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Image Intensities & Data Reduction Qi VanL

= Monochrome image = matrix of intensity values

= Typical sizes:
= 320 x 240 (QVGA)
= 640 x 480 (VGA)
= 1280 x 720 (HD)

= Intensities sampled to 256 grey levels = 8 bits

/

= |mages capture a lot of information

Autonomous Mobile Robots
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What is useful, what is redundant? ONCami™
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What is useful, what is redundant? ONCami™
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What is useful, what is redundant? ONCami™
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Today’s Outline Q@ \VarL

=  Sections 4.3 — 4.5 of the book

= [mage filtering
= Correlation paper

= Convolution

paper][demo code]

= Edge / Corner extraction

= Point Features
= Harris corners
= SIFT features aper

= + some more recent image features from
the state of the art

OpenCV.

Autonomous Mobile Robots
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Image filtering @ VaRL

= filtering: accept / reject certain components

= example: a low-pass filter allows low frequencies = blurring (smoothing) effect on an image —
used to reduce image noise

=  Smoothing can be achieved not only with frequency filters, but also with spatial filters.

Low-pass filtering:
retains low-frequency components
(smoothing)

High-pass filtering:
retains high-frequency
components (edge detection)

Autonomous Mobile Robots
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Image filtering | spatial filters @} VaRL
= §,, : neighborhood of pixels around the point (x,y) in an image /
= Spatial filtering operates on Sxy to generate a new value for the corresponding pixel at output image J

Image [ Filtered Image J = F(/)
E(u,v)ESxy I(u, V)

= For example, an averaging filter is: J(x,y)=

Autonomous Mobile Robots (2M + 1)(2N + 1)
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Image filtering | linear, shift-invariant filters ONCinin

Linear: every pixel is replaced by a linear combination of its neighbours

= Shift-invariant: the same operation is performed on every point on the image
= Why filter?

= Noise reduction, image enhancement, feature extraction, ...
= Basic & very useful filtering operations:

= Correlation

= Convolution

= Brief study of these filters in the simplest case of 1D images (i.e. a row of pixels) & their
extension to 2D

Autonomous Mobile Robots
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Image filtering | correlation

= An averaging filter
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1: 5 4 2 3
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Image filtering | correlation QvanL

= An averaging filter

1: 5 4 2 3 7 4 6 3 6 6
X

X X

@ 1/3 l/?’/>\> Filter, kernel, mask, window

2/3 3/3 713

-

J: 9/3 12/3

= Formally, Correlation is J(x)=F°I(x)=EiE[_N o FOICxe+D)
1/3,i€[1,1]
O 9l¢[_191]

Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 11
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Image filtering | constructing filter from a continuous fn Q@ vanL

= Common practice for image smoothing:
use a Gaussian

(x-w)’
1 o, 207

806)= O~N2m

u=0
O : controls the amount of smoothing

olo|olofe

Normalize filter so that values always add up to 1

= Near-by pixels have a bigger influence on the averaged value rather than more distant ones

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 12



ASL

Autonomous Systems Lab

Image filtering | taking derivatives with correlation QvanL

= Derivative of an image:
quantifies how quickly intensities change
(along the direction of the derivative)

= Approximate a derivative operator:

1 : I(x=-1)| I(x) | I(x+])
£ -1x/2 3 172
\J,Z/
J J(x)

I(x+1)-1I(x-1)
2

J(x) =

Autonomous Mobile Robots
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Image filtering | matching using correlation

= Find locations in an image that are similar to a template

Autonomous Mobile Robots
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Image filtering | matching using correlation ONE 1"

OOOOOOOOOOOOOOOOOOOO

= Find locations in an image that are similar to a template

: Filter=template| 3 8 3 = test it against all image locations

1 3 2 4 1 3 8 4 0 3 8 7 7

=  Similarity measure: Sum of Squaré\d Differences (SSI,IS) — minimize

N (FG)-1(x+D))

i=—N

J: | 26 37 21 50 54 1 50 65 59 16 42 17

Autonomous Mobile Robots
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Image filtering | matching using correlation

= Find locations in an image that are similar to a template

- Filter=template|
I:

= Similarity measure: Sum of Squared Differences

3

8

3

= test it against all image locations

ASL
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OOOOOOOOOOOOOOOOOOOO

3
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8
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0

3

8

S (F@O-1G+)f = 3 (FO) +

= Similarity measure: Correlation? — maximize

Autonomous Mobile Robots

Margarita Chli, Martin Rufli, Roland Siegwart

l_iv (I(x + i))2 — {i

(SSD) — minimize

> (F () (x+1)

Correlation
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Image filtering | matching using correlation ONECIIE

OOOOOOOOOOOOOOOOOOOO

= Find locations in an image that are similar to a template

= Filter = templatel 3 8 3 = test it against all image locations
1: 3 2 4 1 3 8 4 0 3 8 7 7
=  Similarity measure: Sum of Squared Differences (SSD) — minimize
N i=N i=N i=N
SEGO-1x+D)f = D (FO) + > Ux+D)) - {E (F@IG+ z'>)]
i=—N i=—N i=—N i=—N \
Vo
Correlation

= Similarity measure: Correlation? — maximize

J:| 30 | 37 | 41 29 | 51 85 | 56 | 21 48 | 86 | 101 | 77

Autonomous Mobile Robots
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Image filtering | NCC: Normalized Cross Correlation QivaRL

Find locations in an image that are similar to a template

Filter = templatel 3 8 3 = test it against all image locations

I: 3 2 4 1 3 8 4 0 3 8 7 7

Correlation value is affected by the magnltude of mtensmes
Similarity measure: Normalized Cross Correlation (NCC) maximize

=N

S (PG +1)

i=—N

E F@)) ' E 1(x+z))

J: 0.919 0.759 0.988 0.628 0.655 I 0.994 0.691 0.464 0.620 0.860 0.876 0.859

Autonomous Mobile Robots
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Image filtering | ZNCC: Zero-mean NCC ONGCmin

OOOOOOOOOOOOOOOOOOOO

Find locations in an image that are similar to a template

Filter = templatel 3 8 3 = test it against all image locations

I: 3 2 4 1 3 8 4 0 3 8 7 7

Correlation value is affected by the magnitude of intensities
Similarity measure: Zero-mean Normalized Cross Correlation (ZNCC) — maximize

S F ()
S (F() - NG+ ) - a1 e =
=N ' , where - N
\/FN(F(Z‘)—//tF)z\/FN(I(JHZ‘)—MX)2 2, [Cex)
- - TN

Autonomous Mobile Robots
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Image filtering | correlation as a dot product Q@ vanL

= Considering the filter /" and the portion of the
image /. as vectors = their correlation is: F

(F.1,) =|Fl|1, ] cos®

= In NCC and ZNCC we consider the unit vectors of /'and /., hence we measure their similarity
based on the angle 0

ile ots
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Image filtering | correlation in 2D QvanL
Folxy)=Y > FGDIC+iy+))

Example:
Constant averaging filter

This example was generated with a 21x21 mask

If size(F)=(2N+1)" i.e. thisis a squére filter_

= 2D Correlation = no. multiplications per pixel = (2N +1)°
no. additions per pixel =(2N +1)* -1

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 22
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Image filtering | correlation in 2D QvanL
Folxy)=Y > FGDIC+iy+))

" Example: o 1 1 17 [1] “separable” filter
Constant averaging filter 9 9 9| |3
ro|l L 4Lt 11
9 9 9 3(13 3 3
S Ak
9 9 9| (3]
= If size(F)=(2N +1)* i.e. this is a square filter
= 2D Correlation = no. multiplications per pixel = (2N +1)°
no. additions per pixel =(2N +1)* -1
= 2 x 1D Correlation = no. multiplications per pixel =2(2N +1)
no. additions per pixel =4N

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 23
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Image filtering | correlation in 2D @} vanL
Fol(x,y)= Eje[_M,M] D wm FGDI+iy+ )

Example: o 1 1 1] [1] “separable” filter
Constant averaging filter 9 9 9| |3 "
paft LAl S A0 1
9 9 9 3(13 3 31 9
11 1 |1 1]
9 9 9| [3
If size(F)=(2N +1)° i.e. this is a square filter
= 2D Correlation = no. multiplications per pixel = (2N +1)°
no. additions per pixel =(2N +1)* -1
= 2 x 1D Correlation = no. multiplications per pixel =2(2N +1)
no. additions per pixel =4N
= 2 x 1D Correlation = no. multiplications per pixel =1
(with const. factor) no. additions per pixel =4N

Autonomous Mobile Robots
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Image filtering | 2D gaussian smoothing ONEinic

1 e
JT

A general, 2D Gaussian G(x,y) =

o’ 0

0 o°

We usually want to smooth by the same amount in both x and y directions $ =

So this simplifies to:

x2+y2 ¥2 y2
| 1 1 =

G X, — e 20° e 207, e 207
o (%) 2m0” o2t O~ 27

g, (x) g2, (y)

Another separable filter

Autonomous Mobile Robots
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Image filtering | convolution ONEi=17

= Convolution is equivalent to Correlation with a flipped filter before correlating

(o )
= CONVOLUTION: J(x)=F#I(x)= EE[_N FOIC=i) Soif F=[1 2 3]
= CORRELATION: J(x)=FolI(x)= Y _ F(i)I(x+i) F=3 2 1]
ZE[—N,N] \-I-hen’ F*I(X) — F‘O I(x)
= Likewise, in 2D we flip the filter both horizontally & vertically

Jay)=Frl(xy)=) D FGDI =iy =)

= Key difference between correlation and convolution is that convolution is associative:

Fs(Gx=D)=(F*=G)=*1

e[-M ,M]

= Very useful!

= Example: smooth an image & take its derivative = convolve the Derivative filter with the Gaussian Filter
& convolve the resulting filter with the Image

Autonomous Mobile Robots
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Image filtering | examples ONEair

original image filtered (no change)

Autonomous Mobile Robots
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Image filtering | examples ONEair

OO0 O
OO0 ]| 1
O(0]|O0

original image filtered (shifted left by 1 pixel)

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 28



Image filtering | examples ONEair

1191 1/911/9
179 11/911/9
1791 1/9 | 1/9

original image filtered (blurred with a box filter)

Autonomous Mobile Robots
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Image filtering | examples @} VaRL

= What does blurring take away?

original image smoothed (5x5) detail

Autonomous Mobile Robots
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Image filtering | examples @} VaRL

= Let's add it back:

original image detail sharpened

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 31
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Edge detection @ VARL

= Ultimate goal of edge detection: an idealized line drawing.
= Edge contours in the image correspond to important scene contours.
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Edge detection | edge = intensity discontinuity in 1 direction  {@iv4L

= Edges correspond to sharp changes of intensity

= How to detect an edge?
= Change is measured by 1t order derivative in 1D
= Big intensity change = magnitude of derivative is large

= Qr 2" order derivative is zero.

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 33
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1D edge detection | ONC =t

= Consider a single row or column of the image, where image intensity shows an obvious
change

1(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
X

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
X

Autonomous Mobile Robots
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1D edge detection | solution: smooth first ONCinir

;5";’ 1(x)
s g, (x)

s(x) =1(x)* g, (x)

Convolution

| | 1 1 1 | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

. Edges occur at maxima/minima of s'(x) J
/\ $'(0) =—=(s(x))

Of o] i i = fe i i  em—
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Differentiation

Autonomous Mobile Robots " Wh e re iS th e ed g e’)
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1D edge detection | derivative theorem of convolution QI VarL

VISION FOR ROBOTICS L.

f 0= (8, () =, () *1(0)

= This saves us one operation:

..................................................

©
C ...............................................................................................
I(x) 2
. [ . [ — R o R ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
d _ :
| (]
ga(x)=—ga(x) 1T SO PRI NASPPO SSPA: SNMPOES SRS SIS O S i
dx 4

| 1 1 1 | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

5 \ | Edges occur at maxima/minima of s'(x)
! . 3 i : ; : :
S(x)=g',()*I(x) 3 A\
S z
_ o I ] I T [ 1 ] 1 [ ]
MmNt Rufl Boland Sieqwart 0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D edge detection | zero-crossings

= Locations of Maxima/minima in s'(x) are equivalent to zero-crossings in s"(x)

I(x)

d2

g, (x)= Wga (x)

$"(0) = g (0= 1(x)

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart

Signal

Convolution
o

Sigma = 50

ASL
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OV

VISION FOR ROBOTICS LAB

0 200 400 600 800 1000 1200 1400 1600 1800 2000
[\~ | ilaplacian of Gaussian operator . . ]
; | | | ; i i | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
| Edges occur at zero-crossings of s”(x)
i | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Perception lll | 37
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ETHzurich
2D edge detection @} VAL
Usually use a separable
= Find gradient of smoothed image in both directions filter such that:
G, (x,y)=8,(x)g,(y)
(G *1) 9o w1 (1), ()1
X 2
vs=v(G,«)=| " || X || BTV
d(G, =) IG, ] 8, ()8, (y)*1
dy _ dy
= Discard pixels with [VS| (i.e. edge strength) below a certain threshold
= Non-maxima suppression: identify local maxima of \VS\
= detected edges
Perception Ill | 38
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2D edge detection | example

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart

I/

. original image (Lena)

ASL

Autonomous Systems Lab

OOOOOOOOOOOOOOOOOOOO

Perception Ill | 39



00 G ASL
m ZU F / C h Autonomous Systems Lab

Aut Mobile Robot: d e
Ao Wobllo Roots VS| : Edge strength parcapion i | 40



ASL

Autonomous Systems Lab

Perception Ill | 41



00 G ASL
m ZU r / C h Autonomous Systems Lab

Thinning: non-maximal suppression
= edge image

Autonomous Mobile Robots
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2D edge detection | partial derivatives of an image @} VanL

Autonomous Mobile Robots
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2D edge detection | other approx. of derivative filters QivanL
=  Prewitt: 110 11 1 1111
Fx == 01 Fy =0 0 0 Sample Matlab code
-1]10 |1 -1 1-1| -1 >> 1m = 1mread(‘lion.Jjpg’)

>> Fy = fspecial (‘sobel’);
>> outim = imfilter (double(im), Fy);

u SObel —1 0 1 1 2 1 >> imagesc(outim);
Fx= =210 |2 Fy= 0 0 0 >> colormap gray;
_1 0 1 _1 _2 _1
= Roberts:
Fx _ O 1 F _ 1 O
-1 0 "o [-1

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart
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Key points on smoothing + derivative masks

Smoothing masks
= Values positive
= Always sum to 1 - constant regions same as input

= Amount of smoothing proportional to mask size

Derivative masks

= Opposite signs used to get high response in regions of
high contrast

= Always sum to 0 - no response in constant regions

= High absolute value at points of high contrast

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart
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2D edge detection | derivative of gaussian filter QvanL

(F.xG)*1 o
(F,#G)*1

VS=VxG=*l= A
. ’x-direction

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

[ = ~ " y-direction

Autonomous Mobile Robots
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QivVarL

VISION FOR ROBOTICS LAB

2D edge detection | popular edge detection filters

Laplacian of Gaussian

7 7 N
N O INGESs25553
if”m":‘.‘:“:‘é\\‘m::%'::‘o,@,q
SN

72
LSS 3

LK)
[

XN

derivative of Gaussian

( \
0

—G,(u,v)

ou

s,
—G,_(u,v) 2
| v ) V°G, (u,v) = ou

VG, (u,v) =

47
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Point Features QI V4L

Image Feature Extraction:
= Edges
= Points: Shi-Tomasi & Harris corners
SIFT features
= and more recent algorithms from the state of the art...

-1

margaritachli.com/papers/ICCV2011paper.pdf

Autonomous Mobile Robots
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Point features | applications QI VarL

Point features are widely used in:

= Robot navigation

= Object recognition

= 3D reconstruction

= Motion tracking

= |ndexing and database retrieval = Google Images

= |mage stitching: this panorama was generated using AUTOSTITCH (freeware)
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Point features | how to build a panorama? ONEair

= \We need to match (align) images

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 50
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Point features | how to build a panorama? ONEair

= Detect feature points in both images

Autonomous Mobile Robots
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Point features | how to build a panorama? ONEair

= Detect feature points in both images

= Find corresponding pairs

Autonomous Mobile Robots
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Point features | how to build a panorama? @} VaRL

= Detect feature points in both images
= Find corresponding pairs

= Use these pairs to align images

Autonomous Mobile Robots
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Point features | feature extraction @} vVanL

Problem 1:
= Detect the same points independently in both images, if they are in the field of view

no chance to match!

We need a repeatable feature detector

Autonomous Mobile Robots
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Point features | feature matching Qi VanL

Problem 2:
= For each point, identify its correct correspondence in the other image(s)

We need a reliable and distinctive feature descriptor

Autonomous Mobile Robots
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Point features | what is a distinctive feature?

= Some patches can be localized or matched with higher accuracy than others

Image 1

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart

Image 2
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Corner detection ONGam

commons.wikimedia.org
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Corner detection | identifying corners Qi VanL

= Key property: in the region around a
corner, image gradient has two or
more dominant directions

= Corners are repeatable and
distinctive

Autonomous Mobile Robots
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Corner detection | identifying corners ONCi=1r

= How do we identify corners?

= Shifting a window in any direction should give a large change of intensity in at least 2 directions

A

/"

~ |

S -

'
“flat” region: “‘edge”: “corner’:
no intensity change no change along the edge significant change in at
direction least 2 directions

Autonomous Mobile Robots
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Corner detection | how do we implement this? @} \VanL

Two image patches of size P one centered at (x,y) and one centered at (x+Ax,y+Ay)

The Sum of Squared Differences between them is:

SSD(Ax,AY) = Y (1(x,y)=1(x+Ax,y+Ay))

ol (x,
Let / = 0I(x,y) and [, = (x,) . Approximating with a 15t order Taylor expansion:

0x dy
I(x+Ax,y+Ay)=1(x,y)+ 1 .(x,y)Ax + 1 (x, y)Ay

This produces the approximation

SSD(Ax,Ay) = Ex’yep (Ix (X, Ax+ 1 (x, y)Ay))2

Autonomous Mobile Robots
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Corner detection | how do we implement this? @} \VanL

SSD(Ax,Ay) = Ex’yep (I LA+ (x, y)Ay))2

= This can be written in a matrix form as

7 11 Ax

X X"y

SSD(Ax,Ay)zEx,yEP[ Ax Ay ]

2
LI __Ay_
o
=>SSD(Ax,Ay)z[ Ax Ay ]M
Ay
> 11
M = E g “Second moment matrix”
Sl I S

s ile Robots
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Corner detection | interpreting matrix M OrEiat
rorn | a0
= Since M is symmetric = M = E > |=R" 4 R
x,yepP ley I; O A‘z

= The Harris (and the "Shi-Tomasi”) detector analyses the eigenvalues, A\, and A,, to decide if we are in
presence of a corner = i.e. look for large intensity changes in at least 2 directions

Autonomous Mobile Robots
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Corner detection | eigen decomposition ONC =t

= The eigenvectors v and eigenvalues A of a square matrix A satisfy:
Av=Av

= Then is an eigenvector v of 4 and A is the corresponding eigenvalue.

= The eigenvalues are found by solving: det(4—-Al) =0

det

= In this case, A=M is a 2 x 2 matrix, so: ‘m,, — A m, 0
My, My — A

0
Ao = 9 (my, + 1y, ) = \/4m12m21 +(my, —my,)* ]= 0
= For each A we can find its corresponding v (forming the columns in R) by

m, —A m,, X .
y

Autonomous Mobile Robots
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Corner detection | interpreting matrix M OrEiat
roIr ' 0 |
= Since M is symmetric = M = E > |=R" 4 R
x,yepP ley I; O A‘z

The Harris (and the “Shi-Tomasi”) detector analyses the eigenvalues, A\, and A,, to decide if we are in
presence of a corner = i.e. look for large intensity changes in at least 2 directions

Ax
We can visualize [Ax Ay]M[Ay] =const as an ellipse with axis-lengths determined by A, and A, and the

axes’ orientations determined by R (i.e. the eigenvectors of M)

The (two) eigenvectors identify the direction of the fastest

: : change of SSD direction of the slowest
orthogonal directions of largest and ' change of SSD
smallest changes of SSD

Autonomous Mobile Robots
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Corner detection | visualization of 2"¥ moment matrices
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Corner detection | interpreting the eigenvalues

0
Does patch P describe a corner or not? M = R™ [A AJR
= No structure: 4 =4, =0
SSD is almost constant in all directions,

so it’s a flat region

= 1D structure: 4 >> A, is large (or vice versa)
SSD has a large variation only in one direction, which is the
one perpendicular to the edge.

= 2D structure: 4,4, are both large
SSD has large variations in all directions and then we are in

presence of a corner.

= Shi-Tomasi [1] cornerness criterion:

Coyrromas = Min(A,A,) > thresh.

[1] J. Shi and C. Tomasi. "Good Features to Track,". CVPR 1994

Autonomous Mobile Robots
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A
EDGE
Ay >> N .
CORNER
A, , \, are both large
FL.AT EDGE
>>
REGION b 2
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Corner detection | corner response function Q4L

OOOOOOOOOOOOOOOOOOOO

= Computing A, and A, is expensive

= Harris & Stephens suggested using a A <
“cornerness function” instead: 2 EDGE
A, >> N\,
Coroirris = MM, —K(A + A)* =det(M) -k - trace” (M) ‘

where K =const.€[0.04,0.13] CORNER

A , \, are both large
= Harris cornerness criterion [2]

= Last step of Harris corner detector: extract local
maxima of the cornerness function

® EDGE
FLAT A >> R,
[2] C.Harris and M.Stephens. "A Combined Corner and Edge Detector.” , REGION

Proceedings of the Alvey Vision Conference, 1988

Autonomous Mobile Robots
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Harris corners | workflow QvanL
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Harris corners | workflow QrvanL

& ey

y)
/

= Compute corner
response C

Autonomous Mobile Robots
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Harris corners | workflow @} vaRL

= Find points with large corner
response: C > threshold

Perception lll | 71
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Harris corners | workflow @} vaRL

= Take only the points of local
maxima of thresholded C

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 72




06 o ASL
m ZUuric h Autonomous Systems Lab

Harris corners | workflow QvanL

<1z g,

Autonomous Mobile Robots
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= Rotation invariance?

Image 1

IR

7

Image 2

4

R

Ellipse rotates, but its shape (i.e. eigenvalues) remains the same

Harris corners are invariant to image rotation

Autonomous Mobile Robots
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Harris corners | properties ONCinin

= Scale invariance?
Image 1 Image 2

T T~

All points will be Corner!
classified as edges

Harris corners are not invariant to scale change

Autonomous Mobile Robots
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Harris corners | properties’ summary QivaL

= Harris detector: probably the most widely used and known corner detector

= The detection is invariant to
= Rotation
= Linear intensity changes
= note: to make the matching invariant to these we need suitable descriptor & matching

= The detection is NOT invariant to
= Scale changes

= Geometric affine changes: an image transformation, which distorts the neighborhood of the corner, can
distort its ‘cornerness’ response

Autonomous Mobile Robots
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Scale-invariant feature detection ONGtm i

= Consider regions (e.g. discs) of different sizes around a point

= Aim: corresponding regions look the same in image space, when the appropriate scale-change is
applied
Image 1 Image 2

= Choose corresponding regions (discs) independently in each image

Autonomous Mobile Robots
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Scale-invariant feature detection ONGtm i

= Approach: design a function to apply on the region (disc) , which is “scale invariant”

(i.e. remains constant for corresponding regions, even if they are at different scales)

example: average
image intensity over T~
corresponding regions
(at different scales)
should remain constant

»

average [ 1
Image 1 g Image 2

scale =1/2

average [ 1

Autonomous Mobile Robots > dlSC radlus > dlsc I'adlus
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Scale-invariant feature detection ONGtm i

» |dentify the local maximum in each response = these occur at corresponding region
sizes

The corresponding
scale-invariant region e
size is found in each
image independently!

»

] A
Image 1 average Image 2

scale =1/2

average [ 1

Autonomous Mobile Robots > dlsc radlus I > dlSC I'adlus

I
I
I
I
1
I
1
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Scale-invariant feature detection ONGtm i

=  A“good” function for scale detection has one clear, sharp peak

1 1 M/‘\ 1 Good !
bad bad /\

region size region size region size

= Sharp, local intensity changes in an image, are good regions to monitor for identifying relative
scale in usual images.

= ook for blobs or corners (i.e. sharp intensity discontinuities)

Autonomous Mobile Robots
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Scale-invariant feature detection | LoG scale detector ONCi=1r

= Functions of determining scale: convolve image with kernel to
identify sharp intensity discontinuities

f = Kernel * Image
m'%m

(AR “‘\\‘\!‘.
ORI N
LA TASN

= Detected scale corresponds to local maxima or minima of the
convolved image region

3°G(x,y) . 3°G(x,y)

LoG =V*G(x,y) =
(x, ) P o)

Q
Rl

SR
g Tl

Autonomous Mobile Robots www.kixor.net
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Scale-invariant feature detection | LoG scale detector

= Response of LoG for corresponding regions:

Autonomous Mobile Robots 9 8
Margarita Chli, Martin Rufli, Roland Siegwart . Scale

ASL

Autonomous Systems Lab

OOOOOOOOOOOOOOOOOOOO



ETH:zurich

Scale-invariant feature detection | DoG scale detector

=  Approximation to the LoG kernel for efficiency:

Difference of Gaussians (DoG) kernel:

DOG = Gka(xﬂy) o Ga(xay)

= Used in the SIFT feature detector [Lowe et al., IJCV 2004] *'f

= The SUREF feature detector [Bay et al, CVIU 2008]
implements the DoG kernel using a linear combination

of rectangular functions

ASL

Autonomous Systems Lab

QivVarL
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0.4

e .Laplacian
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SIFT features [Lowe et al., IJCV 2004] Q}\VaRL

= SIFT = Scale Invariant Feature Transform
an approach for detecting and describing regions of interest in an image

= SIFT features are reasonably invariant to changes in:
rotation, scaling, changes in viewpoint, illumination

= SIFT detector uses DoG kernel, SIFT descriptor is based on gradient orientations

= Very powerful in capturing + describing
distinctive structure, but also computationally
demanding

Main SIFT stages:
1. Extract keypoints + scale
2. Assign keypoint orientation

3. Generate keypoint descriptor

Autonomous Mobile Robots
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SIFT features | detector (keypoint location + scale) @} vVanL

1. Scale-space pyramid: subsample and blur original image

L]

Blur
- > _ 3. Keypoints: local extrema in the DoG pyramid

[T XXX T 7
(7 A
AS AN /AN =7

Subsample

[T XXX T 7
[T X DT 7
AN AN AN =7

<

[T XXX T 7
[T XX T 7

Scale

Autonomous Mobile Robots
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SIFT features | keypoint orientation assignment @} vVanL

Define “orientation” of keypoint to achieve rotation _~=_:!:':“': .I.I —

invariance B DEAE FOSE EEE

=  Sample intensities around the keypoint ‘ inF :

= Compute a histogram of orientations of intensity gradients :.
SSgugayEoneRacas

Image gradients

= Peaks in histogram: dominant orientations
= Keypoint orientation = histogram peak

= |f there are multiple candidate peaks, construct a different keypoint
for each such orientation o 1 2

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart | 86



ETHzurich
SIFT features | descriptor

= Descriptor : “identity card” of keypoint

= Simplest descriptor: matrix of intensity values around a keypoint (image patch)

= |deally, a descriptor should be
= highly distinctive +
= tolerant/invariant to common image transformations

= SIFT descriptor: 128-element vector

= Describe all gradient orientations relative to the keypoint
orientation

= Divide keypoint neighborhood in 4x4 regions and compute
orientation histograms along 8 directions

= SIFT descriptor: concatenation of all 4x4x8 (=128) values

= Descriptor Matching: L,-distance (i.e. SSD) between these
descriptor vectors

Autonomous Mobile Robots
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SIFT features ONGam

= Final SIFT keypoints with detected orientation & scale

Autonomous Mobile Robots
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SIFT features | features’ stability to viewpoint change

100

80
S

® 60
5
4y}
£
=

5 40
o
5
o

20

0
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SIFT features | use in planar recognition Qi VanL

= Planar surfaces can be reliably recognized at a rotation of 60° away from the camera
= Only 3 points are needed for recognition
= But objects need to have enough texture

= Recognition under occlusion

Autonomous Mobile Robots
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SIFT features | code and demos @} vVanL

= SIFT feature detector code:
for Matlab & C code to run with compiled binaries
for Win and Linux (freeware)
http://www.cs.ubc.ca/~lowe/keypoints/

= Make your own panorama with AUTOSTITCH
(freeware):
http://matthewalunbrown.com/autostitch/
autostitch.html
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More recent features from SOTA ONCAmin

= ...suitable for Robotics applications

(a) Boat image | (b) Boat image 2

Autonomous Mobile Robots
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FAST corner detector (rostenetal, pami 2010] QAL

= FAST: Features from Accelerated Segment Test

= Studies intensity of pixels on circle around candidate pixel C

= (s a FAST corner if a set of NV contiguous
pixels on circle are:

= all brighter than intensity of(C)+theshold,
or

= all darker than intensity of(C)+theshold

= Typical FAST mask: test for 12 contiguous pixels in a 16-pixel circle

= Very fast detector — in the order of 100 Mega-pixels/second
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BRIEF descriptor icaonderet. al, Eccv 2010] ONCotni

= BRIEF : Binary Robust Independent Elementary Features
= Goal: high speed (in description and matching)

= Binary descriptor formation: A

= Smooth image \ A

= for each detected keypoint (e.g. FAST), NIKLE °
sample all intensity pairs (1}, ;) (typically 256 pairs) according to pattern |- /XN
around the keypoint NG NN AT AR S ¢
for each intensity pair p S~ Y 6N TR
= if /,<1I, then set bit p of descriptor to 1 AR AS N NG
= else set bit p of descriptorto 0

Pattern for intensity pair

= Not scale/rotation invariant (extensions exist...) samples — generated randomly

= Allows very fast Hamming Distance matching: counting the no. different bits
in the descriptors tested
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Margarita Chli, Martin Rufli, Roland Siegwart Perception Ill | 94



ETH:zurich

BRISK features [Leutenegger, Chli, Siegwart, ICCV, 2011] | detector

= BRISK: Binary Robust Invariant Scalable Keypoints
= Detects corners in scale-space based on FAST detection

= High-speed (faster than SIFT, SURF)
= Rotation- and scale- invariant

7 2

Autonomous Mobile Robots
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BRISK features | descriptor @} vaRL

= Binary, formed by pairwise intensity comparisons (like BRIEF)

= Pattern defines intensity comparisons in the keypoint
neighborhood

= Red circles: size of the smoothing kernel applied
= Blue circles: smoothed pixel value used

= Compare short- and long-distance pairs for orientation
assignment & descriptor formation

= Detection and descriptor speed: =10 times faster than SURF
(and even faster than SIFT)

45 -10 -5 0 5 10 15
= Slower than BRIEF, but scale- and rotation- invariant BRISK sampling pattern

ile Robots
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BRISK feature | in action

VISION FOR ROBOTICS LAB

Open-source code for FAST, BRIEF,
BRISK and many more, available at
the OpenCV library

Autonomous Mobile Robots

Margarita Chli, Martin Rufli, Roland Siegwart [Leutenegger et al., ICCV 201 1] Perception Ill | 97



