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Outline

• Modeling, Verification & Validation

Verification  “Impossibility” statements

Validation   Complex systems

• Validation as a constructive, iterative process

• Properties of the proposed validation “multiplier”

• Two examples of the constructive validation process

• Summary

• Additional material

“A computer lets you make more mistakes faster than any invention in human history — with the
possible exceptions of handguns and tequila.” Mitch Ratliffe, Technology Review, April, 1992
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A stable definition of “Verification”
has evolved in CSE.

• ASC: Verification is the process of
confirming that a computer code
correctly implements the algorithms
that were intended.

Holy
Grail

Nature

Simulation

Theory Experiment

Verification

MeasurementModels

Validation

• AIAA/ASME: Verification is the process of determining
that a model implementation accurately represents
the developer’s conceptual description of the model
and the solution to the model.

Verification is about mathematics

• P. Roache: Verification is demonstrating that one
solves the equations correctly.
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Asymptotic convergence is the fundamental
concept behind verification analysis.

• PDEs are discretized in space Δx, time Δt, etc., for
resolution using finite-digit arithmetic.

This is typically where
one wishes to run an
analysis code.

Domain where round-off
errors start to accumulate
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Domain where the
discretization is not
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continuous equations
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Domain of asymptotic
convergence, where
the truncation error

dominates

“Stagnation”

“As we refine the grid we hope to get better approximations to the true solution.”
Randy LeVeque, Computational Methods for Astrophysical Fluid Flow

Credit: F. Hemez
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• Simple refinement studies are the one approach to
conducting meaningful code physics verification
— but this must be done mindfully.

Is This “Verification”?

“We attain convergence to 1% with respect to
increasing spatial and temporal resolution. This
ensures that the results shown are converged to
the eye, apart from the stress signal in Fig. 4: this
shows slight quantitative, but not qualitative,
changes.” (Physics Review Letters, 1996.)

“Faced with the choice between changing one's mind and proving that there is no
need to do so, almost everybody gets busy on the proof.” John Kenneth Galbraith



LA-UR-07-7711 7

U N C L A S S I F I E D

U N C L A S S I F I E D

“Validation” has a (more-or-less)
consensus definition.

• ASC: The process of confirming that
code predictions adequately represent
measured physical phenomena.

Holy
Grail

Nature

Simulation

Theory Experiment

Verification

MeasurementModels

Validation

• AIAA/ASME:   The process of determining the degree
to which a model is an accurate representation of the
real world from the perspective of its intended uses.

Validation is about physics

• Schlesinger (1979): The substantiation that a model
within its domain of applicability possesses a
satisfactory range of accuracy consistent with the
intended applications of the model.

• P. Roache (1998): Validation is demonstrating that
one solves the correct equations.
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• The view-graph norm remains entrenched as “the
method of choice” by which many in the scientific
community continue to approach model validation.

Is This “Validation”?

“…and this movie shows that the simulation is validated
… well, I mean, it shows that the model runs.” (heard at a
presentation given at Los Alamos, August 2006)

“If the test data are shown in blue and the simulation
data are shown in yellow, then all I want to see is green.”
(heard at Los Alamos, October 2005)

Viewgraph
Norm

“People see what they want to see.” Mahaffy’s Fourth Law of Human Nature
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• Oreskes et al.: “Verification and validation of
numerical models of natural systems is impossible.
This is because natural systems are never closed
and because model results are always non-unique.”

“Impossibility Statements” claim that
verification and validation are unattainable.

• Sterman: “Any theory is underdetermined and thus
unverifiable, whether it is embodied in a large-scale
computer model or consists of the simplest equations.”

• Similarly, most complex systems can be proved to be
computationally irreducible:  the only way to predict
their evolution is to actually let them evolve in time.

• These claims beg the question, “Is V&V hopeless?”

"Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und insofern sie
sicher sind, beziehen sie sich nicht auf die Wirklichkeit." Albert Einstein, Geometrie und Erfahrung (1921)
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The search for coarse-grained properties
renders “impossibility” claims irrelevant.

• Why? Because in practical physics and engineering,
one seeks to predict coarse-grained properties.

• Physics “works” and is not hampered by
computational irreducibility because we desire only
approximate answers at some coarse-grained level.

• The answer to the preceding question is NO — the
“impossibility statements” of the previous slide
have little practical value.

 E.g., only by ignoring most molecular detail were laws of
thermodynamics, fluid dynamics, chemistry, etc., developed.

 The description of coarse-grained scales of practical interest
requires “effective” laws generally based on finer scales.

“Predictive capability is about getting the right answer to the right question for the right reason.”
S. Doebling, LANL
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Outline

• Modeling, Verification & Validation

• Validation as a constructive, iterative process

A validation “loop”  A validation “multiplier”

• Properties of the proposed validation “multiplier”

• Two examples of the constructive validation process

• Summary

• Additional material

“Verification and validation is what distinguishes a physics code from a computer game.”
F. Graziani, LLNL
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Studies from a range of disciplines suggest
that principled validation is necessary.

“The two most common biases are over-optimism
and overconfidence. Overconfidence refers to a
situation whereby people are surprised more
often than they expect to be.  Effectively, people
are generally much too sure about their ability to
predict. This tendency is particularly pronounced
amongst experts. That is to say, experts are more
overconfident than lay people. This is consistent
with the illusion of knowledge driving
overconfidence.”
J. Montier, in The Folly of Forecasting: Ignore All
Economists, Strategists & Analysts

“Nobody’s perfect, and most people drastically underestimate their distance from that state.”
Mahaffy’s First Law of Human Nature
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We propose a validation “loop” with
four distinct steps.

1. Start with a prior trust of the model’s value,
measured by the quantity Vprior .

2. Conduct an experiment or observation, perform the
corresponding simulation, and compare results.

• Which experiments?    •  How to calibrate a simulation?
• How to compare experimental data and model results?

 Vprior is a gauge of accumulated trust or confidence.
  On the first iteration of this loop, arbitrarily set Vprior = 1.
 The change in Vprior is important, not its absolute value.

 Each of these three tasks presents its own challenges.

“In science, if you know what you are doing, you should not be doing it.”
Richard Hamming
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                                        trust/confidence has increased.
                                        trust/confidence has decreased.

A complete iteration in this validation
process has well-defined characteristics.
3. Assign a metric-based “grade” of the quality of the

comparison between observations yobs and model M.

� 

V
posterior

V
prior

 =  F[p(M |yobs), q ; cnovel]

4. Update to obtain the posterior trust as:

� 

Vposterior  >  Vprior  !

� 

Vposterior  <  Vprior  !

“Mathematics is an interesting intellectual sport but it should not be allowed to stand in the
way of obtaining sensible information about physical processes.”  Richard Hamming

 This is ideally formulated as a statistical test of significance
in which the hypothesis (i.e., the model results) is tested
against the alternative, which is “all the rest.”

 This grade p(M | yobs) quantifies the quality of the comparison
compared against the reference likelihood q of “all the rest.”

  cnovel measures the novelty or impact of the experiment.
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A caveat for quantitative validation…

Dilbert
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The multiplier F is an attempt to quantify
the value of new validation experiments
and their corresponding simulations.

Posterior potential
utility of model/code

Prior potential utility
of model/code

• The identical approach could be applied
to code verification using exact solutions
in place of experiments/observations.

� 

V
posterior

=  V
prior

 !  

Statistical
confidence
level

Novelty & relevance of
additional experiment

V≥0

0<q<1

0<cnovel<∞

0≤p≤1Probability of the prediction
of model  M passing the

statistical acceptance test
on data  yobs

� 

F[p(M |yobs), q ; cnovel]

“A habit of basing convictions upon evidence, and of giving to them only that degree or
certainty which the evidence warrants, would, if it became general, cure most of the ills
from which the world suffers.”  Bertrand Russell, in G. Simmons, Calculus Gems.
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A complete loop is repeated for several
experiments/simulation comparisons.

• These iterations compound for each experiment:

� 

V
prior
(1) !V

posterior
(1) =V

prior
(2) !V

posterior
(2) =V

prior
(3) !  ... !V

posterior
(n)

“The plural of ‘anecdote’ is not ‘evidence’.” Alan Leshner, publisher of Science.

• Validation is said to be asymptotically satisfied when
the number of steps n and final value             are
sufficiently high.

• One can develop increasing trust in a model by
subjecting it to more tests that “do not reject it.”

• Importantly, a single test is enough to reject a model.
 The loss of “trust” can occur suddenly with one single failure

and is difficult—if not impossible—to re-establish.
 This encapsulates the common experience that reputation

gain is a slow process requiring constancy and tenacity.

� 

V
posterior
(n)
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The PIRT process can be used to help
select experiments of particular interest.

• A codified approach to understanding the sources of
uncertainty and lack-of-knowledge is to generate a
Phenomenon Identification and Ranking Table (PIRT).

MediumLowMediumMaterial opacity
LowLowLowEnergy source

HighMediumMediumArtificial viscosity
MediumMediumLowEquation-of-state

ProductSensitivityUncertaintyPhenomenon

• The logic of the PIRT is to identify phenomena that
are not well-known (i.e.,high uncertainty) and that
have significant influence (i.e., high sensitivity).

"Forcing experts to give odds can be one of the best methods for
exposing fundamental weaknesses in an argument.” Gina Kolata, Flu



LA-UR-07-7711 19

U N C L A S S I F I E D

U N C L A S S I F I E D

Outline
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• Validation as a constructive, iterative process

• Properties of the proposed validation “multiplier” F

Three important properties of F

Relation of parameters to aleatoric and epistemic
uncertainties

Two examples of validation multipliers

• Two examples of the constructive validation process

• Summary

• Additional material



LA-UR-07-7711 20

U N C L A S S I F I E D

U N C L A S S I F I E D

• This expresses the notion that the potential trust is
an increasing function of the measure p.

1. If the (statistical) comparison test is
passed, then the potential increases.

log F / log(p/q) > 0

• This property can be expressed mathematically as:

 In particular, the better the comparison test is passed,
the more the potential trust increases.

F > 1  (resp. < 1)   for   p > q (resp. p < q)
• This constraint can be expressed succinctly as:

• Note:  In scientific exploration, a prediction may be
wrong but still be useful.
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• If the match between a given experiment and model
“A” is better than the match with model “B” — all
else being equal — then the potential trust in model
“A” is greater than the potential trust in “B”.

2. The larger the significance of the passed
test, the larger the posterior potential.

• We express this property mathematically as:

(∂F/∂ p)q > 0

• There could be saturation of F for large p/q, so that:
  F < ∞  as  p/q      ∞    —or—
 There is a concavity requirement for large p/q:   ∂ 2F/∂ p2 < 0
 Either of these constraints imply that a quality-of-fit beyond

a certain level is not useful.
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• If the match between a model and experiment “α”
equals the match between the model and experiment
“β”, but with “α” deemed more novel than “β”, then
the gain in potential trust is greater for “α”.

3. The more “novel” the experiment, the
larger the level of the passed test.

• We express this mathematically as:

If   p > q  (p ≤ q)    then   ∂F/∂ cnovel > 0  (≤ 0)

"Apart from the question of whether the simulation is telling us about the true solution or not, we must
consider how much of its behavior we are prepared to see.  What we see in a simulation may be biased
strongly by what we expect to see.” Thomas P. Weissert, The Genesis of Simulation in Dynamics.

• The parameter cnovel is a judgment-based weighting.
 Its value is assigned by subject matter experts
 Differences among experts will have to be acknowledged

and reconciled.
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• Epistemic ≈ reducible        •  Aleatoric ≈ irreducible

Aleatoric and epistemic uncertainties
enter through the parameters of F.

• A rigorous use of experimental and computational
uncertainties must be incorporated into this process.

– E.g., degree to which a model
is faithful to the physics

– E.g., experimental variability

 The value of cnovel

 How we choose to evaluate
the quality-of-fit measure p
that estimates the matching
between M and yobs

 The nature of the model M

‹‹Le doute est un état mental désagréable, mais la certitude est ridicule.››
Voltaire, letter to Fréderic le Grand (1767)

– As knowledge grows, the
model improves.

– One should target “sensitive”
parts of the system with
“high novelty” experiments.

  q is the reference probability
level that any other model
can explain the data

– Different ps imply different
results:  seek “optimal” p

 Some relevant ideas of F. Hemez are in the supplemental slides.
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Two simple functional forms exhibit
the desired characteristics.

• Key parameters:

� 

F  =  (p q )
cnovel

� 

F  =  
tanh(p

q
 +  1

c
novel

)

tanh(1 +  1
c

novel
)

! 

" 

# 

# 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

& 

& 

4

p/q large, c large → F large

c small → F ≈ 1p/q small,
c large → F ≈ 0

 Many such forms are possible…

p = degree of match
q = statistical confidence level

c = novelty of experiment
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Outline

• Modeling, Verification & Validation

• Validation as a constructive, iterative process

• Properties of the proposed validation “multiplier”

• Two examples of the constructive validation process*

Restriction of possible parameter values

Olami-Feder-Christensen model of seismicity

Compressible CFD code for Richtmyer-Meshkov instability

• Summary

• Additional material

* For more examples, see http://arxiv.org/abs/physics/0511219
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 cnovel = 1          marginally useful new test
 cnovel = 10        substantially new test
 cnovel = 100      important new test

• Consider only the likelihood ratio p/q
• Restrict the possible  p/q grades:

 p/q = 0.1         poor fit
 p/q = 1            marginally good fit
 p/q = 10          good fit









We make several simplifying assumptions
in the following ad hoc examples.

• Restrict the possible cnovel values:

“Whatever you do will be insignificant, but it is very important that you do it.”
Mahatma Gandhi

• Use the tanh-based expression for F
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The Olami-Feder-Christensen (OFC) model
exhibits real seismicity phemonenology.
• The OFC model uses local interactions of discrete

elements to capture aspects of real seismic behavior.

* Z. Olami, H. Feder, K. Christensen, “Self-Organized Criticality in a Continuous, Nonconservative
Cellular Automaton Modeling Earthquakes,” Phys. Rev. Lett. 68, 1244–1247 (1992).

Pre-mainshock DifferencePost-mainshock

Non-dimensional Stress

Full field
C

lose-up

 Based on a 2-D lattice of
springs and blocks with

 Exhibits self-organized
criticality (SOC):  the
convergence of dynamics to
statistically stationary states
with time-independent
power law distributions.

 1000s of simulations conducted
with different ICs and cutoffs for
foreshocks and aftershocks.simple, local

interactions
and threshold
behavior in the
inter-block
forces.
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Validation assessment of the OFC model
suggests a valuable—but flawed—approach.

Gives power-law distribution

Test cnovel p/q F(i)

10 ∞ 2.4

Has foreshocks and aftershocks 10 2.9

Omori law exponents 0.47

Scaling of number of aftershocks
with main shock size

2.4

1

100

1

10

1

0.1

10

Scaling of number of foreshocks
with main shock size

1

Nucleation of aftershocks at
asperities on rupture plane

2.410 10

1

i

2a

2b

3

4

5

Clustering of earthquakes at faults 1006

Ftotal

2.4

7.0

3.3

7.9

18.8

0.1 4  10-4

� 

!

7.9

7.5  10-3

� 

! 
This model faithfully captures many aspects of
seismicity but is not a universally applicable approach.



LA-UR-07-7711 29

U N C L A S S I F I E D

U N C L A S S I F I E D

A CFD code was used to investigate
compressible hydrodynamic mixing.

• Eulerian-frame equations for compressible, inviscid,
non-heat-conducting flow of ideal gas in 2-D.
 Conservation of mass, momentum, and energy, plus EOS:

 Uniform, finite volume discretization using high-resolution
Godunov method.

 Verification results computed for numerous idealized flows
–  E.g., Sod, Sedov, Noh, Cook-Cabot, Woodward-Colella, etc.
–  ~2nd order for smooth problems, ~1st order for problems with shocks.

� 

!U

!t
+"#F(U) =  0 ,

� 

U  !  [","u,"v,"E]T,

� 

p !  P(",e)

• Computational fluid dynamics (CFD) provides the sole
approach to evaluating the complex phenomenology
associated with shock-induced mixing.
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Shock tube experiments capture idealized
Richtmyer-Meshkov instability (RMI) growth.
• RMI induced by interaction

of a weak shockwave with a
diffuse cylinder of SF6 in air.

• Experiments conducted at
LANL Physics Div. labs.

Credit: K. Prestridge & C. Tomkins

t < 0 t > 0

 Vorticity deposition occurs due
to the mismatch of density and
pressure gradients.

 Quantitative Planar Laser-Induced
Flourescence (PLIF) gives
quantitative concentration fields.

 Particle Image Velocimetry (PIV)
gives quantitative velocity
vector fields.
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Primary instability (break-up into
two) and secondary instabilities

Test cnovel p/q F(i)

10 2.4

Computational prediction of a
material “bridge” between
primary structures

2.410

0.1

10

Exponential growth of power as
a function of time

Concentration power spectrum as
a function of wavenumber

0.471

1

i

2

3

4

Ftotal

2.4

5.8

6.5

13.8

10

10 10 2.4



Validation assessment of the CFD model
shows a useful but underwhelming approach.

This model faithfully captures most of these aspects
of RMI but must be subjected to more intense
testing to be considered a reliable simulation tool.



LA-UR-07-7711 32

U N C L A S S I F I E D

U N C L A S S I F I E D

Outline

• Modeling, Verification & Validation

• Validation as a constructive, iterative process

• Properties of the proposed validation “multiplier”

• Two examples of the constructive validation process

• Summary

• Additional material
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Summary
•  A four-step approach for a quantitative validation step:

1.  Start with a prior “potential trust” of a model’s value: Vprior .
2.  Conduct an experiment, use the model, compare results.
3.  Grade the comparison between data yobs and model M.
4.  Update posterior “trust”:

•  Iterate the validation process:

� 

V
prior
(1) !V

posterior
(1) =V

prior
(2) !V

posterior
(2) =V

prior
(3) !  ... !V

posterior
(n)

 These ad hoc examples demonstrate the utility of this approach.

� 

V
posterior

V
prior

=  F[p(M |yobs), q ; cnovel]

• Two simplified examples—using discrete values of p/q
and cnovel— illustrated the nature of this process.

– The multiplier F must satisfy certain (plausible) constraints.

• There remain aspects to be refined and worked out…

“What can be asserted without evidence, can also be dismissed without evidence.”
Christopher Hitchens, in Slate magazine

 Better evaluation of q and algorithmic incorporation of
uncertainty quantification must be addressed.
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Outline

• Modeling, Verification & Validation

• Validation as a constructive, iterative process

• Properties of the proposed validation “multiplier”

• Two examples of the constructive validation process

• Summary

• Additional Material

 The seven “deadly sins” and seven “virtuous practices” of V&V

 Codifying fidelity, robustness, and confidence of simulations
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Assume the code is correct.
Only do a qualitative comparison
(e.g., the viewgraph norm).
Use problem-specific special methods or
settings.
Use only code-to-code comparisons.
Use only one mesh.
Only show the results that make the code look
good, viz., the ones that appear correct.
Don’t differentiate between accuracy
and robustness.

 Lust
 Gluttony

 Envy

 Wrath
 Sloth
 Pride

 Avarice

Traditional 
“7 Deadly Sins”

Otto Dix, 1933Hieronymus Bosch. 1485

“Seven Deadly Sins of V&V”
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 Assume the code has flaws, bugs, and errors
then find them—and fix them!

 Be quantitative.
 Verify and Validate the same thing.
 Use analytic solutions & experimental data.
 Use systematic mesh refinement.
 Show all results—reveal the shortcomings.
 Assess accuracy and robustness separately.

 Prudence

 Temperance
 Faith
 Hope
 Fortitude
 Justice
 Charity

Traditional 
“7 Cardinal Virtues”

“Seven Virtuous V&V Practices”
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Key objectives of simulations:
Fidelity, Robustness, and Confidence.

• Predictions must agree with the measurements
available from experiments or observations.
 High fidelity-to-data.

• Decisions based on predictive modeling must be
robust to assumptions made, to lack-of-knowledge,
and to other sources of modeling uncertainty.
 High robustness-to-uncertainty.

• Predictions obtained from multiple models must
provide a consistent body of evidence, from which
“confidence” is derived.
 High confidence-in-prediction.

Credit: F. Hemez — see LA-UR-06-6396
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Clear, heuristic notions underlie both
Fidelity (R) and Robustness (α*).

Uncertainty
Variable, q1

Predictions,
y = M(p;q)

Uncertainty
Variable, q2

yTest

R
y

Fidelity-to-
data (R)

RMax

RMax yTest

Robustness-
to-uncertainty

(α*)
α*

U(α*;qo)
Credit: F. Hemez —
     see LA-UR-06-6396
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• We know of no formal definition of confidence,
but “looseness” is one way to codify it.(*)

Confidence is (less intuitively)
measured by “looseness” (λY).

Uncertainty
Variable, q1

Predictions,
y = M(p;q)

Uncertainty
Variable, q2

λY

RMax

RMaxyTest

“Code A”

“Code B”

“Code C”Confidence ∝

Credit: F. Hemez — see LA-UR-06-6396
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Rigorous definitions for these
three quantities can be devised .

• Prediction looseness (λY): Range of predictions
expected from a family of equally-robust models.

� 

!Y = max
M"U(#*;qo )

M(p;q)  $ min
M"U(#*;qo )

M(p;q)

• Fidelity-to-data (R): Degree of correlation between
test data (yTest) and simulation predictions (M).

� 

R2
=  yTest

(k)
! M(p(k);q)( )

k =1

NTest

"
2

• Robustness-to-uncertainty (α*): Maximum value of
the horizon-of-uncertainty for which all models of
the corresponding family U(α;qo) meet a given
fidelity requirement RMax.

� 

! *  =  max
!"0

 R # R Max ,  $   M % U !;q o( )  { }

Credit: F. Hemez — see LA-UR-06-6396
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These properties are antagonistic: one
cannot avoid trade-offs between them.

• Robustness decreases as fidelity improves.

• Confidence decreases as robustness improves.

• Confidence increases as fidelity improves.

Robustness

Fi
de

lit
y

Robustness

C
on

fid
en

ce
C

on
fid

en
ce

Fidelity

Models calibrated to better reproduce the available test
data become more vulnerable to: (i) errors in modeling
assumptions, (ii) errors in the functional form of the model,
and (iii) uncertainty and variability in the model parameters.

Models made more immune to uncertainty and modeling
errors provide a wider range of predictions, and, thus are
less consistent in their predictions (less predictive power).

Models calibrated to better reproduce the available test
data provide more consistent forecasts, leading to a false
sense of confidence (“over-calibration” or “over-fitting”).

Credit: F. Hemez — see LA-UR-06-6396
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Abstract

Validation can be defined as the process of determining the degree
to which a model provides an accurate representation of the real
world from the perspective of its intended uses. Validation is crucial
as the justification for decisions increasingly depend on simulations
provided by computer models. In this talk, we formulate the
validation of a given model/code as an iterative construction process
that mimics the implicit process occurring in the minds of scientists.
We offer a formal representation of the progressive build-up of trust
in the model. We thereby replace static claims on the impossibility of
validating a given model/code by a dynamic process of constructive
approximation. Our procedure factors in the degree of redundancy
versus novelty of the experiments used for validation as well as the
degree to which the model predicts the observations.


