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§  Monochrome image a matrix of intensity values 
 

§  Typical sizes: 
§    320  x  240  (QVGA) 
§    640  x  480  (VGA) 
§  1280  x  720  (HD) 

§  Intensities sampled to 256 grey levels a 8 bits 

§  Images capture a lot of information  

Perception III 2 

Image Intensities & Data Reduction 

Useful 
cues Heavy 

Processing 
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What is useful, what is redundant? 
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Image from http://www.flickr.com/photos/mukluk/241256203/ 
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Image from http://www.flickr.com/photos/mukluk/241256203/ 
Perception III 4 
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What is useful, what is redundant? 

Perception III 5 
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Image from http://www.flickr.com/photos/mukluk/241256203/ 
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§  Sections 4.3 – 4.5 of the book 

§  Image filtering 
§  Correlation 

§  Convolution 

§  Edge / Corner extraction 

§  Point Features 
§  Harris corners 

§  SIFT features 

§  + some more recent image features from  
the state of the art 

Perception III 6 

Today’s Outline 
Optional Reading: 

•  Harris Corner Detector: C. Harris and M. Stephens. "A combined corner and edge 
detector." Alvey vision conference, 1988. [paper] 

•  Shi-Tomasi features: J. Shi and C. Tomasi. “Good features to track.” IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR) 1994. [paper] 

•  SIFT features: D. G. Lowe. "Distinctive image features from scale-invariant 
keypoints."International Journal of Computer Vision (IJCV), 2004.  
[paper][demo code] 

•  FAST corner detector: E. Rosten, R. Porter, and T. Drummond. "Faster and better: 
A machine learning approach to corner detection.”IEEE Transactions on Pattern 
Analysis and Machine Intelligence (PAMI), 2010.  [paper] 

•  BRIEF descriptor: M. Calonder, V. Lepetit, C. Strecha, P. Fua. "Brief: Binary robust 
independent elementary features.” European Conference on Computer Vision 
(ECCV), 2010. [paper] 

•  BRISK features: S. Leutenegger, M. Chli, and R. Y. Siegwart. "BRISK: Binary 
robust invariant scalable keypoints.” International Conference on Computer Vision 
(ICCV), 2011.[paper] 

•  Open source implementation of some of these methods (and others) in OpenCV. 
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Image filtering 

§  filtering: accept / reject certain components 

§  example: a low-pass filter allows low frequencies  a blurring (smoothing) effect on an image – 
used to reduce image noise 

§  Smoothing can be achieved not only with frequency filters, but also with spatial filters. 

Low-pass filtering:  
retains low-frequency components 
(smoothing) 

High-pass filtering:  
retains high-frequency 
components (edge detection) 
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§  Sxy : neighborhood of pixels around the point (x,y) in an image I 
§  Spatial filtering operates on Sxy  to generate a new value for the corresponding pixel at output image J  

 

 

§  For example, an averaging filter is: 

Perception III 8 

Image filtering | spatial filters 

Sxy 
2M+1 

2N+1 

),( yx ),( yx

Image I )(IFJ =Filtered Image 

J(x, y) =
I(u,v)

(u,v)∈Sxy
∑
(2M +1)(2N +1)
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§  Linear: every pixel is replaced by a linear combination of its neighbours 

§  Shift-invariant: the same operation is performed on every point on the image 

§  Why filter? 

§  Noise reduction, image enhancement, feature extraction, … 

§  Basic & very useful filtering operations: 

§  Correlation 

§  Convolution 

§  Brief study of these filters in the simplest case of 1D images (i.e. a row of pixels)  &  their 
extension to 2D 

 

Perception III 9 

Image filtering | linear, shift-invariant filters 
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Image filtering | correlation 

§  An averaging filter 

How to handle boundaries? 
§  Ignore filtered values at boundaries 
§  Pad image with zeros 
§  Pad image with first/last image values 

× × × 
1/3 1/3 1/3 = = = 

4/3 2/3 3/3 

Σ

9/3 

… 5 4 2 3 7 4 6 3 6 6 … :I

:J 9/3 

Perception III 
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Image filtering | correlation 

§  An averaging filter 

§  Formally, Correlation  is 

§  In this smoothing example 

… 5 4 2 3 7 4 6 3 6 6 … :I

:J

× × × 
1/3 1/3 1/3 = = = 

2/3 3/3 7/3 

Σ

12/3 9/3 

Filter, kernel, mask, window 

J(x) = F ! I(x) = F(i)I(x + i)
i∈[−N ,N ]∑

⎩
⎨
⎧

−∉

−∈
=

]1,1[,
]1,1[,

0
31

)(
i
i

iF

Perception III 
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§  Common practice for image smoothing:  
use a Gaussian 

§  Near-by pixels have a bigger influence on the averaged value rather than more distant ones 

g(x) = 1
σ 2π

e
−
(x−µ )2

2σ 2

σ

µ 0=
: controls the amount of smoothing 

Image filtering | constructing filter from a continuous fn  

99% 

Normalize filter so that values always add up to 1 

Perception III 
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Image filtering | taking derivatives with correlation 

§  Derivative of an image:  
quantifies how quickly intensities change  
(along the direction of the derivative) 

 

§  Approximate a derivative operator: 

:F

2
)1()1()( −−+

=
xIxIxJ

Σ

× × × 
-1/2 0 1/2 

:I )1( −xI )1( +xI)(xI

:J )(xJ

Perception III 
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§  Find locations in an image that are similar to a template 

Image filtering | matching using correlation 

Perception III 
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§  goal: identify image regions / patches in the left & right images, corresponding to the same 
scene structure 
§  Typical similarity measures: Normalized Cross-Correlation (NCC) , Sum of Squared Differences 

(SSD), Sum of Absolute Differences (SAD), … 

§  Exhaustive image search can be computationally very expensive!  
Can we search for correspondences more efficiently? 

15 

 Correspondence Search | the problem 

Perception II 

 Correspondence Search | the problem 

From last time… 
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§  Find locations in an image that are similar to a template 

§  Filter = template                                      a test it against all image locations 

§  Similarity measure: Sum of Squared Differences (SSD) – minimize 

 

:J 26 37 21 50 54 1 50 65 59 16 42 17 :J

Image filtering | matching using correlation 

( ) ( ) ( ) ( )∑∑∑ ∑
=

−=

=

−=−=

=

−=

+−++=+−
Ni

Ni

Ni

Ni

N

Ni

Ni

Ni
ixIiFixIiFixIiF )()(2)()()()( 222

3 2 4 1 3 8 4 0 3 8 7 7 :I

3 8 3 

Perception III 
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Image filtering | matching using correlation 

§  Find locations in an image that are similar to a template 

§  Filter = template                                      a test it against all image locations 

§  Similarity measure: Sum of Squared Differences (SSD) – minimize 

 

§  Similarity measure: Correlation? – maximize  

 
 

3 2 4 1 3 8 4 0 3 8 7 7 :I

Correlation 

26 37 21 50 54 1 50 65 59 16 42 17 :J

30 37 41 29 51 85 56 21 48 86 101 77 :J
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Perception III 
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Image filtering | matching using correlation 

§  Find locations in an image that are similar to a template 

§  Filter = template                                      a test it against all image locations 

§  Similarity measure: Sum of Squared Differences (SSD) – minimize 

 

§  Similarity measure: Correlation? – maximize  
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Correlation 
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Perception III 
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§  Find locations in an image that are similar to a template 

§  Filter = template                                      a test it against all image locations 

§  Correlation value is affected by the magnitude of intensities 
§  Similarity measure: Normalized Cross Correlation (NCC) – maximize  

 
 

( )

( ) ( )∑∑

∑
=

−=

=

−=

=

−=

+

+

Ni

Ni

Ni

Ni

Ni

Ni

ixIiF

ixIiF

22 )()(

)()(

3 2 4 1 3 8 4 0 3 8 7 7 :I

0.919 0.759 0.988 0.628 0.655 0.994 0.691 0.464 0.620 0.860 0.876 0.859 :J

Image filtering | NCC: Normalized Cross Correlation 

3 8 3 

Perception III 
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§  Find locations in an image that are similar to a template 

§  Filter = template                                      a test it against all image locations 

§  Correlation value is affected by the magnitude of intensities 
§  Similarity measure: Zero-mean Normalized Cross Correlation (ZNCC) – maximize  
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Image filtering | ZNCC: Zero-mean NCC 

3 8 3 

Perception III 
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Image filtering | correlation as a dot product 

§  Considering the filter F and the portion of the  
image Ix as vectors ð their correlation is: 

 

§  In NCC and ZNCC we consider the unit vectors of F and Ix , hence we measure their similarity 
based on the angle 

 
 
 

θcos, xx IFIF =

F

xI
θ

θ

Perception III 
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Image filtering | correlation in 2D 

§  Example:  
Constant averaging filter 

§  If                              i.e. this is a square filter   
 

§  2D Correlation        a no. multiplications per pixel                  
                                         no. additions per pixel         

§  2 × 1D Correlation  a no. multiplications per pixel   
                                         no. additions per pixel          

§  2 × 1D Correlation  a no. multiplications per pixel  
   (with const. factor)         no. additions per pixel         
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This example was generated with a 21x21 mask 
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Perception III 

F ! I(x, y) =
j∈[−M ,M ]∑ F(i, j)I(x + i, y+ j)

i∈[−N ,N ]∑
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Image filtering | correlation in 2D 

§  Example:  
Constant averaging filter 

§  If                              i.e. this is a square filter   
 

§  2D Correlation        a no. multiplications per pixel                  
                                         no. additions per pixel         

§  2 × 1D Correlation  a no. multiplications per pixel   
                                         no. additions per pixel          

§  2 × 1D Correlation  a no. multiplications per pixel  
   (with const. factor)         no. additions per pixel         
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Perception III 

F ! I(x, y) =
j∈[−M ,M ]∑ F(i, j)I(x + i, y+ j)

i∈[−N ,N ]∑

2N+1 

2N+1 
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Image filtering | correlation in 2D 

§  Example:  
Constant averaging filter 

§  If                              i.e. this is a square filter   
 

§  2D Correlation        a no. multiplications per pixel                  
                                         no. additions per pixel         

§  2 × 1D Correlation  a no. multiplications per pixel   
                                         no. additions per pixel          

§  2 × 1D Correlation  a no. multiplications per pixel  
   (with const. factor)         no. additions per pixel         
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Perception III 

F ! I(x, y) =
j∈[−M ,M ]∑ F(i, j)I(x + i, y+ j)

i∈[−N ,N ]∑

2N+1 

2N+1 
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§  A general, 2D Gaussian 
 

§  We usually want to smooth by the same amount in both x and y directions 

§  So this simplifies to: 

 

§  Another separable filter 

Image filtering | 2D gaussian smoothing 

Perception III 
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§  Convolution is equivalent to Correlation with a flipped filter before correlating 

§  CONVOLUTION: 

§  CORRELATION: 

§  Likewise, in 2D we flip the filter both horizontally & vertically 

 

§  Key difference between correlation and convolution is that convolution is associative: 

 

§  Very useful! 

§  Example: smooth an image & take its derivative a convolve the Derivative filter with the Gaussian Filter 
& convolve the resulting filter with the Image 

 

 

Image filtering | convolution 

Perception III 

J(x) = F ∗ I(x) = F(i)I(x − i)
i∈[−N ,N ]∑

J(x) = F ! I(x) = F(i)I(x + i)
i∈[−N ,N ]∑

[ ]
[ ]123'

321
=

=

F
F

F ∗ I(x) = F '! I(x)

So if 

Then, 

J(x, y) = F ∗ I(x, y) =
j∈[−M ,M ]∑ F(i, j)I(x − i, y− j)

i∈[−N ,N ]∑

IGFIGF ∗∗=∗∗ )()(
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Courtesy of D. Lowe 

Image filtering | examples 

Perception III 

0 0 0 
0 1 0 
0 0 0 *                  =  ? 

original image 
filtered (no change) 
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Image filtering | examples 

Perception III 

0 0 0 
0 0 1 
0 0 0 *                  =  ? 

original image 
filtered (shifted left by 1 pixel) 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

29 

Image filtering | examples 

Perception III 

1/9 1/9 1/9 
1/9 1/9 1/9 
1/9 1/9 1/9 *                 =  ? 

original image 
filtered (blurred with a box filter) 
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Image filtering | examples 

Perception III 

-   =  ? 

§  What does blurring take away? 

original image smoothed (5x5) detail 
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detail 

Image filtering | examples 

Perception III 

+ a   =  ? 

§  Let’s add it back: 

original image sharpened 
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Edge detection 

§  Ultimate goal of edge detection: an idealized line drawing.  
§  Edge contours in the image correspond to important scene contours.  

Perception III 
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Edge detection | edge = intensity discontinuity in 1 direction 

§  Edges correspond to sharp changes of intensity  

§  How to detect an edge? 

§  Change is measured by 1st order derivative in 1D 

§  Big intensity change a magnitude of derivative is large 

§  Or 2nd order derivative is zero. 

Perception III 
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1D edge detection | effect of noise 

§  Where is the edge? a image noise cannot be ignored 

)(xI

x

x

)(xI
dx
d

§  Consider a single row or column of the image, where image intensity shows an obvious 
change 

Perception III 
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1D edge detection | solution: smooth first 

)(xI

gσ (x)

s(x) = I(x)∗gσ (x)

( ))()( xs
dx
dxs =ʹ

§  Where is the edge?   

Edges occur at maxima/minima of )(xsʹ

Perception III 
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1D edge detection | derivative theorem of convolution 

§    

§  This saves us one operation: 

ʹs (x) = d
dx

gσ (x)∗ I(x)( ) = g 'σ (x)∗ I(x)

)(xI

g 'σ (x) =
d
dx
gσ (x)

ʹs (x) = g 'σ (x)∗ I(x)
Edges occur at maxima/minima of )(xsʹ

Perception III 
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1D edge detection | zero-crossings 

§  Locations of Maxima/minima in          are equivalent to zero-crossings in 

)(xI

ʹ́gσ (x) =
d 2

dx2
gσ (x)

ʹ́s (x) = ʹ́gσ (x)∗ I(x)

)(xs ʹ́)(xsʹ

: Laplacian of Gaussian operator 

Edges occur at zero-crossings of )(xs ʹ́

Perception III 
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2D edge detection 

§  Find gradient of smoothed image in both directions 

§  Discard pixels with         (i.e. edge strength) below a certain threshold 
§  Non-maxima suppression: identify local maxima of         

a detected edges 
S∇

S∇

Perception III 

∇S =∇ Gσ ∗ I( ) =

∂ Gσ ∗ I( )
∂x

∂ Gσ ∗ I( )
∂y

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

∂Gσ

∂x
∗ I

∂Gσ

∂y
∗ I

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
g 'σ (x)gσ (y)∗ I
gσ (x)g 'σ (y)∗ I

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Gσ (x, y) = gσ (x)gσ (y)

Usually use a separable  
filter such that: 
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2D edge detection | example 

: original image (Lena) I Perception III 
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2D edge detection | example using the Canny edge detector 

∇S =∇ Gσ ∗ I( )

Sx =
∂(Gσ ∗ I )

∂x

Sy =
∂(Gσ ∗ I )

∂y

Perception III : Edge strength S∇

∇S = Sx
2 + Sy

2
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41 Thresholding S∇ Perception III 

2D edge detection | example using the Canny edge detector 
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Thinning: non-maximal suppression  
ð edge image 

Perception III 

2D edge detection | example using the Canny edge detector 
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Sx =
∂ Gσ ∗ I( )

∂x

2D edge detection | partial derivatives of an image 

Perception III 

Sy =
∂ Gσ ∗ I( )

∂y

 -1                    
  1 Fy = -1     1 Fx =

∇S = Sx
2 + Sy

2
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2D edge detection | other approx. of derivative filters 

Sample Matlab code 
>> im = imread(‘lion.jpg’) 
>> Fy = fspecial(‘sobel’); 
>> outim = imfilter(double(im), Fy);  
>> imagesc(outim); 
>> colormap gray; 

Perception III 

Fx =
−1 0 1
−1 0 1
−1 0 1

Fy =
1 1 1
0 0 0
−1 −1 −1

Fx =
−1 0 1
−2 0 2
−1 0 1

Fy =
1 2 1
0 0 0
−1 −2 −1

Fy =
1 0
0 −1

Fx =
0 1
−1 0

§  Prewitt: 

§  Sobel: 

§  Roberts: 
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Key points on smoothing + derivative masks 

Smoothing masks 
§  Values positive  

§  Always sum to 1 à constant regions same as input 

§  Amount of smoothing proportional to mask size 
 

 

Derivative masks 
§  Opposite signs used to get high response in regions of 

high contrast 

§  Always sum to 0 à no response in constant regions 

§  High absolute value at points of high contrast 

 Perception III 

2N+1 

2N+1 

Fx = 1 −1( )
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46 Perception III 

∇S =∇∗G ∗ I =
(Fx ∗G)∗ I
(Fy ∗G)∗ I

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

x-direction 

y-direction 

Fx = 1 −1( )

Fy =
1
−1

⎛

⎝
⎜

⎞

⎠
⎟

2D edge detection | derivative of gaussian filter 
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2D edge detection | popular edge detection filters 

Perception III 

Laplacian of Gaussian 

Gaussian 

derivative of Gaussian 

Gσ (u,v) =
1

2πσ 2 e
−
u2+v2

σ 2

∇Gσ (u,v) =

∂
∂u
Gσ (u,v)

∂
∂v
Gσ (u,v)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∇2Gσ (u,v) =

∂2

∂u2
Gσ (u,v)

∂2

∂v2
Gσ (u,v)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
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Point Features 
 

Perception III 

Image Feature Extraction: 
§  Edges 
§  Points:  Shi-Tomasi & Harris corners 

              SIFT features 
§  and more recent algorithms from the state of the art… 

margaritachli.com/papers/ICCV2011paper.pdf 
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Point features | applications 

Point features are widely used in: 
§  Robot navigation 
§  Object recognition 
§  3D reconstruction 
§  Motion tracking 
§  Indexing and database retrieval ð Google Images 
§  … 
§  Image stitching: this panorama was generated using AUTOSTITCH (freeware) 
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Point features | how to build a panorama? 

§  We need to match (align) images 

Perception III 
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Point features | how to build a panorama? 

§  Detect feature points in both images 

Perception III 
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Point features | how to build a panorama? 

§  Detect feature points in both images 

§  Find corresponding pairs 

Perception III 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

53 

Point features | how to build a panorama? 

§  Detect feature points in both images 

§  Find corresponding pairs 

§  Use these pairs to align images 

Perception III 
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Point features | feature extraction 

Problem 1: 
§  Detect the same points independently in both images, if they are in the field of view 

Perception III 

We need a repeatable feature detector 

no chance to match! 
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Point features | feature matching 

Problem 2: 
§  For each point, identify its correct correspondence in the other image(s) 

Perception III 

We need a reliable and distinctive feature descriptor 

? 
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§  Some patches can be localized or matched with higher accuracy than others 

Point features | what is a distinctive feature? 

Perception III 

Image 1 Image 2 
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Corner detection 

Perception III 

commons.wikimedia.org 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

58 

Corner detection | identifying corners 

Perception III 

§  Key property: in the region around a 
corner, image gradient has two or 
more dominant directions 

§  Corners are repeatable and 
distinctive 
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Corner detection | identifying corners 

§  How do we identify corners? 

§  Shifting a window in any direction should give a large change of intensity in at least 2 directions 

“flat” region: 
no intensity change 

“corner”: 
significant change in at 

least 2 directions 

“edge”: 
no change along the edge 

direction 

Perception III 
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 Corner detection | how do we implement this? 

§  Two image patches of size P one centered at           and one centered at   

§  The Sum of Squared Differences between them is: 

§   Let                        and                        . Approximating with a 1st order Taylor expansion: 

 

§  This produces the approximation 

x
yxIIx ∂

∂
=

),(

SSD(Δx,Δy) = I(x, y)− I(x +Δx, y+Δy)( )2
x,y∈P∑

),( yyxx Δ+Δ+),( yx

yyxIxyxIyxIyyxxI yx Δ+Δ+≈Δ+Δ+ ),(),(),(),(

y
yxII y ∂

∂
=

),(

SSD(Δx,Δy) ≈ Ix (x, y)Δx + Iy (x, y)Δy)( )
2

x,y∈P∑
Perception III 
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 Corner detection | how do we implement this? 

§  This can be written in a matrix form as 

SSD(Δx,Δy) ≈ Ix (x, y)Δx + Iy (x, y)Δy)( )
2

x,y∈P∑

⇒ SSD(Δx,Δy) ≈ Δx Δy⎡
⎣

⎤
⎦M

Δx
Δy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

SSD(Δx,Δy) ≈ Δx Δy⎡
⎣

⎤
⎦ 

Ix
2 IxIy

IxIy Iy
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ 

Δx
Δy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x,y∈P∑

M =
Ix
2 IxIy

IxIy Iy
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥x,y∈P∑

Perception III 

“Second moment matrix” 
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Corner detection | interpreting matrix M 

§  Since M is symmetric 

§  The Harris (and the “Shi-Tomasi”) detector analyses the eigenvalues, λ1  and λ2 , to decide if we are in 
presence of a corner a i.e. look for large intensity changes in at least 2 directions 

 

⇒M =
Ix
2 IxIy

IxIy Iy
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥x,y∈P∑ = R−1 λ1 0

0 λ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
R

Perception III 



| 
Autonomous Mobile Robots 
Margarita Chli, Martin Rufli, Roland Siegwart  

ASL  
Autonomous Systems Lab 

63 

§  The eigenvectors v and eigenvalues λ of a square matrix A satisfy: 

  Av=λv 

§  Then is an eigenvector v of A and λ is the corresponding eigenvalue. 

§  The eigenvalues are found by solving: 

§  In this case, A=M is a 2 x 2 matrix, so: 

§  For each λ we can find its corresponding v (forming the columns in R) by 

0)det( =− IA λ

0det
2221

1211 =⎥
⎦

⎤
⎢
⎣

⎡

−

−

λ

λ

mm
mm

[ ] 0)(4)(
2
1 2

2211211222112,1 =−+±+= mmmmmmλ

0
2221

1211 =⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−

−

y
x

mm
mm

λ

λ

Perception III 

Corner detection | eigen decomposition 
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Corner detection | interpreting matrix M 

§  Since M is symmetric 

§  The Harris (and the “Shi-Tomasi”) detector analyses the eigenvalues, λ1  and λ2 , to decide if we are in 
presence of a corner a i.e. look for large intensity changes in at least 2 directions 

 

⇒M =
Ix
2 IxIy

IxIy Iy
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥x,y∈P∑ = R−1 λ1 0

0 λ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
R

§  We can visualize                                          as an ellipse with axis-lengths determined by λ1  and λ2 and the 

axes’ orientations determined by R (i.e. the eigenvectors of M) 

§  The (two) eigenvectors identify the  

orthogonal directions of largest and  

smallest changes of SSD 

 

 

[ ] const
y
x

Myx =⎥
⎦

⎤
⎢
⎣

⎡

Δ

Δ
ΔΔ

direction of the slowest 
change of SSD 

direction of the fastest 
change of SSD 

(λmax)-1/2 

(λmin)-1/2 

Perception III 
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Corner detection | visualization of 2nd moment matrices 

Perception III 
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Corner detection | visualization of 2nd moment matrices 

Perception III 
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Does patch      describe a corner or not? 

§  No structure:  
SSD is almost constant in all directions,  
so it’s a flat region  

§  1D structure:                 is large (or vice versa) 
SSD has a large variation only in one direction, which is the 
one perpendicular to the edge. 

§  2D structure:            are both large 
SSD has large variations in all directions and then we are in 
presence of a corner. 

§  Shi-Tomasi [1] cornerness criterion:  

 CSHI-TOMASI = min(λ1,λ2)  >  thresh. 
[1] J. Shi and C. Tomasi. "Good Features to Track,". CVPR 1994 

Corner detection | interpreting the eigenvalues 

Perception III 

P

021 ≈≈λλ

21 λλ >>

21,λλ

RRM ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

CORNER 
λ1 , λ2 are both large 

FLAT 
REGION 

EDGE 
λ2 >> λ1 

EDGE 
λ1 >> λ2 

λ2 

λ1 
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§  Computing λ1 and λ2 is expensive  
a Harris & Stephens suggested using a 
“cornerness function” instead: 

     where 

§  Harris cornerness criterion [2] 

§  Last step of Harris corner detector: extract local 
maxima of the cornerness function 

[2] C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ , 
Proceedings of the Alvey Vision Conference, 1988 

Corner detection | corner response function 

Perception III 

λ1 

λ2 

EDGE 
λ1 >> λ2 

EDGE 
λ1 << λ2 

FLAT REGION 

CORNER 
λ1 , λ2 are both large 

021 ≈≈λλ

CHARRIS = λ1λ2 −κ (λ1 +λ2 )
2 = det(M )−κ ⋅ trace2 (M )

κ = const.∈ [0.04, 0.15] CORNER 
λ1 , λ2 are both large 

EDGE 
λ1 >> λ2 

EDGE 
λ2 >> λ1 

FLAT 
REGION 
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Harris corners | workflow 

Perception III 
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Harris corners | workflow 

§  Compute corner 
response C 

Perception III 
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Harris corners | workflow 

Perception III 

§  Find points with large corner 
response: C > threshold 
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Harris corners | workflow 

Perception III 

§  Take only the points of local 
maxima of thresholded C 
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Harris corners | workflow 

Perception III 
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Harris corners | properties 

§  Rotation invariance? 

Harris corners are invariant to image rotation 

Ellipse rotates, but its shape (i.e. eigenvalues) remains the same 

Image 1 Image 2 

Perception III 
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Harris corners | properties 

All points will be 
classified as edges 

Corner! 

Image 1 Image 2 

Perception III 

Harris corners are not invariant to scale change 

§  Scale invariance? 
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Harris corners | properties’ summary 

§  Harris detector: probably the most widely used and known corner detector 

§  The detection is invariant to  
§  Rotation 
§  Linear intensity changes 
§  note: to make the matching invariant to these we need suitable descriptor & matching 

§  The detection is NOT invariant to  
§  Scale changes 
§  Geometric affine changes: an image transformation, which distorts the neighborhood of the corner, can 

distort its ‘cornerness’ response 

Perception III 
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Scale-invariant feature detection 

§  Consider regions (e.g. discs) of different sizes around a point 
§  Aim: corresponding regions look the same in image space, when the appropriate scale-change is 

applied 

§  Choose corresponding regions (discs) independently in each image 

Image 1 Image 2 
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§  Approach: design a function to apply on the region (disc) , which is “scale invariant” 
    (i.e. remains constant for corresponding regions, even if they are at different scales) 

§  Average intensity value enclosed in each disc, as a function of the disc-radius: 

Scale-invariant feature detection 

scale = 1/2 

average I 

disc radius 

Image 1 
average I 

disc radius 

Image 2 

example: average 
image intensity over 
corresponding regions  

(at different scales) 
should remain constant 
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Scale-invariant feature detection 

§  Identify the local maximum in each response a these occur at corresponding region 
sizes 

s1 s2 

The corresponding 
scale-invariant region 
size is found in each 
image independently! 

scale = 1/2 

disc radius 

Image 1 

disc radius 

Image 2 average I average I 
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Scale-invariant feature detection 

§  A “good” function for scale detection has one clear, sharp peak 

 

 

§  Sharp, local intensity changes in an image, are good regions to monitor for identifying relative 
scale in usual images. 

  ð look for blobs or corners (i.e. sharp intensity discontinuities) 

I 

region size 

bad 

I 

region size 

bad 

I 

region size 

Good ! 
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Scale-invariant feature detection | LoG scale detector 

§  Functions of determining scale: convolve image with kernel to 
identify sharp intensity discontinuities 

§  Detected scale corresponds to local maxima or minima of the 
convolved image region 

§  The Laplacian of Gaussian (LoG) kernel: 

Perception III 

Kernel Imagef = ∗

2

2

2

2
2 ),(),(),(

y
yxG

x
yxGyxGLoG

∂

∂
+

∂

∂
=∇=

Laplacian of Gaussian 

www.kixor.net 
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Scale-invariant feature detection | LoG scale detector 

§  Response of LoG for corresponding regions: 
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Scale-invariant feature detection | DoG scale detector 

§  Approximation to the LoG kernel for efficiency: 

     Difference of Gaussians (DoG) kernel: 

§  Used in the SIFT feature detector [Lowe et al., IJCV 2004] 

 

§  The SURF feature detector  [Bay et al, CVIU 2008]  
implements the DoG kernel using a linear combination 
of rectangular functions 

),(),( yxGyxGDoG k σσ −=

Perception III 
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§  SIFT = Scale Invariant Feature Transform  
an approach for detecting and describing regions of interest in an image 

§  SIFT features are reasonably invariant to changes in:  
rotation, scaling, changes in viewpoint, illumination 

§  SIFT detector uses DoG kernel, SIFT descriptor is based on gradient orientations 

§  Very powerful in capturing + describing  
distinctive structure, but also computationally  
demanding 

Main SIFT stages: 

1.  Extract keypoints + scale 

2.  Assign keypoint orientation 

3.  Generate keypoint descriptor 

SIFT features [Lowe et al., IJCV 2004] 
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SIFT features | detector (keypoint location + scale) 

Blur 
S

ub
sa

m
pl

e 

DoG: 

3.   Keypoints: local extrema in the DoG pyramid 
 
 

1.   Scale-space pyramid: subsample and blur original image 
2.   Difference of Gaussians (DoG) pyramid: subtract successive smoothed images 
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SIFT features | keypoint orientation assignment 

Define “orientation” of keypoint to achieve rotation 
invariance 

§  Sample intensities around the keypoint  

§  Compute a histogram of orientations of intensity gradients  

§  Peaks in histogram: dominant orientations 

§  Keypoint orientation = histogram peak 

§  If there are multiple candidate peaks, construct a different keypoint 
for each such orientation 0 2π
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SIFT features | descriptor 

§  Descriptor : “identity card” of keypoint  
§  Simplest descriptor: matrix of intensity values around a keypoint (image patch) 
§  Ideally, a descriptor should be 

§  highly distinctive + 
§  tolerant/invariant to common image transformations 

 
§  SIFT descriptor: 128-element vector  

§  Describe all gradient orientations relative to the keypoint  
orientation 

§  Divide keypoint neighborhood in 4×4 regions and compute  
orientation histograms along 8 directions  

§  SIFT descriptor: concatenation of all 4×4×8 (=128) values 

§  Descriptor Matching: L2-distance (i.e. SSD) between these  
descriptor vectors 
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SIFT features 

§  Final SIFT keypoints with detected orientation & scale 
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SIFT features | features’ stability to viewpoint change 
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SIFT features | use in planar recognition 

§  Planar surfaces can be reliably recognized at a rotation of 60° away from the camera 

§  Only 3 points are needed for recognition 

§  But objects need to have enough texture  

§  Recognition under occlusion 
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§  SIFT feature detector code:  
for Matlab & C code to run with compiled binaries 
for Win and Linux (freeware) 
http://www.cs.ubc.ca/~lowe/keypoints/  
 

§  Make your own panorama with AUTOSTITCH 
(freeware): 
http://matthewalunbrown.com/autostitch/
autostitch.html 

SIFT features | code and demos 
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More recent features from SOTA 

§  …suitable for Robotics applications 
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FAST corner detector  [Rosten et al., PAMI 2010] 

§  FAST: Features from Accelerated Segment Test 

§  Studies intensity of pixels on circle around candidate pixel C 

§  C is a FAST corner if a set of N contiguous  
pixels on circle are:  
§  all brighter than intensity_of(C)+theshold,  

or 
§  all darker than intensity_of(C)+theshold     !

 
§  Typical FAST mask: test for 12 contiguous pixels in a 16-pixel circle 

§  Very fast detector – in the order of 100 Mega-pixels/second 

116 2
3
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6
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10 

C 

Perception III 
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BRIEF descriptor [Calonder et. al, ECCV 2010] 

§  BRIEF : Binary Robust Independent Elementary Features 
§  Goal: high speed (in description and matching) 

§  Binary descriptor formation: 
§  Smooth image 
§  for each detected keypoint (e.g. FAST),  

 sample all intensity pairs (I1, I2)  (typically 256 pairs) according to pattern  
 around the keypoint 
 for each intensity pair p 
§  if I1< I2     then  set bit p of descriptor to 1 
§  else   set bit p of descriptor to 0 

§  Not scale/rotation invariant (extensions exist…) 
§  Allows very fast Hamming Distance matching: counting the no. different bits  

in the descriptors tested 

Pattern for intensity pair 
samples – generated randomly 

Perception III 
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§  BRISK: Binary Robust Invariant Scalable Keypoints 
§  Detects corners in scale-space based on FAST detection 
§  High-speed (faster than SIFT, SURF) 
§  Rotation- and scale- invariant 

BRISK features [Leutenegger, Chli, Siegwart, ICCV, 2011] | detector 

Perception III 
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BRISK features | descriptor 

§  Binary, formed by pairwise intensity comparisons (like BRIEF) 

§  Pattern defines intensity comparisons in the keypoint 
neighborhood 

§  Red circles: size of the smoothing kernel applied 

§  Blue circles: smoothed pixel value used 

§  Compare short- and long-distance pairs for orientation 
assignment & descriptor formation 

§  Detection and descriptor speed: ≈10 times faster than SURF 
(and even faster than SIFT) 

§  Slower than BRIEF, but scale- and rotation- invariant BRISK sampling pattern 

Perception III 
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BRISK feature | in action 

Open-source code for FAST, BRIEF, 
BRISK and many more, available at 

the OpenCV library 

[Leutenegger et al., ICCV 2011] 

Test Frame 1                    |  Test Frame 2 

Perception III 


