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Abstract
The microworld and the nanoworld are now of interest to the public, scientists,
engineers and industrialists. Effects negligible at the macroscopic level become
important at the micrometre scale, and vice versa. Moreover, at the nanoscale,
quantum effects may become dominant. Scaling laws are useful for an
understanding of the origin of such differences and/or to generalize results
obtained at various scales. It is the aim of this paper to examine scaling
laws relevant to mechanics, fluids, electromagnetism, thermodynamics, optics
and quantum mechanics. Examples related to biology, micromachines and
nanotechnologies are treated to show the usefulness of the scaling laws.

1. Introduction

In recent years, interest in the domains of the microworld and the nanoworld has increased
rapidly. The advent of so-called mesoscopic physics, the development of micromachines or
micro-electrical mechanical systems (MEMS), the synthesis of nanotubes, the development
of nanotechnology, etc… are among the most cited subjects. From both the fundamental and
applied points of view, there are interesting questions about these micro- and nanoworlds. In
particular, effects negligible at the macroscopic level are important at the micrometre scale,
and vice versa. Moreover, when one goes from the macroworld to the nanoworld, one passes
through two diffuse limits.

When the characteristic dimensions of the elements decrease from the macroscopic to
the micrometre size, the effects of gravity become negligible as compared with adhesive and
friction effects. Surface tension dominates gravity; other examples are given later. This implies
that our reasoning, based on our experience at the macroscopic level, is no longer valid. We
have to modify our rules of thinking. The boundary between the macroscopic and microscopic
levels is not sharp; it depends on the effect to be considered.

When the characteristic size decreases further to attain the nanometre range, another limit
is encountered. While the macroscopic properties of matter remain generally valid at the
micrometre size, surface effects become dominant at the nanometre scale. Moreover, when
one reaches the interatomic distance range, quantum effects appear.
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In order to understand the transition from macroscopic to microscopic dimensions, one
obviously needs to consider pluridisciplinary effects. This makes the teaching of, for instance,
micromachines, a difficult task [1]. A starting point would be to deal with scaling laws. It is
the aim of this paper to show that the discussion of scaling laws and their domains of validity
are important in order to understand the origin of the differences between the macroworld, the
microworld and the nanoworld. For teaching purposes, the subject has some advantages.

(1) It shows students that although scaling laws are simple and are generally deduced at
the macroscopic level, they may be used to understand the behaviour of the micro- and
nanoworlds.

(2) However, this has to be done with some caution, in particular due to the fact that
‘macroscopic’ scaling laws are deduced under specific ‘experimental’ conditions. These
are not always valid at the microscopic and nanoscopic levels.

(3) The present discussion would help students to better understand the validity limits of well
known ‘universal’ laws.

(4) Although we restrict ourselves to physical parameters, the present discussion is related
to various disciplines : physics, biology (the influence of size on the conditions of life),
technology and chemistry.

(5) The discussion also shows that boundaries between the macroscopic and microscopic
worlds exist, but are not sharp and depend on the property to be studied.

(6) The subject is a good introduction to modern scientific and technological subjects, like
microphysics and nanotechnology.

(7) Scaling laws illustrate the fact that shrinking a body does not only lead to size reduction,
but also to different modifications of physical effects.

In the following sections, scaling laws relevant to mechanics, fluids, electromagnetism,
thermodynamics, optics and quantum physics are considered. We restrict ourselves to physics.
It is obvious that chemical effects would also be interesting. In the final section the shape of
small animals, some properties of micromachines and nanotechnologies are discussed.

2. Scaling laws, mechanics

Let us consider elements with a typical linear dimension L. In the following, except when
explicitly stated, it is assumed that all the linear dimensions vary proportionally to L. This
implies that all areas S vary like L2

S ∼ L2 (1)

and all volumes V vary like L3

V ∼ L3. (2)

This implies that the masses m scale to

m ∼ L3. (3)

Let us start by discussing how forces vary with L. The most common force is gravitation.
At the Earth’s surface, the gravitation force Fgr = mg, where g is the gravitational acceleration

Fgr ∼ L3. (4)

The pressure exerted by a body on the ground pgr = Fgr/S, and

pgr ∼ L3/L2 = L. (5)

At the microscopic level, adhesion forces dominate, because the details of the forces at the
molecular level are much larger than the gravitational ones [2]. Let us first look at adhesion
between two surfaces. It is well known that the adhesion between a solid and another solid
(or a liquid) is due to forces between atoms and molecules. The main forces responsible for
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adhesion are Van der Waals type forces [3]. The attractive force experienced by an infinite flat
slab separated by a distance x from another infinite flat slab is given by [4]

Fvdw(x) = H/(6πx3)

where H is the so-called Hamaker constant. H depends on the nature of the medium between
the slabs. H is of the order of 10−19 J in air and of 10−20 J in water. This relation is valid for
x between around 2 and 10 nm. It is obvious that Fvdw(x) varies like the contact area

Fvdw(x) ∼ L2. (6)

Since Fgr and Fvdw behave differently with L, their relative values also vary with L. One
obtains easily that

Fvdw/Fgr ∼ L−1 (7)

i.e. the adhesion force dominates the gravitational force at low L. The critical value at which
both forces are equal depend on x and on the nature of the medium between the two solids.
However, below say L = 1 mm, Fgr is much less than Fvdw. Gravitation may then be neglected
at such small dimensions, both in the micro- and the nanoworlds.

When two surfaces are sliding about each other, at the macroscopic level, the friction force
is given by Ff r = µFgr = µmg, where µ is the friction coefficient. Provided µ is constant,

Ffr ∼ L3. (8)

Ffr is independent of the contact area. The generally admitted physical reason is that two
rough bodies touch each other only at three points. At the microscopic level, things are different
due to surface roughness. As seen earlier, the adhesive forces are very large. The striction (i.e.
the combination of adhesion and friction) forces Fstr, have to be taken into account. These
forces scale like the contact area [2, 5]

Fstr ∼ L2. (9)

Springs exist in all dimensions. The spring force Fspring = −kδL, where k is the stiffness
or spring constant and δL is the elongation from the equilibrium position. Providing k remains
constant, one obtains

Fspring ∼ L. (10)

The corresponding oscillating frequency νspring = (1/2π)(k/m)1/2 and

νspring ∼ L−3/2. (11)

The period of oscillation then scales as

Tspring ∼ L3/2. (12)

The kinetic energy of a body Ec, is given by the well known relation Ec = mv2/2. Thus,
at constant v

Ec ∼ L3 (constant v). (13)

When v ∼ L, one obtains

Ec ∼ L5 (when v ∼ L). (14)

The gravitational potential energy Epot = mgh varies, at constant h, as

Epot ∼ L3 (constant h). (15)

When h ∼ L, one obtains

Epot ∼ L4 (h ∼ L). (16)

The potential energy of a spring is Epot, spring = kδL2, and

Epot, spring ∼ L2. (17)
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Rotational bodies are characterized by the inertial momentum I ∼ mL2. Then, one
obtains

I ∼ L5. (18)
The rotational kinetic energy K = (1/2)Iω2, and

K ∼ L5. (19)
This implies that, at constant ω, the rotational energy of small systems decreases very

rapidly with size. Conversely, the kinetic energy stored in a rotating system is much smaller
in small systems than in large ones.

In nature, one often sees beams, strings or tubes; such items are characterized by resonance
frequencies. The lowest eigenfrequency, ν, corresponds to a state where the length of the device
equals a quarter or half the wavelength λ. From the well known relation v = λν (where v is
the phase velocity of the wave), one obtains that

ν ∼ L−1. (20)
It turns out that resonance frequencies are large in small systems.
Cantilever beams are also often seen in natural and constructed systems. The deflection

length ζ , of a cantilever beam loaded by its own weight varies as [6]

ζ ∼ L2. (21)
A beam a thousand times smaller bends a million times less due to its own weight.
Compressed solid materials may undergo a maximum tension, Tbr, before breaking. This

is the case of animals bones. If they are submitted to their own weight mg, Tbr ∼ mg/S, where
S is their cross section. Hence

Tbr ∼ L3/L2 = L. (22)
For a given material Tbr is constant. So, when the dimensions increase, the diameter d of the
supporting material is such that d2 ∼ L3, or

d ∼ L3/2. (23)

3. Scaling laws, fluids

Fluids are obviously important, since, except in vacuum, all bodies move in a fluid (air,
water, . . .). It is then interesting to look at the variation with L of various fluid parameters.

When a body falls ‘vertically’ in a fluid, viscous friction is such that, after a certain time,
it falls with constant velocity vlim. The transient time τ , is proportional to vlim. If the body is
spherical, with radius r , the limiting velocity is given by vlim = 4ρgr3/18ηr , where η is the
viscosity of the fluid and ρ is the density.

vlim ∼ L2. (24)

τ ∼ L2 (25)

Viscous forces then drastically and rapidly damp any motion for small dimensions. A very
small body remains immobile in air (when there is no air movement). When air moves, the
small body follows the air movement, as experienced by us by looking at dust in sunrays. At
high velocities, the hydrodynamics is unstable, and turbulent flow arises. The transition from
laminar to turbulent flow is given by the Reynold number Re. Re = ρvL/η. If v ∼ L, then

Re ∼ L2 (v ∼ L). (26)
For flow in pipes, the transition from laminar to turbulent flow occurs when Re ∼= 103 [7]. In
this case, turbulence disappears in microsystems in which liquids flow.

A particle travels a distanceL by diffusion during a diffusion time given by τdiff = L2/αD,
where α is a geometrical constant and D is the diffusion constant. One obtains

τdiff ∼ L2. (27)
This is valid for particle and thermal diffusion.
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4. Scaling laws, electromagnetism

A conductor of length L and cross section A has an electrical resistance Rel = ρelL/A, where
ρel is the specific electrical conductivity. Thus

Rel ∼ L−1. (28)

When one applies a given voltage Vel, the electric current Iel, is given by Ohm’s law, so that

Iel ∼ L. (29)

Consequently, the power dissipated by the element is given by Joule’s law W = RelI
2
el, and

W ∼ L. (30)

The number of elements by unit area varies like L−2. So, the electrical power dissipated by
unit area varies like

Wun ∼ L−1. (31)

This is a well known fact in microelectronics, where it is known that the reduction of size of the
components leads to more dissipated power [8]. One way to diminish this effect is to reduce
the applied voltage.

When Vel remains constant, while L varies, the electric field Eel obviously varies

Eel ∼ L−1. (32)

When Eel increases, it attains a range of values where Ohm’s law is no longer valid or, in other
words, ρel varies with Eel. A simple derivation of this is given in the appendix.

In microsystems, one also deals with capacitors. Let us consider a capacitance made of
two parallel plates of area A, separated by a distance d. The capacitance is C = ε0A/d, and

C ∼ L. (33)

When one applies a given voltage Vel, the charge on each plate Q = CVel, and

Q ∼ L. (34)

Under these conditions, the energy stored in the capacitor Ecap = Q2/2C, and

Ecap ∼ L. (35)

Therefore, the stored energy decreases with the size of the capacitor. One sometimes prefers
to deal with capacitors having constant charge density, i.e. Q ∼ L2. In this case

Ecap ∼ L3. (36)

Since the electric force between the capacitor plates, Fcap, is given by the derivative of Ecap
relative to the gap distance, one obtains that

Fcap ∼ L2. (37)

The magnetic field in a solenoid, with n turns of wire, of length L, and a current Iel through
the coil, is given by

B = µIeln/L.

When one shrinks the solenoid, n may remain constant, but the cross section of the wire
decreases, so that Iel varies. It seems reasonable to assume that the current density is constant.
Hence, Iel ∼ L2, and

B ∼ L. (38)

The magnetic energy stored in the solenoid is Emagn = B2Vol/2µ, where Vol is the volume of
the magnetic field. Since Vol ∼ L3, one obtains

Emagn ∼ L5. (39)
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Fmagn ∼ L4. (40)

When going to small dimensions, one has to allow for technological problems. For instance,
the number of wires is not independent of L at low L, because it is not (yet?) possible to
manufacture very thin wires. In practice, it seems that solenoids smaller than 1 mm3 are
hardly feasible [6]. Moreover, the maximum current density is limited by the dissipation of
energy, i.e. the maximum temperature the system can have. The dissipation is related to size.
Hence, the current density depends on L, in a way that depends on the design of the system.

5. Scaling laws, thermodynamics

The energy Eth required to heat a system to a temperature T is proportional to the mass,

Eth ∼ L3. (41)

Heat losses occur by conduction, convection and radiation. For conduction and radiation, the
power dissipation, Pdiss, is proportional to the area of the system, i.e.

Pdiss ∼ L2. (42)

When using this relation, care has obviously to be taken, owing to the fact that thermal losses
are related to temperature differences between the interior and the exterior of the system. Heat
diffusion coefficients have to be carefully checked. The time τth needed to homogenize the
temperature in a system of given shape is proportional to the square of the linear dimensions
of the system [9], i.e.

τth ∼ L2. (43)

When the size of a system decreases down to the nanometre range, the ratio of surface to volume
atoms increases, so that the surface influences the properties of the system. Among others,
the melting temperature is known to decreases when L decreases. For spherical particles, the
melting temperature Tm, decreases like [10]

Tm ∼ 1 − f/L (44)

The constant f is of the order of 1 nm for 3d and 5d elements.

6. Scaling laws, optics

Optics is interesting both for the study of and the manufacturing of small systems. The
limitations of optical methods arises from wave optics, in particular diffraction. When a plane
wave is shone on an element of linear dimensionL, the reflected wave diverges. The divergence
angle θ ≈ λ/L. Hence

θ ∼ L−1. (45)

This has consequences in various applications [11]. In photolithography, when one irradiates
elements with lenses of a fixed numerical aperture (NA = n sin θ), the minimum diameter of
the irradiated zone, L = 2λ/πNA. Hence, the wavelength required to design an element of
diameter scales like

λ ∼ L. (46)

This is why the specialists of microelectronics go to ultraviolet lithography when they decide
to diminish the size of the electronic components on chips. The angular resolution 0θ of an
element (like an eye) limited by a circular aperture of diameter L is also given by the same
relation. Hence,

0θ ∼ L−1. (47)



Scaling laws in the macro-, micro- and nanoworlds 607

When lenses preserve their shape, their focal length f varies. This is given by the lens-maker’s
formula

(n − 1)(R1 + R2)f = R1R2.

One thus obtains

f ∼ L. (48)

This also means that the minimum spot diameter at the focus df = f0θ , does not vary with L

df ∼ L0. (49)

This remains obviously valid as long as the theory is valid, i.e. the dimensions of the optical
elements are much larger than λ.

7. Scaling laws, quantum effects

When the size of elements decreases down to the nanometre scale, quantum effects become
important. In most situations they arise in the electronic properties. In other words, quantum
effects have to be taken into account at a critical size of the elements Lc, which compares with
the wavelength associated with the electrons λel, i.e. Lc ≈ λel = h/p, where h is the Planck
constant and p is the momentum of the electron. Under these conditions, nanoparticles (also
called quantum dots) behave like large atoms. Since the electronic motion is restricted in three
dimensions, such a system is sometimes referred to as a zero-dimensional system [12]. Then,
quantum mechanical calculations indicate that the electronic levels are discrete as in an atom
(and contrary to a solid in which the levels are grouped in energy bands). The spacing of the
discrete electronic levels of the quantum dots, 0Edot, scale as

0Edot ∼ L−2. (50)

When elements come close together, of the order of nanometres or below, electrons can hop
from one element to the other by so-called tunnelling. The tunnel current density jtun varies
with distance L as [13]

jtun ∼ exp(−aL) (51)

where a depends on the height of the electronic barrier. This effect is important when L is of
the order of a few tenths of a nanometre.

8. Some examples

The previous scaling relations may be applied in a large number of problems. In this section,
a few are given, in order (a) to show how to use them, and (b) to demonstrate their usefulness
in biology and technology. They deal with the life of small animals, the behaviour of
micromachines and some properties of nanosystems.

The first point to be considered is that, when one tries to compare the relative values of
effects characterized by different n of Ln, the larger the value of n, the more important the
effect at large L. Or, at the opposite extreme, the larger n, the less important at small L.

8.1. The Fantastic Voyage

In a famous movie, The Fantastic Voyage by Richard Fleischer in 1966, a submarine and its
human occupants are shrunk to the size of a few hundred micrometres. They are then injected
into the body of a famous Czech scientist, in order to repair some brain problem. From a
scientific point of view, this is obviously unrealistic. However, this poses many questions. In
particular, what would our shape have to be to survive under such conditions? It is obvious
that scaling relations would be helpful. Let us address the problems of bones, feet, general
shape and vision.
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When a body is shrunk so that its linear dimensions L, decrease by say a factor of 103, the
mass decreases by 109 (equation (3)), as does the weight (equation (4)). In order to support
this weight, the diameters of the bones have to decrease by a factor up to 109/2 = 3 × 104

(equation (23)). Hence the diameter of the legs might be comparatively much smaller than at
our size. In which case, the legs would be like thin tubes. It is obvious that if the diameter of
the bones decreases like L, the bones would support the weight of the body without breaking.
At that size, the adhesion force of the feet to the ground would be more important (equation (6))
than the gravitational one. For instance the adhesion force between two identical spheres is
larger than the gravitational force (in the Earth’s field) when the diameter is less than about
1 mm [2]. Therefore, if the relative dimensions of the feet were equal to ours, we would adhere
to the ceiling as do insects. In order to move on the ground, the dimensions of the feet would
have to be like small points. It is then obvious that this would lead to problems of stability.
Therefore one concludes that, instead of walking on two legs, it would be more adequate to
have (at least) four legs.

At small size, the heat power dissipation is relatively much more rapid than at our actual
size. In other words, in order to maintain our temperature, we would have to decrease the area
of our body (equation (1)). But the amount of chemical energy necessary for compensating
these losses is proportional to the volume (equation (2)). This implies that the more adequate
shape for our body would be a sphere! However, let us note that, in order to maintain a constant
temperature, the quantity of food to be eaten during a fixed period would be much larger than
at our dimensions. In other words, we would need to eat continuously. This is why small
animals are not warm-blooded animals.

Another difficult point concerns vision. Indeed, the angular resolution of the eye 0θ , is
limited by the circular aperture of the eye (equation (47)). If the relative dimensions of the
eye remain unchanged, 0θ would be such that the scene behind us would occupy one ‘pixel’.
In order to see like us, our eye would have to look at light of wavelength 10−3 times that of
visible light (equation (46)), i.e. x-rays. Since it is known that the absorption length of x-rays
in living matter is if the order of a few centimetres, while it is of the order of a few micrometres
for visible light, the thickness of the eye would need to be larger than the length of the body!

From the previous reasoning, it is the obvious that: (a) it would be impossible for shrunken
men to survive at the small dimensions as imagined by Richard Fleisher; (b) in order to survive,
the canons of beauty would be different at micrometre sizes. The sexy looking girls and boys
would look like dust mites; (c) the shape of dust mites and other small animals is the one best
adapted to their size.

8.2. Micromachines

As said earlier, photolithography is used to manufacture elements in microelectronics and
micromachines. The minimum dimension L, to be treated scales with λ (equation (46)).
L = 2λ/πNA. Under realistic conditions NA ≈ 0.4–0.5, so that L ≈ λ. Ultraviolet light
has λ ≈ 400 nm. If one wishes to attain L ≈ 100 nm (as expected by the microelectronics
roadmap in 2007), it would be necessary to use ultraviolet light with λ ≈ 100 nm. Excimer
lasers (ArF; λ = 193 nm) could be used. For any further decrease of L, other technologies
are required. The design of micromachines is made difficult by the fact that many effects
often contribute to their behaviour, each scaling differently with L. Since our goal is to show
how scaling laws may help to understand how micromachines differ from macromachines, we
restrict ourselves to simple ‘idealized’ cases. Readers interested by practical cases may refer
to [6, 14].

Let us first consider simple cases of energy conversion. Among the first micromachines,
steam engines have been demonstrated. A small quantity of water is embedded in a cavity,
where one wall is a moving piston. The system is heated by the Joule effect, the water
evaporates and the pressure is sufficient to push the piston. Let us compare the values of
the applied voltage needed to heat the water, neglecting heat losses, if one assumes that the
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system is shrunk linearly. The thermal energy necessary to evaporate water is Eth ∼ L3

(equation (41)), while the Joule energy (assuming that heating lasts for the same time) varies
as W ∼ L (equation (30)), when Vel is fixed. This implies that the value of W necessary for
evaporating water is L2 times the value obtained by simply reducing all sizes. Since Iel ∼ L,
at constant Vel (equation (29)), the applied voltage has to vary as L. Hence, decreasing the size
of this ‘ideal’ steam engine by a factor of ten would require a reduction of the applied voltage
to the heating element by the same proportion.

Let us consider that the electric energy stored in a capacitor is converted entirely into
rotation of a wheel. How does the angular velocity vary with L when all dimensions vary
simultaneously. Given equations (19) and (35), one obtains that ω ∼ L−5/2. It turns out that
‘free’ spinning in the microworld is achieved far more easily than in the macroworld.

However, one has also to consider friction effects. Since, at small sizes Fstr ∼ L2

(equation (9)), while Ffr ∼ L3 (equation (8)) at macroscopic sizes, the power dissipated by
friction forces Pfr, is relatively more important in the microworld. Assuming a situation where
the linear velocity v of the body scales with L, Pfr = Ffrv ∼ L4 at large size and ∼L3 at small
sizes. This is one of the main difficulties encountered in the design of micromachines. The
problem is further complicated by the fact that viscous forces counter the movement more at
small dimensions, since vlim ∼ L2 (equation (24)). Moreover, due to the fact that the Reynolds
number Re = ρvL/η decreases with decreasing L, turbulent effects are less effective. Our
current feeling about motions (free, friction and fluids) has then to be revisited.

A problem related to micromachines deals with the accuracy of measurements. Are
microdetectors more or less accurate than macrodetectors? There is no general response
to this. For instance, let us consider the hypothetical case of a cantilever beam suited for
the determination of the gravitational field. As seen from equation (21), the deformation of
the beam is proportional to L2. Thus the deflection is much less in microscopic systems
than in macroscopic ones. Provided the deflection resolution is the same, it is obvious that
micromachines are much less accurate than normal ones. Meanwhile, for some applications,
good accuracy is not necessary, so that the price/performance ratio might be beneficial to
microsystems.

8.3. Nanoparticles

Nanoparticles have dimensions of the order of some nanometres. In this size range, quantum
effects are particularly important. Moreover, it is possible to work with movements of single
electrons. Hence their interest for new computing and physical mechanisms.

The energy for charging a small particle with one electron is given by Ecap = e2/2C,
where e is the electron charge and C ∼ L (equation (33)). Hence Ecap ∼ L−1. For instance,
in a CdSe dot, Ecap ∼ 0.1 eV for a diameter of 5.5 nm [15].

Coincidentally, in CdSe, the spacing of the lower energy levels is also of the order of
0.1 eV for the same diameter. This diameter corresponds to the wavelength of the electron,
via Lc ≈ λel = h/p. Indeed, λel = 4 nm when the electron energy is equal to 0.1 eV.

These devices work well at very low temperature, T = 4.2 K. One of the reasons is
that the thermal electronic excitation rate to highest energy levels is so low that this does not
perturb the behaviour of the device, via the electronic transfer to an upper level. This rate,
Rel, is proportional to exp(−0E/kT ), where 0E is the energy separation of the electronic
levels. What then would be the size of the dot necessary for operation at room temperature,
TRT = 300 K? For correct behaviour Rel has to be equal to its value at low T . In other words,
0E/kT remains unchanged. Since 0Edot ∼ L−2 (equation (50)), one must have T ∼ L−2 or
L ∼ T −1/2. If L = 5.5 nm at T = 4.2 K, one obtains L = 0.65 nm.

In order to apply such small devices, it would be necessary to inject a small number of
electrons. This is generally done by injecting electrons through narrow barriers via tunnelling
(so-called tunnel barriers). One drawback of these small systems is that spurious electrons
might transfer from one element to the other through such small barriers. In other words the
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noise due to this effect might become relatively large.

9. Conclusions

Scaling laws relevant to mechanics, fluids, electromagnetism, thermodynamics, optics and
quantum physics have been given. They were applied to questions relevant to biology,
micromachines and nanotechnologies. It turns out that the reasoning based on our own
experience has to be modified when dealing with the microworld and the nanoworld, due
to the fact that various physical effects scale differently with size.

Appendix

When one applies a voltage difference of 5 V across an element 1 µm wide it means the electric
field Eel = 5 × 106 V m−1. At such high electric fields, the current is no longer proportional
to the electric field. Let us give a simple demonstration of this effect.

Let J be the electron current density, i.e. the amount of charge crossing a unit area of the
conductor (perpendicular to J) per unit time. As is given in most textbooks (i.e. see [16])

J = qnvd (A1)

where q is the charge of the electron, n is the electron density and vd is the so-called drift
velocity of the carriers (the electrons). This is valid when no gradient of carrier density exists,
in which case a diffusion term has to be added to the equation.

In a solid, the electrons are in continuous motion in all directions. The motion is random
and, in the absence of external effects, there is no net transport of charge. Meanwhile, there
are collisions between particles. In a solid, electrons are characterized by their kinetic energy.
Given Fermi–Dirac statistics, it is known that electrons possess kinetic energies between zero
and EF, the Fermi energy. In other words, they have velocities between 0 and vF, the Fermi
velocity

EF = mv2
F/2. (A2)

If the mean free path is l, one can define a mean time between collisions (at EF)

τ = l/vF. (A3)

In the presence of an electric field Eel, the drift velocity is given by the well known relation

vd = qτEel/m = µEel. (A4)

µ is the mobility of electrons.
Under usual conditions, when Eel is not too large, µ is independent of Eel. Then one

obtains Ohm’s law

J = qnµEel = σelEel (A5)

where σel is the conductivity.
When Eel increases, as long as l remains constant, τ decreases since the mean velocity of

the electrons increases

τ = [−vF + (v2
F + 2aEell)

1/2]/aEel ≈ τ0(1 − bEel) (A6)

where b is constant. Introducing this in (A.5), one obtains

J ≈ qnµ0(1 − bEel)Eel. (A7)

Since J is not directly proportional to Eel, Ohm’s law is not valid at high Eel. Moreover, since
b is positive, J tends to saturate at high fields, as observed experimentally [17].

What is Ec, the order of magnitude of Eel at which this effect becomes effective? It is
such that the value of vd compares with that for vF. In other words, between two successive
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collisions, the kinetic energy of the electrons increases by a quantity of the order of EF. This
implies

EF ≈ qEcl. (A8)

Typical values for semiconductors are [18] l ∼ 10−6 m; EF ∼ 10 eV. One obtains
Ec ∼ 107 V m−1, in agreement with experimental data.

This reasoning is based on simple principles. More detailed calculations including the
true band structure of the solids are required to obtain exact results.

References

[1] Payne F and Parameswaran A M 1999 Education in Microelectronics and MEMS (SPIE Proc 3894)
[2] Kendall K 1994 Science 263 1720
[3] Adamson A W 1976 Physical Chemistry of Surfaces (New York: Wiley)
[4] Wautelet M 1999 Eur. J. Phys. 20 L29
[5] Baumberger T and Caroli C 1998 MRS Bull. 23 41
[6] Elwenspoek M and Wiegerink R 2001 Mechanical Microsensors (Berlin: Springer)
[7] Melissinos A C 1990 Physics of Modern Technology (Cambridge: Cambridge University Press)
[8] Sze S M 1969 Physics of Semiconductor Devices (New York: Wiley)
[9] Roura P, Fort J and Saurina J 2000 Eur. J. Phys. 21 95

[10] Wautelet M 1995 Eur. J. Phys. 16 283
[11] Wautelet M 2001 Sciences, technologies et société (Bruxelles: De Boeck)
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