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Question 1: 
 

In this exercise, the full dynamic model of a quadcopter has to be derived assuming that the vehicle 

is a rigid body. The dynamic model has to represented as a set of ordinary differential equations. The 

quadcopter structure is shown in Figure 1 including forces and torques acting on the vehicle and 

inertial and body frames. 

 

FIGURE 1 INERTIAL AND BODY FRAME OF QUADCOPTER 

a. Derive the dynamic model of the quadcopter �̇ = �(�, �) in terms of forces and drag 
torques generated by each propeller. For convenience, express the vehicle’s position and 
velocity in the inertial frame while angular velocity in the body frame. 
Hints: The state vector � is given by  

� =  (� � ��,� �)� 
 
where � is the vehicle position, � is the vehicle velocity in inertial frame, ��,� is the rotation 
matrix between body frame and inertial frame and � is the body angular velocity.  
While the control input vector � is the virtual control input (as shown in Slide 11 of the 
lecture slides). 
The time derivation of the rotation matrix ��,�  is given by  

�

��
��,� =  ��,���  

where the hat operator is the skew-symmetric matrix operator. 
 
 
 



Solution: 
 
The forces acting on the vehicle are: 

i.  the total thrust generated by the propellers given by  

�� = �� + �� + �� + �� = � ���
�

�

���

 

ii. The torque generated by the propellers around the vehicle �� body axes 

�� = �(�� − ��) = ��(��
� − ��
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iii. The torque generated by the propellers around the vehicle �� body axes 

�� = �(�� − ��) = ��(��
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iv. The torque generated by the propellers around the vehicle �� body axes 
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From Newton’s Law � =
�

�
. We can write the following: 
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where �� is the total force in inertial frame, which is given by 
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given that �� … �� are aligned with ��. This results in the following translational dynamics: 
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From the rotational dynamics of a rigid body (Slide 7) we have: 
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The complete system dynamics are given by: 
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b. Show that the system model is composed of two subsystems, translational dynamics and 
attitude dynamics. 
 
Solution: 
 
From the previous point, the translational dynamics depends only on the total thrust �� and 
vehicle attitude while the attitude dynamics depends only on the control input �� … �� and 
does NOT depend at all on the vehicle position nor velocity.  
 
 
 

c. (Extra) A nonlinear system is called differentially flat if there exists a set of output variables 
� = �(�) (called flat outputs) such that the system state � and control input U can be 
written as a function of � and finite number of its time derivatives. This property is 
interesting for system control and trajectory generation.  
Show that given the flat output � = (� �)�, the full system state � can be written as a 

function of �, �̇, �̈, ��, … , �(�). 
 
Solution: 
 
To show the differential flatness of the quadcopter, we construct the state vector � =

 (� � ��,� �)� from the flat output and control input and a finite number of their 
time derivatives. To do so, we consider each element in the state vector and discuss how it 
can be constructed. 

 The vehicle position � already appears in the flat output. 

 The vehicle velocity � is the first time derivative of �. 

 To construct the vehicle attitude, we need to consider the acceleration of the 
vehicle. Let’s consider the columns of ��,� = (�� �� ��). The third column can 
be recovered from the vehicle acceleration dynamics as follows: 
 

� =
�(�̈ + (0 0 �)�)

��
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�
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Note that �� will cancel out in the normalization. 
 
Now, consider a vector � = (cos � sin � 0)� which indicates the vehicle 
heading on the � − � plane of the inertial frame. The second body frame axis �� is 
perpendicular to the plane containing � and ��. Therefore, we can write 
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�� × �
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Finally, the first body frame axis can be found as �� = �� × ��. This completes the 
construction of vehicle attitude only relying on vehicle acceleration and heading (�). 
 

 To construct the angular velocities, let’s consider the time derivative of �� and pre-

multiply by ��,�
� . We have: 
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Question 2: 
 

In this exercise, a PD attitude controller is to be designed and analyzed using MATLAB and Simulink.  

a. First, linearize the vehicle attitude dynamics around hovering condition. 
 
Solution: 
See Slides 8 and 13. 
 

b. Write the control input as a function of measured attitude �, �, � and desired attitude 
��, ��, ��. 
 
Solution: 
See Slide 16. 
 

c. Write the linearized system closed-loop dynamics by plugging the control action in the 
linearized model obtained from Part a. What is the order of the closed loop system? 
 
Solution: 
See Slides 13 and 15. The system order is 2. 

 

Now, use the quadcopter.slx Simulink model to simulate the quadcopter model and to 

implement attitude controller. You can see that the quadcopter model is divided into 2 subsystems 

(shown in cyan). The first subsystem is the attitude dynamics, and the second subsystem is the 

translational dynamics. Your first task is to complete the model equations obtained in Question 1, 

then implement an attitude PD controller and position PID controller. 

The vehicle and controller tuning parameters are stored into param struct that can be modified in 

parameters.m. 

d. The translational dynamics block is getting as input the vehicle attitude represented by a 
rotation matrix � and total force generated by the propellers ��. In the block 

translational_dynamics_eqn complete the translational dynamics as obtained 
from Question 1. 
 

e. The attitude dynamics subsystem is getting as input the torque generated by propellers 
around the vehicle body axes �� , �� , ��. In the block calculate_angular_acc write 
the expression of the angular acceleration obtained from Question 1.  

 

 



f. Now, we implement the attitude PD controller. In the block 
PD_attitude_controller_eqn fill in the control action equations as obtained from 
Part b. Apply step references to desired roll, pitch, yaw and tune the controller until you are 
satisfied with the step response. The initial controller parameters in the param struct are a 
reasonable initial guess. 

 

 Solution: 
 
See attached Simulink model. 


