
ASL

Autonomous Systems Lab

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 1

Motion Planning | Graph Search

Autonomous Mobile Robots

Martin Rufli – IBM Research GmbH

Margarita Chli, Paul Furgale, Marco Hutter, Davide Scaramuzza, Roland Siegwart

ASL

Autonomous Systems Lab

Introduction | the see – think – act cycle

“position“

global map

Cognition

Path Planning

knowledge,

data base

mission

commands

Localization

Map Building

environment model

local map
path

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Introduction to Optimization Techniques 2

see-think-act
raw data

Sensing Acting

Information

Extraction

Path

Execution

M
o

ti
o

n
 C

o
n

tr
o

l

P
e

rc
e

p
ti
o

n

actuator

commands

Real World

Environment

ASL

Autonomous Systems Lab

Introduction | the motion planning problem

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Introduction to Optimization Techniques 3

Goal

ASL

Autonomous Systems Lab

� A graph is characterized by

� a set of nodes

� edges connecting pairs of nodes

� Graphs for motion planning are commonly constructed

from map or sensor data

Graph construction | overview

),(ENG

N

E

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

from map or sensor data

Graph Search 4

ASL

Autonomous Systems Lab

� Lattice graphs are largely independent of the workspace representation

� They overlay a repetitive discretization on the workspace

Graph construction | Grid and Lattice graphs

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 5

ASL

Autonomous Systems Lab

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 6

Motion Planning | Graph Search

Autonomous Mobile Robots

Martin Rufli – IBM Research GmbH

Margarita Chli, Paul Furgale, Marco Hutter, Davide Scaramuzza, Roland Siegwart

ASL

Autonomous Systems Lab

� Encompasses deterministic optimization algorithms operating on

graph structures

� The methods find a (globally lowest-cost) connection between a pair of nodes

Deterministic graph search | overview

),(ENG

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 7

ASL

Autonomous Systems Lab

� The method expands nodes according to a FIFO queue and a Closed list

� It backtracks the solution from the goal state backwards in a greedy way

Breadth-first search | working principle

FIFO Closed0 BF(Graph G, Node Start, Node Goal)

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 8

1 Queue.init(FIFO)

2 Queue.push(Start)

3 while Queue is not empty:

4 Node curr = Queue.pop()

5 if curr is Goal return

6 Closed.push(curr)

7 Nodes next = expand(curr)

8 for all next not in Closed:

9 Queue.push(next)

A

=f
C

=f
B

=f
D

F
1

1

1

1

1

=f
E1

ASL

Autonomous Systems Lab

� The method expands nodes according to a FIFO queue and a Closed list

� It backtracks the solution from the goal state backwards in a greedy way

Breadth-first search | working principle

FIFO Closed0 BF(Graph G, Node Start, Node Goal)

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 9

1 Queue.init(FIFO)

2 Queue.push(Start)

3 while Queue is not empty:

4 Node curr = Queue.pop()

5 if curr is Goal return

6 Closed.push(curr)

7 Nodes next = expand(curr)

8 for all next not in Closed:

9 Queue.push(next)

A

=f
C

=f
B

=f
D

F
1

1

1

3

1

=f
E1

ASL

Autonomous Systems Lab

� The trajectory to the first goal state encountered is optimal iff all edge

costs on the graph are identical and positive

� Optimality of the solution is retained for arbitrary positive edge costs, if

search is continued until queue is empty

� Breadth-first search has a time complexity of

Breadth-first search | properties

()EVO +

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

� Breadth-first search has a time complexity of

Graph Search 10

()EVO +

ASL

Autonomous Systems Lab

� Dijkstra‘s search expands nodes according to a HEAP and a Closed list

� It backtracks the solution from the goal state backwards in a greedy way

Dijkstra‘s search | working principle

0 Min_Bin_Heap_Push(Node up)

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 11

1 insert up at end of heap

3 while up < parent(up):

4 swap(up, parent(up))
2

4 7

5 9

ASL

Autonomous Systems Lab

� Dijkstra‘s search expands nodes according to a HEAP and a Closed list

� It backtracks the solution from the goal state backwards in a greedy way

Dijkstra‘s search | working principle

0 Min_Bin_Heap_Push(Node up)

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 12

1 insert up at end of heap

3 while up < parent(up):

4 swap(up, parent(up))

0 Min_Bin_Heap_Pop()

1 return top element of heap

2 move bottom element to top as down

3 while down > min(child(down)):

4 swap(down, min(child(down)))

2

4 7

5 9

4 3

5 9 7

ASL

Autonomous Systems Lab

� Dijkstra‘s search expands nodes according to a HEAP and a Closed list

� It backtracks the solution from the goal state backwards in a greedy way

Dijkstra‘s search | working principle

HEAP Closed0 Dijkstra(Graph G, Node Start, Node Goal)

=f

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 13

1 Queue.init(BIN_MIN_HEAP)

2 Queue.push(Start)

3 while Queue is not empty:

4 Node curr = Queue.pop()

5 if curr is Goal return

6 Closed.push(curr)

7 Nodes next = expand(curr)

8 for all next not in Closed:

9 Queue.push(next)

A

=f
C

=f
B

=f
D E

1

1

1

5.1

1

ASL

Autonomous Systems Lab

� The sequence to the first goal state encountered is optimal

� Edge costs must be strictly positive; otherwise, employ Bellman-Ford

� Dijkstra‘s search has a time complexity of

Dijkstra‘s search | properties & requirements

()EVVO +log

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 14

ASL

Autonomous Systems Lab

� A* expands nodes according to a HEAP and a Closed list

� It makes use of a heuristic function to guide search

� It backtracks the solution from the goal state backwards in a greedy way

The A* algorithm | working principle

HEAP Closed

=f

0 A_Star(Graph G, Heur H, Node Start, Goal)

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 15

A

=

=

f

hC 2

=

=

f

hB 2

=

=

f

hD 1 E

1 Queue.init(BIN_MIN_HEAP, H)

2 Queue.push(Start)

3 while Queue is not empty:

4 Node curr = Queue.pop()

5 if curr is Goal return

6 Closed.push(curr)

7 Nodes next = expand(curr)

8 for all next not in Closed:

9 Queue.push(next)

1

1

1

5.1

2

ASL

Autonomous Systems Lab

� A* expands nodes according to a HEAP and a Closed list

� It makes use of a heuristic function to guide search

� It backtracks the solution from the goal state backwards in a greedy way

The A* algorithm | working principle

HEAP Closed

=f

0 A_Star(Graph G, Heur H, Node Start, Goal)

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 16

A

=

=

f

hC 3

=

=

f

hB 0

=

=

f

hD 1 E

1 Queue.init(BIN_MIN_HEAP, H)

2 Queue.push(Start)

3 while Queue is not empty:

4 Node curr = Queue.pop()

5 if curr is Goal return

6 Closed.push(curr)

7 Nodes next = expand(curr)

8 for all next not in Closed:

9 Queue.push(next)

1

1

1

5.1

2

ASL

Autonomous Systems Lab

� The trajectory to the first goal state encountered is optimal

� Edge costs must be strictly positive

� For optimality to hold heuristic must be consistent

The A* algorithm | properties & requirements

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 17

ASL

Autonomous Systems Lab

� Encompasses optimization algorithms operating according to a randomized

node expansion step

� The associated graph is thus usually constructed online during search

� Randomization is appropriate for high-dimensional search spaces

Randomized graph search | overview

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 18

ASL

Autonomous Systems Lab

� RRT grows a randomized tree during search

� It terminates once a state close to the goal state is expanded

The RRT algorithm | working principle

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 19

ASL

Autonomous Systems Lab

The RRT algorithm | example

Goal

� RRT grows a randomized tree during search

� It terminates once a state close to the goal state is expanded

0 RRT(Node Start, Node Goal, System Sys,

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 20

Start

Goal
Environment Env)

1 Graph.init(Start)

2 while Graph.size() is less than threshold

3 Node rand = rand()

4 Node near = Graph.nearest(rand)

5 try

6 Node new = Sys.propagate(near, rand)

7 Graph.addNode(new)

8 Graph.addEdge(near,new)

ASL

Autonomous Systems Lab

� Solutions are almost surely sub-optimal

� RRT is probabilistically complete

The RRT algorithm | properties

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Graph Search 21

ASL

Autonomous Systems Lab

� Any-angle search

� D. Ferguson and A. T. Stentz. “Field D*: An Interpolation-based Path Planner and Replanner”.
In Proceedings of the International Symposium on Robotics Research (ISRR), 2005.

� The D* algorithm

Graph search| further reading

|
Autonomous Mobile Robots

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

� The D* algorithm

� S. Koenig and M. Likhachev. “Improved Fast Replanning for Robot Navigation in Unknown
Terrain”. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2002.

� The RRT* algorithm

� S. Karaman and E. Frazzoli. “Sampling-based Algorithms for Optimal Motion Planning”.
International Journal of Robotics Research, 30(7): 846–894, 2011.

Graph Search 22

