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Abstract 

The role of discounting in the management of climate change is a hotly 

debated issue. Many scientists and laymen concerned with potentially 

catastrophic impacts feel that if an increase in the discount rate drastically 

increases the likelihood of catastrophic outcomes, this discredits economic 

cost-benefit calculations. This paper argues that this intuition is sound. If 

cost-benefit calculations are done within a model that encompasses the type 

of catastrophic threshold effects that these scientists worry about, the 

resulting stabilization target will only be slightly influenced by the discount 

rate.  
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1. Introduction 

Discourse on policy responses to climate change has a tendency to become a debate 

on the appropriate method of discounting.1 The Stern Review was severely criticized 

by influential economists such as William Nordhaus and Martin Weitzman who 

claimed that much of the results where artificially driven by low discount rates [15], 

[9], [20]. Indeed, much of the discussion about these models boils down to the 

appropriate choice of numerical value for the discount rate and measures of income 

inequality aversion, [3]. To the extent that discount rates actually matter for climate 

policy this is a fruitful debate, but it is not clear that the discount rate is of 

paramount importance if climate change induces catastrophic risk which must be 

managed. In the literature there are numerous attempts to take account of an 

uncertain future, like irreversibilities. As demonstrated, for instance by Gollier [5], [6], 

and by Weitzman [17],[18], a time-dependent and declining discount rate can be 

rationalised so that future uncertainty or risk will be properly accounted for. It has 

for some time been recognized that climate change carries with it the risk of 

catastrophes when certain boundaries, termed thresholds or tipping points are 

crossed. Examples of possible catastrophic scenarios include coral bleaching, marine 

ice sheet instability, methane hydrate destabilization and disruption of the 

thermohaline circulation (Gulf Stream),[12], [7], [1], [8]. There is unfortunately a 

disconnect between scientists concerned with potentially catastrophic threshold 

effects and economists who do not include them in their models, or simply ignore 

them because the catastrophic event is expected to occur in the far-distant future. 

This has led to an unfortunate breakdown of communication between the scientists 

who feel that the intelligent management of catastrophic risk should not be very 

sensitive to discounting while economists armed with results from integrated 

assessment models claim the discount rate is a crucial parameter in climate policy. 

 

The economic analysis of problems with threshold risk is obviously confounded by the 

lack of precise knowledge about the location of these thresholds. Partha Dasgupta has 

even suggested that the existence of such tipping points may severely restrict the 

usefulness of cost-benefit analysis, [4]. It is therefore all the more worrisome that 

threshold risk is not an integral part of current economic models of climate change. 

                                     
1 Throughout this paper we will refer to the social rate of time preference simply as the discount rate. 
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Further, if threshold effects are an important part of the possible damages induced by 

climate change, one may argue that economic discussion of the role of discounting is 

premature until the role of discounting in dynamic models with threshold risk is 

properly understood.    

 

There is very little formal economic analysis of threshold effects with unknown 

threshold location, and what there is pays very little attention to the role of the 

interest rate, [10], [11], [16], [17]. Here we present a stylized model showing that if 

catastrophic risk of crossing a crucial climate threshold is incorporated into an 

economic decision model, the rate of discounting is of little importance for the 

question of what level to stabilize atmospheric CO2. The model is solved analytically 

and contains a number of simplifying assumptions in order to clarify the role of the 

discount rate in the control of catastrophic climate risk. We assume risk-neutrality 

and standard exponential discounting. The consequence of a catastrophe is modelled 

as a fixed cost which does not entail the possibility of the marginal utility of 

consumption becoming infinite. Thus our model is different from [21], where the 

discount rate does not matter because the fat tails associated with statistical 

estimation of parameters implies a positive probability of an outcome with infinite 

marginal utility and therefore an infinite willingness to pay for avoiding this outcome. 

The model is aimed to capture the rational deliberations of a standard economic 

decision maker who faces the possibility of a severe catastrophe, which does not 

however entail an outcome where the human race is pushed to or below a minimum 

subsistence level. Our results indicate that when the threshold nature of catastrophic 

climate change is properly incorporated into an economic decision model, the 

numerical value of the discount rate is of marginal importance for the long-term 

choice of CO2 stabilization level. Although it remains to be seen whether our results 

carry over to more realistic numerical models of climate management, it may be that 

much of the discussion about discounting and climate change is not as relevant as one 

could believe when examining results from the current crop of largely deterministic 

numerical models. 
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2. A Simple Model of Carbon Emissions and Catastrophic Risk 

Here we present a stylized model of catastrophic climate change. Threshold effects 

require somewhat specialized optimal control techniques. In the present section the 

model is developed in a heuristic way. (A more technical treatment is given later.) 

Let the stock of atmospheric CO2 above pre-industrial levels be determined by the 

following differential equation: 

 

 ( ) ( )( )
( ), 0  given.

dx t
u t x t x

dt
= − δ  (1) 

 

Here x is the stock of atmospheric carbon above pre-industrial levels, u is the flow of 

CO2 emissions and δ is the inverse of the mean atmospheric lifetime of CO2. Assume 

further that there is a threshold x  such that if x = x  then an irreversible 

catastrophic event is triggered. The threshold location x  is a random variable with a 

positive density function f(x) on [xL, ∞). We have defined xL to be the highest value 

of x known to be below the true threshold. As x is a function of t, then for any given 

function u(t) the point in time τ such that x(τ) = x  is a random variable. Thus for 

any path x(t) one can translate the distribution of x  over x into a distribution over 

time. This is illustrated in Figure 1 which shows an arbitrary sample path x(t), which 

should not be taken to be optimal. Every point on the x(t)-axis is a possible threshold 

location. The path oscillates until t = D for then to converge to x(∞). The key to 

understanding the stochastic process generated by the threshold is that there is only 

a risk of crossing the threshold if x(t) is taking values that have not previously been 

attained. Thus in the interval [O, A], x ′(t) is positive and x(t) > x(s) for all t < s. 

There is therefore some probability that the threshold will be crossed in the time 

interval [O, A]. At A, x ′(t) changes sign and over the interval [A, B], x(t)≤xA which 

implies that x is running through values known to be safe. At B, x(t) again enters 

uncharted territory with some risk of crossing the threshold until time C when x(t) = 

xC. At time C, x(t) takes another dip and there is again no probability of crossing the 

threshold until time D when x(D) again equals xC . 
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Figure 1, Threshold effects under uncertainty 

 

In Figure 1, x(t) converges towards x(∞) as time increases. x(t) increases 

monotonously from time D, so there is always some probability that the threshold 

will be crossed in any given time interval. However, as the rate of increase in x(t) 

becomes smaller and smaller, the probability per unit of time that the threshold will 

be crossed becomes smaller and smaller and goes to zero as time goes to infinity. The 

probability that the threshold will be crossed at some point in time is then 

( )( )

L

x

x
f x dx

∞

∫ .  

When optimizing processes with catastrophic risk it is often convenient to work with 

the hazard rate. The hazard rate of f(x) is given by ( )x
xλ  and is defined by: 

 ( )
)( ) ( )

( )0

Pr , |
lim

1
L

x xdx

x

x x x dx x x f x
x

dx f y dy
→

⎡∈ + >⎢⎣λ = =
− ∫

 (2) 

For the purpose of optimization we need to transform this hazard rate to the time 

domain. It is shown in the appendix that the hazard rate in the time domain is given 

by: 
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 ( )
( ) ( )

)
( )

0,
( ) ( ) for ( ) 0 and sup

0 elsewhere

x
s t

x t x t x t x t x s
t ⎡∈⎢⎣τ

⎧⎪λ ≥ ≥⎪⎪λ = ⎨⎪⎪⎪⎩

 (3) 

This rather awkward definition holds for an arbitrary x(t). It is shown below that 

along an optimal path, the hazard rate will simplify to ( ) ( )max 0,
x

x xλ × . For ease of 

exposition we assume an exponential distribution for the threshold location, with a 

constant intensity λ, distributed over [x(0), ∞). Thus the hazard rate is: 

 ( ) ( ) ( )( )max 0,t u t x tτλ = λ × − δ  (4) 

The catastrophic event that occurs when x(τ) = x  is that society incurs a constant 

loss of utility flow given by G per unit of time.2 This loss is assumed to be 

irreversible.3 Formally we define a state-variable γ(τ), with γ(0) = 0, so that t∀ ≠ τ , 
( ) 0

d t

dt

γ
=  and having a jump at the unknown τ , as given by ( ) ( ) G+ −γ τ − γ τ = − .  

Finally, assume that the cost of emission reduction is given by: 

 ( ) ( )2
0

2
c

C u u u= −  (5) 

Here u0 denotes the “business as usual” emission levels and represents the optimal 

emissions in the absence of environmental consequences. Setting u to u0 implies that 

emission reduction costs are minimized and so u0 may be thought of as the emissions 

in the absence of regulation and therefore an upper bound on emissions. In order to 

focus on the role of catastrophic risk, no other damages from CO2 emissions are 

included in the model. In addition to the threshold effect, CO2 is also assumed to 

have a stock pollutant effect with the marginal damage of the stock of CO2 for 

simplicity assumed to be a. The principles of conventional economic analysis then 

lead to the following planning problem, where E  is the expectation operator: 

 

 
( )

( ) ( )2
0

0

max
2

rt

u t

c
E t ax u u e dt

∞
−

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟γ − − −⎜ ⎟⎜ ⎟ ⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠⎜⎝ ⎠
∫  (6) 

 

                                     
2 The assumption that the disaster gives rise to a constant flow of disutility is not crucial as it is 

always possible to replace the integral for net present value of actual damages with an annuity of 

damages which is equivalent. Furthermore, the chosen hazard rate λτ implies a rather “optimistic” 

view as to the occurrence of the catastrophe. A more realistic approach would require this hazard rate 

to increase with x.   
3 We have irreversible consequences of climate change as opposed to e.g. [13] where a regulator chooses 

an irreversible action.  



 8 

subject to (1), (4), and (7) below, with (0)x  given, with 00,u u⎡ ⎤∈ ⎢ ⎥⎣ ⎦  for all t , and r as 

the much maligned rate of time preference. Note that the model employs traditional 

exponential discounting and no risk aversion. The state variable γ  satisfies: 

 

 ( ) ( ) ( )( ) 0 , 0 0,t t G+ −γ = ∀ ≠ τ γ = γ τ − γ τ = −  (7) 

 

2.1. Optimal Stabilization Targets 

The solution to the optimization problem in (6) is an optimal path of emissions and a 

corresponding time path of CO2. A general algorithm for solving threshold problems 

may be found in [10], based on a general algorithm for piecewise deterministic control 

problems derived in [14]. The solution is found recursively. First one solves the 

problem conditional on the threshold effect having occurred at some point in time τ. 

This problem is given by: 

 ( )( )
( )

( )2
0, max

2
r rs

u s

c
J x e G ax u u e ds

∞
τ −

τ

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟τ τ = − − −⎜ ⎟⎜ ⎟ ⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠⎜⎝ ⎠
∫  (8) 

Note that we here have scaled the objective in order to get the maximum expressed 

in current value terms. This expression is maximised subject to x u x= − δ  and that 

x(τ) has some arbitrary value. Note that the problem is now deterministic and that 

the magnitude of constant G will not affect the solution. The solution to (8) is 

straightforward to solve with standard control techniques. 

 

( )( ) ( )
( )( )

( )( )
( ) ( )0

0

0( ) ( (

| ,

| ,

|
)( )

( )
,

)
s

cu r

a
u s x u

c r

a
s

a e a c r x u

c r

x
r

x s x

−δ −τ

τ τ = −
+

+ δ − + + + δ δ τ −

δ

μ τ τ = −
+ δ

δ
τ =

+ δ
τ

 (9) 

Here μ(s|τ, x(τ)) is the standard current value co-state variable. We will also need 

the expression for ( )( ),J xτ τ , which by integrating (8) after inserting from (9) is 

found to be: 

 ( )( ) ( )
2 0

2

2 ( )

)
,

2 (

a a ac
J x

u r G
x

r rcr r

− + δ
− τ + −

+ δ
τ =

δ +
τ  (10) 

Having characterized the optimal solution after the threshold has been crossed, we 

may proceed to solve for the optimal emissions path prior to crossing the threshold. 

The solution is expressed in terms of a risk-augmented Hamiltonian given by: 
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 ( ) ( ) ( )( ) ( )( )2
0 ( ) ,

2
c

H ax u u u x t J t x t z tτ= γ − − − + μ − δ + λ −  (11) 

Here λτ(t) is the hazard rate defined in (3). Note that t in ( )( ),J t x t  now denotes 

running time. z(t) is an auxiliary variable which has the interpretation of being the 

value of the objective function evaluated from time t, conditional on the threshold 

not being crossed at that any time less than or equal to t. The term ( )( ) ( ),J t x t z t−  

is thus the net cost of the threshold being crossed at time t. 

 

  ( )( )0 |u u J x z
c c
μ λ

= + + τ −  (12) 

 ( ) ( )( )( ) ( )( )( )( ) | , | ,
H

r a r u x t t x t t J t x t z
x

∂
μ = μ − = + + δ μ + λ − δ μ − μ τ = + λδ −

∂
(13) 

 ( ) ( ) ( )
2

0

2
c G

z rz ax u u u x z t
r

⎛ ⎞⎟⎜ ⎟= + + − − λ − δ − −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (14) 

 

The CO2 stocks should not be allowed to increase above this level and may be 

interpreted as an Optimal Stabilization Target (OST). This level is given by: 

 

 ( ) ( ) ( ) ( )
0 221

lim 2ss

t

u a
x x t r r G

cc r→∞

⎛ ⎞⎟λ⎜ ⎟⎜= = − + + δ − + δ + ⎟⎜ ⎟⎜ ⎟δ δλδ + δ ⎟⎜⎝ ⎠
 (15) 

Emissions will converge to: 

 ( ) ( ) ( ) ( )
220 1

lim 2ss

t

a
u u t u r r G

cc r→∞

⎛ ⎞⎟λ⎜ ⎟⎜= = − + + δ − + δ + ⎟⎜ ⎟⎜ ⎟λ+ δ ⎟⎜⎝ ⎠
 (16) 

 

The steady state stock of CO2 may be decomposed in the following manner: 

 
( )

( ) ( ) ( )

0

22

lim  where

1
, 2

ss ss ss
a Gt

ss ss
a G

u
x x t x x

a
x x r r G

cc r

→∞
= = + Δ + Δ

δ
⎛ ⎞⎟λ⎜ ⎟⎜Δ = − Δ = + δ − + δ + ⎟⎜ ⎟⎜ ⎟δλδ + δ ⎟⎜⎝ ⎠

 (17) 

ss
a

xΔ  and ss
G

xΔ  are the respective steady state reductions in CO2 stock due to the 

stock pollutant effect and the threshold effect. ss
G

xΔ  havs some intuitive properties. 

E.g.: 

 
0 0

lim lim 0ss ss
G GG

x x
λ→ →

Δ = Δ =  (18) 
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If there is almost no risk or the cost of crossing the tipping point is close to zero, then 

the reduction in steady state stock of atmospheric CO2 due to the threshold effect 

goes to zero. These steady states values may be interpreted as stabilization targets. 

However, some care must be taken when interpreting these steady state values. First, 

it is only optimal to let x(t) and u(t) converge to xss and uss if x(0) ≤  xss. Also note 

that for some parameter values, e.g. sufficiently high values of G, the steady state 

levels will become negative. Obviously this is not realistic. Indeed, according to the 

following proposition it is never optimal to let x(t) be decreasing over any time 

interval. These assertions are formally proven in Propositions 1 and 2. 

 

Proposition 1. 

Suppose that x(0) ≤ u0/δ + ss
a

xΔ . The optimal solution will then exhibit a non-

decreasing path for the stock variable x(t). 

 

The proof of this proposition is given in the appendix. Intuitively, the result follows 

from the existence of a threshold effect. In the present model, the environmental 

damage occurs only if the threshold is crossed. If x* is the highest level of x that has 

previously occurred, then it is known that all values of x < x* are below the 

threshold and therefore safe. There is therefore no incentive to reduce x below x*. A 

corollary to Proposition 1 is given in Proposition 2.  

 

 

Proposition 2. 

Suppose we have u0/δ + ss
a

xΔ  > x(0) ≥ xss. Then the optimal path requires that x(t) 

= x(0) for all t and that the optimal control should take the value u(t) = δx(0) for all 

t.  

 

Proof: The proof is quite simple. Proposition 1 rules out the possibility of x(t) 

oscillating or decreasing, so if Proposition 2 is false, x(t) must strictly increasing and 

non-convergent for all t or converge to some steady state in the interval (xss, u
0/δ). 

x(t) cannot be strictly increasing and non-convergent as this would imply that u(t) at 

some point increases to levels above u0, which is not optimal. Nor can x(t) converge 

to a steady state in (xss, u
0/δ) as no such steady state exists. 
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Intuitively, Proposition 2 says that if the system is not regulated until after x(t) has 

increased above the desired stabilization level implied by (15), then this stabilization 

level loses its relevance. By luck one has been able to reach a stock level of x(t) that 

is too high from our optimality perspective and can therefore enjoy the decreased 

costs from emission reductions that is induced by this luck. Having had this luck 

however, it does not pay to stretch it further by allowing even larger increases in x(t) 

relative to xss.  

 

Discounting and the Effect on Stabilization Targets 

Evidently, the steady-state solutions in (15) and (16) depend on the discount rate. 

However, a closer examination shows that the discount rate affects ss
a

xΔ  and ss
G

xΔ  in 

very different ways. In ss
a

xΔ , r enters the denominator multiplicatively as a very 

small number it is therefore not surprising that small increases in r may have a large 

impact on stabilization targets. In ss
G

xΔ , however r enters the expressions additively 

in the numerator. Adding small numbers to a numerator will, roughly speaking, have 

a very small effect on a number. To see this, examine the terms within the 

parenthesis: 

 

 ( ) ( )
22

2r r G
c

⎛ ⎞⎟λ⎜ ⎟⎜ + δ − + δ + ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 (19) 

 

Defining r + δ to be A and 2Gλ2c-1 to be B, the non-positive expression in (13), may 

be written: 

 

 2A A B− +  (20) 

 

Let the unit of time be “one year”. The annual discount rate is then typically lower 

than 0.07. 1/δ is the average lifetime of a CO2 molecule in the atmosphere. This 

number was popularly believed to be of the order of a few hundred years, but recent 

work indicates that it may be considerably higher, which implies that δ is less than or 

equal to 1/200, see [1]. In any case, the number A is of the order of magnitude 10-1. 

The number B depends on the ratio of the cost of catastrophe G and, roughly 

speaking, the cost of emission reduction c. If the catastrophe has consequences that 
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are truly serious so that the number B is of an order of magnitude, say 106 or more, 

then B will clearly dominate the expression in (13). Indeed, the expression has A 

minus the root of the square of A plus something and will tend to disappear. We can 

formalize this by examining the respective elasticities of ss
G

xΔ  and ss
a

xΔ . To simplify 

we set δ = 0. Straightforward calculations yield: 

  (21) 

 
2

El 1, Elss ss
r a r G

r
x x

r B
= − = −

+
  

The difference is quite striking. If were only concerned with the deterministic stock 

pollutant effect, a 1% increase in r, say from 5% to 5.05% would imply that steady 

state CO2 stocks should be allowed to increase by 1%. On the other hand, if we are 

concerned only about the threshold effect, the elasticity El ss
r G
x  is a small negative 

number. Indeed, if B is a number of some magnitude, El ss
r G
x  is for practical purposes 

indistinguishable from 0.  

 

It should be clear from this discussion that the discount rate does not matter much 

for what level one should stabilize atmospheric CO2 if one is primarily concerned with 

tipping points or threshold effects. As the probability of crossing the threshold is 

given by the integral 
(0)

( )
ssx

x

f x dx∫ , this probability is not very dependent on the 

discount rate either. Any fruitful scientific and economic discussion about this topic 

should therefore focus on the magnitude of the parameters G, c and λ. This does not 

imply that the interest rate is completely insignificant. The path of emissions and 

atmospheric CO2 leading up to the stabilized levels in (15) and (16) will in general be 

sensitive to changes in interest rates, but for the determination of the actual 

stabilization targets, the discount rate plays a minor role.  

 

 

Summary 

The debate between proponents of conventional discounting and sceptics concerned 

about catastrophic risk is somewhat misplaced as the role of discounting in 

catastrophic risk is minor if the threshold nature of the risk structure is accounted 

for. To the extent that threshold effects are important in climate change, this should 
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be incorporated into integrated assessment models and thereby conciliate the results 

of these models with the concerns of climate scientists.  
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Appendix 

 

Derivation of the hazard rate, λτ. 

 

The threshold location is distributed over the interval (xL, xH) where xH ≤ ∞ with a 

pdf given by f(x) and a cdf given by F(x). By definition the hazard rate associated 

with f(x) is given by:  

 ( )
( ) ( )

( )0

Pr , |
lim

1x dx

x x x dx x x f x
x

dx F x→

⎡ ⎤∈ + >⎢ ⎥⎣ ⎦λ = =
−

 

Now let x(t) be an arbitrary continuous and piecewise differentiable function such 

that x(0) = xL, ( ) ( )( ),x t h t x t′ =  and let τ solve the equation x(τ) = x . If h(t, x(t)) is 

everywhere non-negative, if follows from a standard property of the integral operator 

that: 

 ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )( )
0 0

,
L

x t t t

x

F x t f y dy f x s x s ds f x s h s x s ds′= = =∫ ∫ ∫  

If h(t, x(t)) is not everywhere non-negative, we must avoid assigning positive 

probability to time intervals where x take values known to be safe. This is done by 

defining a function ψ(t) with the property that: 

 ( )
( )( ) ( )( ) ( )

)
( )

,
,  for , 0 and sup

0 everywhere else
s t

h t x t h t x t x t x s
t ⎡∈ −∞⎢⎣

⎧⎪ ≥ ≥⎪⎪ψ = ⎨⎪⎪⎪⎩

 

The cdf for the distribution of the event t = τ is then given by: 

 ( )( ) ( )( ) ( )
0

t

F x t f x s s ds= ψ∫  

The corresponding pdf is then given by: 

 ( ) ( )( ) ( )f t f x t tτ = ψ  

It follows from the definition of the hazard rate that the hazard rate for the point in 

time of event occurrence is given by: 

 
( )( ) ( )

( )( ) ( )

( )( ) ( )
( )( )

0

1
1

t

f x t t f x t t

F x t
f x s s ds

τ

ψ ψ
λ = =

−
− ψ∫
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Proof of Proposition 1 

To avoid cluttered notation we show the proposition under the assumption that a = 

0. If the proposition is false, then one of the following conditions must hold: 

 

Condition 1: There must exist a t* such that x(t) < x(t*) for all t > t*.  

Condition 2: There must exist a t* and t** > t* such that x(t*) = x(t**) and x(t) 

< x(t*) for all t ∈ (t*, t**). 

 

Bear in mind that emissions will never exceed u0 implying that x will never exceed 

u0/δ. If Condition 1 holds, then ψ(t) = 0 for all t > t*. If this is the case, then the 

optimal path must solve the deterministic control problem 

 ( ) ( )
2

0
2

*

max [ ] . . ,  *  givenrtc

u
t

u u e dt s t x u x x t
∞

−− − = − δ∫  

 

It is straightforward to see that this problem has the unique solution u(t) = u0. For 

all x(t*) ≤ u0/δ, x(t) will therefore be increasing; hence we have a contradiction.  

 

If Condition 2 holds, optimality implies that the optimal path over [t*, t**] solves the 

following optimization problem: 

 

 
( )

( ) ( ) ( )
*

2
0

*

max [ ] , . . , * * * given
2

t
rt

u t
t

c
u u e dt s t x u x x t x t

+Δ
−− − = − δ =∫  

 

Here Δ = t** – t*. This is again a straightforward deterministic optimal control 

problem. Solving this problem yields that, for any Δ, x(t) = x(t*) for all * **,t t t⎡ ⎤∈ ⎢ ⎥⎣ ⎦ , 

implied by a constant emission rate *( )u x t= δ  for any * **,t t t⎡ ⎤∈ ⎢ ⎥⎣ ⎦ ; which contradicts 

our assumption. 
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