
Exercise 3
Line fitting and extraction for robot localization

1 Introduction

For a lot of application in robotics, knowledge of the position and orientation of the platform
is essential. This exercise could be motivated by an autonomous vehicle hauling goods across
the corridors of a warehouse. In order to navigate from one place to another, the vehicle would
need to know its position in the warehouse as well as its heading. On its way, it might come
across walls, doorways, and racks, all of which would be perceived as measurements located
along lines by a laser scanner mounted in a way that its scanning plane is parallel to the ground.
Exercise 3 and 4 explore these line features for localization against a known map. While Exercise
3 will show how to extract lines from laser scans using the split-and-merge approach, Exercise
4 will demonstrate how to employ these measurements in combination with a map for robot
localization in a Kalman filter framework.

2 Line extraction

A range scan describes a 2D slice of the environment. Points in a range scan are specified in a
polar coordinate system with the origin at the location of the sensor. It is common in literature to
assume that the noise on measurements follows a Gaussian distribution with zero mean, some
range variance and negligible angular uncertainty.

We choose to express a line in polar parameters (r, α) as defined by the line equation (1) for
the Cartesian coordinates (x, y) of the points lying on the line

x cos α + y sin α = r, (1)

where −π < α ≤ π is the angle between the x-axis and the shortest connection between the
origin and the line. This connection’s length is r ≥ 0 (see Figure 1).

1

Figure 1: Fitting line parameters: D is the fitting error we aim to minimize expressing a line with
polar parameters (r, α)

2.1 Split-and-Merge

We employ the popular “Split-and-Merge”[1, p.249-250] line extraction algorithm to divide the
obtained range measurements (points) into segments of points lying roughly on a common line.

Algorithm 1: Split-and-Merge
Data: Set S consisting of all N points, a distance threshold d > 0
Result: L, a list of sets of points each resembling a line
L← (S), i← 1;
while i ≤ len(L) do

fit a line (r, α) to the set Li;
detect the point P ∈ Li with the maximum distance D to the line (r, α);
if D < d then

i← i + 1
else

split Li at P into S1 and S2;
Li ← S1; Li+1 ← S2;

end
end
Merge collinear sets in L;

2.2 Algorithm in Matlab/Octave

The Split-and-Merge algorithm is implemented inside the function [αi, ri, . . .] = extractLines(xi,
yi). A crucial part of this function is the line fitting step.

Task: Edit fitLine.m and follow the instructions to complete the mathematical formula
for computing line regression (line fitting) using a set of points in Cartesian coordinates after
reading the following theory. The aim of the function is to minimize the sum of squared errors:

S(r, α) := ∑
i
(r− xi cos α− yi sin α︸ ︷︷ ︸

=D((α,r),(xi ,yi))

)2 (2)

where (xi, yi) are the input points in Cartesian coordinates. The solution of (r, α) can be

2

found by imposing: ∇S = 0 . The solution for α is then

α =
tan−1(num

denom)

2
(3)

num := −2 ∑
i
(xi − xc)(yi − yc) (4)

denom := ∑
i
(yi − yc)

2 − (xi − xc)
2 (5)

where (xc, yc) are the Cartesian coordinate of the (xi, yi)’s centroid (see instructions in
fitLine.m). In order to solve for r consider the equation (1) and a point that will surely lie on
the line (which one is it?). Please find additional information on [1, pp. 244] including a solution
for polar input on [1, p. 246]. As soon as the lines are correctly fitted, the algorithm performs
Split-and-Merge and extracts the endpoints of each segment.

Validation: Run test/testLineExtraction.m to check if the code is correctly completed. If
not it will show a figure with the measured points and expected lines (in yellow) as together
with the found lines and segments (in red, green and blue). To test only the fitLine function on
artifical data use test/testLineFitting.m.

References

[1] Roland Siegwart, Illah Nourbakhsh, and Davide Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2nd edition, 2011.

3

	Introduction
	Line extraction
	Split-and-Merge
	Algorithm in Matlab/Octave

