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Question 1:

In this exercise, the full dynamic model of a quadcopter has to be derived assuming that the vehicle is a rigid body. The dynamic model has to represented as a set of ordinary differential equations. The quadcopter structure is shown in Figure 1 including forces and torques acting on the vehicle and inertial and body frames. [image: ]
[bookmark: _Ref466629094][bookmark: _Ref466629061]Figure 1 Inertial and body frame of quadcopter
a. Derive the dynamic model of the quadcopter  in terms of forces and drag torques generated by each propeller. For convenience, express the vehicle’s position and velocity in the inertial frame while angular velocity in the body frame.
Hints: The state vector  is given by 


where  is the vehicle position,  is the vehicle velocity in inertial frame,  is the rotation matrix between body frame and inertial frame and  is the body angular velocity. 
While the control input vector  is the virtual control input (as shown in Slide 11 of the lecture slides).
The time derivation of the rotation matrix  is given by 

where the hat operator is the skew-symmetric matrix operator.



Solution:

The forces acting on the vehicle are:
i.  the total thrust generated by the propellers given by 

ii. The torque generated by the propellers around the vehicle  body axes


iii. The torque generated by the propellers around the vehicle  body axes


iv. The torque generated by the propellers around the vehicle  body axes


From Newton’s Law  We can write the following:

where  is the total force in inertial frame, which is given by


given that  are aligned with . This results in the following translational dynamics:



From the rotational dynamics of a rigid body (Slide 7) we have:




The complete system dynamics are given by:



b. Show that the system model is composed of two subsystems, translational dynamics and attitude dynamics.

Solution:

From the previous point, the translational dynamics depends only on the total thrust  and vehicle attitude while the attitude dynamics depends only on the control input  and does NOT depend at all on the vehicle position nor velocity. 



c. (Extra) A nonlinear system is called differentially flat if there exists a set of output variables  (called flat outputs) such that the system state  and control input U can be written as a function of  and finite number of its time derivatives. This property is interesting for system control and trajectory generation. 
Show that given the flat output , the full system state  can be written as a function of .

Solution:

To show the differential flatness of the quadcopter, we construct the state vector  from the flat output and control input and a finite number of their time derivatives. To do so, we consider each element in the state vector and discuss how it can be constructed.
· The vehicle position  already appears in the flat output.
· The vehicle velocity  is the first time derivative of .
· To construct the vehicle attitude, we need to consider the acceleration of the vehicle. Let’s consider the columns of . The third column can be recovered from the vehicle acceleration dynamics as follows:



Note that  will cancel out in the normalization.

Now, consider a vector  which indicates the vehicle heading on the  plane of the inertial frame. The second body frame axis  is perpendicular to the plane containing  and . Therefore, we can write



Finally, the first body frame axis can be found as . This completes the construction of vehicle attitude only relying on vehicle acceleration and heading ().

· To construct the angular velocities, let’s consider the time derivative of  and pre-multiply by . We have:

 is simply recovered by .
Question 2:

In this exercise, a PD attitude controller is to be designed and analyzed using MATLAB and Simulink. 
a. First, linearize the vehicle attitude dynamics around hovering condition.

Solution:
See Slides 8 and 13.

b. Write the control input as a function of measured attitude  and desired attitude .

Solution:
See Slide 16.

c. Write the linearized system closed-loop dynamics by plugging the control action in the linearized model obtained from Part a. What is the order of the closed loop system?

Solution:
See Slides 13 and 15. The system order is 2.

Now, use the quadcopter.slx Simulink model to simulate the quadcopter model and to implement attitude controller. You can see that the quadcopter model is divided into 2 subsystems (shown in cyan). The first subsystem is the attitude dynamics, and the second subsystem is the translational dynamics. Your first task is to complete the model equations obtained in Question 1, then implement an attitude PD controller and position PID controller.
The vehicle and controller tuning parameters are stored into param struct that can be modified in parameters.m.
d. The translational dynamics block is getting as input the vehicle attitude represented by a rotation matrix  and total force generated by the propellers . In the block translational_dynamics_eqn complete the translational dynamics as obtained from Question 1.

e. The attitude dynamics subsystem is getting as input the torque generated by propellers around the vehicle body axes . In the block calculate_angular_acc write the expression of the angular acceleration obtained from Question 1. 


f. Now, we implement the attitude PD controller. In the block PD_attitude_controller_eqn fill in the control action equations as obtained from Part b. Apply step references to desired roll, pitch, yaw and tune the controller until you are satisfied with the step response. The initial controller parameters in the param struct are a reasonable initial guess.

 Solution:

See attached Simulink model.
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2 Mathematical model of quadcopter



The quadcopter structure is presented in Figure 1 including the corresponding an-
gular velocities, torques and forces created by the four rotors (numbered from 1 to
4).
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Figure 1: The inertial and body frames of a quadcopter



The absolute linear position of the quadcopter is defined in the inertial frame x,y,z-
axes with ξ. The attitude, i.e. the angular position, is defined in the inertial frame
with three Euler angles η. Pitch angle θ determines the rotation of the quadcopter
around the y-axis. Roll angle φ determines the rotation around the x-axis and yaw
angle ψ around the z-axis. Vector q contains the linear and angular position vectors
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The origin of the body frame is in the center of mass of the quadcopter. In the body
frame, the linear velocities are determined by VB and the angular velocities by ν
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The rotation matrix from the body frame to the inertial frame is
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in which Sx = sin(x) and Cx = cos(x). The rotation matrix R is orthogonal thus
R−1 = RT which is the rotation matrix from the inertial frame to the body frame.











