Localization II

Roland Siegwart, Margarita Chli, Martin Rufli
Probabilistic Reasoning (e.g. Bayesian)

- Reasoning in the presence of uncertainties and incomplete information
- Combining preliminary information and models with learning from experimental data

\[
p(x|y) = \frac{p(y|x)p(x)}{p(y)}
\]
Map Representation | Continuous Line-Based

a) Architecture map
b) Representation with set of finite or infinite lines
Map Representation | *Exact cell decomposition*

- Exact cell decomposition - Polygons
Map Representation | Approximate cell decomposition

- Fixed cell decomposition (occupancy grid)
 - Narrow passages disappear
Map Representation | *Adaptive cell decomposition*

- Fixed cell decomposition
 - Narrow passages disappear

![Map Diagram](image)
Kalman Filter Localization | in summary

1. **Prediction (ACT)** based on previous estimate and odometry
2. **Observation (SEE)** with on-board sensors
3. **Measurement prediction** based on prediction and map
4. **Matching** of observation and map
5. **Estimation** → position update (posteriori position)

Observation: Probability of making this observation

Prediction: Robot’s belief before the observation

Estimation: Robot’s belief update

Observation: Probability of making this observation

\[p(x) \]
Localization: Probabilistic Position Estimation
(Kalman Filter: continuous, recursive and very compact)
ACT | using motion model and its uncertainties

\[
\overline{\text{bel}}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \text{bel}(x_{t-1})
\]

prior belief

\[
\text{bel}(x_{t-1})
\]

uncertain motion (odometry)

\[
p(u_t)
\]

prediction update

\[
\text{ACT}
\]

convolution
estimation of position based on perception and map

\[\text{bel}(x_t) \]

\text{prediction update}

\[p(z_t \mid x_t, M) \]

\text{perception}

\[\text{bel}(x_t) = \eta p(z_t \mid x_t, M) \text{bel}(x_t) \]

\text{measurement update}

\[\text{Multiplication and normalization (}\eta\text{)} \]
Kalman Filter Localization

Markov versus Kalman localization

<table>
<thead>
<tr>
<th></th>
<th>Markov</th>
<th>Kalman</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS</td>
<td>- localization starting from any unknown position</td>
<td>- Tracks the robot and is inherently very precise and efficient</td>
</tr>
<tr>
<td></td>
<td>- recovers from ambiguous situation</td>
<td></td>
</tr>
<tr>
<td>CONS</td>
<td>- However, to update the probability of all positions within the whole state space at any time requires a discrete representation of the space (grid). The required memory and calculation power can thus become very important if a fine grid is used.</td>
<td>- If the uncertainty of the robot becomes too large (e.g. collision with an object) the Kalman filter will fail and the position is definitively lost</td>
</tr>
</tbody>
</table>
Map Representation | Approximate cell decomposition

- Occupancy grid example
 - 0 indicates that the cell has not been hit by any ranging measurements (free space)
 - 1 indicates that the cell has been hit one or multiple times by ranging measurements (occupied space)
 - Can change over time (e.g. dynamic obstacles)

Courtesy of S. Thrun
Markov Localization
Case Study – Grid Map

- Example 2: Museum
 - Laser scan 1

Courtesy of W. Burgard
Markov Localization
Case Study – Grid Map

- Example 2: Museum
 - Laser scan 2

Courtesy of W. Burgard
Markov Localization
Case Study – Grid Map

- Example 2: Museum
 - Laser scan 3

Courtesy of W. Burgard
Markov Localization
Case Study – Grid Map

- Example 2: Museum
 - Laser scan 13

Courtesy of
W. Burgard
Markov Localization
Case Study – Grid Map

- Example 2: Museum
 - Laser scan 21

Courtesy of W. Burgard
Drawbacks of Markov localization

- Planar motion case
 - is a three-dimensional grid-map array
 - cell size must be chosen carefully.

- During each prediction and measurement steps
 - all the cells are updated
 - the computation can become too heavy for real-time operations.

- Example
 - 30x30 m environment;
 - cell size of 0.1 m x 0.1 m x 1 deg
 → 300 x 300 x 360 = 32.4 million cells!
 → Important processing power needed
 → Large memory requirement
Drawbacks of Markov localization

- Reducing complexity
 - Various approaches have been proposed for reducing complexity
 - One possible solution would be to increase the cell size at the expense of localization accuracy.
 - Another solution is to use an adaptive cell decomposition instead of a fixed cell decomposition.

- Randomized Sampling / Particle Filter
 - The main goal is to reduce the number of states that are updated in each step
 - Approximated belief state by representing only a ‘representative’ subset of all states (possible locations)
 - E.g. update only 10% of all possible locations
 - The sampling process is typically weighted, e.g. put more samples around the local peaks in the probability density function
 - However, you have to ensure some less likely locations are still tracked, otherwise the robot might get lost
Map Representation | *Topological map*

- A topological map represents the environment as a graph with nodes and edges.
 - Nodes correspond to spaces
 - Edge correspond to physical connections

- Topological maps lack scale and distances, but topological relationships (e.g., left, right, etc.) are maintained.

![Diagram of a topological map showing nodes and edges connected to represent the environment's layout.](image-url)
Map Representation | *Topological map*

- London underground map
Map Representation | Example: Automatic Map building of topological map using **vision**

- Use line and color features
Map Representation | Example: Automatic Map building of topological map using vision
Markov Localization: Case Study - Topological Map (1)

- The Dervish Robot
- Topological Localization
Markov Localization: Case Study - Topological Map (2)

- Topological map of office-type environment

<table>
<thead>
<tr>
<th></th>
<th>Wall</th>
<th>Closed door</th>
<th>Open door</th>
<th>Open hallway</th>
<th>Foyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing detected</td>
<td>0.70</td>
<td>0.40</td>
<td>0.05</td>
<td>0.001</td>
<td>0.30</td>
</tr>
<tr>
<td>Closed door detected</td>
<td>0.30</td>
<td>0.60</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Open door detected</td>
<td>0</td>
<td>0</td>
<td>0.90</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>Open hallway detected</td>
<td>0</td>
<td>0</td>
<td>0.001</td>
<td>0.90</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Markov Localization: Case Study - Topological Map (3)

- Update of believe state for position n given the percept-pair i

 \[p(n|i) = p(i|n)p(n) \]

- $p(n|i)$: new likelihood for being in position n
- $p(n)$: current believe state
- $p(i|n)$: probability of seeing i in n (see table)

- No action update!

 However, the robot is moving and therefore we can apply a combination of action and perception update

 \[p(n_t|i_t) = \int p(n_t|n'_{t-1}, i_t)p(n'_{t-1})dn'_{t-1} \]

- $t-i$ is used instead of $t-1$ because the topological distance between n' and n is very depending on the specific topological map
Markov Localization: Case Study - Topological Map (4)

- The calculation

\[p(n_t|n'_{t-i}, i_t) \]

is realized by multiplying the probability of generating perceptual event \(i \) at position \(n \) by the probability of having failed to generate perceptual event \(s \) at all nodes between \(n' \) and \(n \).

\[p(n_t|n'_{t-i}, i_t) = p(i_t, n_t) \cdot p(\emptyset, n_{t-1}) \cdot p(\emptyset, n_{t-2}) \cdot \ldots \cdot p(\emptyset, n_{t-i+1}) \]
Markov Localization: Case Study - Topological Map (5)

- Example calculation
 - Assume that the robot has two nonzero belief states
 - \(p(1-2) = 1.0 \); \(p(2-3) = 0.2 \)
 and that it is facing east with certainty
 - **Perceptual event**: open hallway on its left and open door on its right
 - State 2-3 will progress potentially to 3, 3-4 or 4.
 - State 3 and 3-4 can be eliminated because the likelihood of detecting an open door is zero.
 - The likelihood of reaching state 4 is the product of the initial likelihood \(p(2-3) = 0.2 \), (a) the likelihood of detecting anything at node 3 and the likelihood of detecting a hallway on the left and a door on the right at node 4 and (b) the likelihood of detecting a hallway on the left and a door on the right at node 4. (for simplicity we assume that the likelihood of detecting nothing at node 3-4 is 1.0)
 - (a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or open), \([0.6 \cdot 0.4 + (1-0.6) \cdot 0.05] \) and correctly detects nothing on its right, 0.7.
 - (b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and mistakes the right hallway for an open door, 0.10.
 - This leads to:
 - \(0.2 \cdot [0.6 \cdot 0.4 + 0.4 \cdot 0.05] \cdot 0.7 \cdot [0.9 \cdot 0.1] \) \(\rightarrow p(4) = 0.003 \).
 - Similar calculation for progress from 1-2 \(\rightarrow p(2) = 0.3 \).
Markov Localization: *Case Study - Topological Map (5)*

<table>
<thead>
<tr>
<th></th>
<th>Wall</th>
<th>Closed door</th>
<th>Open door</th>
<th>Open hallway</th>
<th>Foyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing detected</td>
<td>0.70</td>
<td>0.40</td>
<td>0.05</td>
<td>0.001</td>
<td>0.30</td>
</tr>
<tr>
<td>Closed door detected</td>
<td>0.30</td>
<td>0.60</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Open door detected</td>
<td>0</td>
<td>0</td>
<td>0.90</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>Open hallway detected</td>
<td>0</td>
<td>0</td>
<td>0.001</td>
<td>0.90</td>
<td>0.50</td>
</tr>
</tbody>
</table>