, Information Theory, IEEE Transactions on, 37(1), 92–106, doi:10.1109/18.

61107.

Hill, D. P., et al. (1993), Seismicity remotely triggered by the magnitude 7.3 Landers,

California, earthquake, Science, 260(5114), 1617–1623.

Hinrichsen, H. (2000), Non-equilibrium critical phenomena and phase transitions into

absorbing states, Advances In Physics, 49, 815–958(144).

Huang, Y., H. Saleur, C. Sammis, and D. Sornette (1998), Precursors, aftershocks, crit-

icality and self-organized criticality, Europhysics Letters, 41, 43–48, doi:10.1209/

epl/i1998-00113-x.

Ide, K., A. Bennett, P. Courtier, M. Ghil, and A. Lorenc (1997), Unified notation for

data assimilation: Operational, sequential and variational, in Data Assimilation, Me-

teorology and Oceanography: Theory and Practice, J. Meteor. Soc. Japan, 75(1B),

71–79.

288



Ide, S., and M. Takeo (1997), Determination of constitutive relations of fault slip based

on seismic wave analysis, J. Geophys. Res., 102(B12), 27,379.

Iio, Y. (1991), Minimum size of earthquakes and minimum value of dynamic rupture

velocity, Tectonophysics, 197, 19–25.

Izenman, A. J. (1991), Recent developments in nonparametric density estimation, J.

Am. Stat. Assoc., 86(413), 205–224.

Jackson, D. D. (1996), Hypothesis testing and earthquake prediction, Proc. Natl. Acad.

Sci. USA, 93, 3772–3775.

Jackson, D. D., and Y. Kagan (1999), Testable earthquake forecasts for 1999, Seismol.

Res. Lett., 70(4), 393–403.

Jackson, D. D., and Y. Y. Kagan (2006), The 2004 Parkfield Earthquake, the 1985

Prediction, and Characteristic Earthquakes: Lessons for the Future, Bull. Seismol.

Soc. Am., 96(4B), S397–409, doi:10.1785/0120050821.

Jamison, B., S. Orey, and W. Pruitt (1965), Convergence of weighted averages of in-

dependent random variables, Z. Wahrscheinlichkeitstheorie, 4, 40–44.

Jensen, H. J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Phys-

ical and Biological Systems, Cambridge University Press, Cambridge, UK.

Jessen, A. H., and T. Mikosch (2006), Regularly varying functions, Publications de
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