
Exercise 4
Line-based Extended Kalman Filter for robot localization

1 Introduction

As pointed out in the previous exercise, knowledge of the location of a platform is essential for a
lot of robotics applications, and we motivated this with an autonomous vehicle hauling goods
inside a warehouse from one place to another. Within this scenario, Exercise 3 demonstrated how
to acquire a more abstract representation of linear structures perceived with a scanning range
finder. This exercise will show that—given a map of the linear features in this representation—
the robot can localize itself based on the linear structures it perceives.

This exercise closely follows the example given in [1, p. 331-342]. We strongly advice you to
read the respective pages prior to attending the exercise session and to turn to this document for
advice throughout the exercise. Please note that there are different approaches to implementing
Jacobians. While deriving the functions encountered in this exercise is straightfoward, those
of you familiar with Matlab’s Symbolic Math Toolbox/MuPAD may find that a combination
of Matlab’s anonymous functions with calls to sym, jacobian and matlabFunction can increase
efficiency in solving this problem set. Please also consider turning to [1] for help with the
Jacobians.

2 Kalman Filter Localization

The Extended Kalman Filter used for localization in this exercise can be structured into a
prediction step and an update step. In the following, we will look at the two steps separately.

2.1 State Prediction

Exercise 2 discussed the motion model for a differential drive robot. Given knowledge of
the state xt−1 = [xt−1, yt−1, θt−1]

T at the previous time step and of the wheel displacements
ut = [∆sl , ∆sr]

T, the motion model can be employed to obtain an a priori estimate of the current
state. Here, we follow the order of ut established on [1, p. 337], which conflicts with the
order stated on [1, p. 272]. Please consider any implications of this reversed order on the
implementation of the function and its Jacobians.

x̂t = f (xt−1, ut) = xt−1 +

 (∆sl + ∆sr)/2 · cos (θt−1 + (∆sr − ∆sl)/2b)
(∆sl + ∆sr)/2 · sin (θt−1 + (∆sr − ∆sl)/2b)

(∆sr − ∆sl)/b

 (1)

It is reasonable to assume that the motion is subject to noise, which we choose to model as
additive Gaussian noise ν ∼ N (0, Q) applied to the control inputs. As proposed in [1, p. 272],

1

the noise on the control inputs can be modelled as independent for each wheel with a covariance
proportional to the absolute value of the travelled distance, where a constant factor k is used to
account for any non-deterministic effects.

Q =

[
k|∆sl | 0

0 k|∆sr|

]
(2)

Hence, an a priori estimate of the covariance of the state can be computed as

P̂t = Fx · Pt−1 · Fx
T + Fu ·Qt · Fu

T , (3)

where Fx and Fu denote the Jacobians of the motion model f (xt−1, ut) with respect to the state
estimate and the control inputs respectively. See also [1, p. 270-272, 337].

Task: Derive the Jacobians F̂x and F̂u of the state transition function with respect to the state
and the control inputs. To validate your solution, implement it in the Matlab/Octave function
[x̂t, F̂x, F̂u] = transitionFunction(xt−1, ut, b) that accepts the previous state xt−1 of a differential
drive robot as well as control inputs ut and the inter wheel distance b as arguments.

Validation: Run the function validateTransitionFunction(). This function uses a sequence of
control inputs to propagate the state with the supplied motion model. The function reports on
the correctness of your implementation. If your implementation is correct, the function plots a
ground truth path as well as the forward integration of noisy control inputs using your motion
model. You should observe that the ground truth path and your estimate diverge increasingly
over the course of the experiment. This illustrates that for many real-world applications where
perturbations occur, relying solely on interoceptive information is insufficient.

2.2 State Update

As illustrated in the previous experiment, perturbations in the control inputs will result in an
increasingly inaccurate estimate of the state of the robot. Hence, exteroceptive location cues are
commonly employed in robotics application. In this exercise, the robot is capable of sensing
linear structures and possesses a map M, which contains all linear structures in its operating
environment, expressed in a coordinate frame that will be referred to as world coordinate frame.

2.2.1 Measurement Function

As introduced in Exercise 3, lines can be parametrized as mi =
[
αi, ri]T. This parametrization

will be applied to both, the output of our perception system zt as well as the entries of the map
M. Note however, that while the parametrization is identical, the coordinate frames in which
the measurements and the map are represented differ. While lines in the map are represented in
the world coordinate frame, the robot senses lines in its body coordinate frame relative to its own,
varying pose. Hence, the measurement can be modelled by transforming the lines in the map
from the world coordinate frame into the body coordinate frame. A more detailed description
of this transformation is given in [1, p. 338-340]. For the remainder of this exercise, a map M
with K entries is represented by a 2× K matrix by horizontally concatenating individual mi.

Task: Derive the measurement model ẑt = h(x̂t, m(i)) that describes a line m(i) as perceived
in the body coordinate frame. Derive the Jacobian of the measurement model Ĥx with respect
to the state. To check your solution, implement it in the Matlab/Octave function [ẑt, Ĥx] =

measurementFunction(x̂t, mi) that accepts an a priori estimate of the state x̂t and a map entry mi.
Validation: Run the function validateMeasurementFunction(). The function reports on the

correctness of your implementation.

2

2.2.2 Measurement Association

In order to apply the Kalman filter update correctly, associations between observations and
map entries need to be established. To this end we employ the Mahalanobis distance between
a predicted measurement ẑi

t and an observation zj. With the innovation vij
t as a measure of the

difference between a predicted and observed measurement

vij
t = zj

t − ẑi
t (4)

and the innovation covariance Σ
ij
INt

Σ
ij
INt

= Ĥi
t · P̂t · ĤiT

t + Rj
t (5)

the Mahalanobis distance is calculated as

dij
t = vijT

t ·
(

Σ
ij
INt

)−1
· vij

t . (6)

In real-world robotics application there will always be corrupting measurements that do not
correspond to entries in the map. In the example presented in the introduction, it could be
a previously closed door that was opened or furniture that got moved around. Hence, we
introduce a validation gate g and only consider associations that fall below this threshold dij

t < g2,
i.e. the distance between the observed line and the line in the map is not too big. When
multiple map entries fall into the validation gate of a single measurement, the measurement is
associated with the entry with the smallest Mahalanobis distance. On the other hand, multiple
measurements may be associated with a single map entry. Please find additional information in
[1, p. 334-335, 340-342].

Task: Write a Matlab/Octave function [v̂t, Ĥt, Rt] = associateMeasurements(x̂t, P̂t, Zt, Rt, M,
g) that accepts the a priori state estimate x̂t and its covariance P̂t, N measurements Zt expressed
as a 2× N matrix and their covariances Rt expressed as 2× 2× N tensor, as well as the map M,
and a scalar validation gate g. The function returns a 2× K matrix v̂t, of innovations vij

t where
K denotes the number of successfully matched line features, as well as a 2× 3× K tensor Ĥt of
the Jacobians of the measurement function in the same order and a 2× 2× K tensor Rt of the
corresponding measurement uncertainties. Although the focus of this exercise is on the correct
association of the perceived lines with the map, the outputs are defined to facilitate the EKF
implementation in the next task and in turn to avoid duplications of computations.

Validation: Run the function validateAssociations(). The function reports on the correctness
of your implementation.

2.3 Updating the Estimate

The previous tasks provided the essential building blocks for implementing the Extended
Kalman Filter updates according to the well established equations. Information on the Extended
Kalman Filter can either be found in [1, p. 335-336] or in [2].

Task: Write a Matlab/Octave function [xt, Pt] = f ilterStep(xt−1, Pt−1, ut, Zt, Rt, M, g, b) that
accepts the previously introduced quantities and that performs a single, complete filter step, con-
sisting of state propagation, measurement association and a subsequent state update. Consider
using the function blockDiagonal(R) provided with this exercise to reshape the measurement co-
variances appropriately, as well as the Matlab/Octave function reshape and permute to reshape
the outputs of the previously implemented functions to match the EKF equations.

Validation: Run the function validateFilter(). The function will load a set of noise corrupted

3

measurements and iterate your filter over a sequence of perturbed control inputs. For feedback,
ground truth motion, the output of a baseline implementation, the output of your filter and
forward integration of control inputs are displayed. As already observed in Section 2.1, the
solution that does not take exterioceptive information into account diverges quickly from the
true path. Your filter solution however will follow the true path more accurately, as it corrects its
state estimation with information from an additional sensor and an accurate map. As identical
input data and assumptions about the statistical properties of the perturbations are employed,
your results should in theory align perfectly with those of the baseline implementation. However,
numerical differences might introduce small deviations of the two solutions.

3 V-REP Experiment

So far, line extraction and EKF localization have been implemented and verified separately. In
this exercise, we will combine them to implement the complete functionality and test it in the
simulation environment V-REP.

Task: Write a Matlab/Octave function [xt, Pt] = incrementalLocalization(xt−1, Pt−1, ut, St,
M, params, k, b, g) that takes the previous pose, control inputs and the laser scan data S as
arguments and returns an a posterori estimate the pose of the robots and its covariance.

Validation: Start V-REP, load scene scene/mooc_exercises.ttt and start the simulation.
You should see a circular robot, a set of walls and the visualization of laser measurements. Now
run the script vrepSimulation. The robotic platform should start moving on a circular path.
Close to the actual robot you should see a yellow ’ghost’, which visualizes the pose as estimated
by your localization. Just like in real robotics applications, you might find that the localization
does not work flawlessly. As both faces of each wall are entries to the map and as line features
are solely associated by Mahalanobis distance, the measurements may be incorrectly associated
with the opposite face of the wall, visible as a bias in the localization. You may also move the
starting position in the simulation environment and re-run the simulation. Depending on the
number and constellation of observed walls, the observability of the global pose may be affected,
resulting in impaired state estimates.

References

[1] Roland Siegwart, Illah Nourbakhsh, and Davide Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2nd edition, 2011.

[2] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

4

	Introduction
	Kalman Filter Localization
	State Prediction
	State Update
	Measurement Function
	Measurement Association

	Updating the Estimate

	V-REP Experiment

