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Modeling Magnetic Torque and Force for Controlled
Manipulation of Soft-Magnetic Bodies
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Abstract—We calculate the torque and force generated by an arbitrary
magnetic field on an axially symmetric soft-magnetic body. We consider the
magnetization of the body as a function of the applied field, using a con-
tinuous model that unifies two disparate magnetic models. The continuous
torque and force follow. The model is verified experimentally, and captures
the often neglected region between weak and saturating fields, where in-
teresting behavior is observed. We provide the field direction to maximize
torque for a given field magnitude. We also find an absolute maximum
torque, for a given body geometry and material, which can be generated
with relatively weak applied fields. This paper is aimed at those interested
in systems-level analysis, simulation, and real-time control of soft-magnetic
bodies.

Index Terms—Ellipsoid, magnetic actuation, shape anisotropy, uniaxial
symmetry, wireless microrobot.

I. INTRODUCTION

One approach to the wireless control of microrobots is through ex-
ternally applied magnetic fields [1]. These untethered devices could
navigate bodily fluids for minimally invasive surgical and diagnostic
procedures [2]–[5], or could be used as the end-effectors of micro-
manipulation systems [6], [7]. There is a significant body of work
dealing with noncontact magnetic manipulation where the object to be
manipulated is a permanent magnet [5], [7]–[9]. In these cases, the
magnetization of the object is effectively independent of the applied
magnetic field, and the object can be modeled as a simple magnetic
dipole. The resulting equations for the torque and the force on the
object in an applied field are straightforward. We are also interested
in precise control of soft-magnetic objects. Soft-magnetic materials
provide easier fabrication as well as different possibilities in control.
In addition, soft-magnetic materials have the potential for levels of
magnetization as high as the remanence magnetization of permanent
magnets [10]–[12]. However, with soft-magnetic materials, the mag-
netization of the body is a nonlinear function of the applied magnetic
field, and the relationship between the applied field and the resulting
torque and force is nontrivial.

Many researchers have considered the control of soft-magnetic
beads [3], [4], [13], where a spherical shape simplifies the control
problem since there is no preferred direction of magnetization. Most of
the basic results needed for precise magnetic control of nonspherical
soft-magnetic bodies are available in the literature [11], [12], [14], [15],
but the difficulty lies in the correct application of these existing results.
As we consider prior work, we are confronted with multiple systems
of units as well as multiple conventions for expressing the basic quan-
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tities and governing equations for magnetization. We find that material
parameters such as permeability and susceptibility are relatively con-
stant and of practical use if the applied field is weak, but become
field-dependent for stronger fields. The magnetization of a body has a
saturation limit, and after this limit has been reached, the relationship
between the applied field and the magnetization changes significantly.
We find that many existing results rely on the calculation of the “inter-
nal” magnetic field, which is a function of both the applied magnetic
field and the resulting demagnetizing field, and consequently, requires
a proper application of additional results; this proper application is
not clearly explained in existing texts. Magnetization in relatively low
fields is typically treated completely separately from magnetization in
higher fields, and there is essentially no discussion about the transition
between these regions. In practice, finite element methods are often
used to characterize the magnetization of magnetic materials, but these
methods are impractical for application in real-time control.

In this paper, we provide a simple model for the magnetic torque and
force on a small axially symmetric soft-magnetic body. By combining
disparate magnetic models, we create a unified model that is continuous
and accurate for any applied field. We show that the knowledge of
material parameters such as permeability or susceptibility is relatively
unimportant, as the determination of magnetic torque and force is
dominated by body geometry and the saturation magnetization of the
material. We provide the torque and force on the body as a simple
input/output mapping of the applied field, without the need to calculate
the internal field. We show that, for each applied field magnitude,
there is an optimal field angle to maximize torque, and we provide
the equation. Simply increasing the magnitude of the applied field is
never an optimal strategy to maximize torque. We find that there is no
theoretical limit to magnetic force, but the magnetic torque does have
an upper bound that can be achieved with a finite and relatively low
applied field.

One aspect of our model that is particularly important is continuity.
For any given applied field, we can calculate the torque and force
on the body as they change continuously with changes in the applied
field. This continuity allows us to invert the model so that, for a given
desired torque and force, we can calculate the necessary applied field
(magnitude, direction, and gradients). This property is highly desirable
for closed-loop control using magnetic fields that are likely to vary
between saturating and nonsaturating strengths. By designing a control
system that generates continuous desired torque and force trajectories,
continuous desired applied-field trajectories will follow, and we will
avoid the types of discontinuities that cause problems in any physical
realization.

II. CONTINUOUS MAGNETIZATION MODEL

We consider a soft-magnetic body with a unique axis of symmetry,
as shown in Fig. 1. We will explicitly consider ellipsoids, but it has
been shown previously that many simple geometries can be accurately
modeled magnetically as ellipsoids [16], [17]. The body coordinate
frame is located at the center of mass with the X-axis aligned with the
axis of symmetry. The body lies in an external magnetic field with a
value H at the body’s center of mass. The field magnetizes the body
to a magnetization M. Both H and M are vectors with units ampere
per meter. Because of the symmetry of the body, the field H, the
magnetization M, and the axis of symmetry are coplanar. It is also
possible to express the applied magnetic field as an applied magnetic
flux density B with units tesla (T), but this is related to H simply as
B = µ0H, where µ0 = 4π × 10−7 T·m/A is the permeability of free
space.

1552-3098/$25.00 © 2007 IEEE
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Fig. 1. Axially symmetric bodies in an external magnetic field. The X -axis
of the body frame is aligned with the axis of symmetry. The field H, the
magnetization M, and the axis of symmetry are coplanar. θ ∈ [0◦, 90◦] is the
angle between H and the axis of symmetry, and φ ∈ [0◦, 90◦] is the angle
between M and the axis of symmetry. If the axis of symmetry is the long axis
of the body, it is referred to as the “easy axis,” since it is the easiest direction to
magnetize.

We assume a polycrystalline body with many randomly oriented
grains, where the interaction of individual magnetic domains is ne-
glected, as is the effect of magnetocrystalline anisotropy. Consequently,
shape anisotropy is assumed to be the dominant factor in determining
the magnetic energy; it has been noted in prior work that this is often
a valid assumption. We assume that hysteretic effects are negligible,
which is also valid for many soft-magnetic materials. The body is also
assumed to be small relative to the local changes in the applied mag-
netic field, such that the field can be assumed to change linearly across
the volume of the body. This assumption is used to ensure that mag-
netic effects, which are distributed across the volume of the body, can
reasonably be approximated as a lumped effect at the center of mass
of the body. In Section IV, we verify that this can be a safe assumption
with real magnetic field sources and relatively large bodies.

We now develop a magnetization model with two distinct regions.
In the first region, which is valid at low applied fields, the magneti-
zation grows linearly with the applied field until it reaches a satura-
tion magnitude. In the second region, the constant-magnitude saturated
magnetization vector rotates toward the applied field asymptotically as
the field’s strength increases.

Let us first consider the linear-magnetization region, valid at rela-
tively low applied fields. The magnetization is related to the internal
field by the susceptibility of the material χ as M = χHi . The internal
field Hi is a function of the applied field H, as well as a demagne-
tizing field: Hi = H + Hd . The demagnetizing field is related to the
magnetization by a tensor N of demagnetization factors based on the
body geometry: Hd = −NM. The matrix N is diagonal if the body
coordinate frame is chosen to align with the principle axes of the body:
N = diag(nx , ny , nz ). Combining the earlier assumptions, we can re-
late the magnetization to the applied field by an apparent susceptibility
tensor

M = Xa H (1)

with a tensor of the form

Xa = diag
(

χ

1 + nx χ
,

χ

1 + ny χ
,

χ

1 + nz χ

)
. (2)

We must assert that M, H, and Xa are all written with respect to the
body frame. Because of symmetry of the body, we need only consider
two demagnetization factors: the factor along the axis of symmetry
na and the factor in all radial directions perpendicular to the axis of
symmetry nr . If we then assume relatively large susceptibility values
typical of soft-magnetic materials, typically on the order of 103 –106 ,
and we assume that the demagnetization factors are not too close to
zero, we can approximate (2) with

Xa = diag
(

1
na

,
1
nr

,
1
nr

)
. (3)

That is, magnetization is insensitive to changes in susceptibility if the
susceptibility is relatively high, and is instead dominated by body ge-
ometry. We can compute the magnetization angle φ directly, assuming
(3), as

φ = tan−1
(

na

nr
tan θ

)
. (4)

If the magnetization vector computed earlier results in |M| ≤ ms ,
where ms is the saturation magnetization of the material in ampere per
meter, then we take M and φ as accurate. However, if we compute
|M| > ms , then we move into the saturated-magnetization region.
We set |M| = ms and compute the rotation of M by minimizing the
magnetic energy

e =
1
2
µ0v(nr − na )m2

s sin2 φ − µ0vms |H| cos(θ − φ) (5)

with respect to φ. The energy e has units of joule, and v is the volume
of magnetic material in meter cube. This equation typically models
the magnetic energy of a single-magnetic-domain sample, but it is a
good approximation of a multidomain body once saturation has been
reached. To minimize e in (5), M will rotate such that φ satisfies the
transcendental equation

(nr − na )ms sin(2φ) = 2|H| sin(θ − φ). (6)

The magnetization model developed above combines disparate mag-
netic models in a way that has not been done previously. Although
continuity of the actual magnetization of the body would be expected,
the continuity of the model is nontrivial, since each of the disparate
magnetic models are simplifications of reality created under specific
sets of assumptions. The magnitude of the magnetization is clearly
continuous across the transition between models. Although it is not,
at first, obvious, it is also possible to analytically demonstrate that the
two models have a continuous transition in the magnetization angle φ.
From (1) and (3), we can find, after some manipulation, the applied
field magnitude that just saturates the material (i.e., the field magnitude
at the transition between modeling regions)

|H|sat =
msna nr√

n2
a sin2 θ + n2

r cos2 θ
. (7)

Note that the saturating field magnitude is dependent on the applied
field angle θ. If we consider the governing equation of the saturation
region (6), at the transitional field magnitude (7), we find, after some
manipulation, that the magnetization angle (4) from the linear region
does, in fact, satisfy (6). Consequently, with our combined model, the
magnetization vector M does change continuously with changes in the
applied field H.

The demagnetization factors for general ellipsoidal bodies are com-
puted in [18]. They are constrained by the relation nx + ny + nz = 1,
which we rewrite for an axially symmetric body as na + 2nr = 1.
The demagnetization factor for the axis of symmetry is computed for
a prolate ellipsoid as

na =
1

R2 − 1

(
R

2
√

R2 − 1
ln

(
R +

√
R2 − 1

R −
√

R2 − 1

)
− 1

)
(8)

and for an oblate ellipsoid as

na =
R2

R2 − 1

(
1 − 1√

R2 − 1
sin−1

(√
R2 − 1

R

))
(9)

where R ≥ 1 is the ratio of long and short dimensions of the body.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 6, DECEMBER 2007 1249

III. TORQUE AND FORCE

Once equipped with a model of the magnetization vector in the
body frame, we can compute the torque and force on the body using
the torque and force on a magnetic dipole in an external field. For
both torque and force, continuity follows directly from the continuity
of magnetization. The magnetization of an ellipsoidal body is uniform
throughout, allowing us to consider the volume as contributing linearly
to the torque and force.

Let us begin by considering magnetic torque, which tends to align
the long dimension of the body with the applied field:

T = µ0vM × H (10)

in newton meter. At fields low enough such that |M| < ms , we can
compute the magnitude of the torque analytically as

|T| =
µ0v|nr − na |

2na nr
|H|2 sin(2θ). (11)

The torque is quadratic in |H|, and is maximized when θ = 45◦ for all
|H| ≤ |H|low , where

|H|low =
msna nr

√
2√

n2
a + n2

r

. (12)

When the applied field is high enough such that |M| = ms , for a
given θ, we find that the magnitude of the torque can be computed
analytically as

|T| =
µ0v|nr − na |

2
m2

s sin(2φ) (13)

where φ is the solution of (6). We find that torque is no longer maxi-
mized when θ = 45◦, but rather when φ = 45◦. We must solve (6) to
determine the applied field angle θ to maximize torque, and the solu-
tion will depend on |H|. If the applied field is extremely high so that
φ ≈ θ, then (13) becomes the standard result used with torque mag-
netometers [15]. However, we arrived at this result without the typical
assumptions (e.g., assuming M and H are parallel). At these very high
fields, we again expect to maximize torque when θ ≈ 45◦.

We find that the torque on a soft-magnetic body has an upper bound
that does not depend on the applied field, and is only a function of the
body geometry and saturation magnetization

|T|m ax =
µ0v|nr − na |m2

s

2
. (14)

It is interesting to note that the magnitude of the applied field has a
large effect on the magnitude of the torque in the unsaturated region, yet
after saturation, we must only know the magnitude of the applied field
to correctly calculate the optimal angle to apply the field to generate
|T|m ax . We are able to explicitly calculate a threshold field magnitude
that we must apply to achieve |T|m ax

|H|high = ms

√
n2

a + n2
r

2
. (15)

This field must be applied at θ = tan−1 (nr /na ) to achieve |T|m ax . It
is possible to achieve |T|m ax for any field |H| ≥ |H|high , but the field
must be applied at the correct angle. This optimal angle θ always lies
somewhere between 45◦ and tan−1 (nr /na ). It is important to note,
and somewhat nonintuitive, that simply increasing the magnitude of
the applied field will never tend toward the maximum possible torque
|T|m ax ; the field should be applied at a magnitude-specific angle.

There exists a range of applied-field magnitudes that are large
enough to reach saturation but not large enough to simultaneously

achieve φ = 45◦, but are also too large to use the simple assumption
that torque is maximized at θ = 45◦. For these intermediate field mag-
nitudes, the optimal field angle to maximize torque is found by solving
(7) for θ, then φ is computed with (4) and |T| is computed with (13).

The result of the preceding analysis is a simple set of equations to
choose the optimal angle to apply the magnetic field to develop as much
torque as possible at a given field magnitude |H|

θopt =






45◦, |H| ≤ |H|low

tan−1
(

n r
n a

√
|H |2 −m 2

s n 2
a

m 2
s n 2

r −|H |2

)
, |H|low ≤ |H| ≤ |H|high ,

sin−1
(

(n r −n a )m s
2 |H |

)
+ 45◦, |H|high ≤ |H|.

(16)
This optimal choice of θ changes continuously with |H|. Again, it is
only possible to generate |T|m ax if |H| ≥ |H|high .

Let us now consider the force on a magnetic dipole

F = µ0v(M ·∇)H (17)

in newton, where ∇ is the gradient operator

∇ =
[

∂

∂x

∂

∂y

∂

∂z

]T

. (18)

Since there is no electric current flowing through the region occupied
by the body, Maxwell’s equations provide the constraint ∇× H = 0.
This allows us to express (17), after some manipulation, in a more
intuitive and useful form

F = µ0v





∂
∂ x HT

∂
∂ y HT

∂
∂ z HT



 M. (19)

The magnetic force in a given direction is the dot product of: 1) the
derivative of the field in that direction and 2) the magnetization. We
find that, unlike torque, the magnetic force has no upper bound due to
saturation. We can always generate larger forces by generating larger
directional derivatives in the applied field.

There has been a great deal of interest in the control of soft-magnetic
beads, and this special case of spherical geometry warrants special
mention. Because there is no shape anisotropy, the magnetization vector
M will always align itself with the applied field H. A consequence
is that no magnetic torque is generated on the bead. This also leads
to a major simplification of the magnetic force in (19) that is only a
function of the magnitude of the applied field

F = µ0v|M|(∇|H|). (20)

In the low-field region where |H| ≤ ms/3, we can express the mag-
netization simply as |M| = 3|H|. In the high-field region, where
|H| > ms/3, we have |M| = ms .

IV. EXPERIMENTAL VERIFICATION

To experimentally verify our model, we machined a prolate ellipsoid,
shown in the inset of Fig. 2(a), that is 4.90 mm long and 2.54 mm
wide from HyMu 80 (80% Ni, 14.48% Fe, 5% Mo, 0.5% Si, 0.02%
Cu), which is a nearly ideal soft-magnetic material. The density of
HyMu 80 is 8700 kg/m3 , and the mass was measured as 145.2 mg,
giving a volume v = 1.669 × 10−8 m3 . With a length-to-width ratio
of R = 1.93, (8) is used to compute na = 0.180 and nr = 0.410.

Magnetization data were collected with a MicroMag 3900 vibrating-
sample magnetometer (VSM) from Princeton Measurements Corpo-
ration. To obtain a baseline measurement of magnetic saturation to
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Fig. 2. Modeled and measured magnetization versus applied field strength
for various applied field angles. (a) Experimental data of the component of
the magnetization parallel to the applied field. (b) Inset shows the machined
ellipsoid used in the experiments. The magnitude of magnetization predicted by
the model. (c) Angle between the applied field and the predicted magnetization.

correct for the size effects of our relatively large ellipsoid, we ob-
tained VSM data for a smaller, roughly spherical sample with a
mass of 5.40 mg, resulting in a measured saturation magnetization
of ms = 6.163 × 105 A/m.

Fig. 2(a) shows the magnetization model compared with the mea-
sured VSM data for our ellipsoid. It is evident that the magnetization
model captures the true behavior. The corners in the actual data are
smoother than that predicted by the model, which is expected with a
model containing a discrete transition point. We also observe the con-
tinuity of the model in the transition between regions. Experimental
data are shown for both increasing and decreasing applied fields; this
is difficult to perceive in the plot, reinforcing the assumption that hys-
teretic effects are negligible. Fig. 2(b) and (c) provides an additional
insight into the inner workings of the model. In the low-field region,
the magnitude of the magnetization vector grows with no rotation until
it saturates. As the field increases beyond saturation, the magnetization
vector rotates toward the applied field. A common assumption used
in magnetics is that the magnetization vector is parallel to the applied

Fig. 3. Modeled and measured torque magnitude versus applied field angle for
various applied field strengths. Field strength values are reported in kiloampere
per meter.

Fig. 4. Modeled and measured torque magnitude versus applied field strength
for various applied field angles.

field (i.e., φ = θ) at very high fields. From Fig. 2(c), our model predicts
that this can be a poor assumption to make for certain geometries.

Next, magnetic torque was measured with a custom-built torque
magnetometer [19]. The torque data are compared with the model
in Fig. 3, where constant-magnitude uniform fields are rotated with
respect to the body. The same data set is presented in Fig. 4, but shown
with the angle of the field with respect to the body held constant, and
the magnitude varying. In each plot, we also include the theoretical
maximum torque. The data confirm that our simple model captures the
salient features of the magnetic torque across applied fields. Again, we
would expect that sharp corners in the model would be smoothed out
in the measured data. Other small errors in these plots are most likely
accounted for by the imprecision in machining a perfect ellipsoid at
this scale, as well as inaccuracies in the torque magnetometer. In each
of these plots, we observe an interesting and nonintuitive behavior
that is predicted by the model. We observe the shift in the optimal
applied-field angle as we vary the field strength. We also see that, at
certain applied-field angles, increasing the field magnitude actually
decreases the torque. We find that the predicted values for |T|m ax =
9.16 × 10−4 N·m and |H|high = 1.95 × 105 A/m are good predictors
of the measured values.

Finally, we measured the force on the machined ellipsoid due to
the field of a permanent magnet, using a custom-built measurement
system described in detail in [20]. The field along the dipole axis of
the magnet is known accurately, and the force is measured with a
precision scale as the ellipsoid is moved along the dipole axis. The
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Fig. 5. Modeled and measured force magnitude versus distance from the
dipole center, which lies below the magnet’s surface. (a) Axial direction. (b)
Lateral direction. The insets illustrate the experimental setup, drawn with a 1:1
scale to the data. The left edges of the plots correspond to the surface of the
magnet.

long axis of the ellipsoid is perpendicular to the magnet’s northern
surface. Fig. 5(a) shows the measured magnetic force on the ellipsoid
in the axial direction versus the value predicted by the model. The
field to the side of the permanent magnet along a path perpendicular
to the dipole axis is also known accurately. The force on the ellipsoid
is measured along that path as well, with the long axis of the ellipsoid
parallel to the dipole axis. Fig. 5(b) shows the measured magnetic force
on the ellipsoid in the lateral direction versus the value predicted by
the model. From Fig. 5, it is clear that the model captures the true
force behavior, including the transition between linear and saturated
magnetization regions, which appears as a corner in the data.

V. DISCUSSION

Analysis of (10) and (19) shows that any point where H *= 0 and
∂H/∂x = ∂H/∂y = ∂H/∂z = 0 can be used to apply pure torques,
and consequently, pure rotations, to a soft-magnetic body. Fig. 6 shows
two magnetic dipole configurations that contain points that can be used
to apply pure torques. The dipoles can be created by permanent magnets
or electromagnets. The result of this type of magnetic manipulation is a
2-DOF pointing orientation movement of the body’s axis of symmetry.
The control of rotation about the axis of symmetry is not possible.
Manipulation can be achieved by either rotating the dipole pair [2] or
constructing sets of orthogonal dipoles [9]. Note that the pure-torque

Fig. 6. Magnetic fields of two dipole pair configurations where pure torque
is possible. Shading shows field magnitude, scaled to emphasize the points of
interest, which are also shown by ellipsoids in their equilibrium orientation.

Fig. 7. Translation paths of a body as it is attracted to a magnetic dipole.
Magnetic field lines are shown (· · ·). Force lines are also shown (—), assuming
that the long dimension of the body is aligned with the field. The body will
typically rotate as it is attracted toward the dipole, but pure axial and lateral
translations of the body are possible, as shown for prolate (oblate) bodies.

points seen in Fig. 6 correspond to unstable equilibria, so additional
control (e.g., visual servoing) is needed to perform pure rotations.

Fig. 7 shows how our axially symmetric body will translate in the
field of a magnetic dipole. The figure shows the dipole’s magnetic
field, superimposed with force field lines that assume that the body is
aligned with the field (or is a sphere). We find that the body typically
rotates as it translates toward the dipole. However, we find that pure
axial and lateral movements of the body are possible along the dipole
axis, and along any line through the dipole center and perpendicular to
the dipole axis. These pure-translation movements correspond to the
experimental data shown in Fig. 5. In addition to the assumption that
the body is always aligned with the field, the force field lines in Fig. 7
were created assuming that the body never reaches magnetic saturation.
If either of these two assumptions are violated, the force field lines will
change, but the qualitative nature of Fig. 7 will remain.
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VI. CONCLUSION

We have provided a simple model for magnetic torque and force on
soft-magnetic bodies with axial symmetry. The model only requires
the knowledge of body geometry and the saturation magnetization of
the material. The model handles low and very high applied field inten-
sities well, agreeing with existing models for those regions. In addition
and most importantly, it captures the often neglected region between
linear and completely saturated behavior. Although constructed from
disparate magnetic models, each with its own simplifying assump-
tions, our model is provably continuous, and the resulting torque and
force equations are also continuous. We find that magnetic force can
always be increased by increasing the directional derivatives in the ap-
plied field. However, there is an upper bound on the magnetic torque
that can be generated, due to the shape and magnetic saturation. We
provide a formula to compute the optimal applied-field direction to
maximize torque for each applied-field magnitude. The simplicity of
the presented model will facilitate real-time wireless control, as well
as dynamic simulations, without the need for finite-element modeling.
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Convex Optimization Strategies for Coordinating
Large-Scale Robot Formations

Jason C. Derenick and John R. Spletzer

Abstract—This paper investigates convex optimization strategies for co-
ordinating a large-scale team of fully actuated mobile robots. Our primary
motivation is both algorithm scalability as well as real-time performance.
To accomplish this, we employ a formal definition from shape analysis for
formation representation and repose the motion planning problem to one
of changing (or maintaining) the shape of the formation. We then show
that optimal solutions, minimizing either the total distance or minimax dis-
tance the nodes must travel, can be achieved through second-order cone
programming techniques. We further prove a theoretical complexity for
the shape problem of O(m1 .5 ) as well as O(m) complexity in practice,
where m denotes the number of robots in the shape configuration. Solu-
tions for large-scale teams (1000’s of robots) can be calculated in real time
on a standard desktop PC. Extensions integrating both workspace and ve-
hicle motion constraints are also presented with similar complexity bounds.
We expect these results can be generalized for additional motion planning
tasks, and will prove useful for improving the performance and extending
the mission lives of large-scale robot formations as well as mobile ad hoc
networks.

Index Terms—Barrier method, convex optimization, mobile ad hoc net-
works, optimal shape formation, second-order cone programming (SOCP),
shape change.

I. INTRODUCTION

The robotics community has seen a tremendous increase in multia-
gent systems research in recent years. This has been driven in part by
the maturation of the underlying technology: advances in embedded
computing, sensor and actuator technology, and (perhaps most sig-
nificantly) pervasive wireless communication. However, the primary
motivation is the diverse range of applications envisaged for large-
scale robot teams, defined herein as formations ranging from tens to
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