SLAM I: The problem of SLAM

Autonomous Mobile Robots

Margarita Chli
Martin Rufli, Roland Siegwart
Section 5.8 + some extras…

- SLAM: what is it?
- Approaches to SLAM:
 - Bundle Adjustment
 - Filtering (UKF/EKF/Particle Filter SLAM)
 - Keyframes
- EKF SLAM in detail
- EKF SLAM case study: MonoSLAM
- Components for a scalable SLAM system
The SLAM problem:

How can a body navigate in a previously unknown environment while constantly building and updating a map of its workspace using onboard sensors & onboard computation only?

- When is SLAM necessary?
 - When a robot must be truly autonomous (no human input)
 - When there is no prior knowledge about the environment
 - When we cannot place beacons and cannot use external positioning systems (e.g. GPS)
 - When the robot needs to know where it is
SLAM | the chicken & egg problem

- **The backbone of spatial awareness of a robot**
- One of the most challenging problems in probabilistic robotics
- **An unbiased map is necessary for localizing the robot**

Pure localization with a known map.
SLAM: no a priori knowledge of the robot’s workspace

- **An accurate pose estimate is necessary for building a map of the environment**

Mapping with known robot poses.
SLAM: the robot poses have to be estimated along the way
SLAM | a short history of photogrammetry

- Originated from efforts to formalize production of topographic maps from aerial imagery
- “Photogrammetry” – the practice of determining the geometric properties of objects from images

Motivation

Maps from Aerial Imagery

- **Originated from efforts to formalize production of topographic maps from aerial imagery**

- **“Photogrammetry”** – the practice of determining the geometric properties of objects from images
SLAM | a short history of photogrammetry

http://dc227.4shared.com/doc/geEW4K7k/preview.html
SLAM | a short history of photogrammetry

Figure 4. Slotted templets being laid at the Soil Conservation Service, U.S. Department of Agriculture.

SLAM | a short history of photogrammetry

http://dc227.4shared.com/doc/geEW4K7k/preview.html
NATMAP EARLY DAYS, MAP COMPILED FROM AERIAL PHOTOGRAPHY 1948-1970

David R. Hocking

Fig. 6. Overhead camera set up to photograph a section of a 'four mile' mosaic.

Fig. 7. One of six sections of SG-52-04 Lake Amadeus (Amadeus 5048).
1940s: Opto-mechanical systems: aerial images set on glass plates, arranged in a series of projectors

Motivation

Maps from Aerial Imagery

May 3, 2014

Bundle Adjustment

Fig. 10. Theory of Multiplex

Bundle Adjustment

“A rigorous least squares adjustment, believed to be of unprecedented universality, is given for the simultaneous adjustment of the entire set of observations arising from a general m-station photogrammetric net.

...A computing program for automatic electronic computers is outlined.”

Brown, D.C., A Solution to the General Problem of Multiple Station Analytical Stereo triangulation, RCA Technical Report No. 43, February 1958
Michael J. Broxton, Ara V. Nefian, Zachary Moratto, Taemin Kim, Michael Lundy, and Aleksandr V. Segal, "3D Lunar Terrain Reconstruction from Apollo Images", *International Symposium on Visual Computing 2009*
5 Results

The 3D surface reconstruction system described in this paper was tested by processing 71 Apollo Metric Camera images from Apollo 15. Specifically, we chose frames from orbit 33 of the mission, which includes highly overlapping images that span approximately 90 degrees of longitude in the lunar equatorial region. This exercised our algorithms across a wide range of different terrain and lighting conditions. Figure 4 shows the final results in the vicinity of Hadley Rille: the Apollo 15 landing site.

Tests were carried out on a 2.8-GHz, 8-core workstation with 8-GB of RAM. Stereo reconstruction for all 71 stereo pairs took 2.5 days. In the end, the results were merged into a DEM at 40-m/pixel that contained 73,000 x 20,000 pixels.

5.1 Bundle Adjustment

Bundle adjustment was carried out as described in Section 3. Initial errors and results after one round of adjustment are shown in columns two and three of Table 1, respectively. Subsequently, any tie-point measurements with image-plane residual errors that were greater than 2 standard deviations from the
R. Li, J. Hwangbo, Y. Chen, and K. Di. Rigorous photogrammetric processing of hirise stereo imagery for mars topographic mapping.
3.1. Image network construction

A typical drive distance within each sol is 20 m to 70 m. The image network is constructed by linking the panoramic and traversing images with automatically selected tie points. The key to the success of BA is to select a sufficient number of high quality well-distributed tie points that link the images to form the network. A systematic approach to automatic selection of tie points from the panoramic images taken at one position was developed (Cheng et al., 2006; Li et al., 2003; Xu, 2004). This made the onboard VO algorithm or other drive supported by onboard rover navigation algorithms. In cases where the rover experienced a great deal of slippage, the rover motion by tracking interest points between stereo pairs (step 164–189) was only enabled at approximately at the midpoint of a long drive (e.g., over 70 m). The image network is constructed by linking the traverses as corrected by the bundle adjustment method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Illustration of a rover traverse and the image network built as the Pancam and Navcam panoramas and traversing images are taken.
SLAM | from photogrammetry to SFM

SLAM | from photogrammetry to SFM to SLAM
Can we track the motion of a camera/robot while it is moving?

Pick natural scene features to serve as landmarks (in most modern SLAM systems)

Range sensing (laser/sonar): line segments, 3D planes, corners

Vision: point features, lines, textured surfaces.

Key: features must be distinctive & recognizable from different viewpoints
how to do SLAM | with a Gaussian Filter

- Use internal representations for
 - the positions of landmarks (map)
 - the camera parameters

- Assumption:
 Robot’s uncertainty at starting position is zero

Start: robot has zero uncertainty
On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

First measurement of feature A
how to do SLAM | with a Gaussian Filter

- The robot observes a feature which is mapped with an uncertainty related to the measurement model.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations
how to do SLAM | with a Gaussian Filter

- As the robot moves, its pose uncertainty increases, obeying the robot’s motion model.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot moves forwards: uncertainty grows
how to do SLAM | with a Gaussian Filter

- Robot observes two new features.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot makes first measurements of B & C
how to do SLAM | with a Gaussian Filter

- Their position uncertainty results from the **combination** of the measurement error with the robot pose uncertainty.
- ⇒ map becomes **correlated** with the robot pose estimate.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot makes first measurements of B & C
how to do SLAM | with a Gaussian Filter

- Robot moves again and its uncertainty increases (motion model)

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot moves again: uncertainty grows more
how to do SLAM | with a Gaussian Filter

- Robot re-observes an old feature
 → **Loop closure** detection

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations
how to do SLAM | with a Gaussian Filter

- Robot updates its position: the resulting **pose** estimate becomes **correlated** with the feature **location estimates**.
- Robot’s uncertainty **shrinks** and so does the uncertainty in the rest of the map.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot re-measures A: “loop closure” uncertainty shrinks
SLAM | probabilistic formulation

- Using the notation of [Davison et al., PAMI 2007]

- Robot **pose** at time $t : x_t$ ⇒ Robot **path** up to this time: $\{x_0, x_1, \ldots, x_t\}$

- Robot **motion** between time $t-1$ and $t : u_t$ (control inputs / proprioceptive sensor readings) ⇒ Sequence of robot relative motions: $\{u_0, u_1, \ldots, u_t\}$

- The **true map** of the environment: $\{m_0, m_1, \ldots, m_N\}$

- At each time t the robot makes measurements z_i
 ⇒ Set of all measurements (observations): $\{z_0, z_1, \ldots, z_k\}$

- The **Full SLAM problem**: estimate the posterior $p(x_{0:t}, m_{0:N} \mid z_{0:k}, u_{0:t})$

- The **Online SLAM problem**: estimate the posterior $p(x_t, m_{0:N} \mid z_{0:k}, u_{0:t})$
SLAM | graphical representation

The diagram illustrates a graphical representation of a SLAM (Simultaneous Localization and Mapping) system. The nodes represent the robot's pose at different times (x0, x1, x2, x3, ...), and the edges represent the measurements (z0, z1, z2, z3, ..., z16) and actions (u0, u1, u2, u3) at each time step.
Full graph optimization (Bundle Adjustment)

- Eliminate observations & control-input nodes and solve for the constraints between poses and landmarks.
- Globally consistent solution, but infeasible for large-scale SLAM

⇒ If real-time is a requirement, we need to **sparsify** this graph
Full graph optimization (Bundle Adjustment)

- Minimize the total least-squares cost function
- Use a batch Maximum Likelihood approach
- Assumes Gaussian noise densities

Pros
- Information can move backward in time
- Trajectories can be very smooth
- Best possible (most likely) estimate given the data and models
- Exploitation of matrix sparsity leads to more efficient solutions

Cons
- Computationally demanding
- Difficult to provide the online estimates for a controller
Filtering

- Eliminate all past poses: ‘summarize’ all experience with respect to the last pose, using a state vector and the associated covariance matrix
- **Gaussian Filtering** (EKF, UKF)
 - Tracks a Gaussian belief of the state/landmarks
 - Assumes all noise is Gaussian
 - Follows the “predict/measure/update” approach

- **Pros**
 - Can run online
 - Works well for problems experiencing expected perturbations/uncertainty

- **Cons**
 - Unimodal estimate
 - States must be well approximated by a Gaussian
 - The vanilla implementation does not scale very well with larger maps
- **Particle Filtering**
 - Represents belief by a series of samples
 - **Each Particle** = a hypothesis of the state (= a suggested pose & map) with an associated weight (all weights should add up to 1)
 - Follows the “predict/measure/update” approach

\[p_i = \{ y_t, w_i \} \]

probability distribution (ellipse) as particle set (red dots)
how to do SLAM | with a Particle Filter

- Use internal representations for
 - the positions of landmarks (: map)
 - the camera parameters

- Assumption:
 Robot’s uncertainty at starting position is zero

- Initialize N particles at the origin, each with weight 1/N

Start: robot has zero uncertainty
how to do SLAM | with a Particle Filter

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

First measurement of feature A
how to do SLAM | with a Particle Filter

- The robot observes a feature which is mapped with an uncertainty related to the measurement model

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations
As the robot moves, its pose uncertainty increases, obeying the robot’s *motion model*.

- **Apply motion model to each particle**

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot moves forwards: uncertainty grows
how to do SLAM | with a Particle Filter

- Robot observes two new features.

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot makes first measurements of B & C
how to do SLAM | with a Particle Filter

- Their position uncertainty is encoded for each particle individually
 - For each particle:
 - Compare the particle’s predicted measurements with the obtained measurements
 - Re-weight such that particles with good predictions get higher weight & re-normalize particle weights
 - Re-sample according to likelihood

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot makes first measurements of B & C
how to do SLAM | with a Particle Filter

- Robot moves again and its uncertainty increases (motion model)
 - Apply motion model to each particle

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations

Robot moves again: uncertainty grows more
how to do SLAM | with a Particle Filter

- Robot moves again and its uncertainty increases (motion model)

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations
how to do SLAM | with a Particle Filter

- Robot re-observes an old feature
 ⇒ Loop closure detection

On every frame:
- **Predict** how the robot has moved
- **Measure**
- **Update** the internal representations
how to do SLAM | with a Particle Filter

For each particle:
- Compare the particle’s predicted measurements with the obtained measurements
- Re-weight such that particles with good predictions get higher weight & re-normalize particle weights
- Re-sample according to likelihood

On every frame:
- Predict how the robot has moved
- Measure
- Update the internal representations

Robot re-measures A: “loop closure” uncertainty shrinks
SLAM | filtering

- **Particle Filtering**
 - Represents belief by a series of samples
 - **Each Particle** = a hypothesis of the state with an associated weight (all weights should add up to 1)
 - Follow the “predict/measure/update” approach

- **Pros**
 - Noise densities can be from any distribution
 - Works for multi-modal distributions
 - Easy to implement

- **Cons**
 - Does not scale to high-dimensional problems
 - Requires many particles to have good convergence
Key-frames

- Retain the most 'representative' poses (key-frames) and their dependency links \Rightarrow optimize the resulting graph
- Example: PTAM [Klein & Murray, ISMAR 2007]
Keyframe-based SLAM

- Minimizes the least-squares cost function
- Typically optimizes over a window of recent keyframes for efficiency
- Assumes Gaussian noise densities

Pros

- Known to provide better balance between accuracy & efficiency than filtering
- Permits processing of many more features per frame than filtering

Cons

- Size of optimization window affects scalability and convergence

[PTAM, Klein & Murray, ISMAR 2007]
- SLAM using an Extended Kalman Filter (EKF)
EKF SLAM summarizes all past experience in an **extended state vector** \(y_t \) comprising of the robot pose \(x_t \) and the position of all the features \(m_i \) in the map, and an associated **covariance** matrix \(P_{y_t} \):

\[
y_t = \begin{bmatrix} x_t \\ m_1 \\ \vdots \\ m_{n-1} \end{bmatrix}, \quad P_{y_t} = \begin{bmatrix} P_{xx} & P_{x m_1} & \cdots & P_{x m_{n-1}} \\ P_{m_1 x} & P_{m_1 m_1} & \cdots & P_{m_1 m_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ P_{m_{n-1} x} & P_{m_{n-1} m_1} & \cdots & P_{m_{n-1} m_{n-1}} \end{bmatrix}
\]

If we sense 2D line-landmarks, the size of \(y_t \) is \(3+2n \) (and size of \(P_{y_t} : (3+2n)(3+2n) \))

- 3 variables to represent the robot pose and
- \(2n \) variables for the \(n \) line-landmarks with state components

Hence, \(y_t = [X_t, Y_t, \theta_t, \alpha_0, r_0, \ldots, \alpha_{n-1}, r_{n-1}]^T \)

As the robot moves and makes measurements, \(y_t \) and \(P_{y_t} \) are updated using the **standard EKF equations**
The predicted robot pose \hat{x}_t at time-stamp t is computed using the estimated pose x_{t-1} at time-stamp $t-1$ and the odometric control input $u_t = \{\Delta S_l, \Delta S_r\}$

$$\hat{x}_t = f(x_{t-1}, u_t) = \begin{bmatrix} \hat{X}_t \\ \hat{Y}_t \\ \hat{\theta}_t \end{bmatrix} = \begin{bmatrix} X_{t-1} \\ Y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \Delta S_r + \Delta S_l & \frac{\Delta S_r + \Delta S_l}{2} \cos(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_r + \Delta S_l}{2} \sin(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) & \Delta S_r - \Delta S_l \end{bmatrix} \begin{bmatrix} \Delta S_l \\ \Delta S_r \\ \theta_{t-1} \end{bmatrix}$$

$\Delta S_l; \Delta S_r$: distance travelled by the left and right wheels resp.

b: distance between the two robot wheels

(based on the example of Section 5.8.4 of the AMR book)

During this step, the position of the features remains unchanged. EKF Prediction Equations:

$$\hat{\mathbf{y}}_t = \begin{bmatrix} \hat{X}_t \\ \hat{Y}_t \\ \hat{\theta}_t \\ \hat{\alpha}_0 \\ \hat{\alpha}_0 \\ \hat{r}_0 \\ \hat{r}_0 \\ \hat{\alpha}_{n-1} \\ \hat{\alpha}_{n-1} \\ \hat{r}_{n-1} \\ \hat{r}_{n-1} \end{bmatrix} = \begin{bmatrix} X_t \\ Y_t \\ \theta_t \\ \alpha_0 \\ \alpha_0 \\ r_0 \\ r_0 \\ \alpha_{n-1} \\ \alpha_{n-1} \\ r_{n-1} \\ r_{n-1} \end{bmatrix} + \begin{bmatrix} \frac{\Delta S_r + \Delta S_l}{2} \cos(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_r + \Delta S_l}{2} \sin(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_r - \Delta S_l}{b} \end{bmatrix}$$

$$\hat{\mathbf{P}}_{y_t} = F_y \hat{\mathbf{P}}_{y_{t-1}} F_y^T + F_u Q_u F_u^T$$

Covariance at previous time-stamp

Covariance of noise associated to the motion

Jacobians of f
EKF SLAM | vs. EKF localization

EKF LOCALIZATION
- The state x_t is **only** the robot configuration:

$$x_t = [X_t, Y_t, \theta_t]^T$$

$$\hat{x}_t = f(x_{t-1}, u_t)$$

$$\begin{bmatrix} \hat{X}_t \\ \hat{Y}_t \\ \hat{\theta}_t \end{bmatrix} = \begin{bmatrix} X_{t-1} \\ Y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \frac{\Delta S_x + \Delta S_l}{2} \cos(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_y + \Delta S_l}{2} \sin(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_r - \Delta S_l}{b} \end{bmatrix}$$

$$\hat{P}_{x_t} = F_x P_{x_{t-1}} F_x^T + F_u Q_f F_u^T$$

EKF SLAM
- The state y_t comprises of the robot configuration x_t and that of each feature m_i:

$$y_t = [X_t, Y_t, \theta_t, \alpha_0, r_0, \ldots, \alpha_{n-1}, r_{n-1}]^T$$

$$\hat{y}_t = f(y_{t-1}, u_t)$$

$$\begin{bmatrix} \hat{X}_t \\ \hat{Y}_t \\ \hat{\theta}_t \\ \hat{\alpha}_0 \\ \hat{r}_0 \\ \ldots \\ \hat{\alpha}_{n-1} \\ \hat{r}_{n-1} \end{bmatrix} = \begin{bmatrix} X_{t-1} \\ Y_{t-1} \\ \theta_{t-1} \\ \alpha_0 \\ r_0 \\ \ldots \\ \alpha_{n-1} \\ r_{n-1} \end{bmatrix} + \begin{bmatrix} \frac{\Delta S_x + \Delta S_l}{2} \cos(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_y + \Delta S_l}{2} \sin(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_r - \Delta S_l}{2b} \\ \frac{\Delta S_x + \Delta S_l}{2b} \alpha_0 + \frac{\Delta S_r - \Delta S_l}{2b} r_0 \\ \Delta S_x - \Delta S_l \\ \Delta S_y - \Delta S_l \\ \Delta S_r - \Delta S_l \end{bmatrix}$$

$$\hat{P}_{y_t} = F_y P_{y_{t-1}} F_y^T + F_u Q_f F_u^T$$
EKF SLAM | measurement prediction & update

- The application of the **measurement model** is the same as in EKF localization. The predicted observation of each feature m_i is:

$$\hat{z}_i = \begin{bmatrix} \hat{\alpha}_i \\ \hat{r}_i \end{bmatrix} = h_i(\hat{x}_i, m_i)$$

The predicted new pose is used to predict where each feature lies in measurement space.

- After obtaining the set of **actual** observations $z_0:n-1$ the EKF state gets updated:

$$y_t = \hat{y}_t + K_t(z_0:n-1 - h_0:n-1(\hat{x}_t, m_0:n-1))$$

$$P_{y_t} = \hat{P}_{y_t} - K_t \Sigma_{IN} K_t^T$$

where

$$\Sigma_{IN} = H\hat{P}_{y_t}HT + R$$

$$K_t = \hat{P}_{y_t}H(\Sigma_{IN})^{-1}$$

"Innovation" (= observation-prediction)
An example of EKF SLAM: MonoSLAM

[Davison, Reid, Molton and Stasse. PAMI 2007]
MonoSLAM | single camera SLAM

Images = information-rich snapshots of a scene
Compactness + affordability of cameras
HW advances

SLAM using a single, handheld camera:
Hard but … (e.g. cannot recover depth from 1 image)
very applicable, compact, affordable, …
MonoSLAM | from SFM to SLAM

Structure from Motion (SFM):

- Take some images of the object/scene to reconstruct
- Features (points, lines, …) are extracted from all frames and matched among them
- Process all images simultaneously
- Optimization to recover both:
 - camera motion and
 - 3D structure
 up to a scale factor
- Not real-time

San Marco square, Venice
14,079 images, 4,515,157 points

[Agarwal et al, IEEE Computer 2010]
MonoSLAM | problem statement

- Can we track the motion of a hand-held camera while it is moving? i.e. online

The videos are courtesy of Andrew J. Davison
MonoSLAM | problem statement

- SLAM using a single camera, grabbing frames at 30Hz
- Ellipses (in camera view) and Ellipsoids (in map view) represent uncertainty

The videos are courtesy of Andrew J. Davison
MonoSLAM | representation of the world

- The belief about the state of the world \mathbf{x} is approximated with a single, multivariate Gaussian distribution:

$$p(\mathbf{x}) = (2\pi)^{-\frac{d}{2}} |P|^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (\mathbf{x} - \hat{\mathbf{x}})^T P^{-1} (\mathbf{x} - \hat{\mathbf{x}}) \right\}$$

d denotes the dimension of $\hat{\mathbf{x}}$ and P is a square $(d \times d)$ matrix.

Mean (state vector)

- Camera state:
 - Position [3 dim.]
 - Orientation using quaternions [4 dim.]
 - Linear velocity [3 dim.]
 - Angular velocity [3 dim.]

Covariance matrix

- Landmark's state
 - e.g. 3D position for point-features

- Camera Frame R
 - \mathbf{X}_Cx
 - \mathbf{Y}_Cy (up)
 - \mathbf{Z}_Cz (forward)

- World Frame W
 - \mathbf{X}_Wx
 - \mathbf{Y}_Wy
 - \mathbf{Z}_Wz
MonoSLAM | motion & probabilistic prediction

- How has the camera moved from frame $t-1$ to frame t?
 \[
 \hat{x}_t = f(x_{t-1}, u_t)
 \]
 \[
 \hat{P}_t = F_y P_{t-1} F_y^T + F_u Q_t F_u^T
 \]

- The camera is **hand-held** \Rightarrow no odometry or control input data
 \Rightarrow Use a motion model

- But how can we model the unknown intentions of a human carrier?

 “we assume that the camera moves at a constant velocity over all time, [...] but on
 average we expect undetermined accelerations occur with a Gaussian profile”

- Davison et al. use a **constant linear velocity, constant angular velocity motion model**:
At each time step, the unknown linear a and angular α accelerations (characterized by zero-mean Gaussian distribution) cause an impulse of velocity:

$$
\mathbf{n} = \begin{pmatrix}
V^W \\
\Omega^W
\end{pmatrix} = \begin{pmatrix}
\mathbf{a}^W \Delta t \\
\mathbf{\alpha}^W \Delta t
\end{pmatrix}
$$

The constant velocity motion model, imposes a certain **smoothness** on the camera motion expected.
MonoSLAM | motion & probabilistic prediction

- Based on the predicted new camera pose \Rightarrow predict **which** known features will be visible and **where** they will lie in the image.

- Use measurement model h to identify the predicted location $\hat{z}_i = h_i(\hat{x}_i, y_i)$ of each feature and an associated search region (defined in the corresponding diagonal block of $\Sigma_{IN} = HP_tH^T + R$).

- Essentially: project the 3D ellipsoids from the SLAM map onto the image space.
MonoSLAM | measurement & EKF update steps

- Search for the known feature-patches inside their corresponding search regions to get the set of all observations

- Update the state using the EKF equations

\[x_t = \hat{x}_t + K_t (z_{0:n-1} - h_{0:n-1}(\hat{x}_t, y_{0:n-1})) \]

\[P_t = \hat{P}_t - K_t \Sigma_{IN} K_t^T \]

where:

\[\Sigma_{IN} = H\hat{P}_t H^T + R \]

\[K_t = \hat{P}_t H (\Sigma_{IN})^{-1} \]
MonoSLAM | applications

- MonoSLAM for Augmented Reality

- HPR-2 Humanoid at JRL, AIST, Japan

The videos are courtesy of Andrew J. Davison
EKF SLAM | a note on correlations

- At start up: the robot makes the first measurements and the covariance matrix is populated assuming that these (initial) features are uncorrelated ⇒ off-diagonal elements are zero.

\[
P_0 = \begin{bmatrix}
P_{xx} & 0 & 0 & \ldots & 0 & 0 \\
0 & P_{y_0y_0} & 0 & \ldots & 0 & 0 \\
0 & 0 & P_{y_1y_1} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & P_{y_{n-2}y_{n-2}} & 0 \\
0 & 0 & 0 & \ldots & 0 & P_{y_{n-1}y_{n-1}}
\end{bmatrix}
\]

- When the robot starts moving & taking new measurements, both the robot pose and features start becoming correlated.

\[
\hat{P}_{y_t} = F_y P_{y_{t-1}} F_y^T + F_u Q F_u^T
\]

- Accordingly, the covariance matrix becomes dense.
Correlations arise as
- the uncertainty in the robot pose is used to obtain the uncertainty of the observed features.
- the feature measurements are used to update the robot pose.

Regularly covisible features become correlated and when their motion is coherent, their correlation is even stronger.

Correlations very important for convergence: The more observations are made, the more the correlations between the features will grow, the better the solution to SLAM.

Chli & Davison, ICRA 2009
EKF SLAM | drawbacks

- The state vector in EKF SLAM is much larger than the state vector in EKF localization.

- Newly observed features are added to the state vector ⇒ The covariance matrix **grows quadratically** with the no. features ⇒ **computationally expensive** for large-scale SLAM.

- Approach to attack this: sparsify the structure of the covariance matrix (via approximations).

Chli & Davison, ICRA 2009
SLAM Challenges | components for scalable SLAM

1. Robust local motion estimation

2. Mapping & loop-closure detection

3. Map management & optimisation

[Chli, 2009, PhD thesis]