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§  From object recognition to scene/place recognition – Section 4.6 

§  Bag of Words 

§  The Vocabulary Tree 

§  FABMAP & other place recognition methods  
from the state of the art 

§  Uncertainties:     (mainly) Section 4.7 
§  Representation + Propagation – Section 4.1.3 

§  Line extraction from a point cloud 

§  Split-and-merge 

§  Line-Regression 

§  RANSAC 

§  Hough Transform 

Perception IV 2 

Today’s Lecture 

Optional Reading: 

“Video Google”, J. Sivic and A. Zisserman, ICCV 2003 

“Scalable Recognition with a Vocabulary Tree”, D. Nistér 
and H. Stewénius, CVPR 2006. 

”FAB-MAP: Probabilistic Localization and Mapping in the 
Space of Appearance”, M. Cummins and P. Newman, IJRR 
2008. 

“SeqSLAM: Visual route-based navigation for sunny 
summer days and stormy winter nights”, M. Milford and G. 
Wyeth, ICRA 2012 

“Bags of Binary Words fro Fast Place Recognition in Image 
Sequences”, D. Gálvez-López and Tardos, TRO 2012 
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Perception IV 3 

Object recognition 
Q: Is this Book present in the Scene? 

Scene                                                                                   Book 
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Object recognition | with SIFT features 

Extract keypoints 
in both images 

Q: Is this Book present in the Scene? 
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Object recognition | with SIFT features 

Look for corresponding 
matches 

Most of the Book’s keypoints are present in the Scene  

   a A: The Book is present in the Scene 

Q: Is this Book present in the Scene? 
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Object recognition | taking this a step further… 

§  Find an object in an image 

§  Find an object in multiple images 

§  Find multiple objects in multiple images 

Perception IV 6 

? 

? 

? 
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§  Extension to scene/place recognition:  
§  Is this image in my database? 
§  Robot: Have I been to this place before?  

a ‘loop closure’ problem, ‘kidnapped robot’ problem 

§  Use analogies from text retrieval: 
§  Visual Words 
§  Vocabulary of Visual Words 

§  “Bag of Words” (BoW) approach 

 
Perception IV 7 

Image Retrieval | the Bag of Words (BoW) approach 
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BoW | building the visual vocabulary 

8 

Image Collection Extract Features Cluster Descriptors 
Descriptors’ space 

Examples 
of  

Visual 
Words: 

Images for this slide are courtesy of Mark Cummins 
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§  “Video Google” [J.Sivic and A. Zisserman, ICCV 2003] 

§  Demo: 

These features map to the same visual word 

Image courtesy of Andrew Zisserman 

BoW | Video Google: one image a thousand words? 

Perception IV 9 
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§  Image retrieval represents a more general problem of object or  
place recognition. 

§  We can describe a scene as a collection of words and look up  
in the database for images with a similar collection of words 

§   What if we need to find an object/scene in a database of millions  
of images? 

§  Build Vocabulary Tree via hierarchical clustering 

§  Use the Inverted File system:  
a way of efficient indexing  
(each node in the tree is associated with a list of  
images containing an instance of this node) 

      [Nistér and Stewénius, CVPR 2006] 

BoW | efficient image retrieval 

Perception IV 10 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

Vocabulary tree | extract features  

Perception IV 11 

Descriptors’ Space 

Based on D. Nister’s slides 
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Perception IV 12 

Vocabulary tree | extract features  
Descriptors’ Space 

Based on D. Nister’s slides 
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Perception IV 13 

Vocabulary tree | extract features  
Descriptors’ Space 

Based on D. Nister’s slides 
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Perception IV 14 

Vocabulary tree | extract features  
Descriptors’ Space 

Based on D. Nister’s slides 
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Vocabulary tree | descriptors’ space 

Based on D. Nister’s slides 
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§  k-means clustering: partitions a point cloud into k clusters, such that each point belongs to one 
cluster 

§  Minimizes the Sum of Squared Euclidean Distances between points and their nearest cluster-
centers  

 

Algorithm: 

§  Randomly initialize k cluster centers

§  until (convergence) do:

§  assign each data-point to its nearest  
cluster-center

§  Re-compute each cluster-center as the  
mean of all points assigned to each  
cluster

Vocabulary tree | k-means clustering, review 

Perception IV 16 
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Perception IV 17 

Vocabulary tree | descriptors’ space 

Based on D. Nister’s slides 
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Vocabulary tree | descriptors’ space 

Based on D. Nister’s slides 
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Vocabulary tree | construction 

Each node represents a cluster of descriptors 

a each leaf represents a visual word 
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Vocabulary tree | construction = training 

Based on D. Nister’s slides 

Model images 

Index tree-leaves with images 
containing corresponding visual 
word 
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Perception IV 21 

Vocabulary tree | construction = training 

Based on D. Nister’s slides 

Model images 

Index tree-leaves with images 
containing corresponding visual 
word 
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Vocabulary tree | construction = training 

Based on D. Nister’s slides 

Model images 

Index tree-leaves with images 
containing corresponding visual 
word 
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Vocabulary tree | construction = training 

Based on D. Nister’s slides 

Model images 

Index tree-leaves with images 
containing corresponding visual 
word 
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Vocabulary tree |  
lookup of test image 

Query image 

Based on D. Nister’s slides 

Model images 
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0 
… 
101 
102 
103 
104 
105 
… 

Inverted File DB 

   Visual word       List of images that this word appears in 

Vocabulary tree | inverted file index 

101 
102 
105 
105 
180 
180 
180 

… 
Voting Array for Q 

Query image Q 

Visual  
words in Q 

+1 +1 +1 

§  Which image(s) look most like the Query Image Q ? 
§  An Inverted File DB lists all possible visual words 

§  Each word points to a list of images where this  
word occurs 

§  Voting array: has as many cells as the images  
in the DB – each word in query image votes for  
an image 

Query Image Q 

25 
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Vocabulary tree | tf-idf 

§  tf-idf: term frequency-inverse document  
frequency 

§  measures the importance of a visual word  
inside a document (as part of a document DB) 

§  term frequency: frequency of word wi in image j: 

§  inverse document frequency:  

§  tf-idf of word wi in image j is:  

§  Use it to weigh the importance of each word when voting for corresponding image 

|}:{|
||log
dwd

Didf
i

i ∈
=

No. all images (documents) 

No. all images containing wi 
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Place recognition | FABMAP [Cummins and Newman IJRR 2011] 

§  Place recognition for robot localization using stereo images 
§  Build the visual vocabulary using SURF features 
§  Probabilistic model of the world:  

§  World = a set of discrete places 

§  Place = a set of consecutive images 
 

§  At a new frame, compute: 
§  P(being at a known place) 
§  P(being at a new place) 

§  Captures the dependencies of visual 
words to distinguish the most  
characteristic structure of each  
scene (using the Chow-Liu tree) 

§  Code available online: 
http://www.robots.ox.ac.uk/~mjc/Software.htm  

Perception IV 27 
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Place recognition | FABMAP examples  

p = probability of 
images coming from 

the same place 

robots.ox.ac.uk/~mjc/appearance_based_results.htm 
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Place recognition | FABMAP examples  

robots.ox.ac.uk/~mjc/appearance_based_results.htm 

p = probability of 
images coming from 

the same place 
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Place recognition | SeqSLAM [Milford & Wyeth, ICRA 2012] 
 
“Visual Route-Based Navigation for Sunny Summer Days and Stormy Winter Nights” 

§  Whole-image descriptor 
§  Image-preprocessing: 

§  Crop, 
§  Patch-normalize, 
§  Down-sample 

§  Build image-difference matrix 

§  Works with extreme  
illumination changes! 

§  Recognizes loop when scene  
is visited: 
§  at the same speed, 
§  from the same viewpoint 
§  Relies on long sequence of  

matching frames 
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Place Recognition | bags of binary words 

§  Bag of Binary Words (BoBW):  
[Gálvez-López & Tardós, TRO 2012] 

 

§  FAST Keypoints + BRIEF descriptor 

                        

 

§  Very fast 

§  Works for up-right images  
– not viewpoint-invariant 
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Place Recognition | towards robust performance 

§  Visual Vocabulary holds appearance information, 
but discards the spatial relationships between features 
 
a each image is considered as a “bag of words” 
 
a Two images with the same features shuffled  
around in the image will be a 100% match when  
using only appearance information. 

§  If different arrangements of the same features are expected then one might use geometric 
verification 

§  for example: test the k most similar images to the query image for geometric consistency 
(e.g. using RANSAC) 

Perception IV 32 
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§  Uncertainties – Representation & Propagation 
§  Line Extraction from point clouds  

autodesk.blogs.com 
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Perception IV 34 

Uncertainty representation | importance 

Section 4.1.3 of the book 

§  Sensing in the real world is always uncertain 

§  How can uncertainty be represented or quantified? 

§  How does uncertainty propagate? 
i.e. given uncertain inputs into a system, what is the  
uncertainty in the output? 

§  What is the merit of all this for mobile  
robotics? 

123rf.com 
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§  Use a Probability Density Function (PDF) to characterize the statistical properties of a variable x:  

§  Expected value of variable x: 

Perception IV 35 

Uncertainty representation 

§  Variance of variable x: 
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Perception IV 36 

Uncertainty representation | gaussian distribution 

§  Most common PDF for characterizing uncertainties: Gaussian 

68.26% 

95.44% 

99.72% 
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Perception IV 37 

Uncertainty representation | the error propagation law 

§  Imagine extracting a line based on point measurements with  
uncertainties. 

§  Model parameters in polar coordinates 
     [ (r, α) uniquely identifies a line ] 
 

§  What is the uncertainty of the extracted line knowing the  
uncertainties of the measurement points that contribute to it ? 

r 

α 
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Perception IV 38 

Uncertainty representation | the error propagation law 

Error propagation in a multiple-input mutliple-output system with n inputs and m outputs 

X 1 
X i 
X n 

System 

…
 

…
 

Y 1 
Y j 
Y m 

…
 

…
 )...( 1 njj XXfY =
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Perception IV 39 

Uncertainty representation | the error propagation law 

§  1D case of a nonlinear error propagation problem: 
 
§  It can be shown that the output covariance matrix CY is  

given by the error propagation law: 

where 
§  CXX: covariance matrix representing the input uncertainties 
§  CYY: covariance matrix representing the propagated uncertainties for the outputs. 
§  FYX: is the Jacobian matrix defined as: 

 

§  Defines the orientation of the tangent line/plane/hyper-plane at a given point 

Image courtesy of K. Arras 

by 1st order Taylor 
series approximation  

CYY = FYXCXXFXY ,FXY = FYX
T

FYX =

∂f1
∂X1

... ∂fm
∂X1

: ... :
∂fm
∂X1

... ∂fm
∂Xn

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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Uncertainty representation | line extraction 

§  Point-Line distance 

 
§  If each measurement is equally uncertain then sum of sq. errors: 

 
§  Goal: minimize S when selecting (r, α) a solve the system 

§  “Unweighted Least Squares” 

r 

α 

xi =(ρi, θi) 
 

di 
 ρi 

 
θi 
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r 

α 

xi =(ρi, θi) 
 

di 
 ρi 

 
θi 
 

Perception IV 41 

Uncertainty representation | line extraction 

§  Point-Line distance 

 
§  Each sensor measurement, may have its own, unique uncertainty 

 
 
 

§  “Weighted Least Squares” 
 

σ i
2
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Perception IV 42 

Uncertainty representation | line extraction 

§  Weighted least squares and solving the system: 
 

§  Gives the line parameters: 

 

 

§  If                               what is the uncertainty in the line (r, α) ? 
),ˆ(~

),ˆ(~
2

2

i

i

ii

ii

N

N

θ

ρ

σθθ

σρρ

The uncertainty σi of each 
measurement is proportional  
to the measured distance  ρi 
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Perception IV 43 

Uncertainty representation | line extraction 

 
The uncertainty of each measurement xi =(ρi, θi)  
is described by the covariance matrix: 
 
The uncertainty in the line (r, α) is described by the covariance matrix: 
 

 

Define: 
 
 

                                       Jacobian: 

Cll =
σα
2 σαr

σ rα σ r
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Cxxi
=

σρi

2 0

0 σθi

2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Assuming that ρi , θi  are independent 

= ? 

Cll = FlxCxxFxl

Error Propagation Law 

Flx =
... ∂α

∂ρi

∂α
∂ρi+1

... ∂α
∂θi

∂α
∂θi+1

...

... ∂r
∂ρi

∂r
∂ρi+1

... ∂r
∂θi

∂r
∂θi+1

...

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤
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⎥
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Cxx =
diag(σρ

2 ) 0

0 diag(σθ
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⎢

⎤

⎦

⎥
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... 0 0 . 0 0 .
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2 0 . 0 0 .
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. . . ... . . .

. 0 0 . σθi
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⎢
⎢
⎢
⎢
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Line extraction from a point cloud 

Extract lines from a point cloud (e.g. range scan) 
§  Three main problems: 

§  How many lines are there? 
§  Segmentation: Which points belong to which line? 
§  Line Fitting/Extraction: Given points that belong  

to a line, how to estimate the line parameters?  
 

§  Algorithms we will see: 
1.  Split-and-merge  
2.  Linear regression 
3.  RANSAC 
4.  Hough-Transform 

http://www.youtube.com/watch?v=wV8frjLqtIA&feature=related 
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Let S be the set of all data points 
Split 
•  Fit a line to points in current set S 
•  Find the most distant point to the line 
•  If distance > threshold a split set & repeat with left and 

right point sets 
Merge 
•  If two consecutive segments are collinear enough, obtain 

the common line and find the most distant point 
•  If distance <= threshold, merge both segments 

§  Popular algorithm, originates from Computer Vision. 
§  A recursive procedure of fitting and splitting. 

Line extraction | 1. split-and-merge (standard) 

Perception IV 45 
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Let S be the set of all data points 
Split 
•  Fit a line to points in current set S 
•  Find the most distant point to the line 
•  If distance > threshold a split set & repeat with left and 

right point sets 
Merge 
•  If two consecutive segments are collinear enough, obtain 

the common line and find the most distant point 
•  If distance <= threshold, merge both segments 

§  Popular algorithm, originates from Computer Vision. 
§  A recursive procedure of fitting and splitting. 

Line extraction | 1. split-and-merge (standard) 

Perception IV 46 
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Let S be the set of all data points 
Split 
•  Fit a line to points in current set S 
•  Find the most distant point to the line 
•  If distance > threshold a split set & repeat with left and 

right point sets 
Merge 
•  If two consecutive segments are collinear enough, obtain 

the common line and find the most distant point 
•  If distance <= threshold, merge both segments 

§  Popular algorithm, originates from Computer Vision. 
§  A recursive procedure of fitting and splitting. 

Line extraction | 1. split-and-merge (standard) 

Perception IV 47 
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Line extraction | 1. split-and-merge (iterative end-point-fit) 

Perception IV 48 

Iterative end-point-fit:  
simply connects the 
end points for line 
fitting 
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Line extraction | 1. split-and-merge (iterative end-point-fit) 

Perception IV 49 

Split  Iterative end-point-fit: 
simply connects the 
end points for line 
fitting 
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Line extraction | 1. split-and-merge (iterative end-point-fit) 

Perception IV 50 

Split  

Split  

Split  Iterative end-point-fit: 
simply connects the 
end points for line 
fitting 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

Line extraction | 1. split-and-merge (iterative end-point-fit) 

No more 
Splits 

Split  

Split  

Split  

Perception IV 51 

Iterative end-point-fit: 
simply connects the 
end points for line 
fitting 
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Line extraction | 1. split-and-merge (iterative end-point-fit) 

Iterative end-point-fit: 
simply connects the 
end points for line 
fitting 

Merge No more 
Splits 

Split  

Split  

Split  

Perception IV 52 
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Line extraction | 2. line-regression 

§  “Sliding window” of size Nf points 
§  Fit line-segment to all points in each window 
§  Then adjacent segments are merged if their line parameters are close 

Nf = 3 Line-Regression 

•  Initialize sliding window size Nf 

•  Fit a line to every Nf  consecutive points (i.e. in each 
window) 

•  Merge overlapping line segments + re-compute line 
parameters for each segment 

Perception IV 53 
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Line extraction | 2. line-regression 

§  “Sliding window” of size Nf points 
§  Fit line-segment to all points in each window 
§  Then adjacent segments are merged if their line parameters are close 

Nf = 3 Line-Regression 

•  Initialize sliding window size Nf 

•  Fit a line to every Nf  consecutive points (i.e. in each 
window) 

•  Merge overlapping line segments + re-compute line 
parameters for each segment 

Perception IV 54 
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§  RANSAC = RANdom SAmple Consensus. 

§  A generic & robust fitting algorithm of models in the presence of outliers  
(i.e. points which do not satisfy a model) 

§  Can be applied in general to any problem, where 
the goal is to identify the inliers which satisfy a  
predefined model. 

§  Typical applications in robotics are:  
line extraction from 2D range data, plane extraction from 3D data, feature matching, structure from motion, 
camera calibration, homography estimation, etc. 

§  RANSAC is iterative and non-deterministic ð the probability to find a set free of outliers increases as 
more iterations are used 

§  Drawback: a non-deterministic method, results are different between runs. 

? 

Line extraction | 3. RANSAC  

Perception IV 55 

M. Fischler & R. C.Bolles. RANndom SAmple Consensus: 
A paradigm for model fitting with applicatlons to image analysis and 
automated cartography. Graphics and Image Processing, 1981. 
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Line extraction | 3. RANSAC  

Perception IV 56 
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Line extraction | 3. RANSAC  

Perception IV 57 

§  Select sample of 2 points at random 
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Line extraction | 3. RANSAC  

Perception IV 58 

§  Select sample of 2 points at random 

§  Calculate model parameters that fit 
the data in the sample 
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Line extraction | 3. RANSAC  

Perception IV 59 

§  Select sample of 2 points at random 

§   Calculate model parameters that fit the 
data in the sample 

§  Calculate error function for each data 
point 
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Line extraction | 3. RANSAC  

Perception IV 60 

§  Select sample of 2 points at random 

§   Calculate model parameters that fit the 
data in the sample 

§   Calculate error function for each data 
point 

§  Select data that supports current 
hypothesis 
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Line extraction | 3. RANSAC  

Perception IV 61 

§  Select sample of 2 points at random 

§   Calculate model parameters that fit the 
data in the sample 

§   Calculate error function for each data 
point 

§   Select data that supports current 
hypothesis 

§   Repeat sampling 
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Line extraction | 3. RANSAC  

§  Select sample of 2 points at random 

§   Calculate model parameters that fit the 
data in the sample 

§   Calculate error function for each data 
point 

§   Select data that supports current 
hypothesis 

§   Repeat sampling 

Perception IV 62 
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Line extraction | 3. RANSAC  

Set with the maximum number of 
inliers obtained after k iterations 

Perception IV 63 

§  Select sample of 2 points at random 

§   Calculate model parameters that fit the 
data in the sample 

§   Calculate error function for each data 
point 

§   Select data that supports current 
hypothesis 

§   Repeat sampling 
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Line extraction | 3. RANSAC  

How many iterations does RANSAC need?  

§  Ideally: check all possible combinations of 2 points in a dataset of N points.  

§  Number of all pairwise combinations: N(N-1)/2  
     a computationally infeasible if N is too large.  
     example:  
     10’000 points to fit a line through a need to check all 10’000 x 9’999/2 = 50 million combinations! 

 
§  Do we really need to check all combinations or can we stop after some iterations?  

 
Checking a subset of combinations is enough if we have a rough estimate of the percentage of inliers in 
our dataset 

§  This can be done in a probabilistic way 

Perception IV 64 
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How many iterations does RANSAC need? 

§  N := tot. no. data points  
w := number of inliers / N  
 a w : fraction of inliers in the dataset ð w = P(selecting an inlier-point out of the dataset) 

§  Let  p := P(selecting a minimal set of points free of outliers)  

§  Assumption: the 2 points necessary to estimate a line are selected independently 
a w 2   = P(both selected points are inliers) 
a1-w 2 = P(at least one of these two points is an outlier) 

§  Let k := no. RANSAC iterations executed so far 
a ( 1-w 2 ) k = P(RANSAC never selects two points that are both inliers)  
a 1-p = ( 1-w 2 ) k and therefore : 

Line extraction | 3. RANSAC  

Perception IV 65 
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How many iterations does RANSAC need? 
 
§  The number of iterations k is: 

 
 
a knowing the fraction of inliers w, after k RANSAC iterations we will have a probability p of finding a set of 
points free of outliers 

§  Example: if we want a probability of success p=99% and we know that w=50% a k=16 iterations  
– these are dramatically fewer than the number of all possible combinations!  

§  Notice: the number of points does not influence the estimated number of iterations, only w does! 

§  In practice we need only a rough estimate of w.  
More advanced variants of RANSAC estimate the fraction of inliers and adaptively change it on every 
iteration 

Line extraction | 3. RANSAC  

Perception IV 66 
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Line extraction | 4. Hough-Transform 

§  Points vote for plausible line parameters 
§  Hough-Transform: maps image-space into Hough-space  
§  Hough-space: voting accummulator, parametrized w.r.t. line characteristics 

1.  P. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959 
2.  J. Richard, O. Duda, P.E. Hart (April 1971). "Use of the Hough Transformation to Detect Lines and Curves in Pictures". Artificial Intelligence 

Center (SRI International) 

Perception IV 67 
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m0 

b0 

Line extraction | 4. Hough-Transform 

Perception IV 68 

§  A line in the image corresponds to a point in Hough space 
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Line extraction | 4. Hough-Transform 

Perception IV 69 

§  What does a point (x0, y0) in the image space map to in the Hough space? 
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Line extraction | 4. Hough-Transform 

Perception IV 70 

§  Where is the line that contains both (x0, y0) and (x1, y1)? 

§  It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1 

b* 

m* 

Every point 
votes for a line 
in the Hough 

space 
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§  Each point in image space, votes for line-parameters in Hough parameter space 

Line extraction | 4. Hough-Transform 

Perception IV 71 
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Line extraction | 4. Hough-Transform 

Perception IV 72 

§  Problems with the (m,b) space: 
§  Unbounded parameter domain 
§  How to represent lines aligned with the axes? 

§  Alternative: polar representation 

 

Each point in image space will map to a  
sinusoid in the (ρ,θ) parameter space 
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Line extraction | 4. Hough-Transform 

Perception IV 73 

1. Initialize accumulator H to all zeros 

2. for each edge point (x,y) in the image 

 for all θ in [0,180] 

§ Compute ρ = x cos θ + y sin θ 

§ H(θ, ρ) = H(θ, ρ) + 1 

 end 
        end 

3. Find the values of (θ, ρ) where H(θ, ρ) is a local maximum 

4. The detected line in the image is given by: ρ = x cos θ + y sin θ 
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Line extraction | 4. Hough-Transform: examples 

Perception IV 74 
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Hough Transform 

Line extraction | 4. Hough-Transform: examples 

Perception IV 75 
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Line extraction | 4. Hough-Transform: examples 

Perception IV 76 
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Line extraction | 4. Hough-Transform: examples 

Perception IV 77 

Effect of Noise: 
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Perception IV 78 

Line extraction | comparison 

§  Split-and-merge, Incremental and Line-Regression: fastest – best applied on laser scans 

§  Deterministic & make use of the sequential ordering of raw scan points  
(: points captured according to the rotation direction of the laser beam) 

§  If applied on randomly captured points only last 3 algorithms would segment all lines. 

§  RANSAC, Hough-Transform and EM produce greater precision a more robust to outliers 
Complexity Speed (Hz) False 

positives 
Precision 

Split-and-Merge N logN 1500 10% +++ 

Incremental S N 600 6% +++ 

Line-Regression N Nf 400 10% +++ 

RANSAC S N k 30 30% ++++ 

Hough-Transform   S N NC + S NR NC 10 30% ++++ 

Expectation 
Maximization 

S N1 N2 N 1 50% ++++ 

Comparison by 
[Nguyen et al.  
IROS 2005] 

: no. points considered 

: no. points in window 

: no. line-segments to be found 

: no. iterations 

: no columns, rows of the 
accumulator array 

N 
Nf

S
k

NC, NR 


