



# Perception III: Fundamentals of Image Processing (incl. image features)

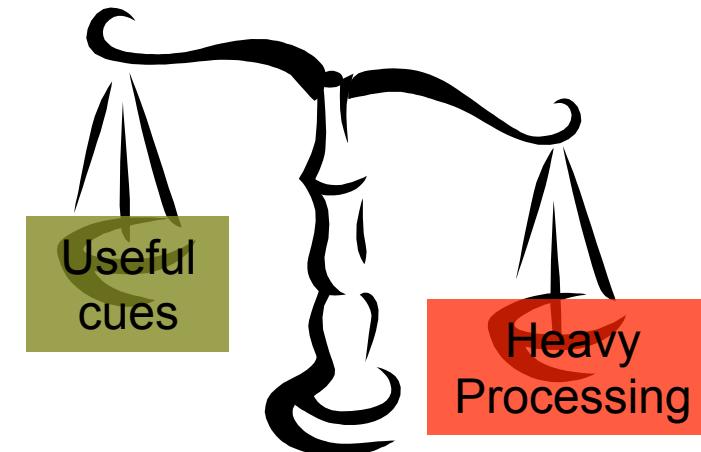
Autonomous Mobile Robots

**Margarita Chli**

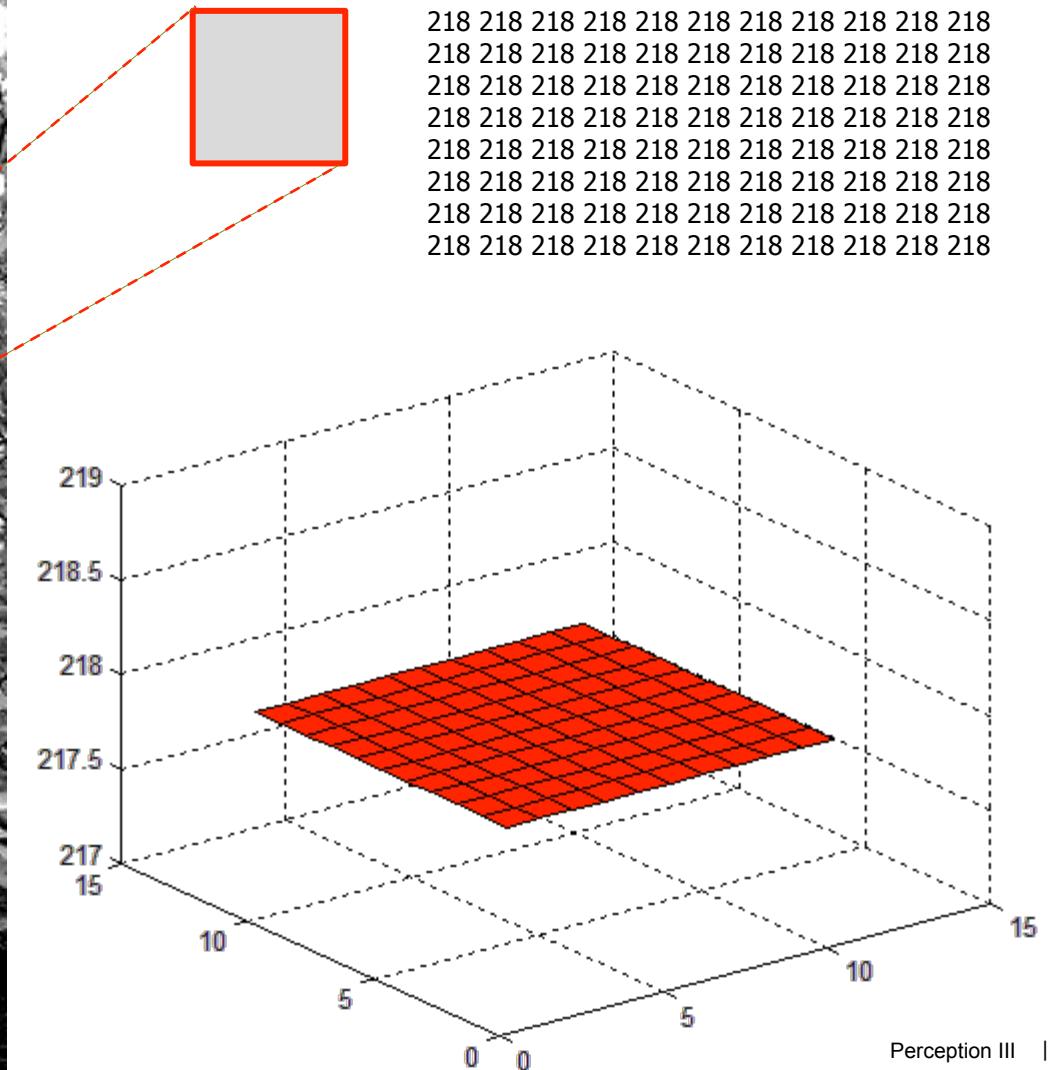
Martin Rufli, Roland Siegwart

# Image Intensities & Data Reduction

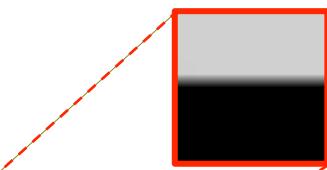
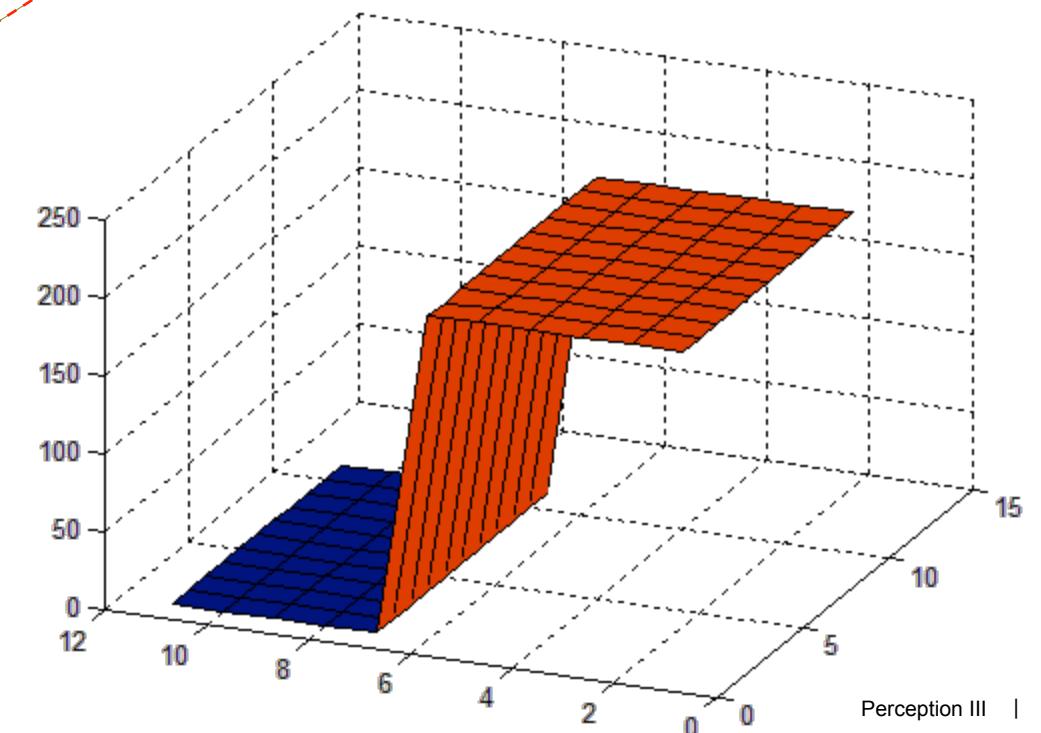
- Monochrome image  $\Rightarrow$  matrix of intensity values
- Typical sizes:
  - 320 x 240 (QVGA)
  - 640 x 480 (VGA)
  - 1280 x 720 (HD)
- Intensities sampled to 256 grey levels  $\Rightarrow$  8 bits
- Images capture a lot of information



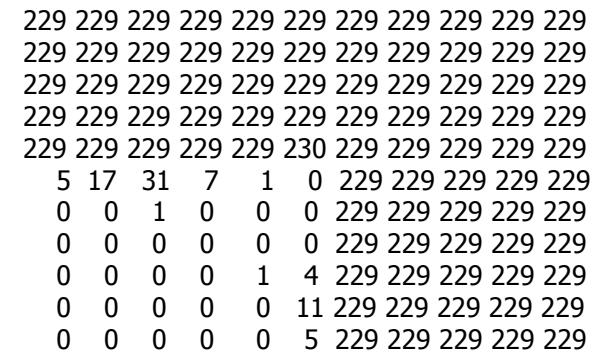
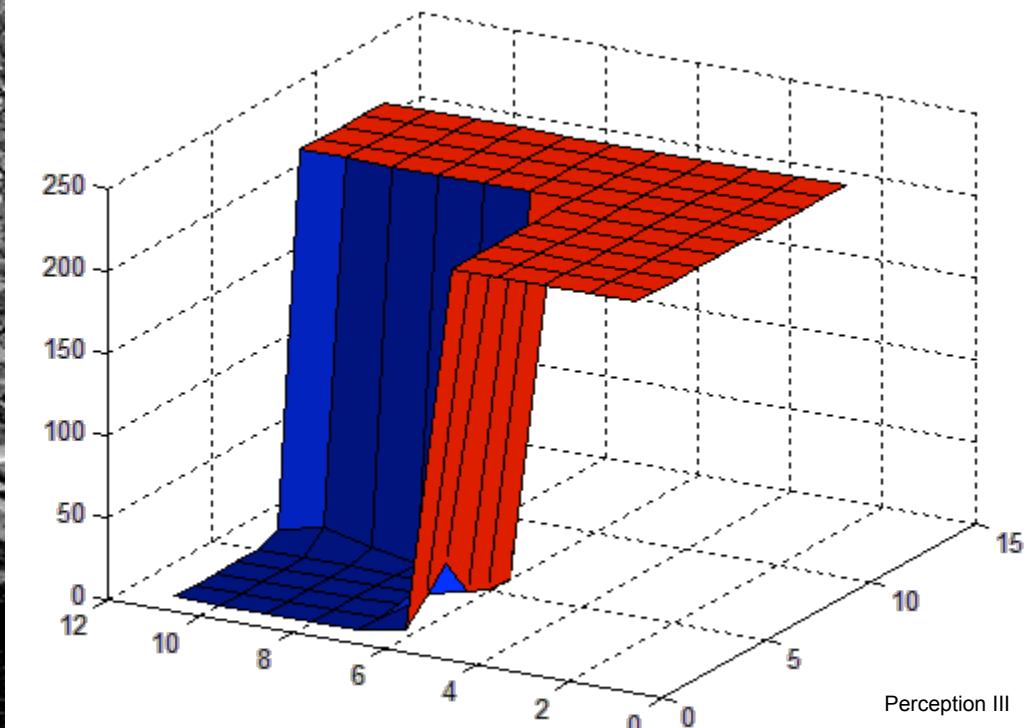
# What is useful, what is redundant?



# What is useful, what is redundant?



# What is useful, what is redundant?



# Today's Outline

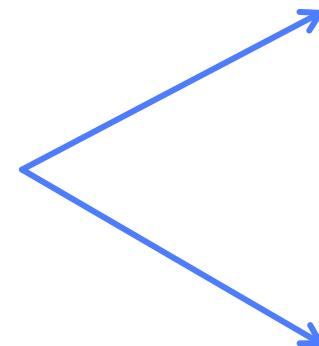
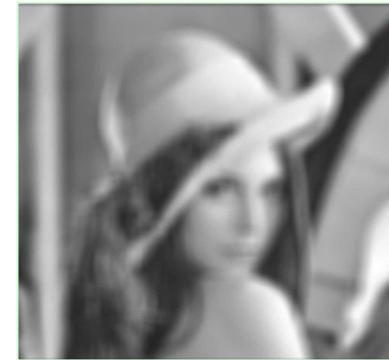
- Sections 4.3 – 4.5 of the book
- Image filtering
  - Correlation
  - Convolution
- Edge / Corner extraction
- Point Features
  - Harris corners
  - SIFT features
  - + some more recent image features from the state of the art

## Optional Reading:

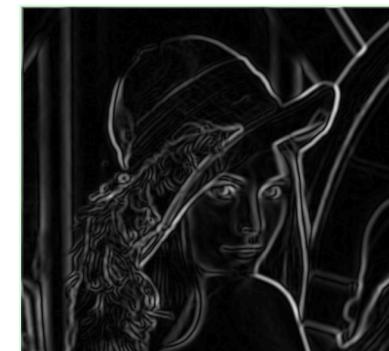
- Harris Corner Detector: C. Harris and M. Stephens. "A combined corner and edge detector." *Alvey vision conference*, 1988. [\[paper\]](#)
- Shi-Tomasi features: J. Shi and C. Tomasi. "Good features to track." *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)* 1994. [\[paper\]](#)
- SIFT features: D. G. Lowe. "Distinctive image features from scale-invariant keypoints." *International Journal of Computer Vision (IJCV)*, 2004. [\[paper\]](#)[\[demo code\]](#)
- FAST corner detector: E. Rosten, R. Porter, and T. Drummond. "Faster and better: A machine learning approach to corner detection." *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 2010. [\[paper\]](#)
- BRIEF descriptor: M. Calonder, V. Lepetit, C. Strecha, P. Fua. "Brief: Binary robust independent elementary features." *European Conference on Computer Vision (ECCV)*, 2010. [\[paper\]](#)
- BRISK features: S. Leutenegger, M. Chli, and R. Y. Siegwart. "BRISK: Binary robust invariant scalable keypoints." *International Conference on Computer Vision (ICCV)*, 2011. [\[paper\]](#)
- Open source implementation of some of these methods (and others) in [OpenCV](#).

# Image filtering

- **filtering:** accept / reject certain components
- example: a low-pass filter allows low frequencies  $\Rightarrow$  blurring (smoothing) effect on an image – used to reduce image noise
- Smoothing can be achieved not only with **frequency filters**, but also with **spatial filters**.



**Low-pass filtering:**  
retains low-frequency components  
(smoothing)



**High-pass filtering:**  
retains high-frequency components (edge detection)

# Image filtering | spatial filters

- $S_{xy}$  : neighborhood of pixels around the point  $(x, y)$  in an image  $I$
- Spatial filtering operates on  $S_{xy}$  to generate a new value for the corresponding pixel at output image  $J$



Image  $I$



Filtered Image  $J = F(I)$

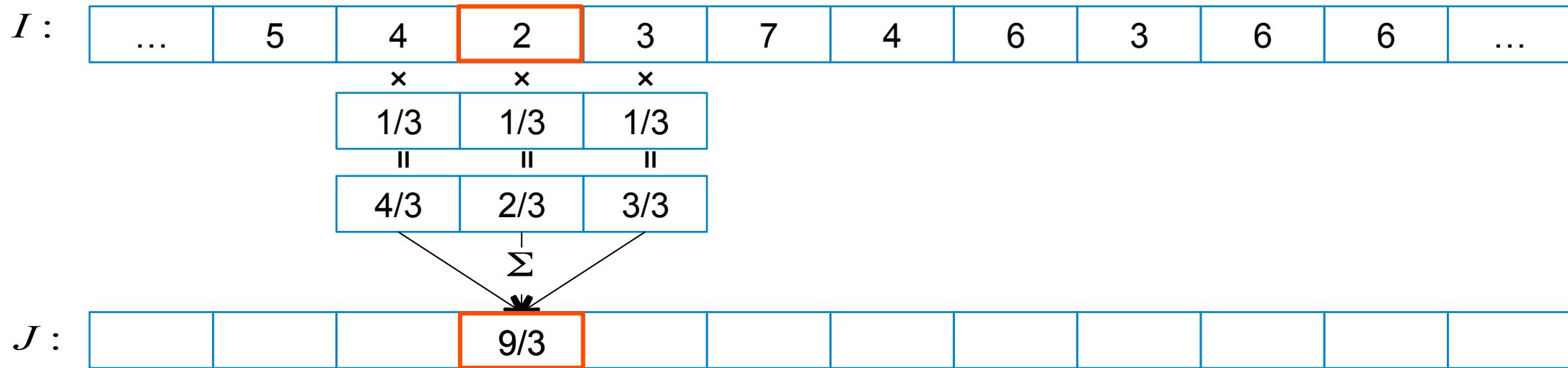
- For example, an averaging filter is: 
$$J(x, y) = \frac{\sum_{(u,v) \in S_{xy}} I(u, v)}{(2M + 1)(2N + 1)}$$

# Image filtering | linear, shift-invariant filters

- **Linear:** every pixel is replaced by a linear combination of its neighbours
- **Shift-invariant:** the same operation is performed on every point on the image
- Why filter?
  - Noise reduction, image enhancement, feature extraction, ...
- Basic & very useful filtering operations:
  - Correlation
  - Convolution
- Brief study of these filters in the simplest case of 1D images (i.e. a row of pixels) & their extension to 2D

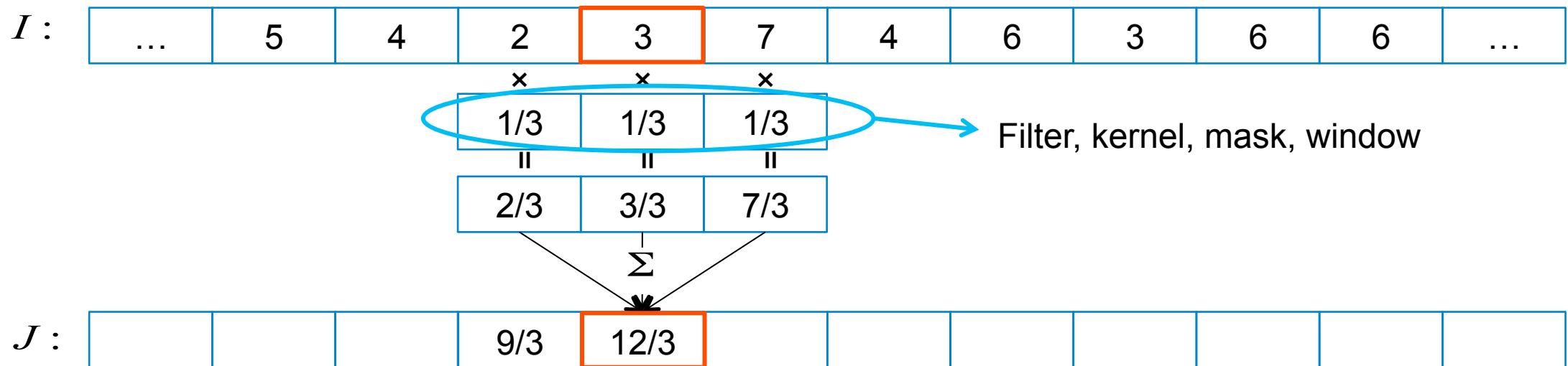
# Image filtering | correlation

- An averaging filter



# Image filtering | correlation

- An averaging filter

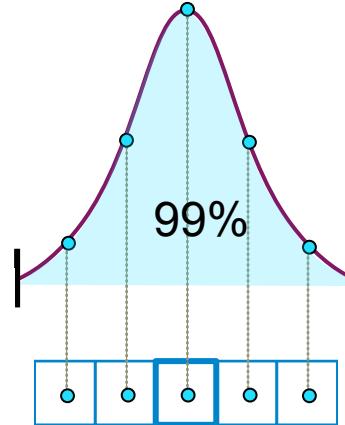


- Formally, Correlation is  $J(x) = F \circ I(x) = \sum_{i \in [-N, N]} F(i)I(x + i)$

- In this smoothing example  $F(i) = \begin{cases} 1/3, & i \in [-1, 1] \\ 0, & i \notin [-1, 1] \end{cases}$

# Image filtering | constructing filter from a continuous fn

- Common practice for image smoothing:  
use a Gaussian



$$g(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = 0$$

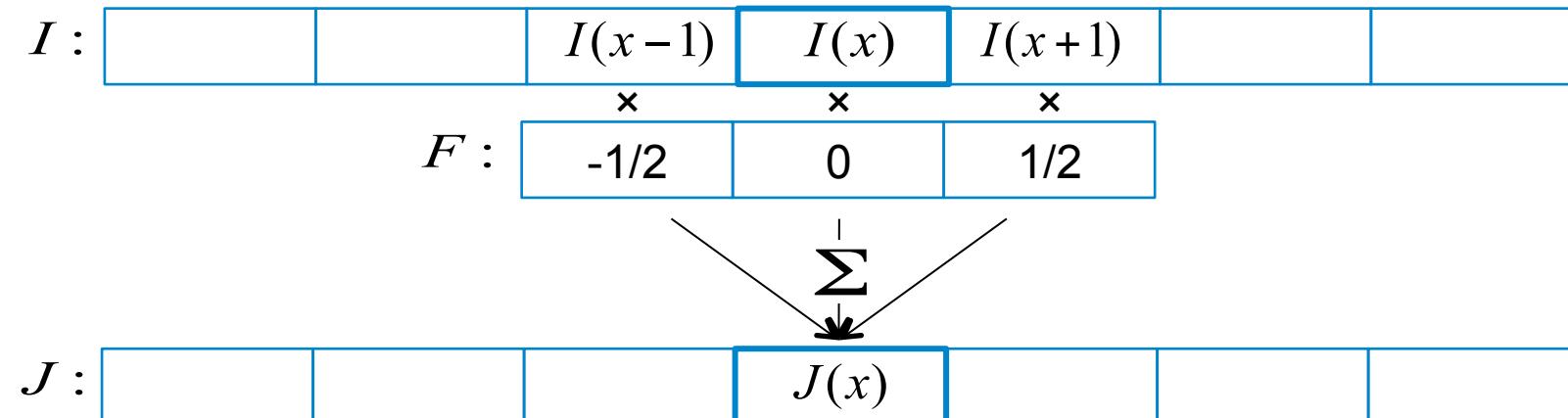
$\sigma$  : controls the amount of smoothing

Normalize filter so that values always add up to 1

- Near-by pixels have a bigger influence on the averaged value rather than more distant ones

# Image filtering | taking derivatives with correlation

- **Derivative** of an image:  
quantifies how quickly intensities change  
(along the direction of the derivative)
- Approximate a derivative operator:



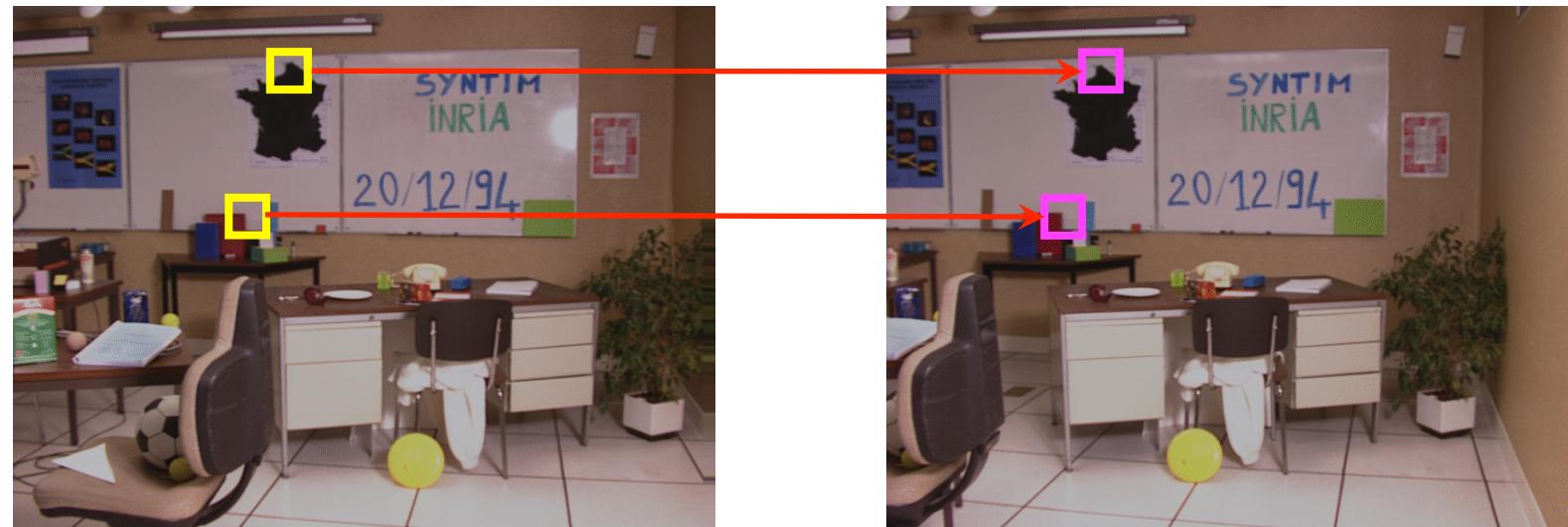
$$J(x) = \frac{I(x+1) - I(x-1)}{2}$$

# Image filtering | matching using correlation

- Find locations in an image that are similar to a **template**

# Correspondence Search | the problem

- **goal:** identify image regions / patches in the left & right images, corresponding to the same scene structure
  - Typical **similarity measures:** Normalized Cross-Correlation (NCC) , Sum of Squared Differences (SSD), Sum of Absolute Differences (SAD), ...
  - **Exhaustive** image search can be computationally very expensive!  
*Can we search for correspondences more efficiently?*



# Image filtering | matching using correlation

- Find locations in an image that are similar to a **template**
- Filter = template  ⇒ test it against all image locations



- Similarity measure: Sum of Squared Differences (**SSD**) – minimize

$$\sum_{i=-N}^N (F(i) - I(x+i))^2$$



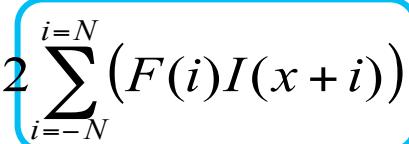
# Image filtering | matching using correlation

- Find locations in an image that are similar to a **template**
- Filter = template  ⇒ test it against all image locations



- Similarity measure: Sum of Squared Differences (**SSD**) – minimize

$$\sum_{i=-N}^N (F(i) - I(x+i))^2 = \sum_{i=-N}^N (F(i))^2 + \sum_{i=-N}^N (I(x+i))^2 - 2 \sum_{i=-N}^N (F(i)I(x+i))$$

 **Correlation**

A blue box encloses the term  $- 2 \sum_{i=-N}^N (F(i)I(x+i))$ , which is the term that represents the correlation between the template and the image window. A blue arrow points from this term to the word "Correlation" below it.



- Similarity measure: Correlation? – maximize

# Image filtering | matching using correlation

- Find locations in an image that are similar to a **template**
- Filter = template  ⇒ test it against all image locations



- Similarity measure: Sum of Squared Differences (**SSD**) – minimize

$$\sum_{i=-N}^N (F(i) - I(x+i))^2 = \sum_{i=-N}^N (F(i))^2 + \sum_{i=-N}^N (I(x+i))^2 - 2 \sum_{i=-N}^N (F(i)I(x+i))$$

**Correlation**



- Similarity measure: Correlation? – maximize



# Image filtering | NCC: Normalized Cross Correlation

- Find locations in an image that are similar to a **template**
- Filter = template  ⇒ test it against all image locations



- Correlation value is affected by the magnitude of intensities
- Similarity measure: Normalized Cross Correlation (**NCC**) – maximize

$$\frac{\sum_{i=-N}^{i=N} (F(i)I(x+i))}{\sqrt{\sum_{i=-N}^{i=N} (F(i))^2} \sqrt{\sum_{i=-N}^{i=N} (I(x+i))^2}}$$



# Image filtering | ZNCC: Zero-mean NCC

- Find locations in an image that are similar to a **template**
- Filter = template   $\Rightarrow$  test it against all image locations



- Correlation value is affected by the magnitude of intensities
- Similarity measure: Zero-mean Normalized Cross Correlation (**ZNCC**) – maximize

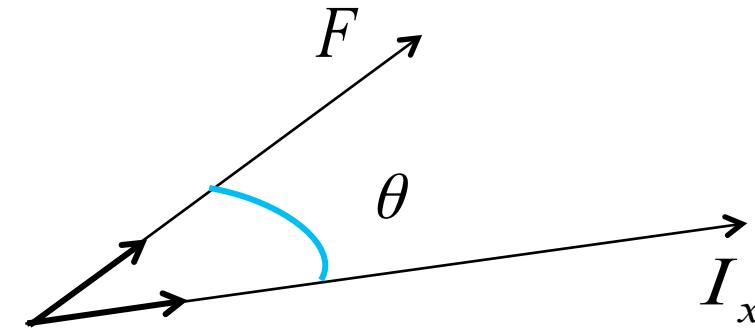
$$\frac{\sum_{i=-N}^{i=N} (F(i) - \mu_F)(I(x+i) - \mu_{I_x})}{\sqrt{\sum_{i=-N}^{i=N} (F(i) - \mu_F)^2} \sqrt{\sum_{i=-N}^{i=N} (I(x+i) - \mu_{I_x})^2}} \quad , \text{ where}$$

$$\begin{cases} \mu_F = \frac{\sum_{i=-N}^N F(i)}{2N+1} \\ \mu_{I_x} = \frac{\sum_{i=-N}^N I(x+i)}{2N+1} \end{cases}$$

# Image filtering | correlation as a dot product

- Considering the filter  $F$  and the portion of the image  $I_x$  as vectors  $\Rightarrow$  their correlation is:

$$\langle F, I_x \rangle = \|F\| \|I_x\| \cos \theta$$



- In **NCC** and **ZNCC** we consider the unit vectors of  $F$  and  $I_x$ , hence we measure their similarity based on the angle  $\theta$

# Image filtering | correlation in 2D

$$F \circ I(x, y) = \sum_{j \in [-M, M]} \sum_{i \in [-N, N]} F(i, j) I(x + i, y + j)$$

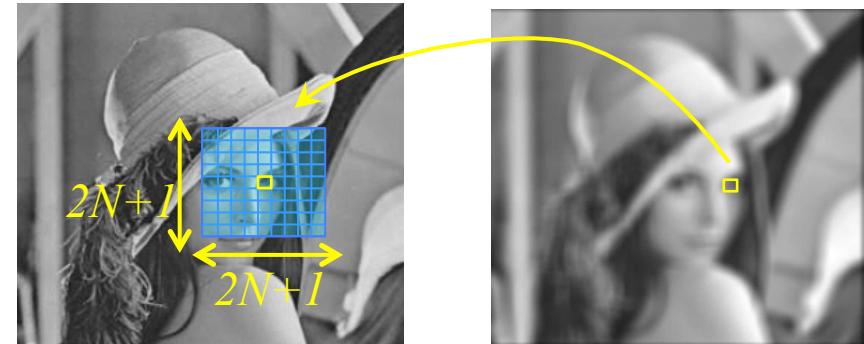
- Example:  
Constant averaging filter

$$F = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix}$$

- If  $\text{size}(F) = (2N + 1)^2$  i.e. this is a square filter

■ 2D Correlation  $\Rightarrow$  no. multiplications per pixel  $= (2N + 1)^2$   
 no. additions per pixel  $= (2N + 1)^2 - 1$

This example was generated with a 21x21 mask



# Image filtering | correlation in 2D

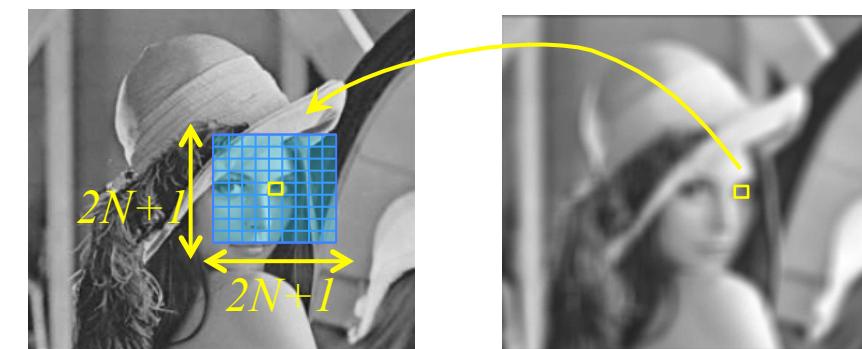
$$F \circ I(x, y) = \sum_{j \in [-M, M]} \sum_{i \in [-N, N]} F(i, j) I(x + i, y + j)$$

- Example:  
Constant averaging filter

$$F = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

“separable” filter

- If  $\text{size}(F) = (2N + 1)^2$  i.e. this is a square filter
  - 2D Correlation  $\Rightarrow$  no. multiplications per pixel  $= (2N + 1)^2$   
no. additions per pixel  $= (2N + 1)^2 - 1$
  - $2 \times 1$ D Correlation  $\Rightarrow$  no. multiplications per pixel  $= 2(2N + 1)$   
no. additions per pixel  $= 4N$



# Image filtering | correlation in 2D

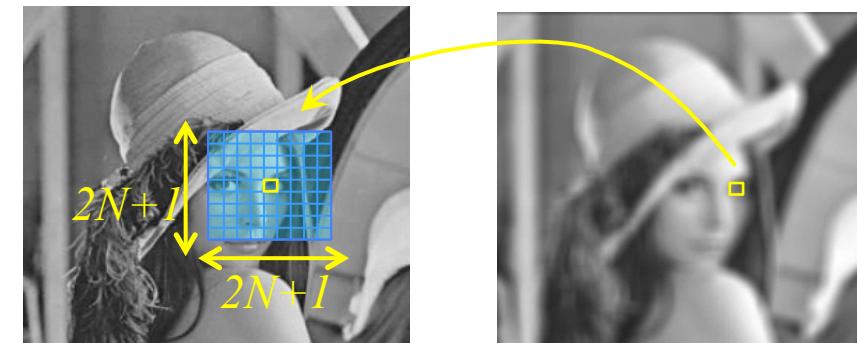
$$F \circ I(x, y) = \sum_{j \in [-M, M]} \sum_{i \in [-N, N]} F(i, j) I(x + i, y + j)$$

- Example:  
Constant averaging filter

$$F = \begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

“separable” filter

- If  $\text{size}(F) = (2N + 1)^2$  i.e. this is a square filter
  - 2D Correlation  $\Rightarrow$  no. multiplications per pixel  $= (2N + 1)^2$   
no. additions per pixel  $= (2N + 1)^2 - 1$
  - $2 \times 1$ D Correlation  $\Rightarrow$  no. multiplications per pixel  $= 2(2N + 1)$   
no. additions per pixel  $= 4N$
  - $2 \times 1$ D Correlation  $\Rightarrow$  no. multiplications per pixel  $= 1$   
(with const. factor) no. additions per pixel  $= 4N$



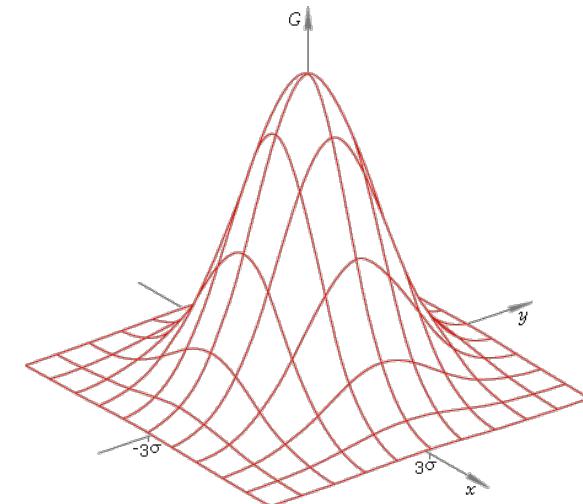
# Image filtering | 2D gaussian smoothing

- A general, 2D Gaussian  $G(x, y) = \frac{1}{2\pi|S|^{1/2}} e^{-\frac{1}{2}\begin{pmatrix} x \\ y \end{pmatrix} S^{-1} \begin{pmatrix} x & y \end{pmatrix}}$
- We usually want to smooth by the same amount in both  $x$  and  $y$  directions  $S = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$
- So this simplifies to:

$$G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{y^2}{2\sigma^2}}$$

$g_\sigma(x)$        $g_\sigma(y)$

- Another separable filter



# Image filtering | convolution

- Convolution is **equivalent** to Correlation with a flipped filter before correlating
- **CONVOLUTION:**  $J(x) = F * I(x) = \sum_{i \in [-N, N]} F(i)I(x-i)$
- **CORRELATION:**  $J(x) = F \circ I(x) = \sum_{i \in [-N, N]} F(i)I(x+i)$
- Likewise, in 2D we flip the filter both horizontally & vertically

$$J(x, y) = F * I(x, y) = \sum_{j \in [-M, M]} \sum_{i \in [-N, N]} F(i, j)I(x-i, y-j)$$

- Key difference between correlation and convolution is that **convolution is associative**:

$$F * (G * I) = (F * G) * I$$

- Very useful!
- Example: smooth an image & take its derivative  $\Rightarrow$  convolve the Derivative filter with the Gaussian Filter & convolve the resulting filter with the Image

So if  $F = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$   
 $F' = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$   
Then,  $F * I(x) = F' \circ I(x)$

# Image filtering | examples

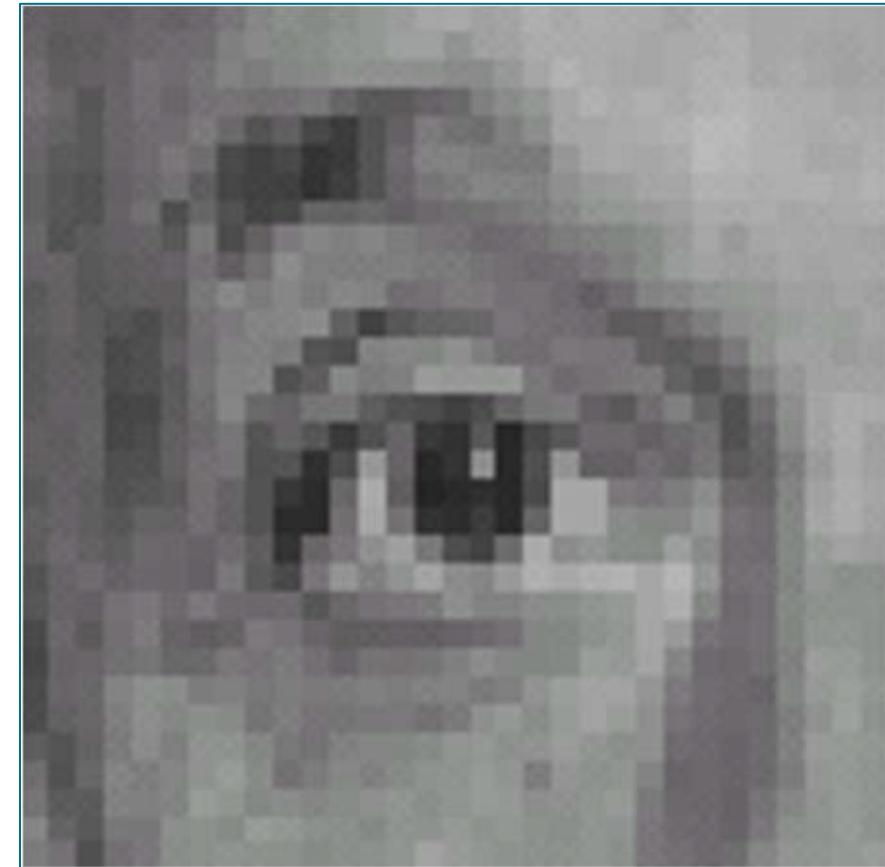


original image

\*

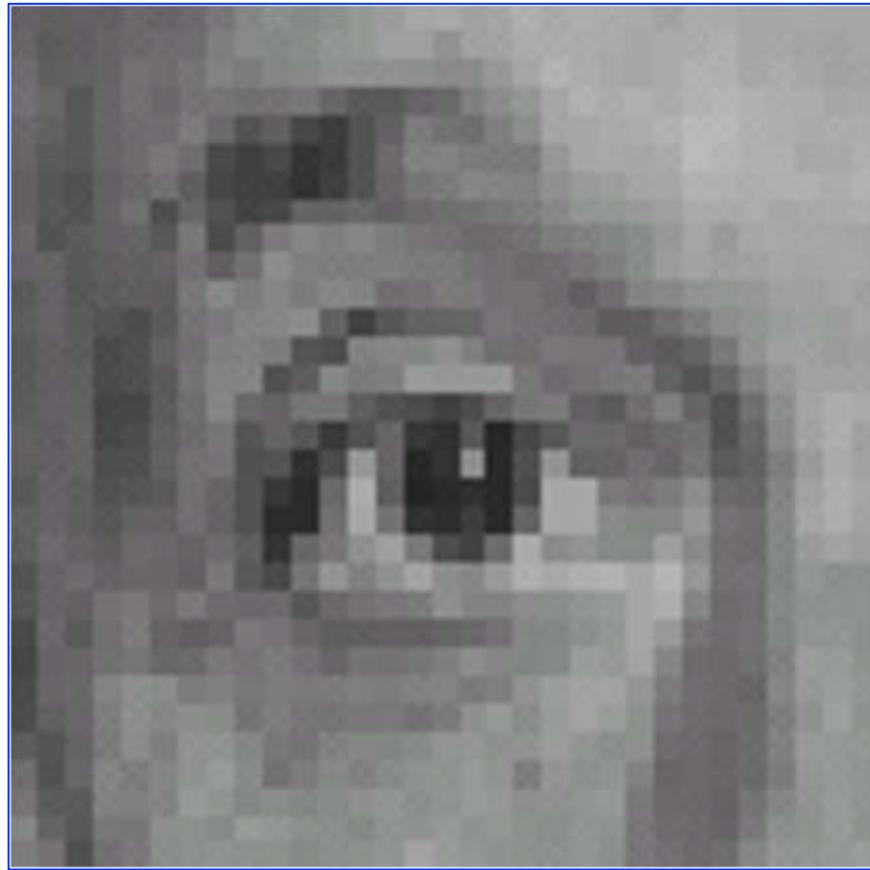
|   |   |   |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 0 |

=



filtered (no change)

# Image filtering | examples



original image

\*

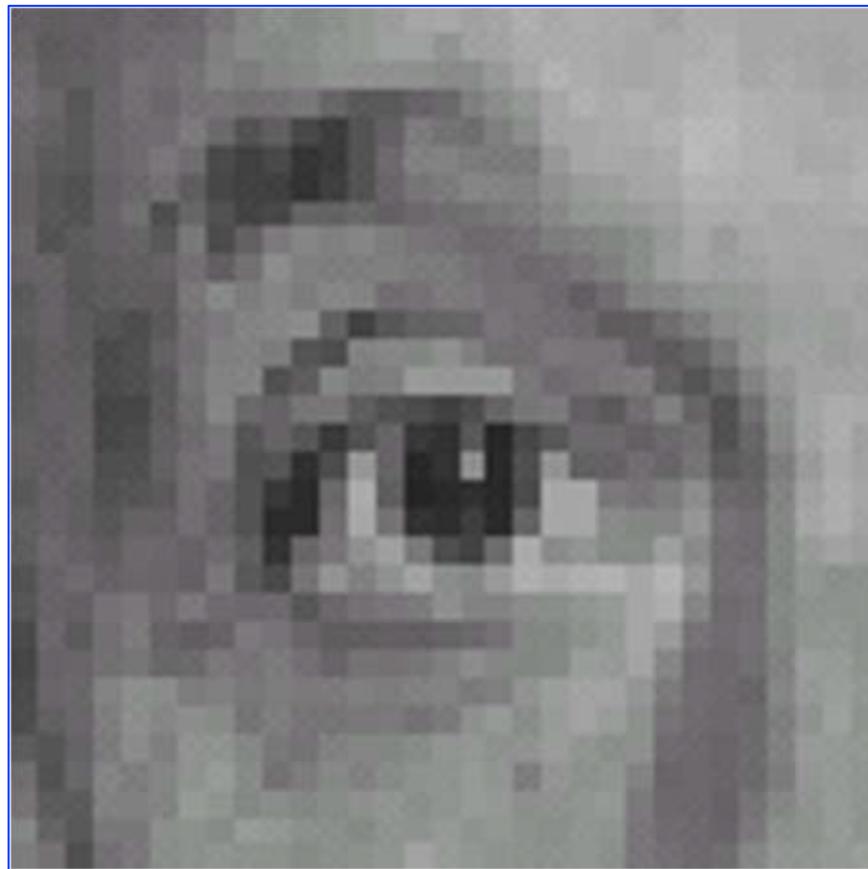
|   |   |   |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 0 | 0 |

=



filtered (shifted left by 1 pixel)

# Image filtering | examples

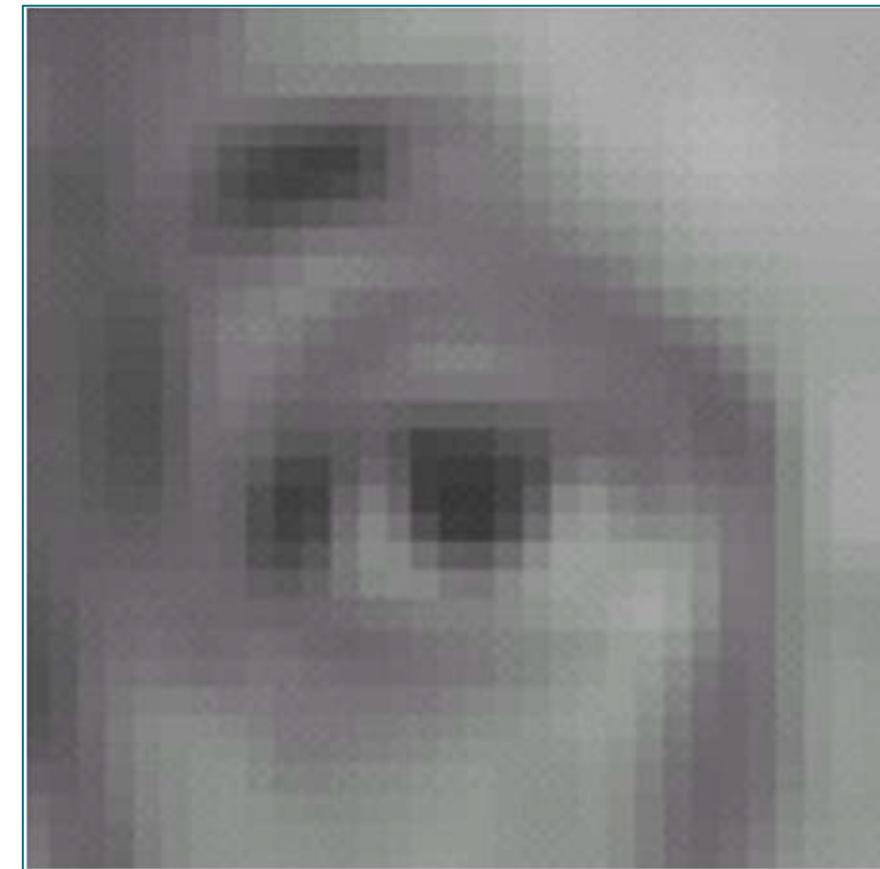


original image

\*

|     |     |     |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |

=



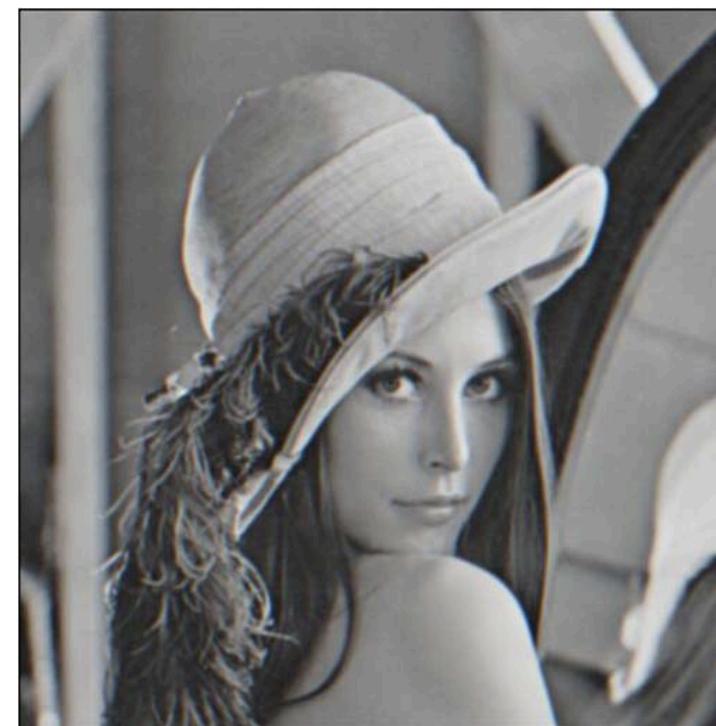
filtered (blurred with a box filter)

# Image filtering | examples

- What does blurring take away?



original image



smoothed (5x5)



detail

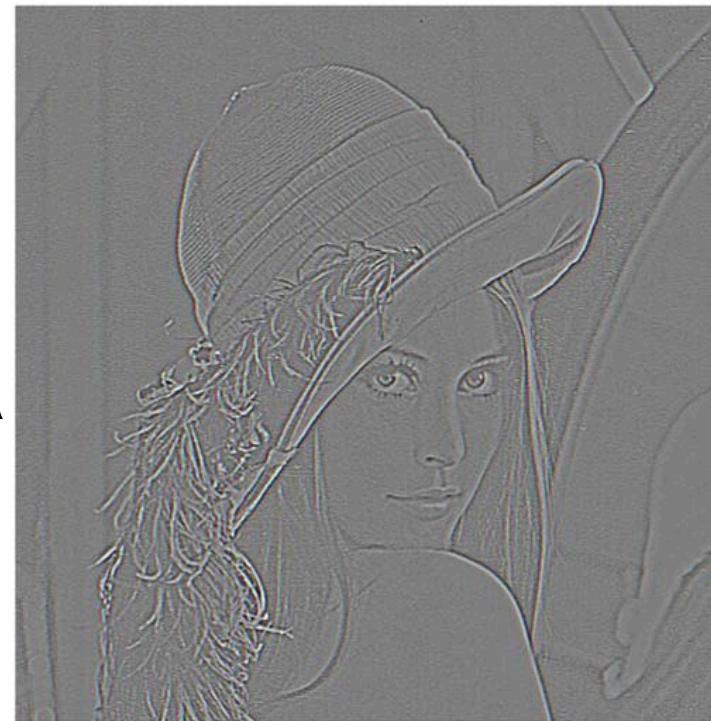
# Image filtering | examples

- Let's add it back:

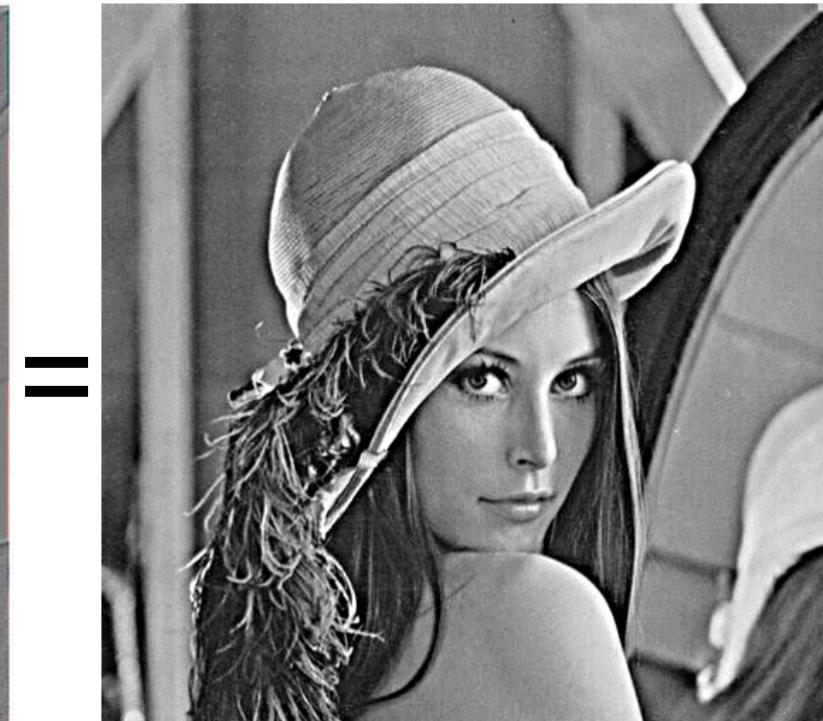


original image

+ a



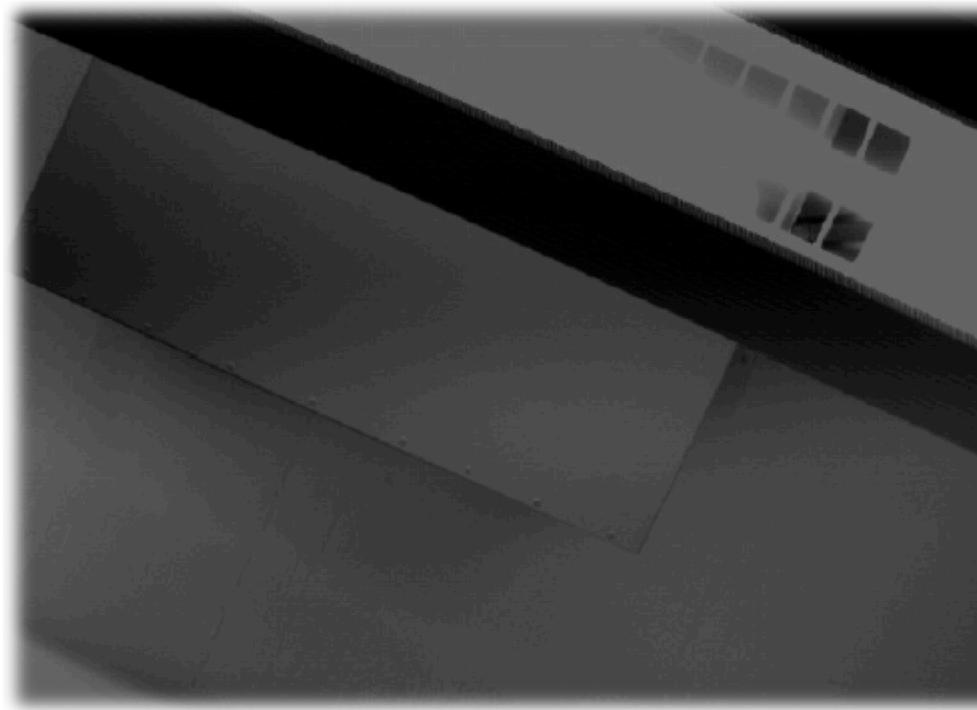
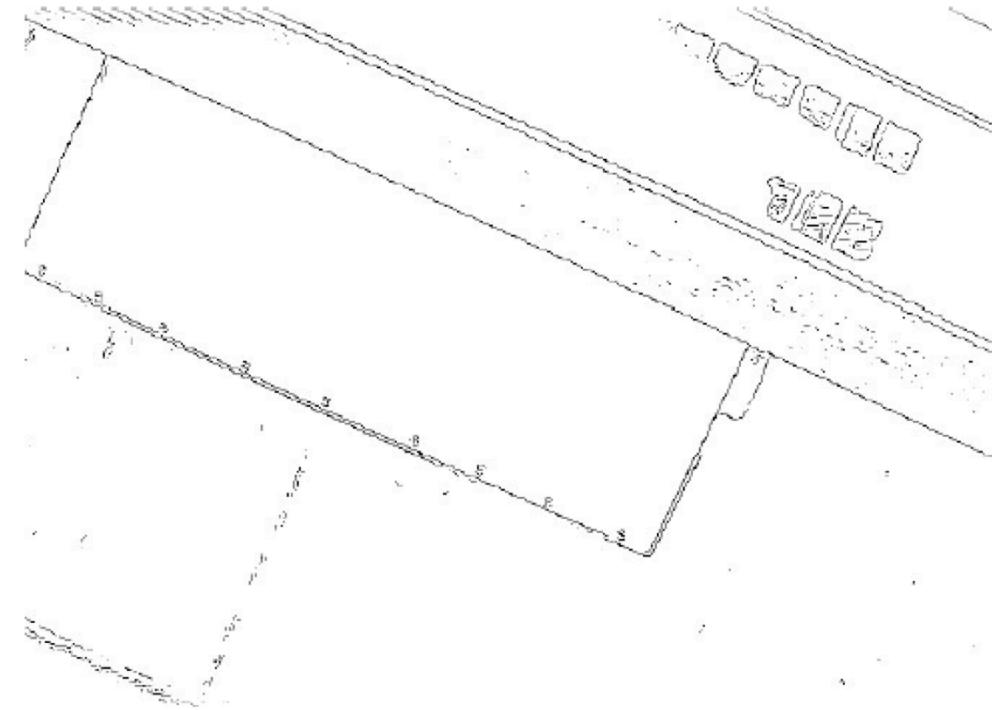
detail



sharpened

# Edge detection

- Ultimate goal of edge detection: an idealized line drawing.
- Edge contours in the image correspond to important scene contours.



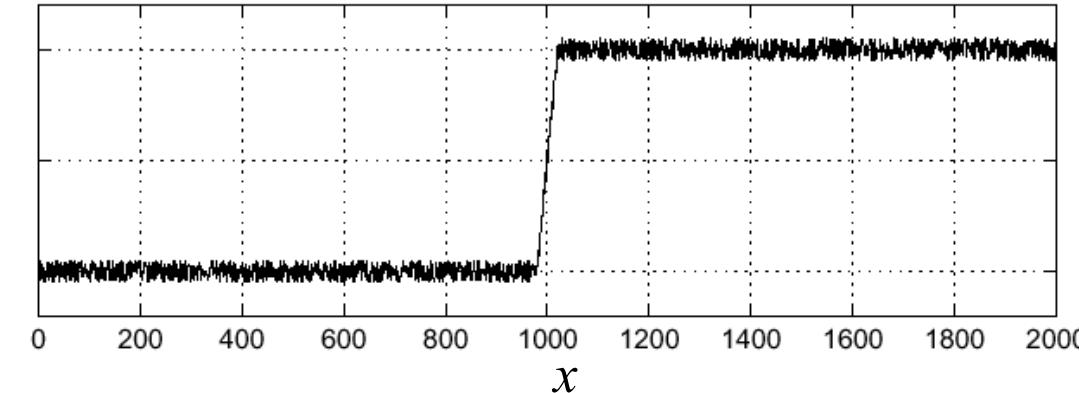
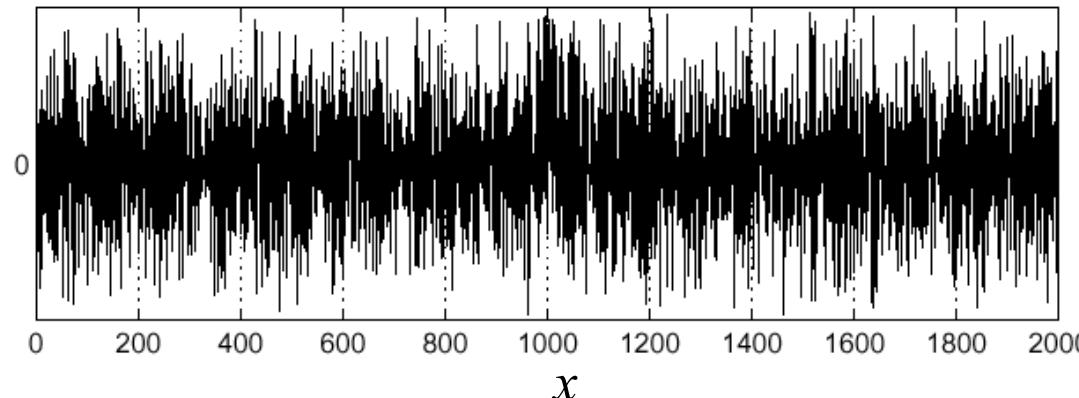
# Edge detection | edge = intensity discontinuity in 1 direction

- Edges correspond to sharp changes of intensity
- **How to detect an edge?**
  - Change is measured by 1<sup>st</sup> order derivative in 1D
  - Big intensity change  $\Rightarrow$  magnitude of derivative is large
  - Or 2<sup>nd</sup> order derivative is zero.

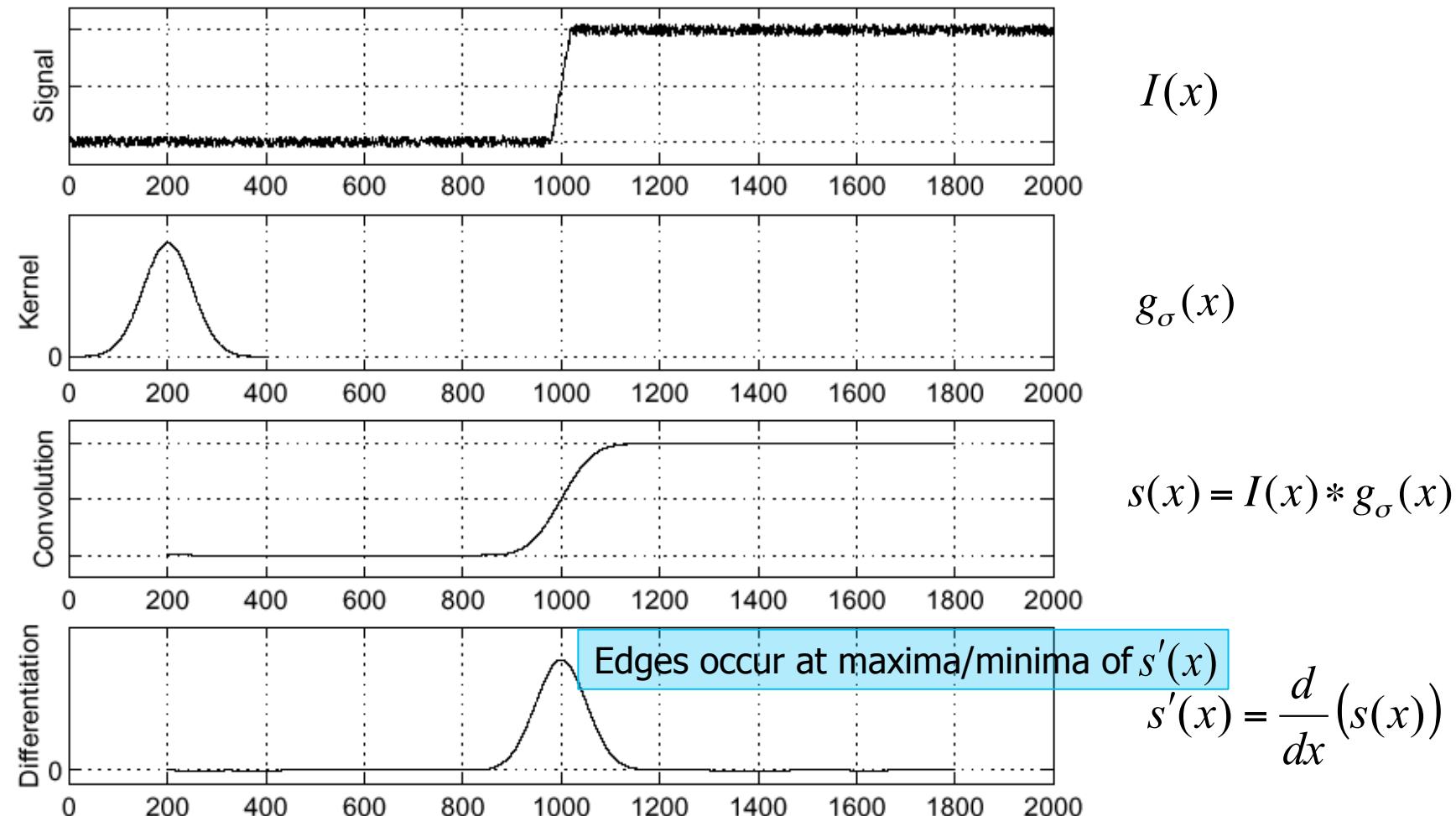


# 1D edge detection |

- Consider a single row or column of the image, where image intensity shows an obvious change

 $I(x)$  $\frac{d}{dx} I(x)$ 

# 1D edge detection | solution: smooth first



- Where is the edge?

# 1D edge detection | derivative theorem of convolution

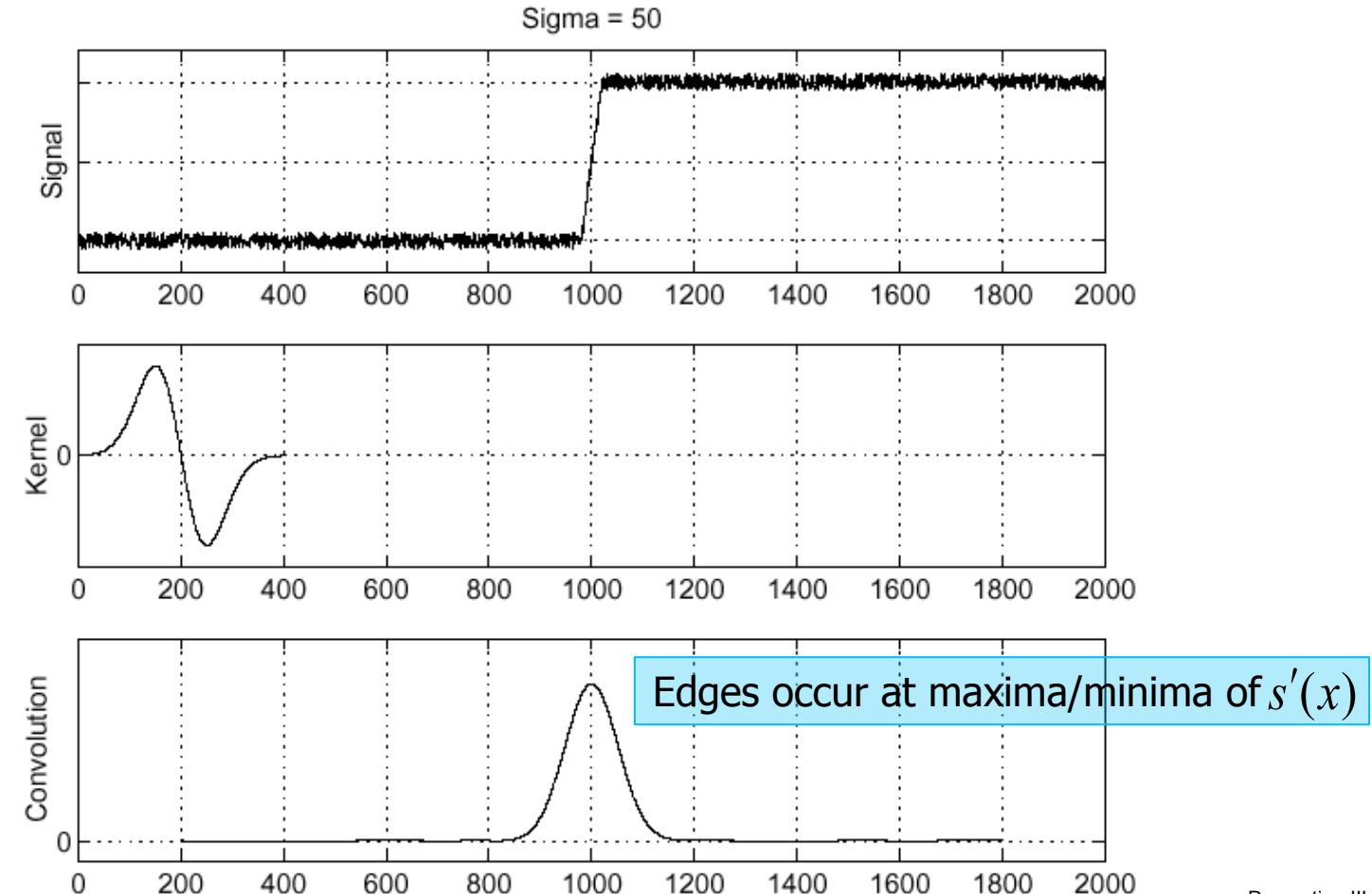
- $s'(x) = \frac{d}{dx} (g_\sigma(x) * I(x)) = g'_\sigma(x) * I(x)$

- This saves us one operation:

$$I(x)$$

$$g'_\sigma(x) = \frac{d}{dx} g_\sigma(x)$$

$$s'(x) = g'_\sigma(x) * I(x)$$



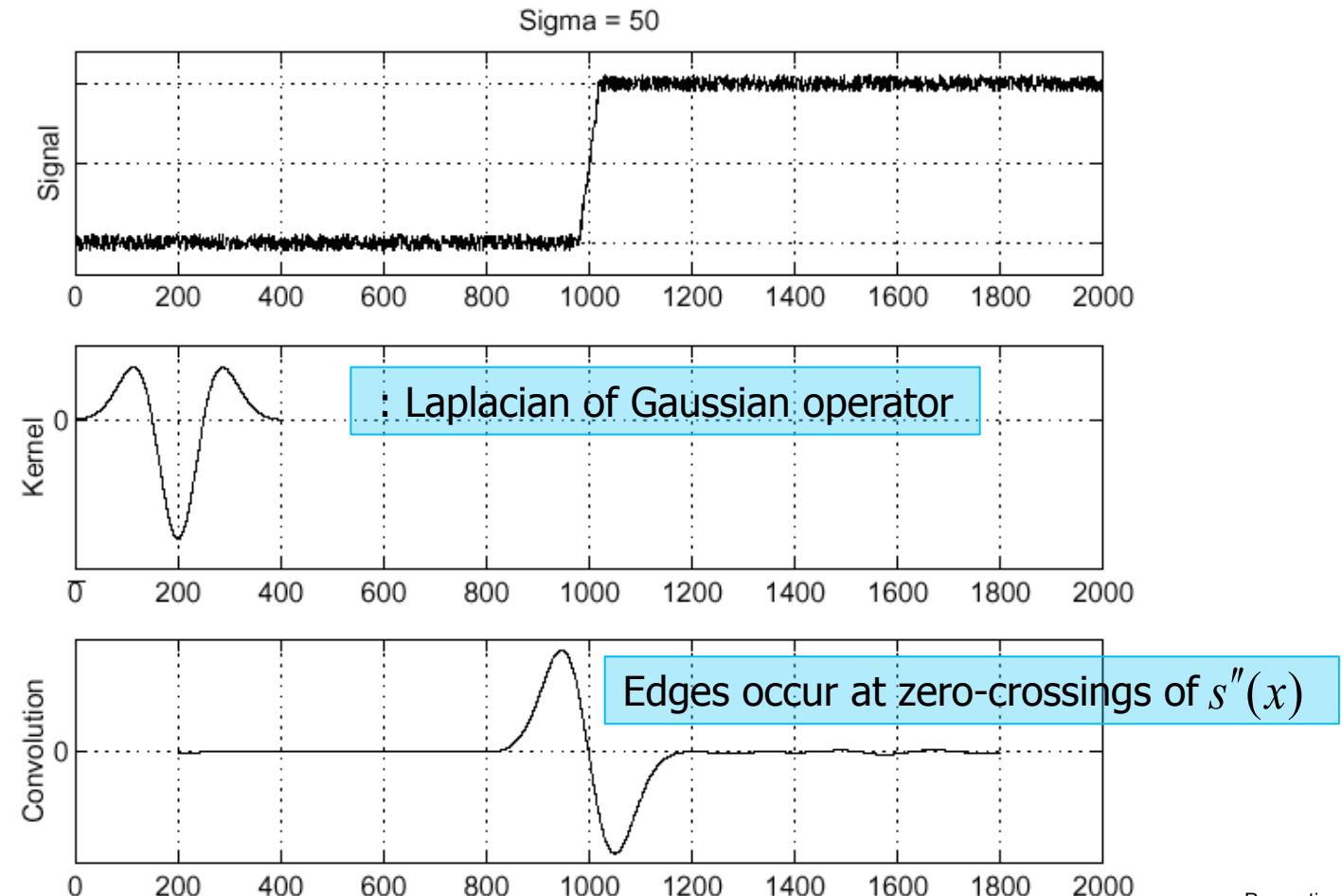
# 1D edge detection | zero-crossings

- Locations of Maxima/minima in  $s'(x)$  are equivalent to zero-crossings in  $s''(x)$

 $I(x)$ 

$$g''_\sigma(x) = \frac{d^2}{dx^2} g_\sigma(x)$$

$$s''(x) = g''_\sigma(x) * I(x)$$



# 2D edge detection

- Find gradient of smoothed image in both directions

$$\nabla S = \nabla(G_\sigma * I) = \begin{bmatrix} \frac{\partial(G_\sigma * I)}{\partial x} \\ \frac{\partial(G_\sigma * I)}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial G_\sigma}{\partial x} * I \\ \frac{\partial G_\sigma}{\partial y} * I \end{bmatrix} = \begin{bmatrix} g'_\sigma(x)g_\sigma(y)*I \\ g_\sigma(x)g'_\sigma(y)*I \end{bmatrix}$$

Usually use a separable filter such that:  
 $G_\sigma(x, y) = g_\sigma(x)g_\sigma(y)$

- Discard pixels with  $|\nabla S|$  (i.e. edge strength) below a certain threshold
- Non-maxima suppression:** identify local maxima of  $|\nabla S|$   
 $\Rightarrow$  detected edges

# 2D edge detection | example



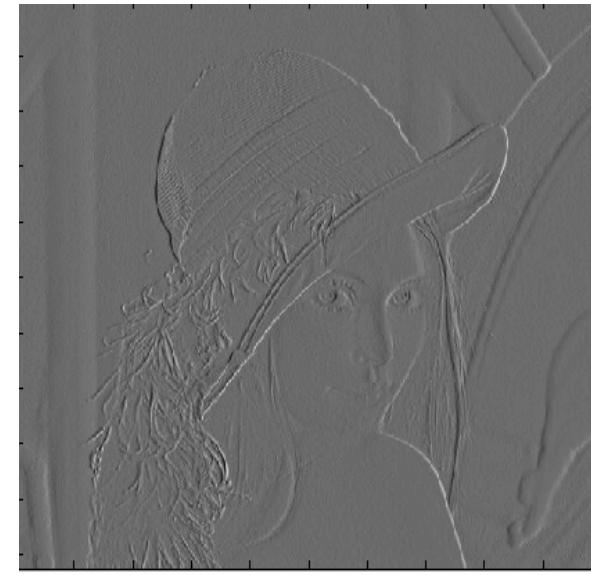
$I$  : original image (Lena)

# 2D edge detection | example using the Canny edge detector

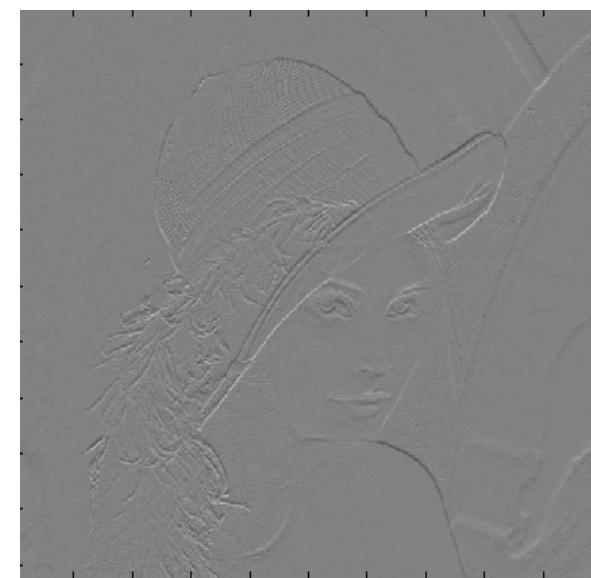


$$|\nabla S| = \sqrt{S_x^2 + S_y^2}$$

$|\nabla S|$  : Edge strength



$$S_x = \frac{\partial(G_\sigma * I)}{\partial x}$$



$$\nabla S = \nabla(G_\sigma * I)$$

$$S_y = \frac{\partial(G_\sigma * I)}{\partial y}$$

# 2D edge detection | example using the Canny edge detector



Thresholding  $|\nabla S|$

# 2D edge detection | example using the Canny edge detector



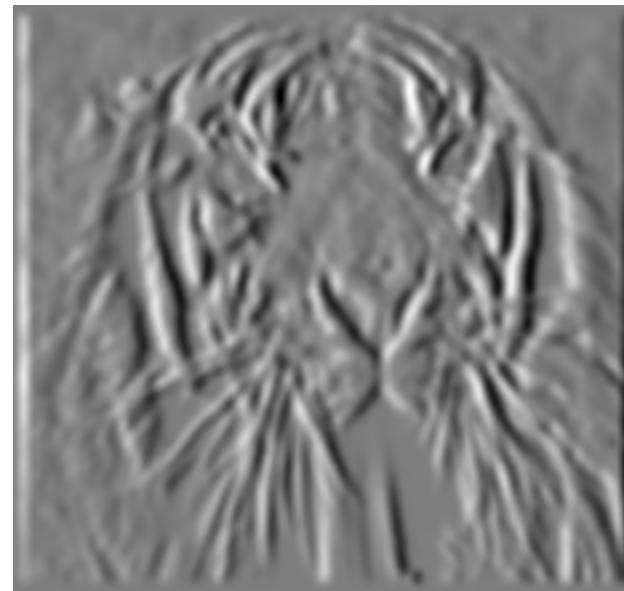
Thinning: non-maximal suppression  
⇒ **edge image**

# 2D edge detection | partial derivatives of an image



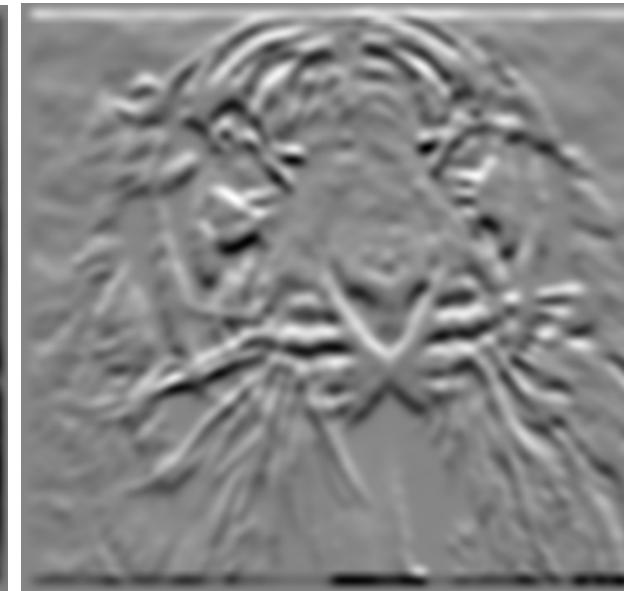
$$S_x = \frac{\partial(G_\sigma * I)}{\partial x}$$

$$F_x = \begin{bmatrix} -1 & 1 \end{bmatrix}$$



$$S_y = \frac{\partial(G_\sigma * I)}{\partial y}$$

$$F_y = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$



$$|\nabla S| = \sqrt{S_x^2 + S_y^2}$$



# 2D edge detection | other approx. of derivative filters

- Prewitt:

$$F_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$F_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

- Sobel:

$$F_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$F_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

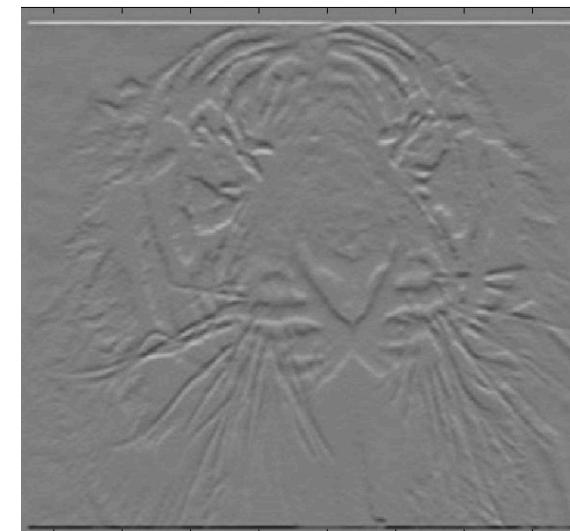
- Roberts:

$$F_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$F_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Sample Matlab code

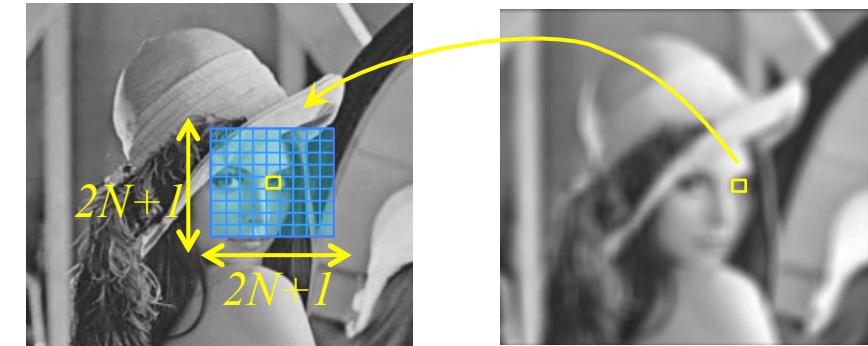
```
>> im = imread('lion.jpg');
>> Fy = fspecial('sobel');
>> outim = imfilter(double(im), Fy);
>> imagesc(outim);
>> colormap gray;
```



# Key points on smoothing + derivative masks

## Smoothing masks

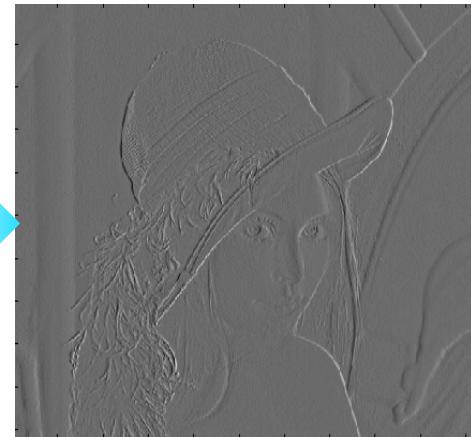
- Values positive
- Always **sum to 1** → constant regions same as input
- Amount of **smoothing proportional to mask size**



## Derivative masks

- Opposite signs used to get high response in regions of high contrast
- Always **sum to 0** → no response in constant regions
- High absolute value at points of high contrast

$$F_x = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

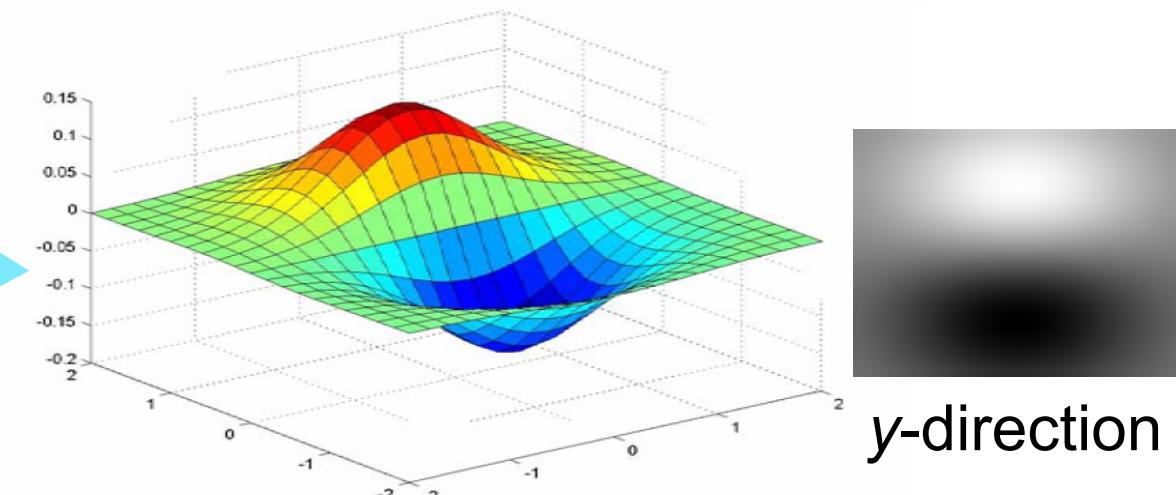


## 2D edge detection | derivative of gaussian filter

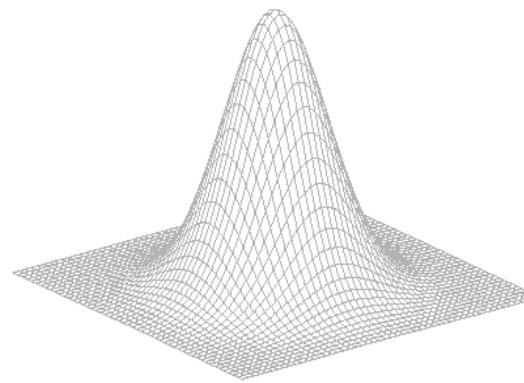
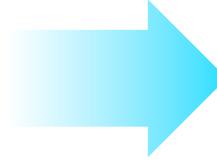
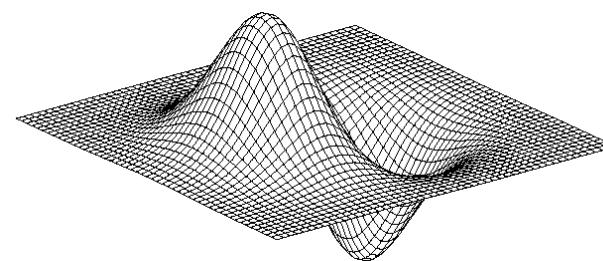
$$\nabla S = \nabla * G * I = \begin{pmatrix} (F_x * G) * I \\ (F_y * G) * I \end{pmatrix}$$

$$F_x = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

$$F_y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$



# 2D edge detection | popular edge detection filters



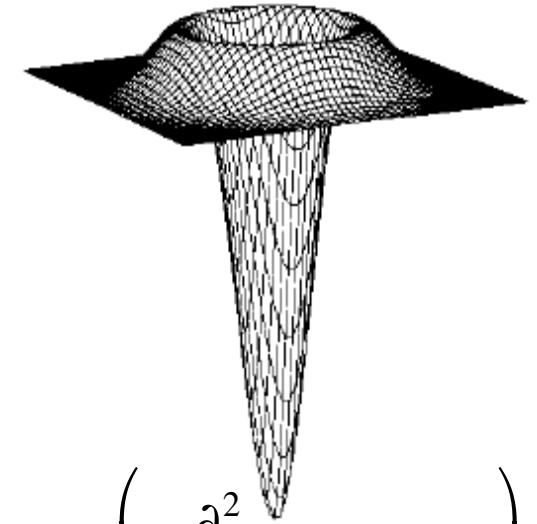
derivative of Gaussian

Gaussian

$$G_\sigma(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

$$\nabla G_\sigma(u, v) = \begin{pmatrix} \frac{\partial}{\partial u} G_\sigma(u, v) \\ \frac{\partial}{\partial v} G_\sigma(u, v) \end{pmatrix}$$

Laplacian of Gaussian

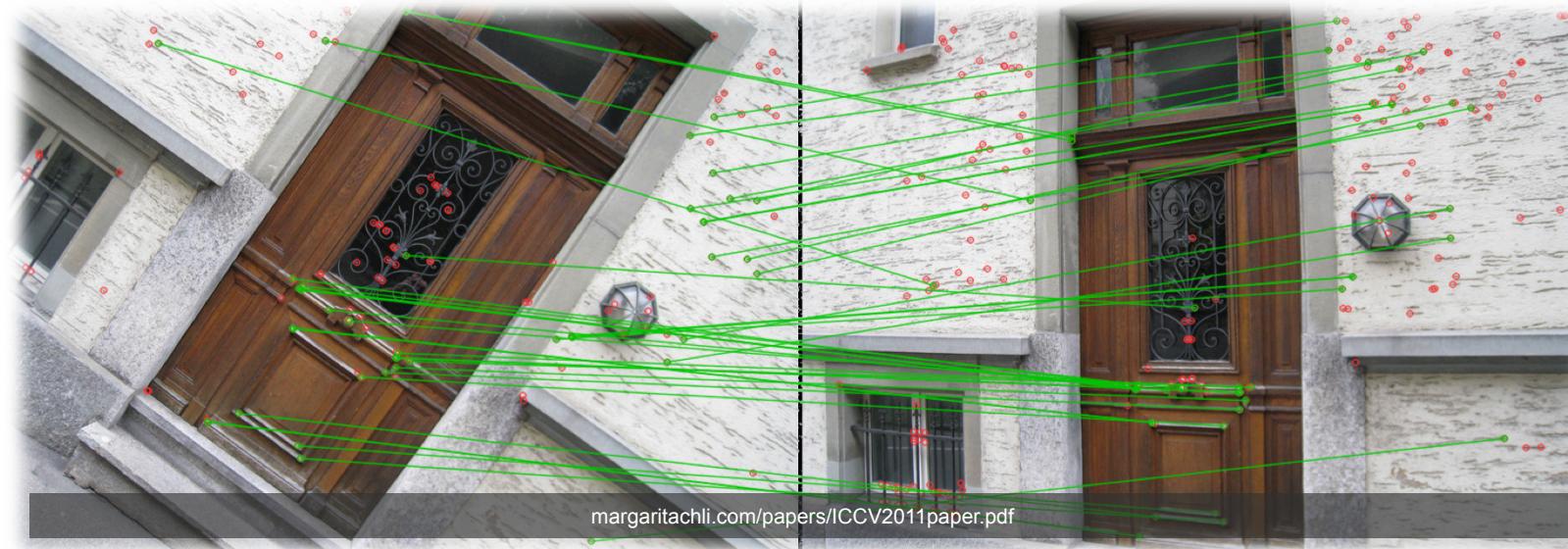


$$\nabla^2 G_\sigma(u, v) = \begin{pmatrix} \frac{\partial^2}{\partial u^2} G_\sigma(u, v) \\ \frac{\partial^2}{\partial v^2} G_\sigma(u, v) \end{pmatrix}$$

# Point Features

## Image Feature Extraction:

- Edges
- Points: **Shi-Tomasi & Harris corners**  
**SIFT features**
- and more recent algorithms from the state of the art...



# Point features | applications

Point features are widely used in:

- Robot navigation
- Object recognition
- 3D reconstruction
- Motion tracking
- Indexing and database retrieval ⇒ Google Images
- ...
- Image stitching: this panorama was generated using **AUTOSTITCH** (freeware)



# Point features | how to build a panorama?

- We need to match (align) images



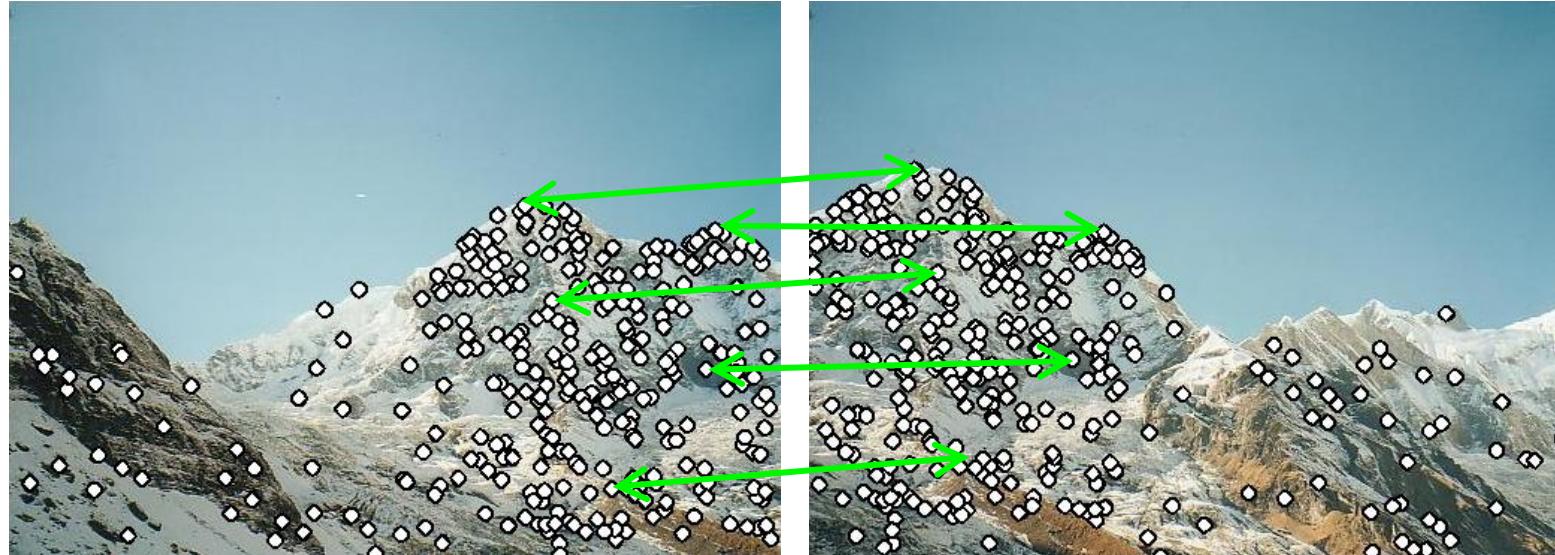
# Point features | how to build a panorama?

- Detect feature points in both images



# Point features | how to build a panorama?

- Detect feature points in both images
- Find corresponding pairs



# Point features | how to build a panorama?

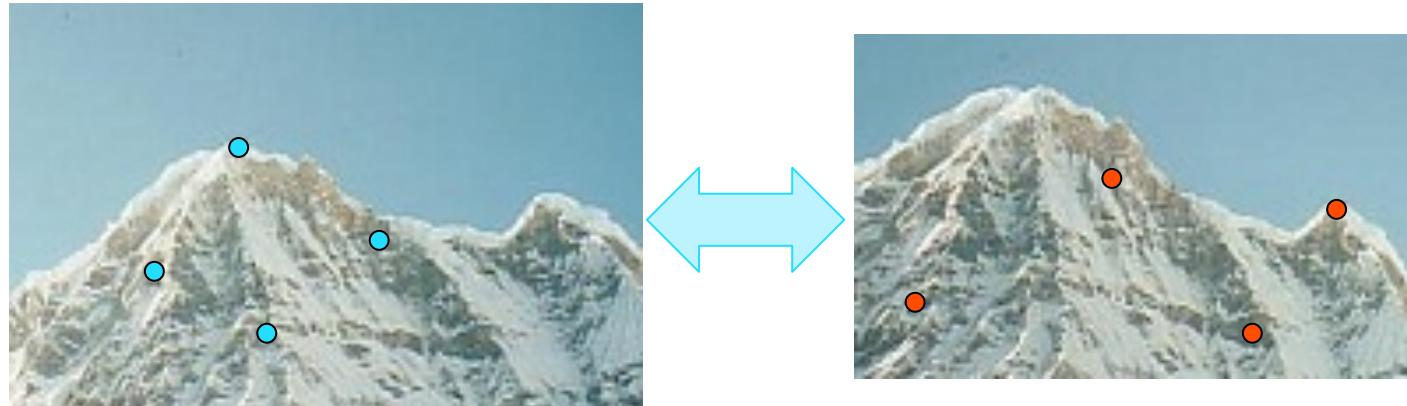
- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images



# Point features | feature extraction

## Problem 1:

- Detect the **same** points **independently** in both images, if they are in the field of view



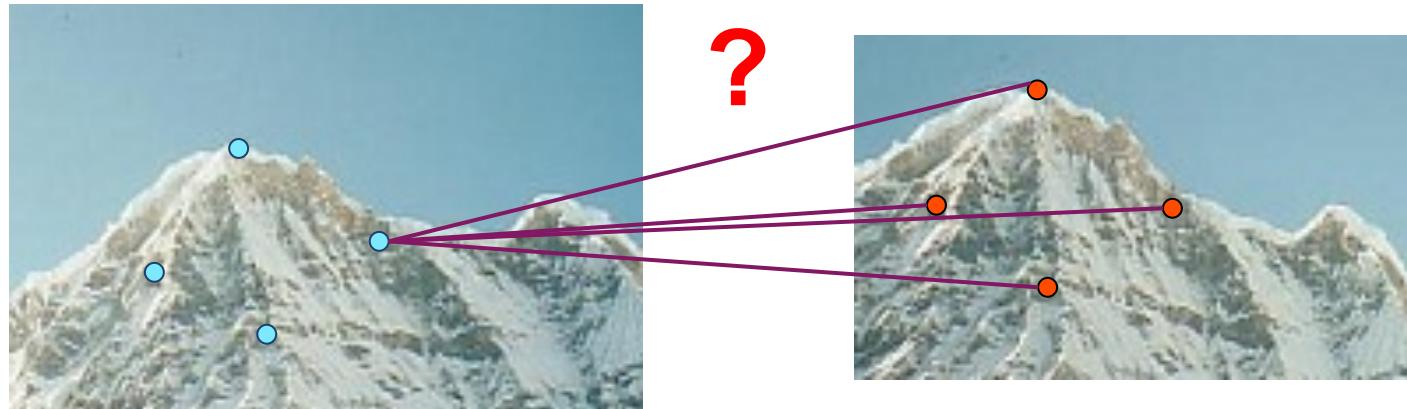
**no chance to match!**

We need a **repeatable** feature detector

# Point features | feature matching

## Problem 2:

- For each point, identify its correct correspondence in the other image(s)



We need a **reliable** and **distinctive** feature descriptor

# Point features | what is a distinctive feature?

- Some patches can be localized or matched with higher accuracy than others

Image 1

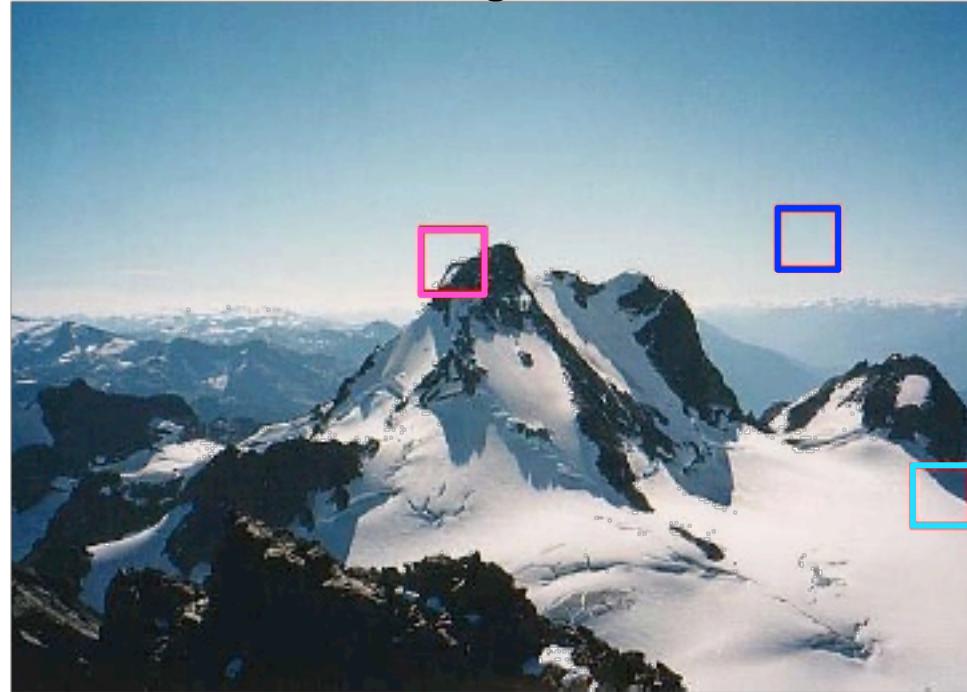
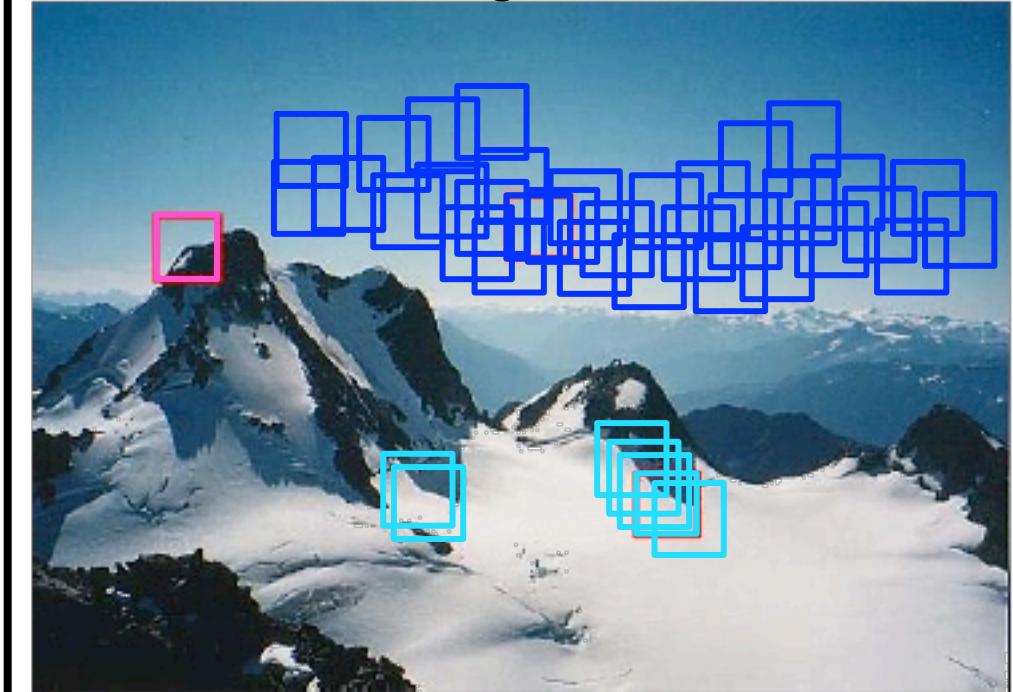
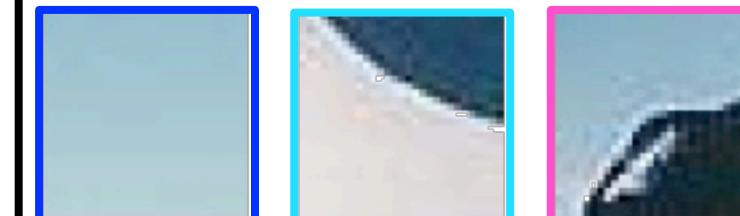


Image 2



# Corner detection



[commons.wikimedia.org](https://commons.wikimedia.org)



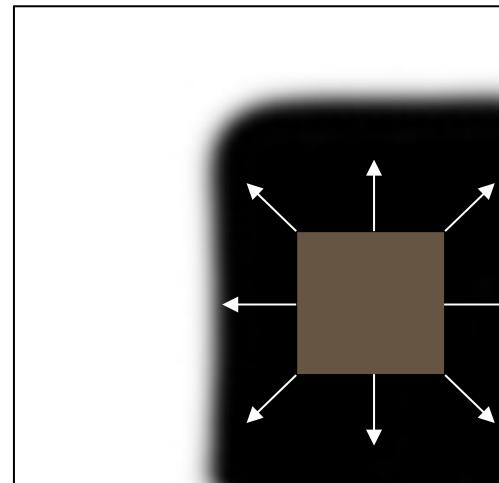
# Corner detection | identifying corners

- **Key property:** in the region around a corner, image gradient has **two or more** dominant directions
- Corners are **repeatable** and **distinctive**

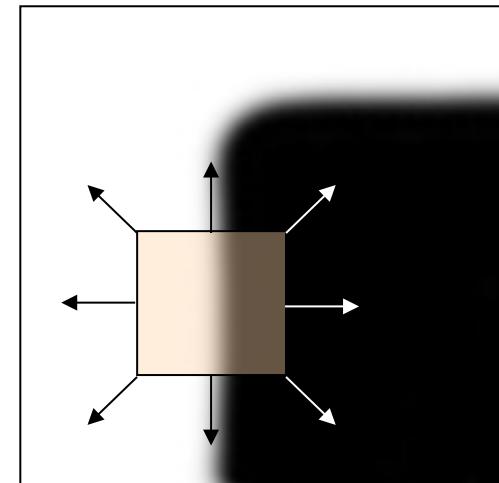


# Corner detection | identifying corners

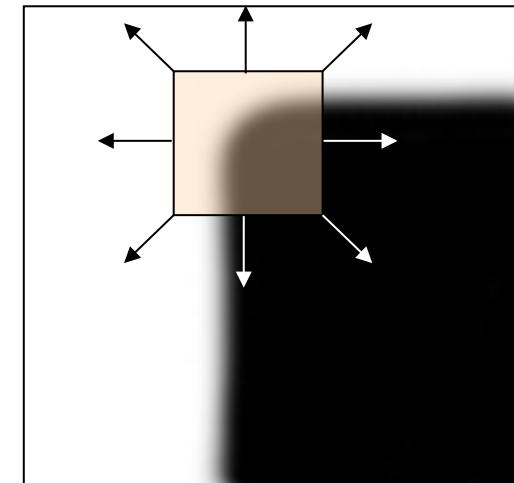
- How do we identify corners?
- Shifting a window in **any direction** should give a **large change** of intensity in at least 2 directions



“flat” region:  
no intensity change



“edge”:  
no change along the edge  
direction



“corner”:  
significant change in at  
least 2 directions

# Corner detection | how do we implement this?

- Two image patches of size  $P$  one centered at  $(x, y)$  and one centered at  $(x + \Delta x, y + \Delta y)$
- The Sum of Squared Differences between them is:

$$SSD(\Delta x, \Delta y) = \sum_{x,y \in P} (I(x, y) - I(x + \Delta x, y + \Delta y))^2$$

- Let  $I_x = \frac{\partial I(x, y)}{\partial x}$  and  $I_y = \frac{\partial I(x, y)}{\partial y}$ . Approximating with a **1<sup>st</sup> order Taylor expansion**:

$$I(x + \Delta x, y + \Delta y) \approx I(x, y) + I_x(x, y)\Delta x + I_y(x, y)\Delta y$$

- This produces the approximation

$$SSD(\Delta x, \Delta y) \approx \sum_{x,y \in P} (I_x(x, y)\Delta x + I_y(x, y)\Delta y)^2$$

# Corner detection | how do we implement this?

$$SSD(\Delta x, \Delta y) \approx \sum_{x,y \in P} (I_x(x, y)\Delta x + I_y(x, y)\Delta y)^2$$

- This can be written in a matrix form as

$$SSD(\Delta x, \Delta y) \approx \sum_{x,y \in P} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

$$\Rightarrow SSD(\Delta x, \Delta y) \approx \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} M \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

$$M = \sum_{x,y \in P} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

**“Second moment matrix”**

# Corner detection | interpreting matrix $M$

- Since  $M$  is symmetric  $\Rightarrow M = \sum_{x,y \in P} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$
- The Harris (and the “Shi-Tomasi”) detector analyses the **eigenvalues**,  $\lambda_1$  and  $\lambda_2$ , to decide if we are in presence of a corner  $\Rightarrow$  i.e. look for large intensity changes in at least 2 directions

# Corner detection | eigen decomposition

- The **eigenvectors**  $\nu$  and **eigenvalues**  $\lambda$  of a square matrix  $A$  satisfy:

$$A\nu = \lambda\nu$$

- Then  $\nu$  is an eigenvector of  $A$  and  $\lambda$  is the corresponding eigenvalue.
- The eigenvalues are found by solving:  $\det(A - \lambda I) = 0$

- In this case,  $A = M$  is a  $2 \times 2$  matrix, so:

$$\det \begin{bmatrix} m_{11} - \lambda & m_{12} \\ m_{21} & m_{22} - \lambda \end{bmatrix} = 0$$

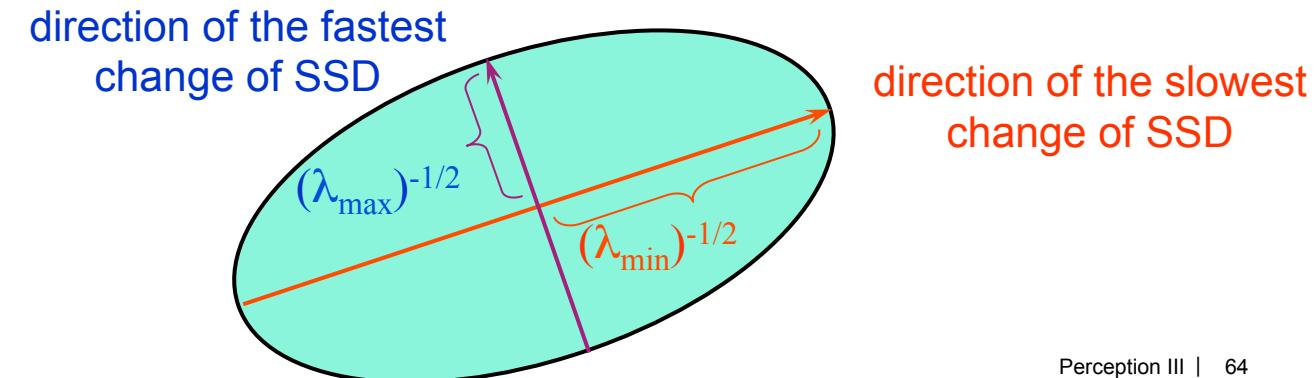
$$\lambda_{1,2} = \frac{1}{2} \left[ (m_{11} + m_{22}) \pm \sqrt{4m_{12}m_{21} + (m_{11} - m_{22})^2} \right] = 0$$

- For each  $\lambda$  we can find its corresponding  $\nu$  (forming the columns in  $R$ ) by

$$\begin{bmatrix} m_{11} - \lambda & m_{12} \\ m_{21} & m_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

# Corner detection | interpreting matrix $M$

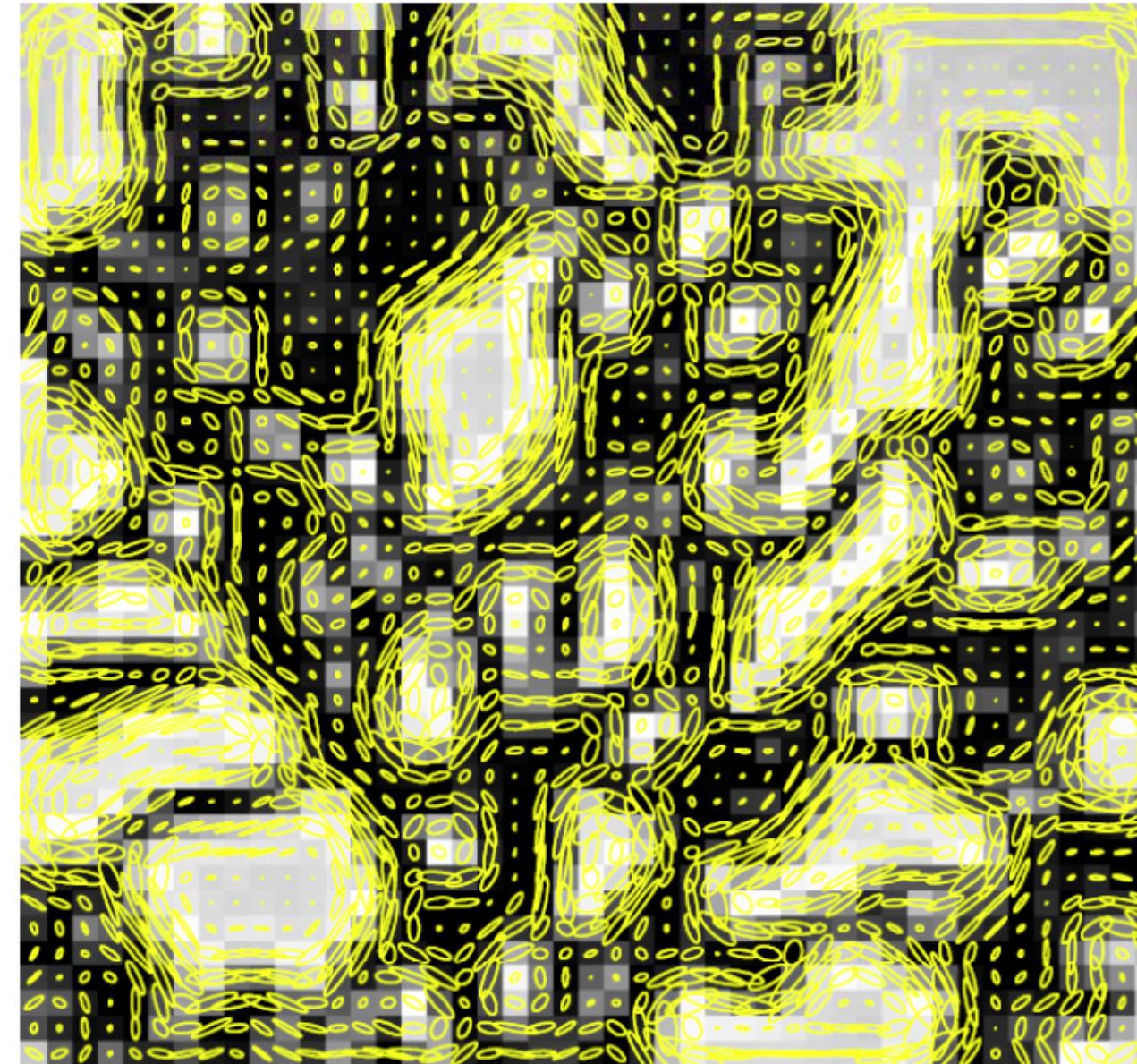
- Since  $M$  is symmetric  $\Rightarrow M = \sum_{x,y \in P} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$
- The Harris (and the “Shi-Tomasi”) detector analyses the **eigenvalues**,  $\lambda_1$  and  $\lambda_2$ , to decide if we are in presence of a corner  $\Rightarrow$  i.e. look for large intensity changes in at least 2 directions
- We can visualize  $[\Delta x \quad \Delta y] M \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \text{const}$  as an **ellipse** with axis-lengths determined by  $\lambda_1$  and  $\lambda_2$  and the axes’ orientations determined by  $R$  (i.e. the **eigenvectors** of  $M$ )
- The (two) eigenvectors identify the orthogonal directions of largest and smallest changes of SSD



# Corner detection | visualization of 2<sup>nd</sup> moment matrices



# Corner detection | visualization of 2<sup>nd</sup> moment matrices



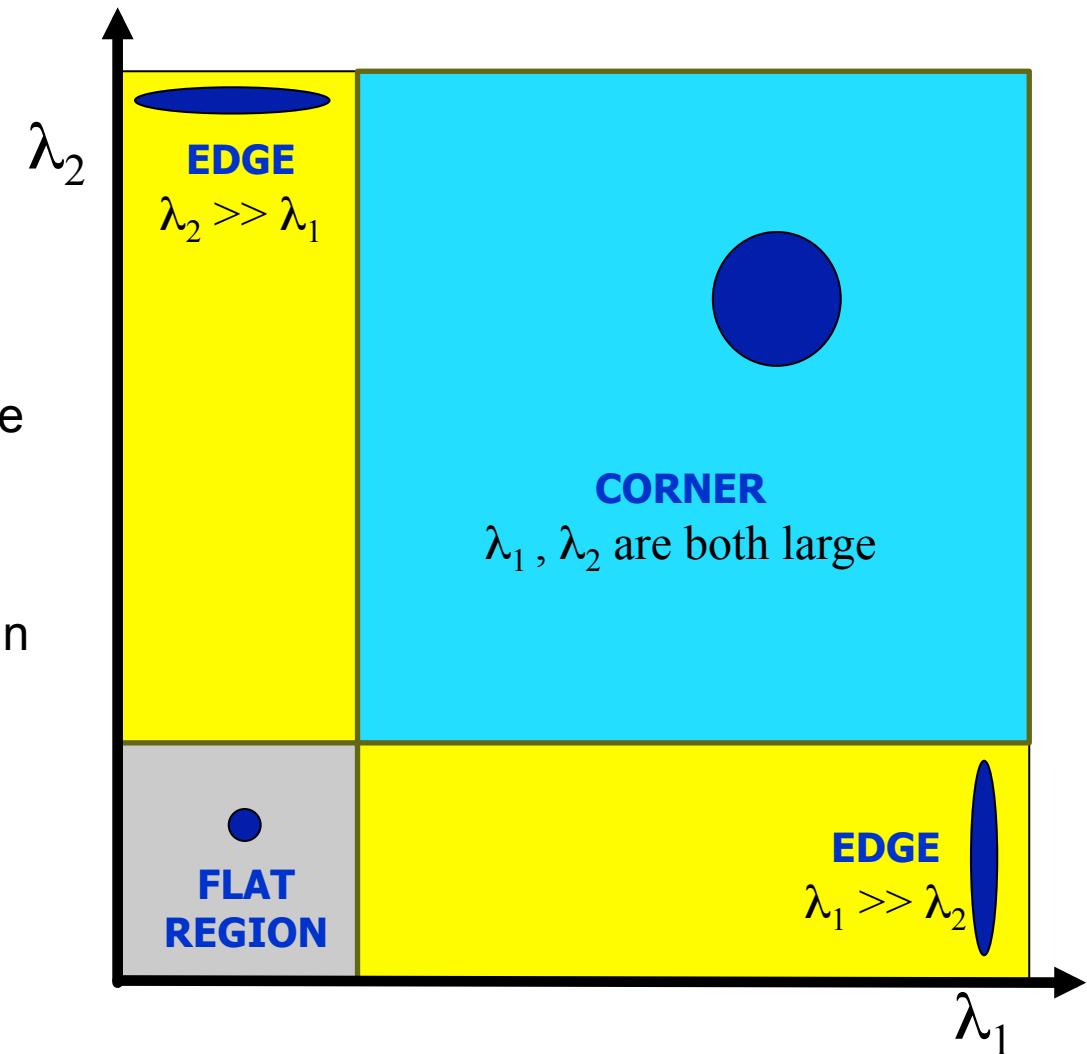
# Corner detection | interpreting the eigenvalues

Does patch  $P$  describe a corner or not?  $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$

- **No structure:**  $\lambda_1 \approx \lambda_2 \approx 0$   
SSD is almost constant in all directions, so it's a **flat** region
- **1D structure:**  $\lambda_1 \gg \lambda_2$  is large (or vice versa)  
SSD has a large variation only in one direction, which is the one perpendicular to the **edge**.
- **2D structure:**  $\lambda_1, \lambda_2$  are both large  
SSD has large variations in all directions and then we are in presence of a **corner**.
- **Shi-Tomasi [1] cornerness criterion:**

$$C_{SHI-TOMASI} = \min(\lambda_1, \lambda_2) > \text{thresh.}$$

[1] J. Shi and C. Tomasi. "Good Features to Track.". CVPR 1994



# Corner detection | corner response function

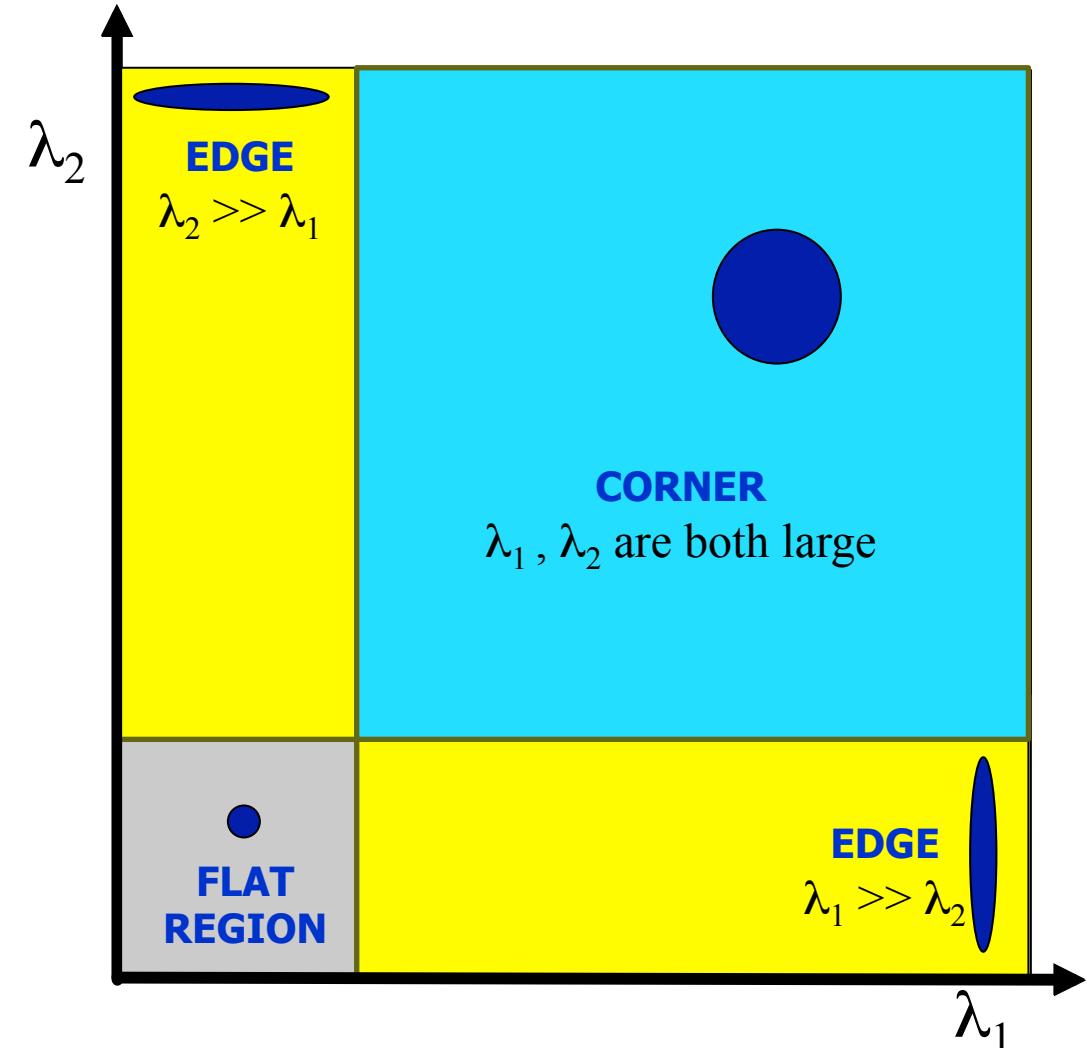
- Computing  $\lambda_1$  and  $\lambda_2$  is expensive  
⇒ Harris & Stephens suggested using a “**cornerness function**” instead:

$$C_{HARRIS} = \lambda_1 \lambda_2 - \kappa(\lambda_1 + \lambda_2)^2 = \det(M) - \kappa \cdot \text{trace}^2(M)$$

where  $\kappa = \text{const.} \in [0.04, 0.15]$

- Harris** cornerness criterion [2]
- Last step of Harris corner detector: extract local maxima of the cornerness function

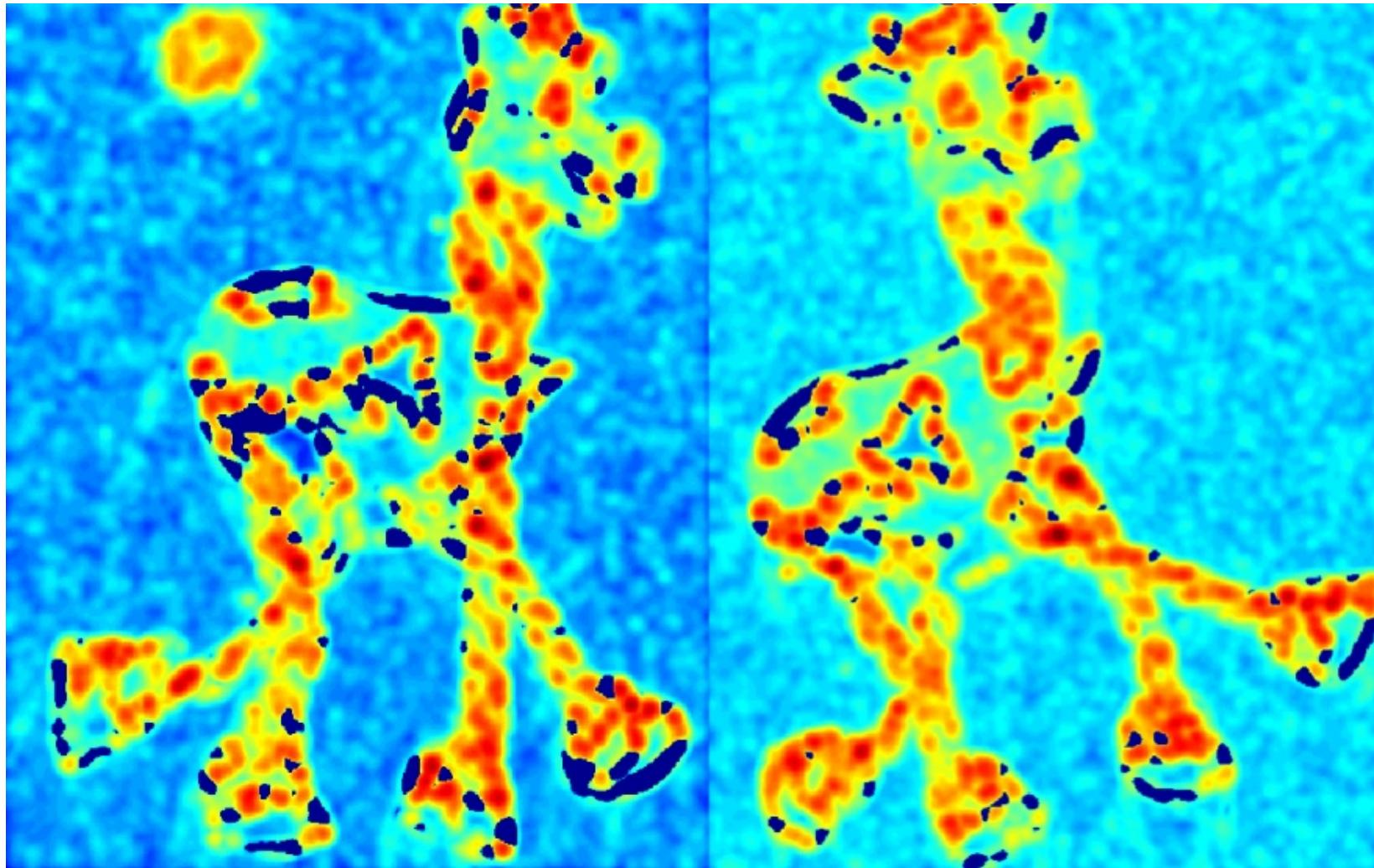
[2] C.Harris and M.Stephens. ["A Combined Corner and Edge Detector."](#),  
Proceedings of the Alvey Vision Conference, 1988



# Harris corners | workflow

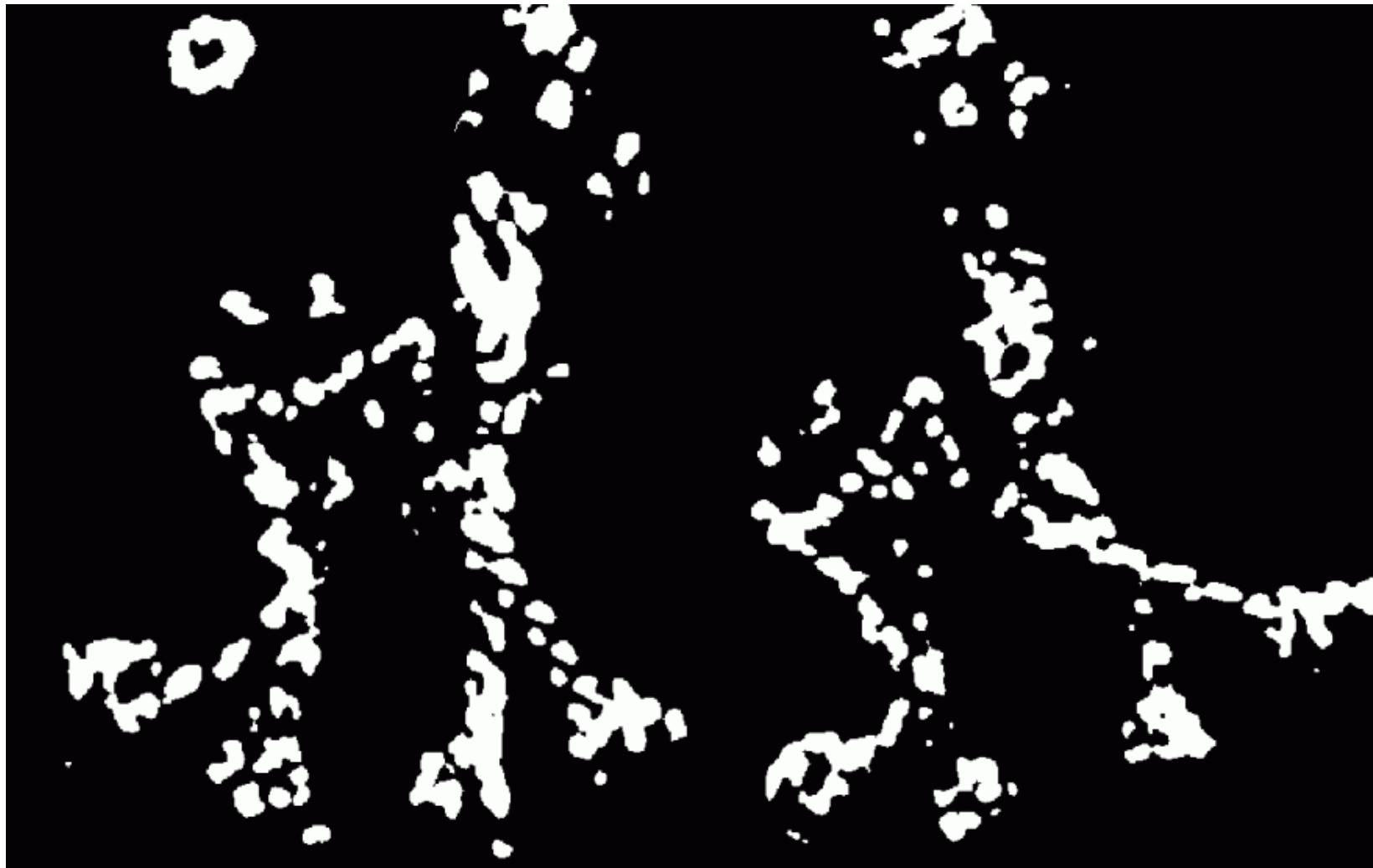


# Harris corners | workflow



- Compute corner response  $C$

# Harris corners | workflow



- Find points with large corner response:  $C > \text{threshold}$

# Harris corners | workflow



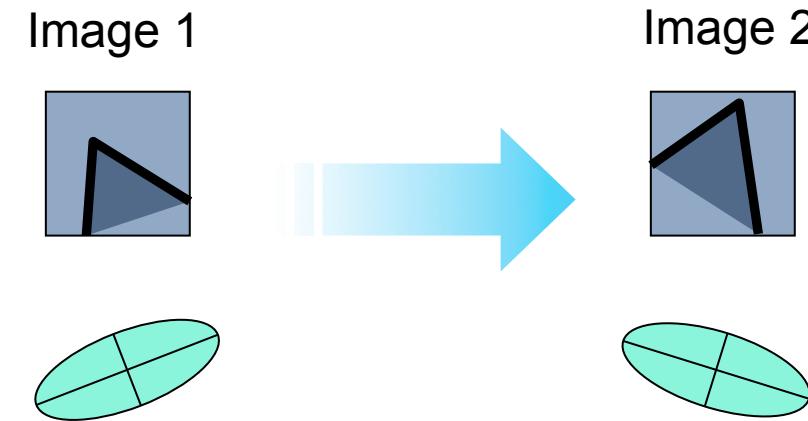
- Take only the points of local maxima of thresholded  $C$

# Harris corners | workflow



# Harris corners | properties

- Rotation invariance?

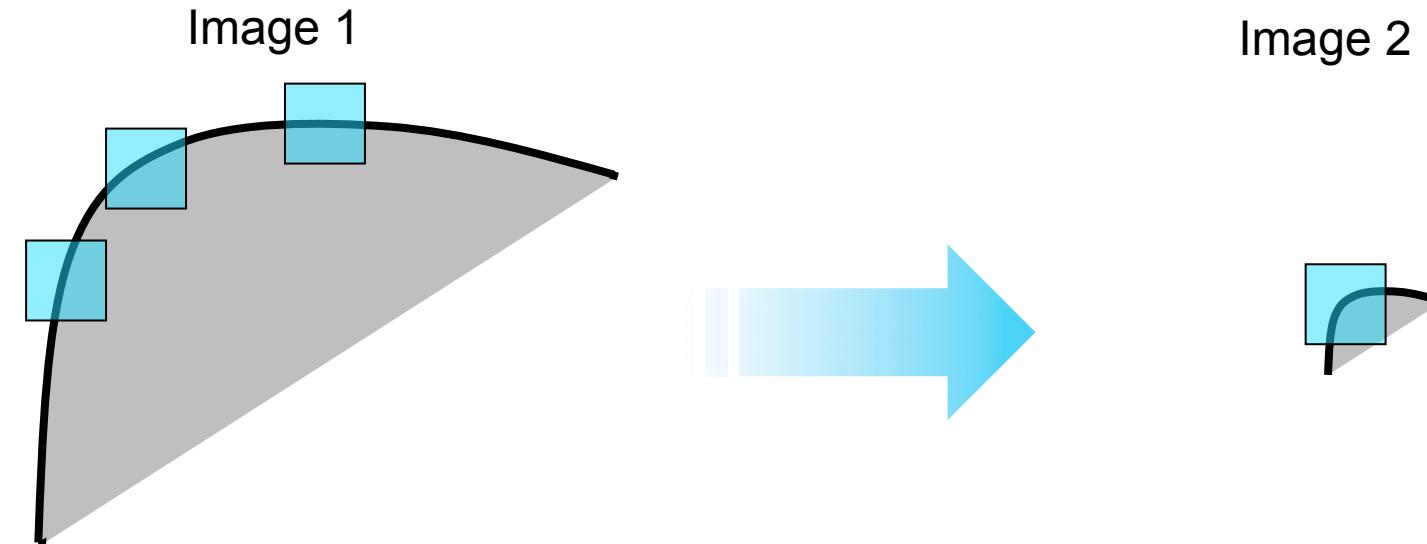


Ellipse rotates, but its shape (i.e. eigenvalues) remains the same

Harris corners are **invariant to image rotation**

# Harris corners | properties

- Scale invariance?



All points will be  
classified as **edges**

**Corner!**

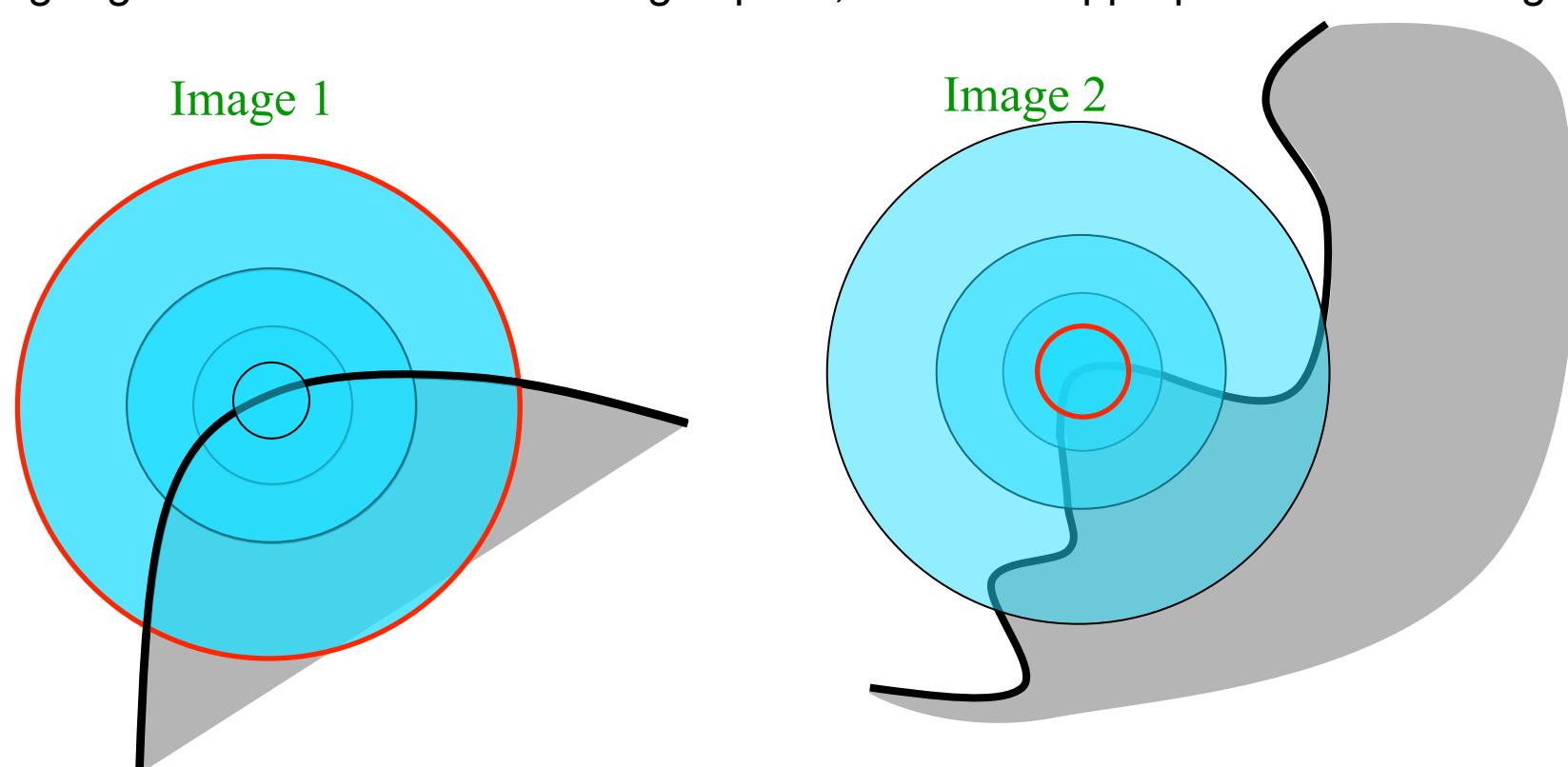
Harris corners are **not invariant to scale change**

# Harris corners | properties' summary

- Harris detector: probably the most widely used and known corner detector
- The detection is invariant to
  - Rotation
  - Linear intensity changes
  - **note:** to make the matching invariant to these we need suitable descriptor & matching
- The detection is NOT invariant to
  - Scale changes
  - Geometric affine changes: an image transformation, which distorts the neighborhood of the corner, can distort its '*cornerness*' response

# Scale-invariant feature detection

- Consider regions (e.g. discs) of different sizes around a point
- **Aim:** corresponding regions look the same in image space, when the appropriate scale-change is applied

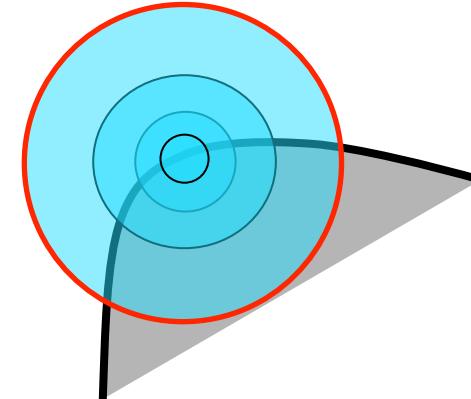
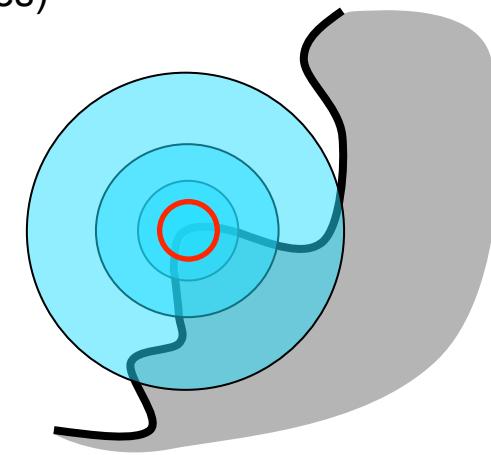
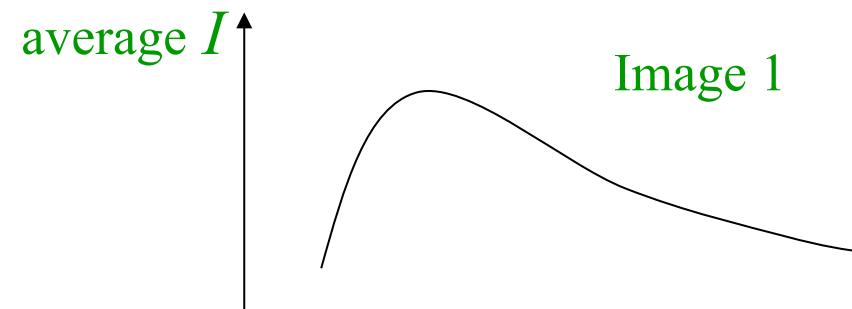
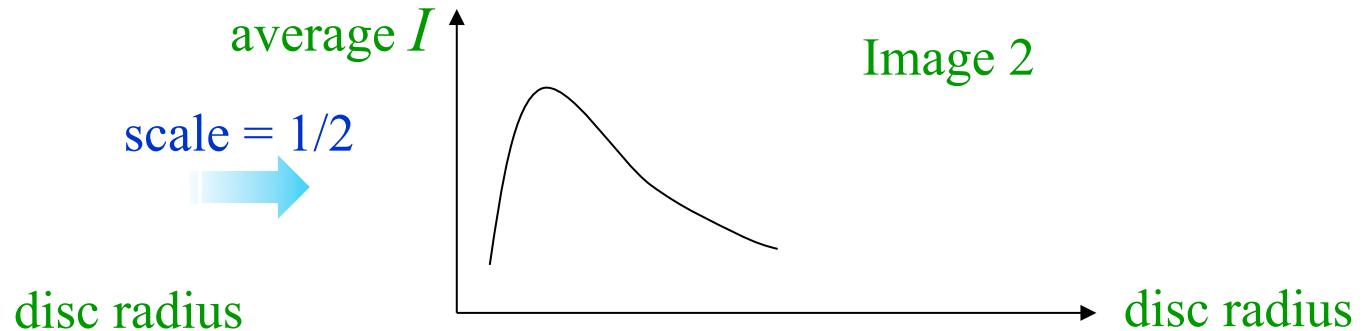


- Choose corresponding regions (discs) **independently** in each image

# Scale-invariant feature detection

- Approach: design a function to apply on the region (disc) , which is “scale invariant”  
(i.e. remains constant for corresponding regions, even if they are at different scales)

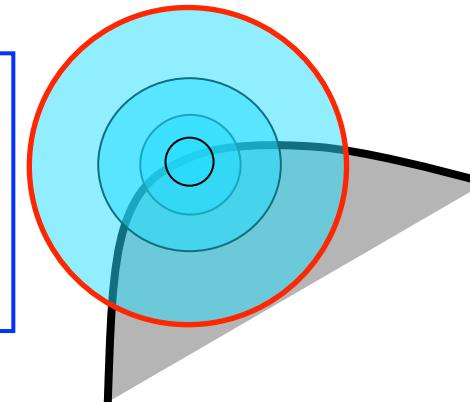
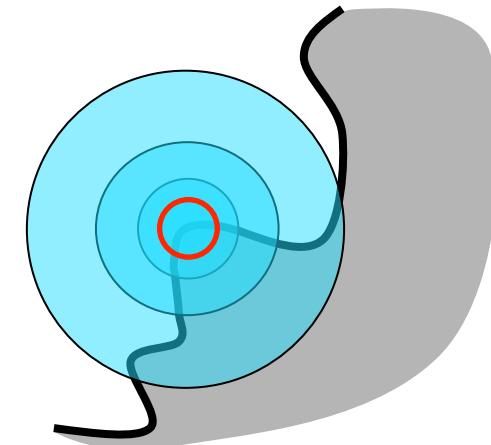
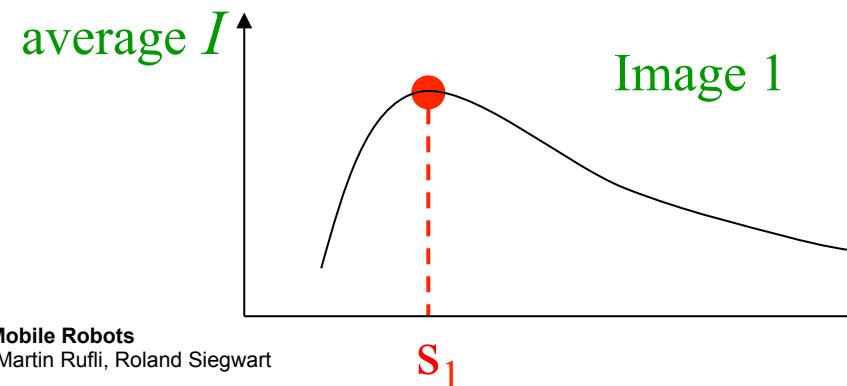
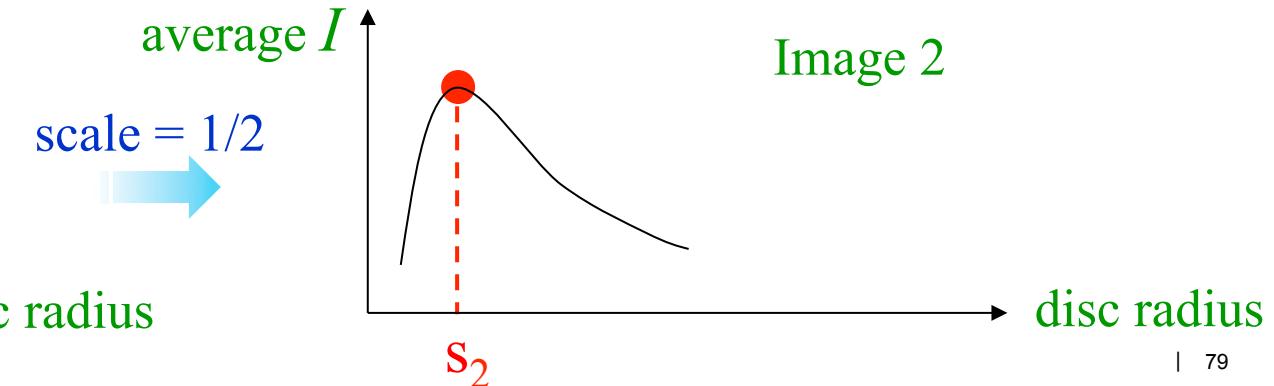
example: average image intensity over corresponding regions (at different scales) should remain constant



# Scale-invariant feature detection

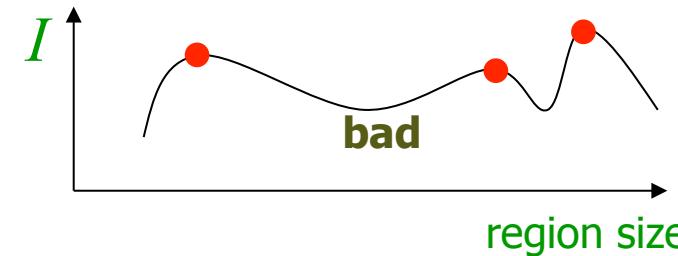
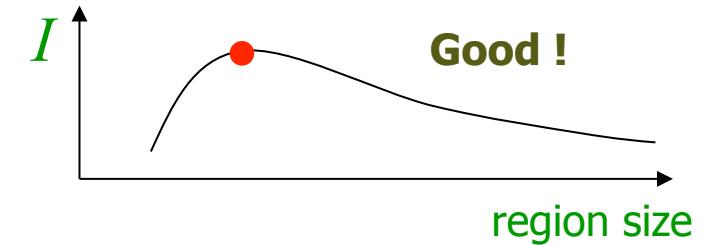
- Identify the local maximum in each response  $\Rightarrow$  these occur at corresponding region sizes

The corresponding scale-invariant region size is found in each image **independently!**



# Scale-invariant feature detection

- A “good” function for scale detection has one clear, sharp peak



- Sharp, local intensity changes in an image, are good regions to monitor for identifying relative scale in usual images.  
⇒ look for blobs or corners (i.e. sharp intensity discontinuities)

# Scale-invariant feature detection | LoG scale detector

- Functions of determining scale: convolve image with kernel to identify sharp intensity discontinuities

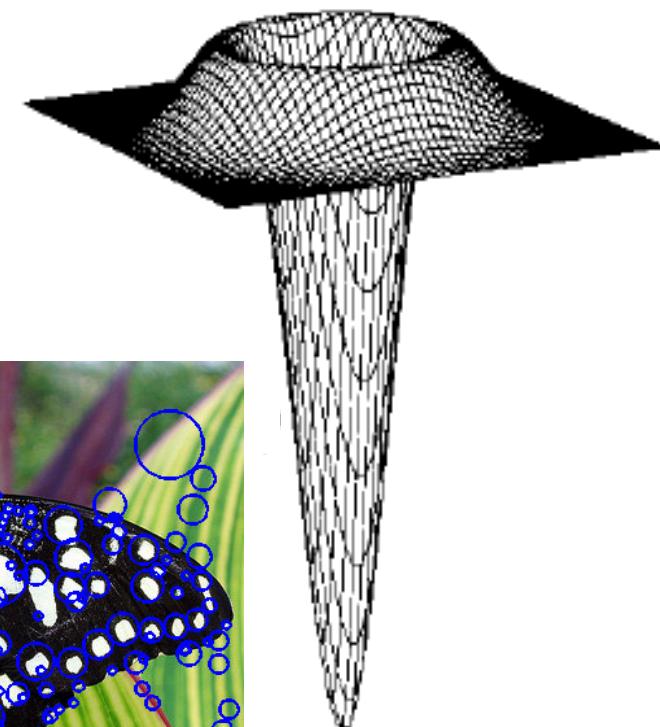
$$f = \text{Kernel} * \text{Image}$$

- Detected scale corresponds to **local maxima or minima** of the convolved image region

$$LoG = \nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}$$

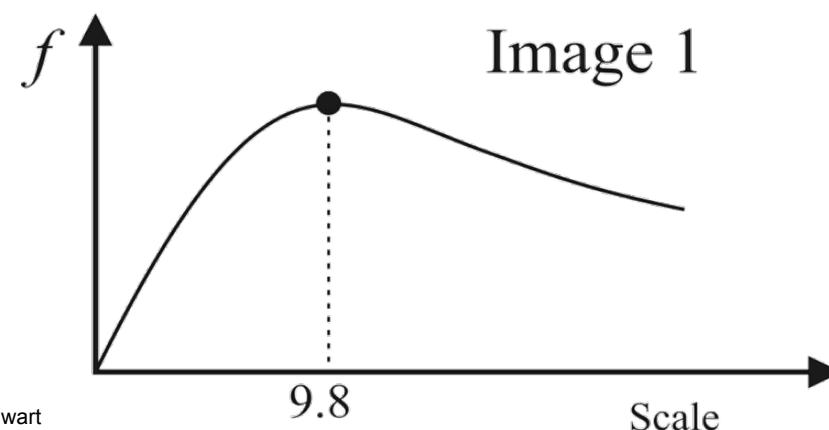
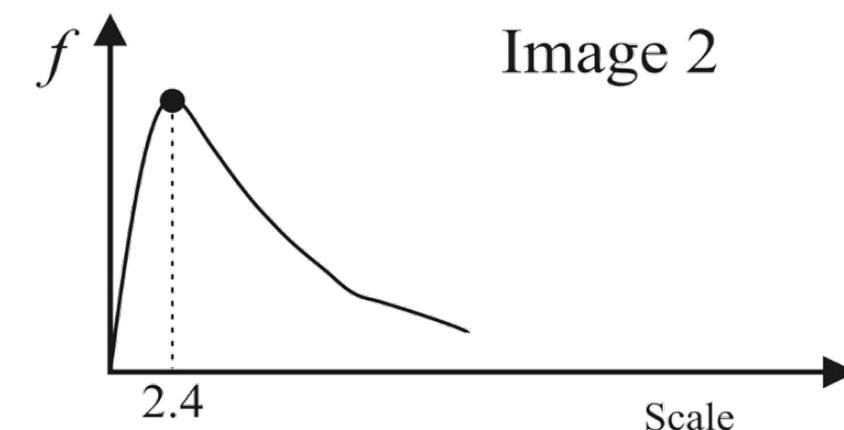


Laplacian of Gaussian



# Scale-invariant feature detection | LoG scale detector

- Response of LoG for corresponding regions:



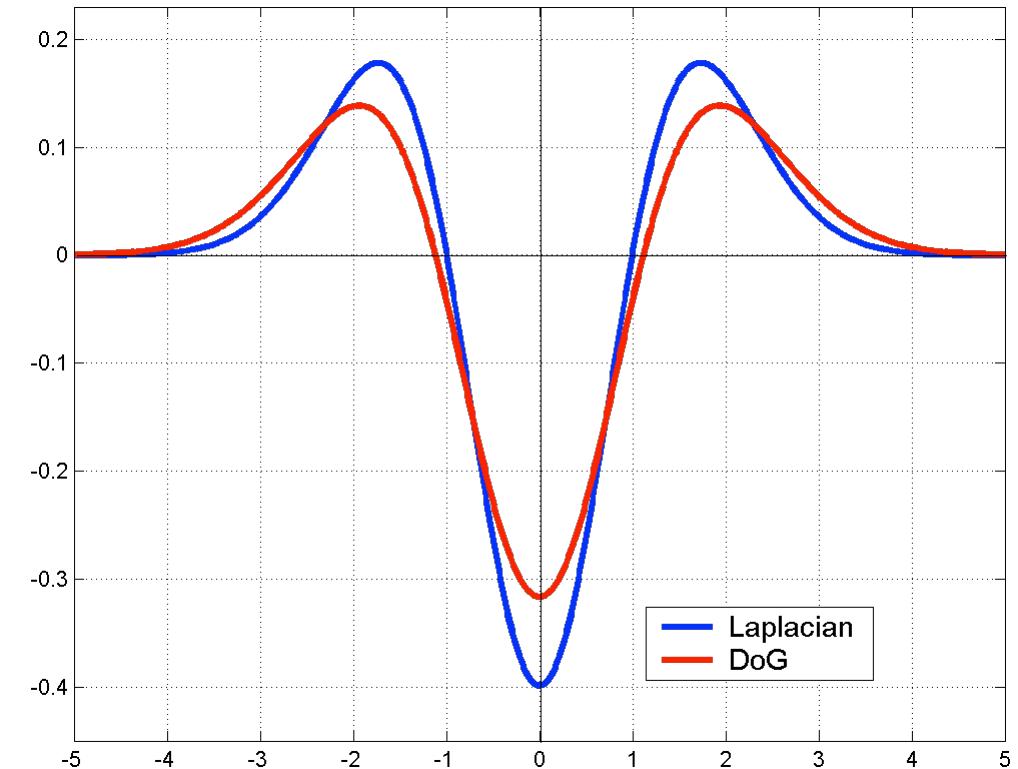
# Scale-invariant feature detection | DoG scale detector

- Approximation to the LoG kernel for efficiency:

Difference of Gaussians (DoG) kernel:

$$DoG = G_{k\sigma}(x, y) - G_{\sigma}(x, y)$$

- Used in the **SIFT** feature detector [Lowe et al., IJCV 2004]
- The **SURF** feature detector [Bay et al, CVIU 2008] implements the DoG kernel using a linear combination of rectangular functions

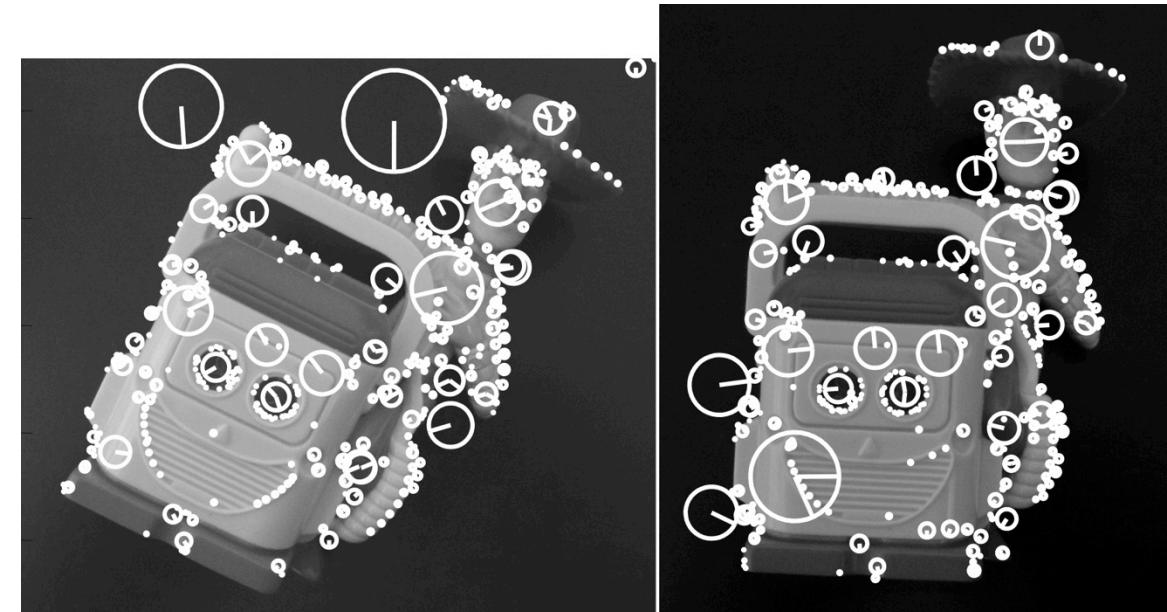


# SIFT features [Lowe et al., IJCV 2004]

- **SIFT** = Scale Invariant Feature Transform  
an approach for detecting and describing regions of interest in an image
- SIFT features are reasonably **invariant** to changes in:  
rotation, scaling, changes in viewpoint, illumination
- SIFT **detector** uses **DoG kernel**, SIFT **descriptor** is based on **gradient orientations**
- Very powerful in capturing + describing  
**distinctive** structure, but also **computationally demanding**

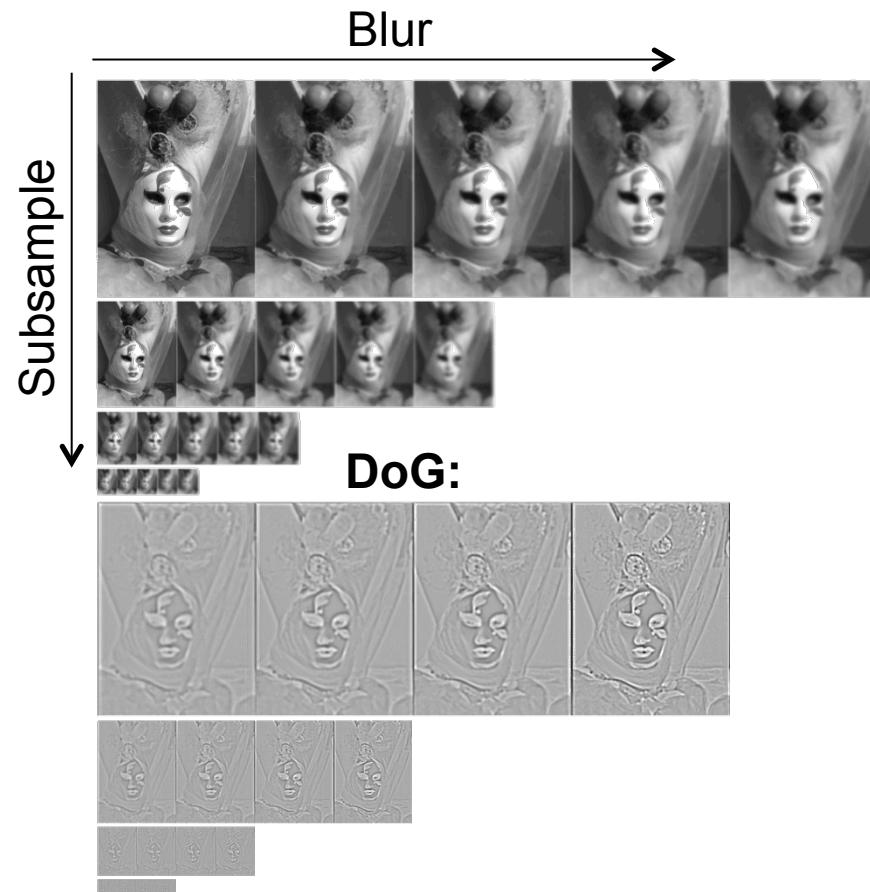
## Main SIFT stages:

1. Extract keypoints + scale
2. Assign keypoint orientation
3. Generate keypoint descriptor

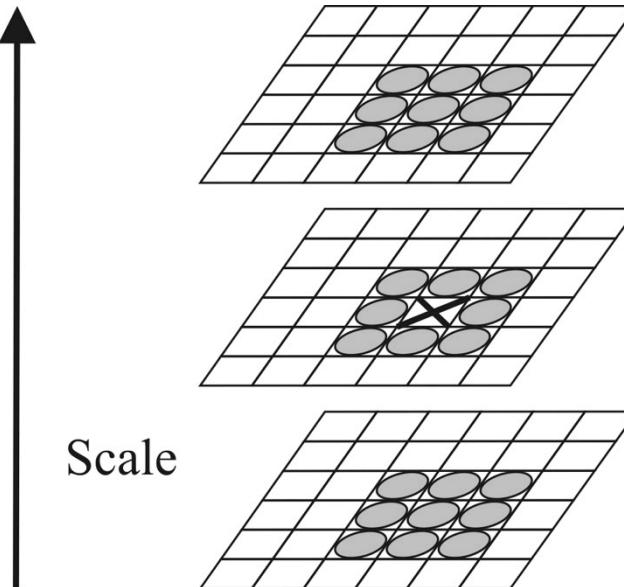


# SIFT features | detector (keypoint location + scale)

1. Scale-space pyramid: subsample and blur original image



3. Keypoints: local extrema in the DoG pyramid



# SIFT features | keypoint orientation assignment

Define “orientation” of keypoint to achieve **rotation invariance**

- Sample intensities around the keypoint
- Compute a histogram of orientations of intensity gradients
- Peaks in histogram: dominant orientations
- **Keypoint orientation = histogram peak**
- If there are multiple candidate peaks, construct a different keypoint for each such orientation

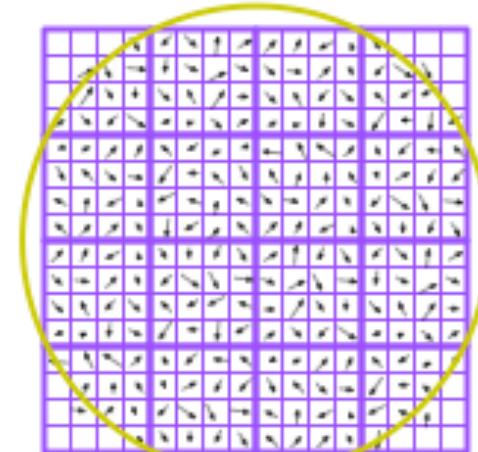
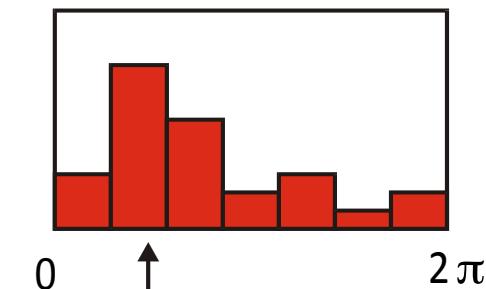
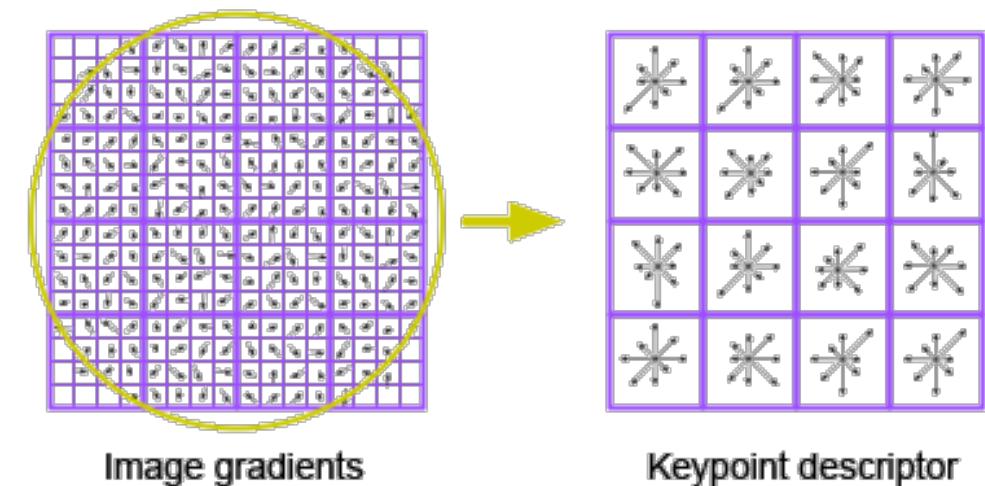


Image gradients



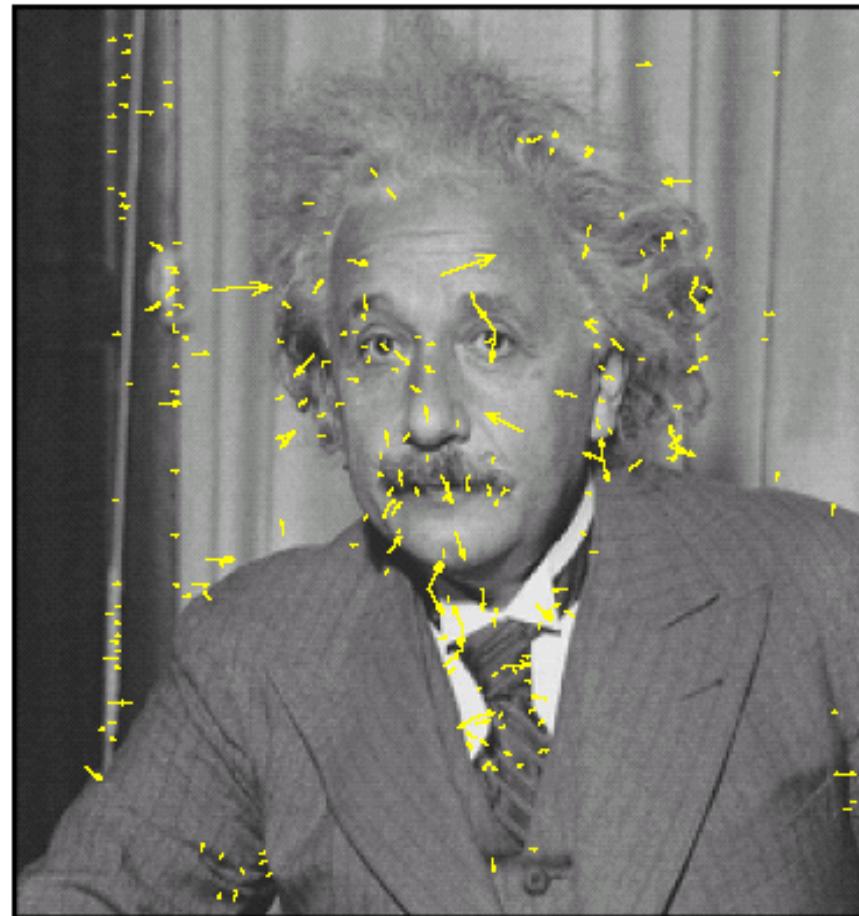
# SIFT features | descriptor

- **Descriptor** : “identity card” of keypoint
- Simplest descriptor: matrix of intensity values around a keypoint (image patch)
- Ideally, a descriptor should be
  - highly distinctive +
  - tolerant/invariant to common image transformations
- **SIFT descriptor**: 128-element vector
- Describe all gradient orientations **relative to the keypoint orientation**
- Divide keypoint neighborhood in **4×4** regions and compute orientation histograms along **8** directions
- SIFT descriptor: concatenation of all **4×4×8 (=128)** values
- Descriptor Matching:  $L_2$ -distance (i.e. SSD) between these descriptor vectors

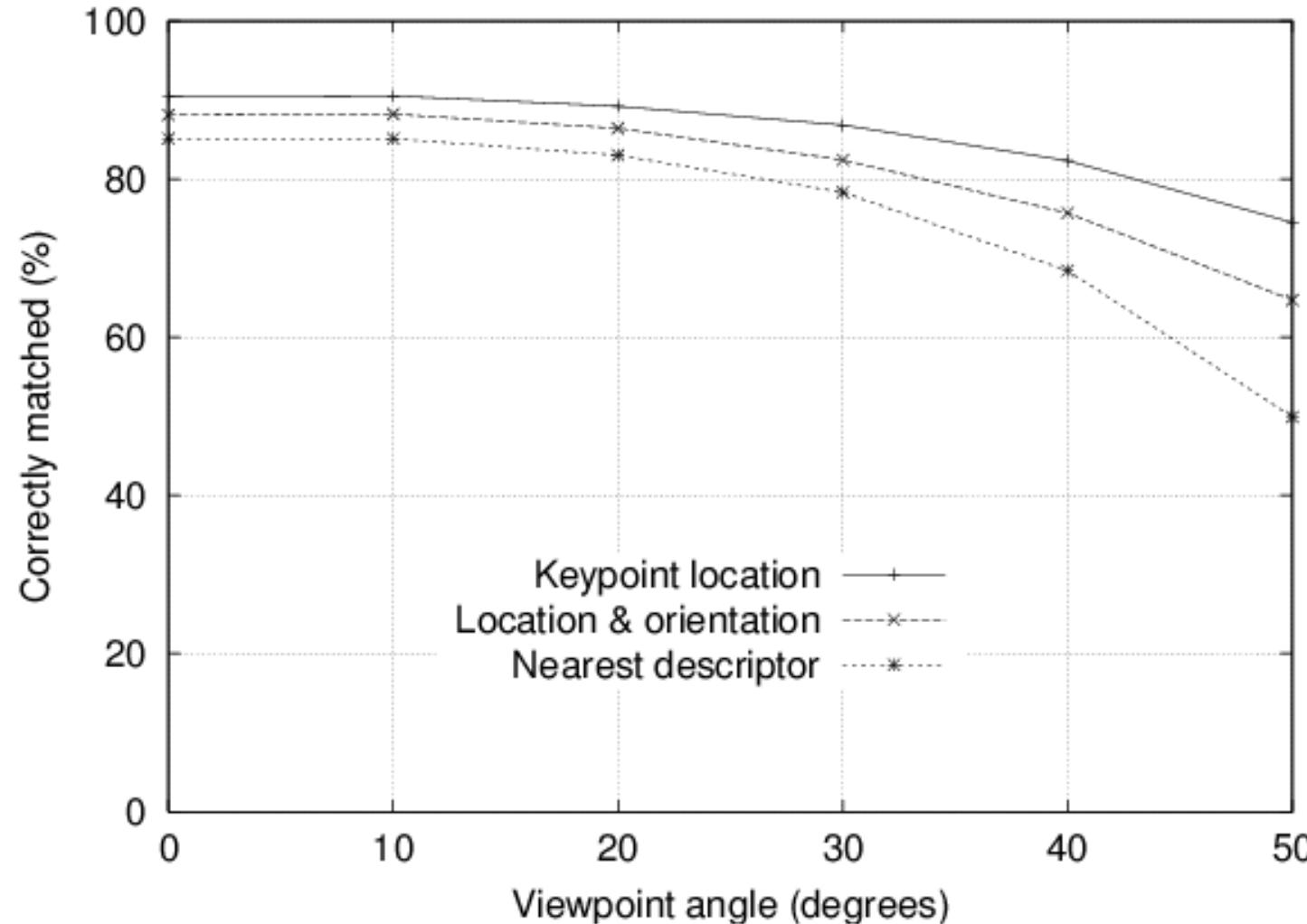


# SIFT features

- Final SIFT keypoints with detected orientation & scale

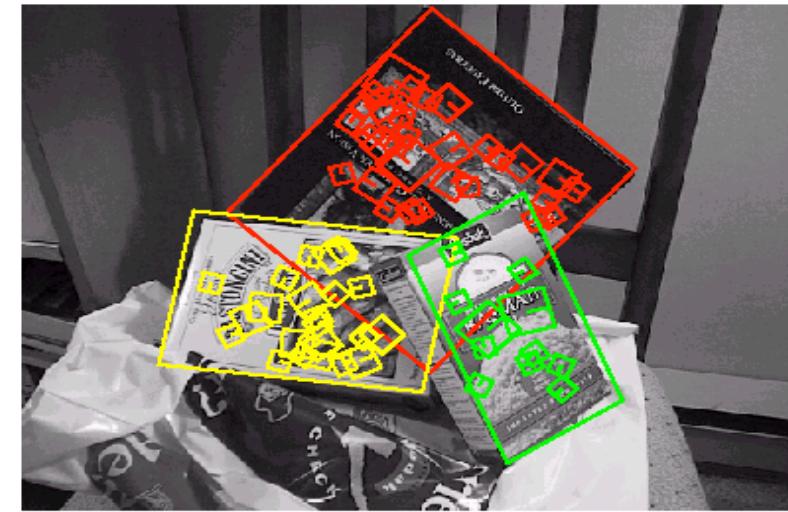


# SIFT features | features' stability to viewpoint change



# SIFT features | use in planar recognition

- **Planar** surfaces can be reliably recognized at a rotation of **60°** away from the camera
- Only 3 points are needed for recognition
- But objects need to have enough **texture**
- Recognition under occlusion



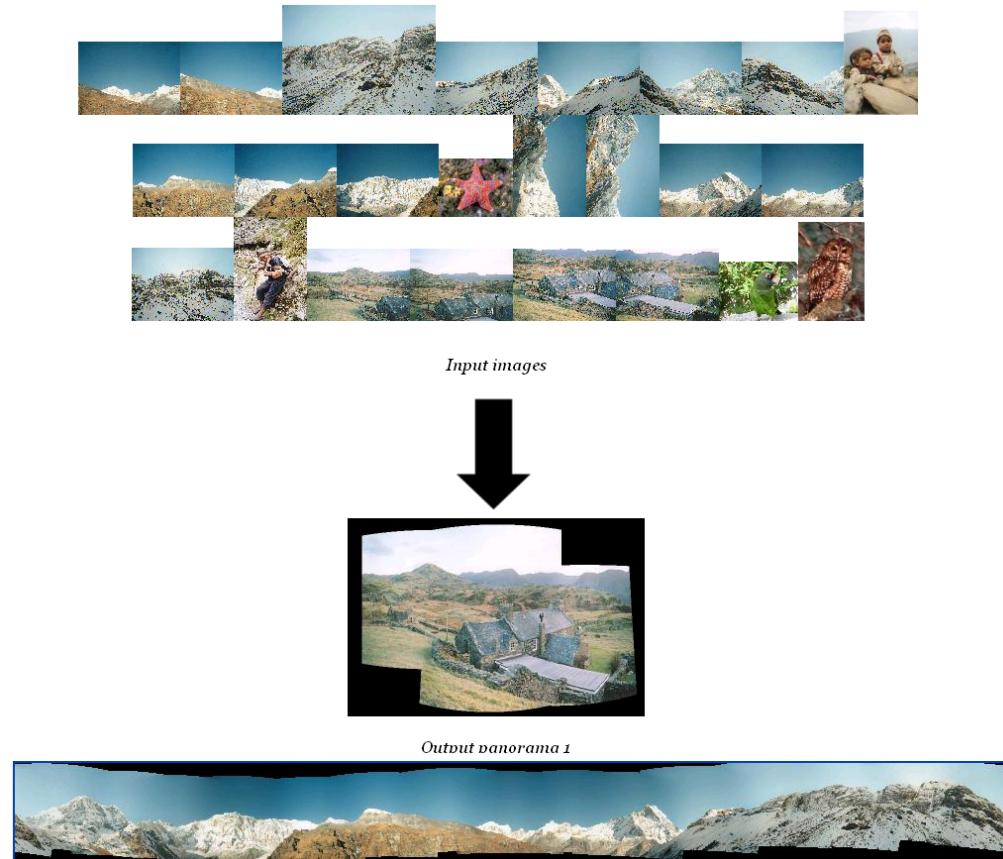
# SIFT features | code and demos

- **SIFT feature detector code:**  
for Matlab & C code to run with compiled binaries  
for Win and Linux (freeware)

<http://www.cs.ubc.ca/~lowe/keypoints/>

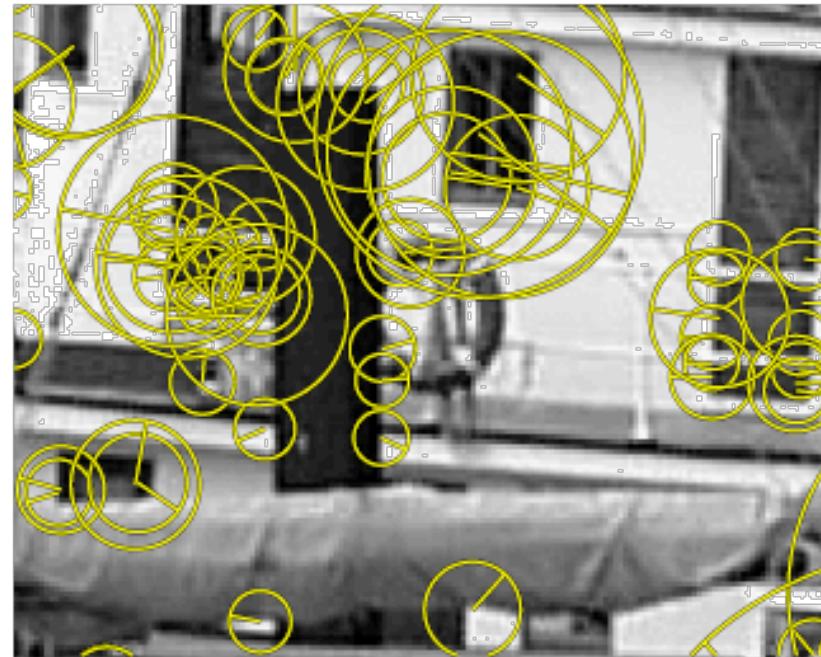
- Make your own panorama with **AUTOSTITCH** (freeware):

<http://matthewwalunbrown.com/autostitch/autostitch.html>

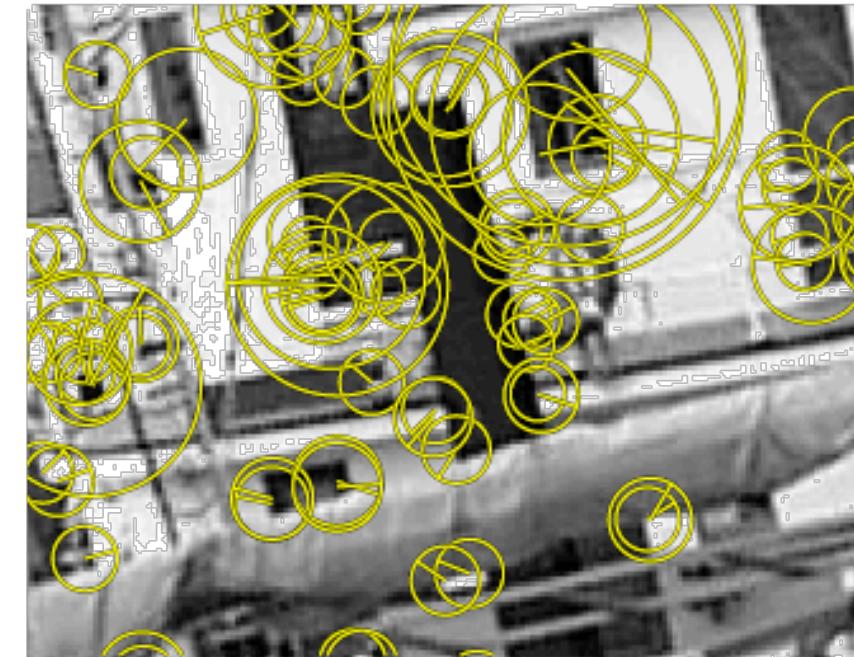


# More recent features from SOTA

- ...suitable for Robotics applications



(a) Boat image 1

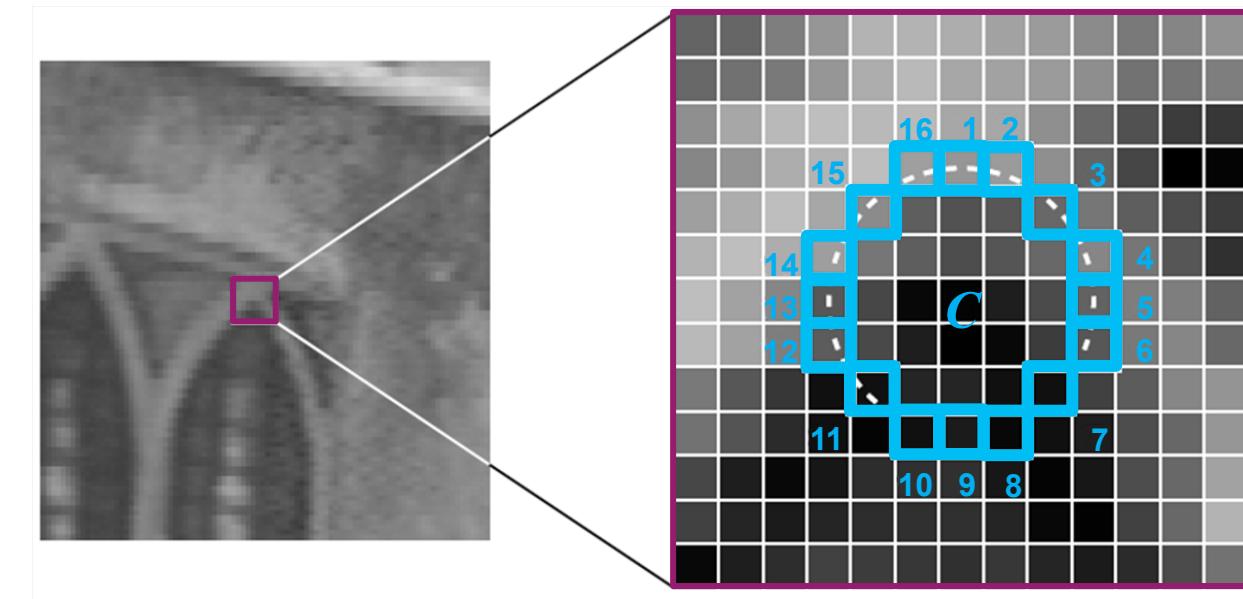


(b) Boat image 2

# FAST corner detector [Rosten et al., PAMI 2010]

- **FAST**: Features from Accelerated Segment Test
- Studies intensity of pixels on circle around candidate pixel  $C$

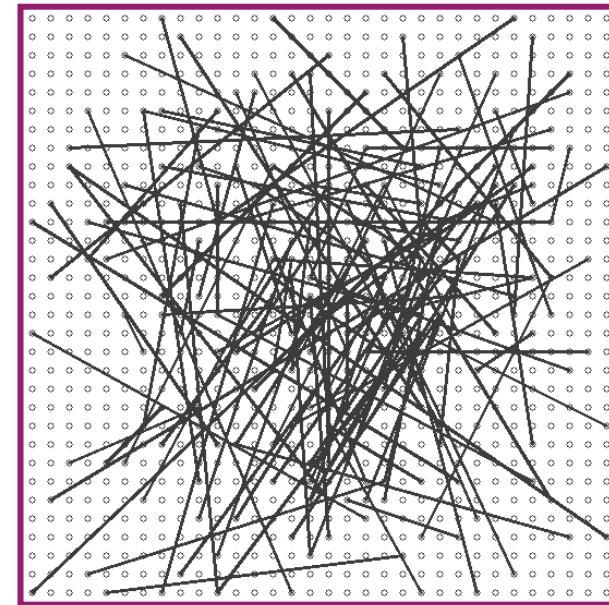
- $C$  is a FAST corner **if** a set of  $N$  contiguous pixels on circle are:
  - all brighter than `intensity_of(C)+threshold`, or
  - all darker than `intensity_of(C)+threshold`



- Typical FAST mask: test for **12** contiguous pixels in a **16**-pixel circle
- **Very fast detector** – in the order of 100 Mega-pixels/second

# BRIEF descriptor [Calonder et. al, ECCV 2010]

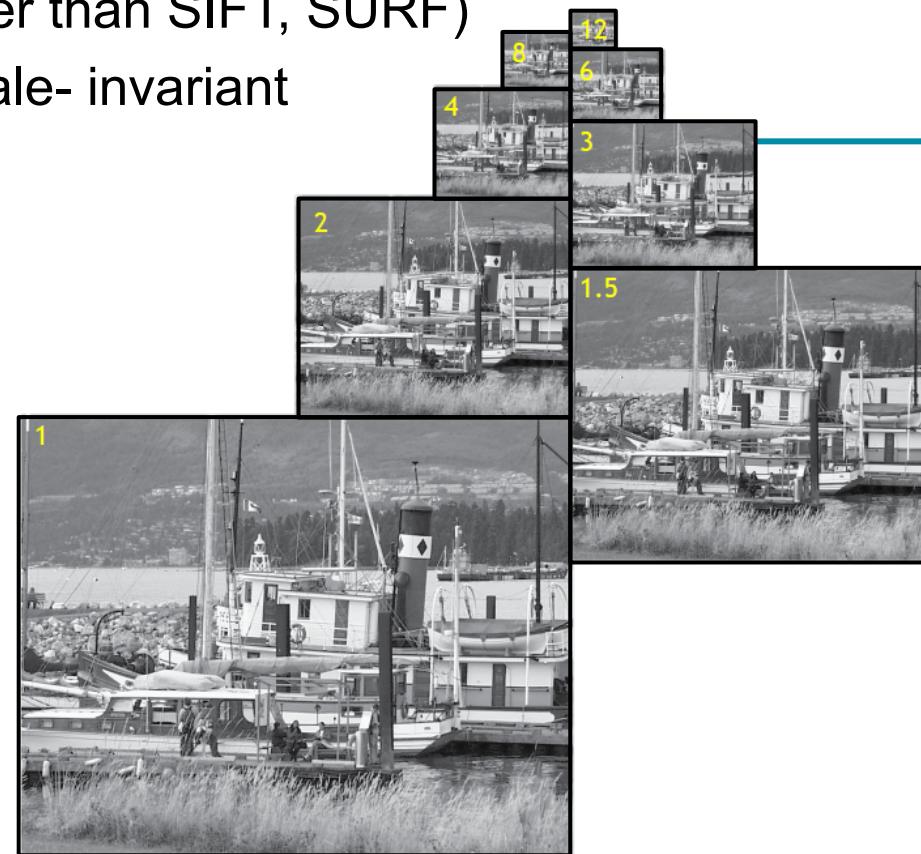
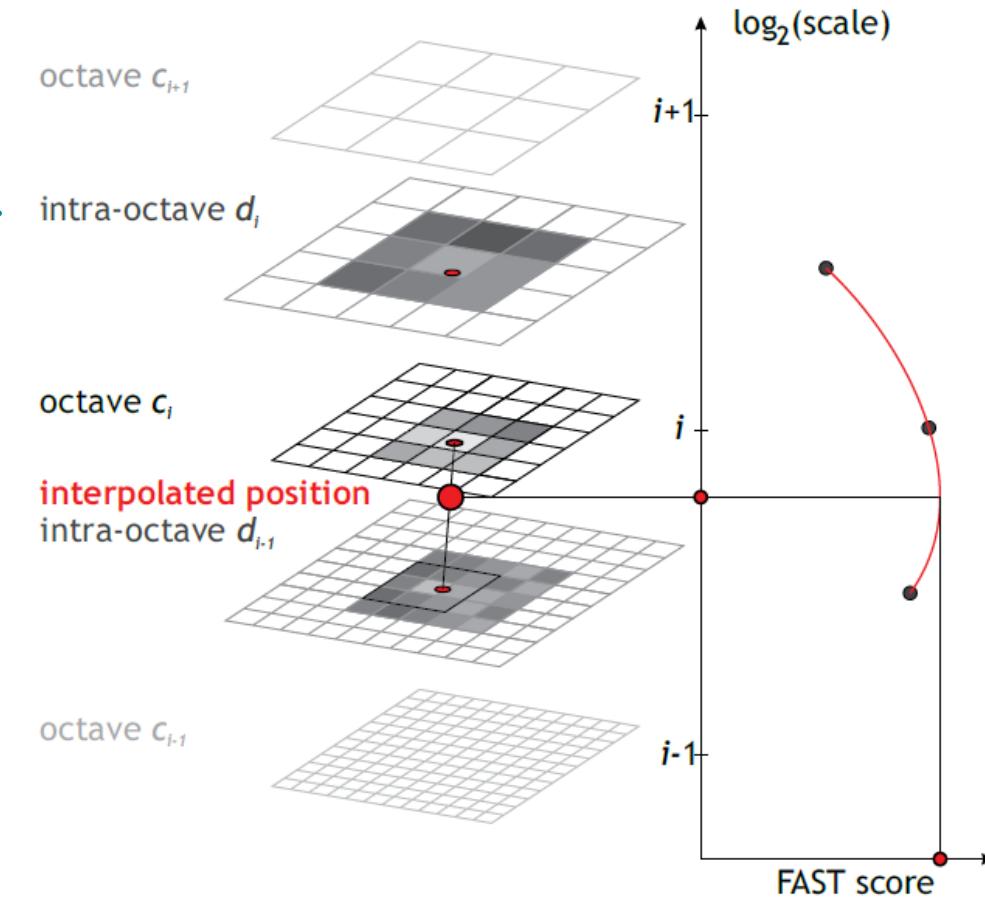
- **BRIEF** : Binary Robust Independent Elementary Features
- Goal: high speed (in description and matching)
- **Binary** descriptor formation:
  - Smooth image
  - **for each** detected keypoint (e.g. FAST),
    - **sample** all intensity pairs ( $I_1, I_2$ ) (typically 256 pairs) according to pattern around the keypoint
    - **for each** intensity pair  $p$ 
      - **if**  $I_1 < I_2$  **then** **set** bit  $p$  of descriptor to 1
      - **else** **set** bit  $p$  of descriptor to 0
  - Not scale/rotation invariant (extensions exist...)
  - Allows **very fast** Hamming Distance matching: counting the no. different bits in the descriptors tested



Pattern for intensity pair samples – generated randomly

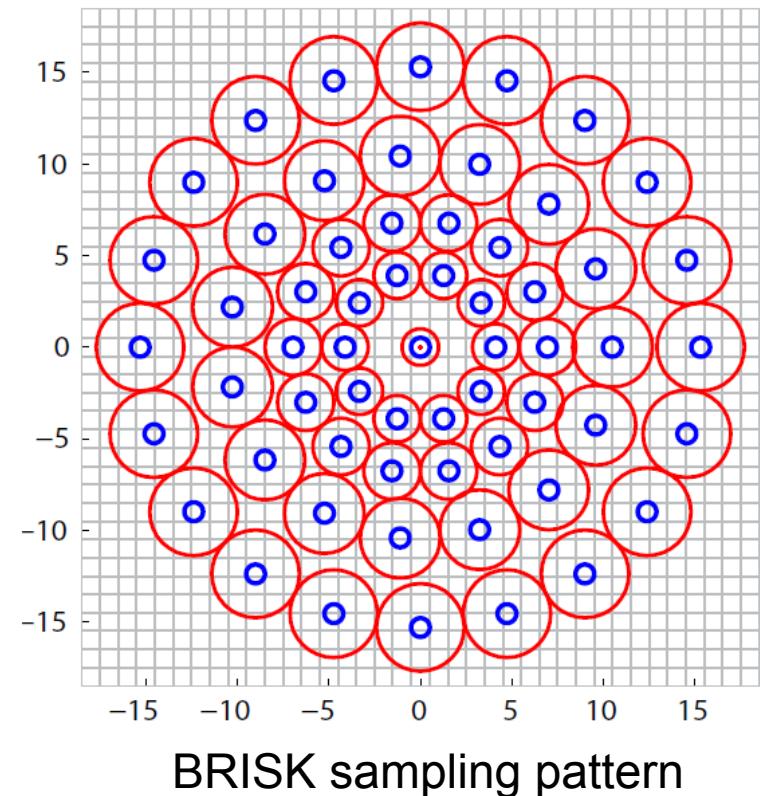
# BRISK features [Leutenegger, Chli, Siegwart, ICCV, 2011] | detector

- **BRISK: Binary Robust Invariant Scalable Keypoints**
- Detects corners in scale-space based on FAST detection
- High-speed (faster than SIFT, SURF)
- Rotation- and scale- invariant



# BRISK features | descriptor

- **Binary**, formed by pairwise intensity comparisons (like BRIEF)
- **Pattern** defines intensity comparisons in the keypoint neighborhood
- **Red circles**: size of the smoothing kernel applied
- **Blue circles**: smoothed pixel value used
- Compare short- and long-distance pairs for orientation assignment & descriptor formation
- Detection and descriptor speed:  $\approx 10$  times faster than SURF (and even faster than SIFT)
- Slower than BRIEF, but scale- and rotation- invariant



# BRISK feature | in action

**Open-source code** for FAST, BRIEF, BRISK and many more, available at the [OpenCV library](#)

