151-0851-00 V

lecture: CAB G11 Tuesday 10:15 — 12:00, every week

exercise: Wednesday 8:15 — 10:00, according to schedule (about every 2nd week)
office hour: LEE H303 Friday 12.15 — 13.00

Marco Hutter, Roland Siegwart, and Thomas Stastny

Robot Dynamics - Summary Kinematics and Dynamics | 20.12.2016 | 1




I Topic Title I

20.09.2016
27.09.2016
28.09.2016
04.10.2016
05.10.2016
11.10.2016

12.10.2016
18.10.2016
19.10.2016
25.10.2016
26.10.2016
01.11.2016
08.11.2016
15.11.2016
16.11.2016
22.11.2016
29.11.2016
30.11.2016
06.12.2016
07.12.2016
13.12.2016
20.12.2016

Intro and Outline

Kinematics 1
Exercise 1a
Kinematics 2
Exercise 1b
Kinematics 3

Exercise 1c
Dynamics L1
Exercise 2a
Dynamics L2
Exercise 2b
Legged Robots
Rotorcraft 1
Rotorcraft 2
Exercise 3
Case Studies 2
Fixed-wing 1
Exercise 4
Fixed-wing 2
Exercise 5
Case Studies 3

Summery and Outlook

L1
L2
Ela
L3
L3
L4

Elb
L5
E2a
L6
E2b
L7
L8
L9
E3
L10
L11
E4
L12
E5
L13
L14

Course Introduction; Recapitulation Position, Linear Velocity, Transformation
Rotation Representation; Introduction to Multi-body Kinematics

Kinematics Modeling the ABB arm

Kinematics of Systems of Bodies; Jacobians

Differential Kinematics and Jacobians of the ABB Arm

Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation
Error; Multi-task Control
Kinematic Control of the ABB Arm

Multi-body Dynamics

Dynamic Modeling of the ABB Arm

Dynamic Model Based Control Methods

Dynamic Control Methods Applied to the ABB arm

Case Study and Application of Control Methods

Dynamic Modeling of Rotorcratft |

Dynamic Modeling of Rotorcraft Il & Control

Modeling and Control of Multicopter

Rotor Craft Case Study

Flight Dynamics; Basics of Aerodynamics; Modeling of Fixed-wing Aircraft
Aircraft Aerodynamics / Flight performance / Model derivation
Stability, Control and Derivation of a Dynamic Model
Fixed-wing Control and Simulation

Fixed-wing Case Study
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Position

m POSitiOﬂAI‘AB c R? , reference frames _,4 AYAP = ATAB + ATBP

= Different parameterizations, e.g.

et 4
€T
= Cartesian coordinates Xpe=|Y
z<
T B
= Position vector Ar = ze; +ye; +zel = |y b I'ABT
z ™\ Z A
Y
p A -
= Cylindrical coordinates Xp. = |0 /5/ p T
Z
e/ Y

pcost
= Position vector Ar = | psind

z
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Rotation

= Rotation ¢.a5 € SO(3)
= Rotation matrix arap = [4e5 el  4eBf] - prap =Cs-prap

= Different parameterizations, e.g.

<1
= Euler angles X R.eulerzY Z = ( Zy)
2
£ Introduction to algebra with quaternions, e.qg.
= Quaternions X R.quat = & = () cH
¢ Ea @ Epc <> CupCnhe

Cus = Tans + 260 [€], +2[€]7 = (262 — 1) Tsws + 260 [€], + 26"

. . - 2 2 ¢2 2 2 ) 2 9€ €.
= Relation to rotation matrix: _ r%?é;ﬁagf P T PR o

26183 — 2602 26081 + 2628 - -5+ &3
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Velocity

r=Ep(xp)Xp

= Linear velocity rap
> Xp = EI_Jl (xp)T

cosf) —psinf 0
e.g. cylindrical coordinates Ep. (xp.) = |sinf pcosf 0
: 0 0 1
= Representation Xp

_ . 0 —W, Wy W,y
= Angular velocity [awasl. = Cas-Chs [Aw%]x[wz 0 —wT], Aw,w(wy)

= Representation awas =Er(Xr) - Xr

— | =& : ‘ 3%4
. B = 2H(E),  THE) = [ £ [€],+ £OH3><3] cR
= e.g. quatemlons |

_ &1 S —& 0 &
ER}qu-a-t — iH(é)T = |:£2 £3 €0 £1:| -
& & &0 o



Kinematics of Systems of Bodies

q1
= Generalized coordinates 49—
qn Xl
. . . . . _ Xe _ . m
= End-effector position and orientation x, = (;) e SE(3) paramterized by Xc = (XZ> =1 )R
= Forward kinematics ~ Xc = X. (a) | X
=  Forward differential kinematics
9x1 Ix1
. aq1 g,
= Analytic Sx. 8X5 (D s = T4 (@)oq  With Jou = % _ 5
q Ovm .. O
Iq 9
) ) Depending on ,
Xe =Jea(@)q  withJ, 4 (q) € R™<" parameterization!! we = Ee (%) Xe
_ V. , . 6xn. | Independent of oo (q) = B (x) Jo (q)
= Geometric we =1, | =de (@)q with Jeo (q) € R™ | 5o rameterization ) R
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Geometric Jacobian Derivation

= Linear velocity q1
‘ g2

/g = [111 X Tin+1) D2 XTpt1) ... Ny X I'ﬂ{'r‘l+11l]
JE'::'I:I '@ﬂ

= Angular velocity

q1
- ) q2
Wre = E n;q; = [111 Ia v Ilﬂ]
i=1 l
"]El:]_(g q‘n 1
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Analytical and Kinematic Jacobian

= Analytical Jacobian = Geometric (or basic) Jacobian
. . Ve .
X.=4Jea(q)q we= () =Jol@a
l Jeo (a) = Ec (x) Jea (q) f

» Relates time-derivatives of config. parameters * Relates end-effector velocity
to generalized velocities to generalized velocities

= Depending on selected parameterization = Unique for every robot
(mainly rotation) in 3D  Ax <= Aq
Note: there exist no “rotation angle”

= Mainly used for numeric algorithms = Used in most cases
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Importance of Jacobian

= Kinematics (mapping of changes from joint to task space)
= |nverse kinematics control
= Resolve redundancy problems
= EXxpress contact constraints

= Statics (and later also dynamics)

= Principle of virtual work
= Variations in work must cancel for all virtual displacement
= Internal forces of ideal joint don’t contribute

OW = fo =1'5q+(-F.)' Ox.

=1'5q+(— E) J5q=0 Voq

X =Jq
t=J'F

» Dual problem from principle of virtual work
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Inverse Differential Kinematics

= Differential kinematics w.=J.0q

= |nverse differential kinematics = Jw;.
= Singularity: minimizing ||w} — Teod”

= Redundancy: ¢ =J w’ + Nqo null-space projection matrix N = A (J.o)

= Multi-task control:  fask; :={Ji, w;}

= Equal priority Multi-task with prioritization
[ Ji ] " wi ¢ i—1
q=| : ; q= Z Niqi,  with ¢ = (J;N;)" (W? —J Z NkQF:)
| | i=1 k=1
|, W,
3 w
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Inverse Kinematics

= Numerical approach Ax, = Joalq

Algorithm 1 Numerical Inverse Kinematics

I q+ q" > Start configuration
2: while || x? — x. (q)|| > tol do > While the solution is not reached
3 Joa +Joa(q) = aa’ff (q) > Evaluate Jacobian for g
4: J 2;1 — (J e_A)jL > Calculate the pseudo inverse
5 AX, < X —Xx.(q) > Find the end-effector configuration error vector
6 qq-+J ;Axe > Update the generalized coordinates
7: end while
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Position/Rotation Errors and Trajectory Control

= Position error Aré = PZ(t) — I‘e(qt)

= Trajectory control with position-error feedback q = J ;Lg P (I‘* - kPPAI'Z)

= Rotation error Agisnot ¢* — ' = Cgs(Ap) = Cgz(¢*)Csz(p")

= Trajectory control with rotation-error feedback q = J:()R (W(t)z T kPRASO)
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Floating Base Kinematics

= Describe system by base and joint coordinates q = (gj)
= Base coordinates: rotation and position of base qy = (gbf’) c R x SO(3)
br

0
= Contact constraints;  ztic; = const,  1Tic, =1T10, = (0)
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Multi-body Dynamics

M(q)g+b(a.q)+9(q)+JI.F ==
= We learned how to get the equation of motion in joint space q Generalized accelerations

= Newton-Euler M(q)  Mass matrix
- Projected Newton-Euler b(g,q) Centrifugal and Coriolis forces
= Lagrange I g(a) Gravity -forces

T Generalized forces

F, External forces

g3 Contact Jacobian

= Started from the principle for virtual work
dF,, external forces acting on element i

_ : . I acceleration of element i
oW = / or! . (trdm — dFe.e) =0
B

dm  mass of element i
or  virtual displacement of element i
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Impulse and angular momentum

= Use the following definitions

Ps = mvg linear momentum

Ng =0Os0g angular momentum

pPs = mag change in linear momentum
NS = OqW¥ + Q2 x O change in angular momentum

= Conservation of impulse and angular momentum

Newton
T : —
_ _ ([ 9rs Ps) [(Feu ors )\ A free body can move Ps = Feai
0 =W = v body .
0P N5/ \Teu o® / / In all directions N¢=T,,,

T_ Euler
External forces and moments

Change in impulse and angular momentum
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Projected Newton Euler

= Consider only directions the system can move (c.f. generalized coordinates)

- '3 Js \, mJs.q Ip\'(F
- E S X Si _ neJd s; . P; ext,i
O 5W 5q ( ) (@ JR ) q+ (JRl) (835‘]-RQ + ‘]-R-;;q X G)SiJRé. q) (JRi) (Text,i) V5q
\ ) \ )

T ! !

M(q) b(a.q) g(q)

_ _ M = Z (.AJ%L e 4d s, + BJE - 5O, - BJRZ-)
= Resulting in i=1

ng

b= Z (AJ%Z. m- aJs, - q+ Iy, - (3931- g, -4+ s, X pOg, 'BQSi))

g = Z _AJ AFQZ
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Lagrange Il

=T

| | d(oT \ oT au
= Get equation of motion from 5| 75 ) a0 "

Ty
= Kinetic energy T = (—ITZE‘AI‘S ArS + ;BQE . B@Si . BQSi)
i=1
= Potential energy Fg. = migieg ,
e Up, = Sk (d(q) — do)’
rgﬁ F,,
i=1
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Dynamic Control Methods

= Joint impedance control
= |nverse dynamics control
= Generalized motion and force control
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Joint Impedance Control M (q)d+b(q.q) +e(q) =T

= Torque as function of position and velocity error 7 =k, (q" —q) + ki (q" — q)

= Closed loop behavior

NA) G+ bAG ) + g (a) = 7=k, (@7 — @)+ k(" — @)

» Static offset due to gravity

= |Impedance control and gravity compensation

™ =k, (q" —q) + ke (¢" —4) + &(q)

/

Estimated gravity term
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Inverse Dynamics Control

= Compensate for system dynamics 7 =M (q)q*+b(q.q) +¢&(q)

= |n case of no modeling errors,
* the desired dynamics can be perfectly prescribed

= PD-control law I[q=q" =k, (q" —q) + ks (q" — q)
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Operational Space Control
Generalized framework to control motion and force

r=J'F,
= Joint-space dynamics End-effector dynamics A= (3. M JT)—l
M(q)d+b(q.q)+glq) =7 Aw. +p+p=F. p=AIM'b-AJ.q
p=AJM g

= Determine the corresponding joint torque

=37 (Aew! + i+ p)

/7 A /7T
oll

= Extend end-effector dynamics in contact with contact force

F+ AW+ p+p=[E

= Introduce selection matrices to separate motion force directions

T* :jT (&\-IWE’ +SFFC+;1+IA))
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Inverse Dynamics of Floating Base Systems

Equation of motion of floating base systems

M (q)u+b(qu)+g(q) +J F.=S"r

= Support-consistent N (Mg+b+g)=N!/S"r
) + )
= |nverse-dynamics T = (N.S") "N (MG +b +g)

= Multiple solutions 7T* = (NfST)+ N! (MG* +b+g)+ N (N!S") 7}
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Operational Space Control as Quadratic Program
A general problem

u
min |A;x — b;|], x= | F.
* T

= We search for a solution that fulfills the equation of motion
M(q)u+b(qu)+glq)+I/F.=s"r mpA=[M J' 87 b=-b-g

et

= Motion tasks: Ju + Ju = w* ) A = [Ji 0 O] b=w"—J;u

= Force tasks: F, = F* mA = [0 J7 1] b = F*

= Torque min: minH‘rH2 mp A — [O 0 H] b=20
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