Trajectory Tracking and Iterative Learning on an Unmanned Aerial
Vehicle using Parametrized Model Predictive Control

Carmelo Sferrazza, Michael Muehlebach, and Raffaello D’ Andrea

Abstract— A parametrization of state and input trajectories
is used to approximate an infinite-horizon optimal control
problem encountered in model predictive control. The resulting
algorithm is discussed with respect to trajectory tracking,
including the problem of generating feasible trajectories. In
order to account for unmodeled repeatable disturbances an
iterative learning scheme is applied, and as a result, the tracking
performance can be improved over consecutive trials. The
algorithm is applied to an unmanned aerial vehicle and shown
to be computationally efficient, running onboard at a sampling
rate of 100 Hz during the experiments.

I. INTRODUCTION

Model Predictive Control (MPC) is an established control
strategy for addressing challenging control problems, often
including input and state constraints, see for example [1] and
references therein. It is based on the following procedure: at
each time step, an optimal control problem is solved and
the first portion of the resulting input trajectory is applied to
the system. This yields an implicit feedback law providing
robustness against disturbances and modeling errors.

Due to the fact that an optimal control problem has
to be solved at each time step, MPC is computationally
demanding, particularly when applied to systems with fast
dynamics. A common approach to reduce the computational
complexity is to discretize the dynamics and truncate the pre-
diction horizon. This leads naturally to a trade-off between
computation and prediction horizon. However, the truncation
of the prediction horizon might require the introduction of
a terminal cost and terminal state constraints to preserve
stability, see [1], [2].

In contrast, the MPC approach presented in [3] retains
an infinite prediction horizon by parametrizing input and
state trajectories with decaying basis functions. Provided that
the resulting trajectories fulfill the constraints for all times,
this leads to inherent closed-loop stability and recursive
feasibility guarantees. Moreover, by choosing suitable basis
functions, the resulting MPC formulation tends to have fewer
optimization variables and therefore exhibits small execution
times, as reported in [4].

This article extends the approach presented in [3] to trajec-
tory tracking and discusses the application to an unmanned
aerial vehicle. In addition, an iterative learning scheme is
incorporated in order to reject repeatable disturbances.

*This work was supported by ETH-grant ETH-48 15-1.

The authors are with the Institute for Dynamic Systems and
Control, ETH Zurich. Email correspondence to Carmelo Sferrazza
csferrazzalethz.ch.

A. Related Work

Due to the increase in computational power and the avail-
ability of dedicated optimization routines, see for example
[5], [6], MPC has been applied to a wide range of dynamic
systems. The vast majority of MPC controllers found in
the literature are based on a discrete-time finite-horizon
formulation, an overview of which is given in [1]. In [7]
and [8, Ch. 3, Ch. 6], an alternative formulation is proposed,
where the finite differences of the control inputs (in discrete
time) or the time derivative of the inputs (in continuous
time) are parametrized with so-called Laguerre or Kauz
basis functions. Although similar basis functions are used
herein, their approach is different due to the fact that a finite
prediction horizon is retained, and that the control inputs
are not parametrized directly. Moreover, the state variable is
eliminated, whereas we encode the dynamics as an equality
constraint that may or may not be eliminated, potentially
leading to a sparser optimization problem.

In the following, we point out some applications of
MPC to real-world systems, which we find relevant for our
work. This includes the control of unmanned aerial vehicles
with MPC, and trajectory tracking or iterative learning in
combination with MPC.

In [9], the application of MPC to a thrust-vectored flight
control experiment with a ducted fan actuation is presented.
Input and state constraints are included and the region of
attraction of the MPC controller is shown to be larger than
that of the corresponding linear quadratic regulator.

Different strategies have been presented to tackle the prob-
lem of trajectory tracking with MPC. In [10], a successive
linearization approach has been applied to the discrete-time
infinite-horizon MPC strategy. This method has been shown
to be more efficient than a nonlinear MPC formulation, while
maintaining a comparable performance, when applied to a
mobile robot. Guarantees for recursive feasibility have been
presented in [11] for constrained trajectory tracking problems
through the use of time-varying terminal regions. In [12],
the tracking control problem of underactuated vehicles is
addressed by allowing an asymptotic tracking error. This pro-
vides a means to compute the terminal set and the terminal
control law that guarantee asymptotic convergence of the
position of the vehicle to a tube centered around the desired
path. A direct multiple-shooting approach is introduced in
[13] for solving optimal control problems encountered in
MPC. The approach is evaluated in simulation, by perform-
ing extreme maneuvers with a flying vehicle. In [14], a MPC
framework is implemented and used for trajectory tracking

of a quadrotor, where the dynamics are modeled as a set
of piecewise affine systems given by different operating
points. An application of MPC to the trajectory tracking of
a formation of flying vehicles is presented in [15].

Unlike most of the approaches summarized above, we do
not discretize the dynamics, but parametrize input and state
trajectories with exponentially decaying basis functions. As
a result, we retain an infinite prediction horizon, and obtain
an optimization problem with relatively few variables. The
numerical effectiveness of our approach will be demonstrated
by the fact that the resulting MPC controller achieves a
sampling time of 100 Hz on an embedded computer (Gumstix
DuoVero COM).

Trajectory tracking can often be improved by incorporat-
ing learning approaches. Iterative Learning Control (ILC),
see [16], provides a way to iteratively improve the system
model available to the controller over multiple trials. An
overview of ILC can be found in [17]. In [18], a time-
varying Kalman filter is used to estimate the repeatable
disturbances along a trajectory, which might stem from
unmodeled system dynamics and uncertainties in the physical
parameters. We will use a similar approach to identify the
repeatable disturbances, and incorporate them into our MPC
formulation.

In [19] and [20], learning approaches are included in
an MPC framework. In [21], deep learning is combined
with MPC for guided policy search, where MPC is used to
generate data at training time. The method is evaluated with
simulations of a quadrotor’s flight. In [22], an underlying
control sequence is included as a (deficient) reference to
be improved for the predictive tracking control. At each
iteration, the input sequence is corrected by performing a
learning update. A similar strategy has been proposed in [23],
where the MPC performance is improved by feeding back the
control errors from previous iterations, based on the concept
of repetitive control.

Applications of ILC in combination with MPC have been
shown on a pH plant, see [24], and in [25], where learning-
based MPC has been applied on a quadrotor that has been
trained to catch a ball.

In our approach, we augment our system’s model with
repeatable disturbances, which we parametrize using the
same basis functions as for representing the input and the
states. As a consequence, these disturbances can be naturally
incorporated in our MPC formulation. In that way, the
system’s model is updated over consecutive trials, improving
the accuracy of the predictions used for MPC.

B. Outline

The parametrized MPC problem is presented in Section II.
Input and state trajectories are approximated through a linear
combination of Laguerre functions, and a constraint sampling
strategy is proposed. Section III discusses the problem of
generating a trajectory that is parametrized by the given
basis functions. The online trajectory tracking is explained
in Section IV. In Section V, an iterative learning scheme is
incorporated. Simulation and experimental results obtained

from flights with an unmanned aerial vehicle are shown in
Section VI. Concluding remarks are made in Section VIL.

II. PARAMETRIZED MPC

In order to approximate the infinite-horizon optimal con-
trol problem that will be used in our MPC approach, we will
represent state and input trajectories as linear combinations
of Laguerre functions, that is,

E(t) = (I, @ 7(t) ",
with 7(t) := (71(t), 72(t), . ..

7i(t) == V2X exp(—At) Zi: (Z ; 1) (-1)* 2A)F, ()

k!
k=0

a(t) == (I @ 7(t) 1w, (1)
,Ts(t)), for all ¢ € [0, 00), and

where n, € R™, n, € R™° are the parameter vectors, A
is the exponential decay, n and m describe the state respec-
tively the input dimension, and ® denotes the Kronecker
product. This approach has been previously presented in
[3], where additional motivation and examples are included.
For ease of notation, vectors are expressed as n-tuples,
with dimension and stacking clear from the context, i.e.
T7(t) = (11(t), 72(t), ..., 75(t)) € R*.

It can be shown that the basis functions 7(¢) satisfy the
following properties,

7(t) = Ma7(t), 7(t) = ™7(0), Vte[0,00), (3)

where
A 0 0
My= |72 A ER™C, (@)
: - 0
-2 —2X =X

which will be used in a later stage.

As discussed in [3], by representing input and state trajec-
tories with & and u according to (1), the constrained infinite-
horizon linear-quadratic optimal regulator problem can be
approximated as

. 1
n1n£ 3 {77; (Q®I)n. +n, (R® L)} ®)

s.t. Ayn. + Bun, =0, (6)
(In @ 7(0)) s = o, (7)
Fnu cU = [uminaumax}s7 ()

where umin € R™ and umax € R™ are the lower and upper
bounds on the control input u(t), @ € R™*™ is positive
definite (Q > 0), R € R™*™ is positive definite (R > 0),

Im ®T(t1)T
I, ® T(tQ)T
F =) e Rmsxms’)

I, ® T(tS)T
and
Ay =ARI, — I, ® MY,

B, :=B®I,, (10)

where A € R™ "™ is the system matrix and B € R™*™
is the matrix through which the inputs enter the system.
The suboptimality of this approximation can be quantified,
as discussed in [26].

The cost function in (5) matches the quadratic cost

/O h % [#6TQE() + () Ra(t)} dt.

In addition, as shown in [3], the constraints (6) and (7)
imply that the system’s dynamics are fulfilled exactly, that
is,

i(t) = AZ(t) + Ba(t),

(1)

Z(0) =z, Vte[0,00). (12)

The constraint (8) represents a box constraint on the
inputs, where the input constraints are relaxed, and are
only enforced at the specific time instants ¢;, + = 1,...,s.
The choice of these time instants is discussed in [4]. The
above formulation can be generalized to the case of arbitrary
linear constraints on the states and the inputs. However,
restricting the input (and possibly state) constraints to be
box constraints enables an efficient implementation of the
optimization routine for solving the optimization problem
(5), as highlighted in [4].

If the resulting optimal input trajectory violates the con-
straint umin < u(t) < umax for all times ¢t € [0,00), for
instance in between the time instants ¢;, ¢ = 1,...,s, the
theoretic stability and recursive feasibility guarantees are no
longer valid in general. In practice however, this sampling
strategy often results in constraint satisfaction for all times,
and enables to solve (5) efficiently with the Generalized Fast
Dual Gradient (GFDG) method, see [4].

III. TRAJECTORY GENERATION

We propose to generate feasible trajectories for all states
and inputs of the given system by solving an optimization
problem similar to (5). This process includes a transforma-
tion of the desired trajectories from the physical space, which
we denote by Zges(t), to the parameter space.

In particular, we propose solving an optimization problem
for finding feasible trajectories (compatible with the dynam-
ics and fulfilling the constraints) that are the closest possible
fit t0 Zges(t) (in the weighted L2-sense), while keeping the
control effort as small as possible.

The Laguerre functions that are used in our parametrized
MPC approach have limited polynomial order, and as such
they would not be suitable to perform a single fit over the
entire trajectory horizon. In order to tackle this problem, we
split the entire trajectory into N smaller intervals of length
T. In order to not lose the predictive power of the MPC
approach, we solve the trajectory generation problem over
a prediction window containing a number Np.q of these
intervals, covering a time horizon of length Np.dT'. As a
result, this approach improves the accuracy of the fit. In
practice, a trade-off between the prediction horizon NpreqT
and the accuracy of the fit has to be found.

Moreover, the basis functions are decaying to zero and
as such, they are unable to capture steady-state deviations.

Provided that these steady-state offsets correspond to equilib-
rium points of the dynamics, they are included in the trajec-
tory generation problem. More precisely, for each interval
j we may introduce the offsets zy, ;, that are chosen such
that Zaes((j + Nprea)T) — p,; = 0, and shift the desired
trajectory by these offsets, leading to the shifted trajectories
Zj(t) := Zaes(t + jT) — xp,;. These are defined over the
intervals j = 0,..., N — 1, which are used as a starting
point for the trajectory generation problem. The procedure
is illustrated in Figure 1.

We generate the feasible trajectories, represented by
Thef,j = (Naref,j, Muref,j), DY minimizing, for the j-th in-
terval,

Nora T 1 A T B

with respect to 7yf ;, where Q = 0 and R > 0 are suitable
tuning matrices,
Apj(t) = T5(1) = (In @ T(0) ooty (14)
and
(1) = (I @ 7(8)) et - (15)

Using the properties of the Kronecker product, and elim-
inating the terms not depending on 7)., (13) can be
rearranged as,

1 ~ _
5 {n;l,—,ref,j (Q @ Js)nm,ref,j + n]f,—,ref,j (R & Js)nu,ref,j}

NpredT _
- / i‘j (t)TQ(In & T(t))Tnx,ref,jdta (16)
0
where
Nprea T
J, = / () (6Tt
0

The matrix Js; can be computed efficiently considering that

a7)

NpredT Npde
o= [MrreTae= [T
0 0
and integrating by parts results in

My Js = [T(NpeaT)7(NpreaT) " — 7(0)7(0)7] (18)

NigeaT
—/O ()7 ()" dt
= [7(Nore D)7 (NpweaT) " = 7(0)7(0)] — Jo M.
This leads to the Lyapunov equation,
MyJs + JsMY — [T(NpreaT) T(NpreaT) T — 7(0)7(0)T] =0

that gives J; as a unique solution. Existence and uniqueness
of the solution Js of the above Lyapunov equation is guar-
anteed, since the triangular matrix M) is negative definite,
see [27, p. 114].

Lb,j

\ \ \ .

\ \ \ t
J1 (G+1)1 (j+2)7

j-th interval

]\‘TpredT

\ \ | .

o | T o7 | t
z;(t)

Fig. 1. Offset and prediction window for a single state, with Npreq = 2.
The curve is shifted by the offset z, j, such that at the end of the prediction
window the state will be at zero. The shifted curve is used for solving the
trajectory generation problem in (19) and the resulting parameters 7)yf,; are
stored for the j-th interval. The procedure is repeated for all the intervals
j=0,...,N—1

Therefore, the complete problem at each interval j reduces
to

1 . _
Jnf 5 {nl,ref,j(Q @ Ja) et F e, (R @ Js)nu,ref,j}
N ,ref, j

NpweaT -
- / jj (t)TQ(In X T(t))Tnz,ref,jdt (19)
0

s.t. AgNarer,j + Bulurer,; = 0, (20)
(In ® T(O)T)nz,ref,j + Tj

= (L @ 7(T) " et j—1 + To,j—1, (21)

(Im ® T(O)T)nu,reﬂj = (Im 0 T(T)T)nu,ref,j—la (22)

Fnyrer,j €U. (23)

In case parts of the desired state trajectory are not pro-
vided, the corresponding value in @ should be set to zero
(or very close to zero) for the corresponding state. In this
way, a higher flexibility will be left to the algorithm in order
to find a feasible trajectory.

The constraints (21) and (22) are introduced in order to
preserve the continuity of the states and the inputs, such
that the trajectory defined by 7.r; starts exactly where the
trajectory defined by nrj.; ends. In a similar way, both
constraints are replaced for the interval j = 0 by

(I @ 7(0) ") Nref.0 = Taes(0) — T

The results of the problem on two of the states of the
system that we will present in Section VI are shown in Figure
2.

(24)

IV. ONLINE TRAJECTORY TRACKING

Once a trajectory has been generated offline, it can be
tracked online by the MPC controller. At each time step, a

position [m]

0 2 4 6 8

10-2 time [s]
9 10 ‘

angle [rad]
o

-2 \ \ \ \
0 2 4 6 8

time [s]

Fig. 2. Trajectory generation results. The upper plot shows a sinusoidal
pulse in the z-position for the Flying Platform, an unmanned aerial vehicle
to be presented in Section VI. The lower plot shows the corresponding pitch
(Euler angle) over the same horizon. This state was not specified among
the desired ones, so the algorithm has the freedom of finding an appropriate
feasible trajectory.

counter is used to detect the current interval and load the
appropriate 7).,; and xp ;. For the time instants within the
intervals, the parameters have to be shifted in time by pre-
multiplying a delay matrix to the current 7 ;. Considering
a single state =, and given the sampling time 75 and the time
instant kT, k =0,..., K — 1, we have, according to (3),

7(kT,) = M FTs7(0). (25)
Within the j-th interval, this leads to
2(KTy) = 7(KT) o serj = 7(0) 7™y o 5
=7(0) "My rera . (26)

The above formula (26) extends naturally to multiple states
and inputs, by virtue of the Kronecker product. Therefore,
the corresponding shifted parameters are calculated as

.
Nref,d,j = (In+m & ekMATS)nref,j' (27)

We will drop the subscript ’4’ from now on to simplify
notation. As a result, in the j-th interval, the following

problem is solved online:

UETLT 2

. 1
inf { (nz - nw,ref,j)T (Q (29 Is) (7730 - nm,ref,j)

+ (77u - nu,ref,j)T (R ® IS) (nu - 77u7rn:f,j) }

st Agne + Bunu =0,
(In® T(O)T)m = X0 — Tb,j;
Fn, €U,

(28)

where x(is an estimate of the current position. The problem
can be solved with the GFDG method as proposed in Section
II, using the change of variables 7}, = 1, — Ny rerj» M, =
T — T, ref 5 -

V. TRAJECTORY TRACKING WITH
ITERATIVE LEARNING

In order to account for the repeatable disturbances, we
implement an iterative learning scheme. It consists of a
Kalman Filter, see [28, Ch. 8], for estimating these repeatable
disturbances, which are then included in the proposed MPC
framework. The use of a Kalman Filter is motivated by the
fact that it is a well-established technique, easily tunable, and
provides a means to incorporate prior information.

We model the disturbances as additive noise that enters

the dynamics through the matrix G € R™"*",
z(t) = Az(t) + Bu(t) + Gu(t), Vte€[0,00), (29)

where v(t) € R™ is the disturbance vector. In analogy to
the system’s state and input, which are modeled using 2 and
4, the disturbance v(t) is assumed to have the form

o(t) = (In, ® T(t))TThw

As a result, the equality constraint capturing the system
dynamics in (28) is reformulated as

(30)

Aune + Buny + Gony =0, G, :=G® I;. 31

Note that, as remarked earlier, trajectories Z(t), @(¢) and
0(t) satisfying (31) and the initial condition Z(0) = x, fulfill
the equations of motion (29) exactly.

We discretize the augmented system’s model in (29) as
(assuming a zero-order hold sampling),

xzlk + 1] = Aqz[k] + Bqulk] + Gqvlk], (32)

where & = 0,1,..., Ay, Bq and G4 are the discrete-
time matrix representation of (29) with sampling time 75,
and x[k] = x(kTs). We aim at estimating the disturbance
trajectory v[k] based on the data available from the previous
trials.

As we are interested in capturing the repeatable parts of
the disturbance, we use the following model to describe the
evolution of v[k] over different trials,

v[k] Tt = w[k]" + q[K]Y, qlk]" ~ N(0, Qxr),

where g[k]" denotes the process noise that is assumed to
be normally distributed with zero mean and variance Qkg,
and the superscript ¢ refers to the trial number. Thus, the
prediction step of the Kalman filter is given by

(k]! = 0m[k]", Bp[k]"T! = Pulk]' + Qkr, (34

where ©,[k]* and P, [k]® indicate the expected value and the
variance of the random variable v[k]® conditioned on the
trajectory data up to the (i — 1)-th trial, while vy,[k]* and
Pn[k]® indicate the expected value and the variance of the
same random variable conditioned on the trajectory data up
to the ¢-th trial.

During the execution of a trajectory, the actual states and
inputs are recorded and are used to update the estimate of
v[k]. We use (32) to formulate the measurement equation,

z[k + 1] — Aqz[k]" — Baulk]' = Gavlk]" + n[k]*,

(33)

i=z[k]?

with n[k]* ~ N(0, Rgr). The measurement update equations
can be expressed as

1

Pulk]" = ((P[k]) ™" + G{ R Ga) (35)

Oml[k]" = 0p[k]" + Pulk]'G] Rg (2[K]" — Gatp[k]"). (36)

Once the Kalman filter updates are performed, the current
estimated disturbance trajectory vy [k]* is transformed to the
continuous-time domain through a zero-order hold, yielding
v(t)". The latter is transformed to the parameter space
by performing a curve fitting that minimizes a regularized
L?-distance. Again, the Laguerre functions are not suitable
for fitting a curve over a large interval, as they only have
few degrees of freedom. To tackle this problem, we use a
similar approach as in the trajectory generation, and split
the trajectory v(t)* in N, pieces of length T),. In order
to simplify notation, we present this fitting procedure for
one-dimensional disturbances, but it can be easily extended
to the multi-dimensional case. Introducing the quantities
v (t)" == v(t + jT,)", the resulting fitting procedure (for
each interval j) reduces to,

; (™ i T,)2
N,j = argmin ; 3 (Uj(t) —7(t) 77)

n
+T17TT'(t)T'(t)T77}dt, (37)

where the first integrand penalizes the squared distance to
the disturbance trajectory, while the second term performs a
regularization in order to increase the smoothness of the re-
sulting trajectory T(t)Tnf)’ ;- The regularization is controlled
with the tuning parameter » € R, r > 0.

The optimization problem (37) can be solved analytically
leading to

T,)
0y = (Jo+rMyJ,MT) / vi(t)'T(t)dt, (38)
0
where

T’u
Jy = / r(t)r(t)"dt (39)
0
is computed in a similar way as in (17)-(18).
The algorithm that runs at each trajectory execution is
summarized by the pseudo-code given in Algorithm 1.

Algorithm 1 Pseudo-code for disturbances estimation.

Result: Estimate 7’ corresponding to the i-th trial
Record z[k]?, u[k]® over the entire trajectory;
Update the Kalman filter state v[k]%;
Split the interpolated v(t)* over N, intervals — v, (t)";
for each interval j do
| Fit 7!, ; through v (t)’;
end
Merge all the estimates and store a lifted vector

nh = (nhos by)

Fig. 3.

The Flying Platform during flight.

After the i-th trial, the current estimate of the disturbance
parameters is used to replan a feasible trajectory. This is done
by solving again the generation problem in (19), replacing
(20) with

Aznz,ref,j + Bunu,ref,j + Gunqi;,j =0, (40)

to include the estimated disturbances in the system’s dynam-
ics. In a similar way, in the online trajectory tracking problem
the equality constraint in (28) is replaced by

Ayt + Bunu + Gunly ; = 0. (41)

The vector 7! ; is shifted in time in a similar way as

described by (27).

VI. EXPERIMENTAL RESULTS
A. Hardware and software

The Flying Platform is a flying machine consisting of three
electrical ducted fans mounted on a lightweight frame, see
[29]. Two flaps are attached to each fan in order to control
the air flow and perform thrust vectoring. A PX4FMU!
is used as a flight controller for actuation and measuring
the angular velocities with the built-in gyroscope. The PX4
communicates through a serial bus with a Gumstix DuoVero
Zephyr computer-on-module (COM)?, equipped with a dual-
core ARM Cortex-A9 that runs at 1 GHz. The COM disposes
of 1GB RAM. Position and attitude information is provided
by a Vicon® motion capture system. Translational velocities
are estimated through off-board state estimation techniques.
The Flying Platform receives the data computed off-board,
that is, the actual position, attitude and (linear) velocity,
through a wireless communication.

The parametrized MPC routine and the iterative learning
are implemented on the Gumstix COM, that runs a Linux-
based operating system.

B. Model

A first-principles model is linearized about hover. In order
to be invariant to different yaw set-points, the linearization
is carried out in a yaw-fixed body coordinate system. The

1www.pixhawk.org

2yww.gumstix.org

3www.vicon.com

TABLE I
TUNING PARAMETERS.

parameter | value description

T 0.05 s | interval length in trajectory generation

Npred 25 prediction horizon for tracking (multiples of 77
T 0.1 regularization in learning fit

Ty 1s interval length in learning fit

Flying Platform model has 12 states, that is, position, transla-
tional velocities, attitude, and angular velocities, and 9 inputs
(3 per fan), which are given by T, ; (vertical thrusts) and T}, ;,
Ty; (horizontal components, in perpendicular directions to
each flap), with ¢+ = 1,2, 3. All the input saturations can be
approximated as box constraints, as shown in [4].

C. Results

We choose s = 5, and an exponential decay A = 5s~1.
The following matrices are chosen for the learning, with
n, = 12,

G=1I,, Qxr=10"'-1,, Rxp=107°-1,.

Our choice of G doesn’t specify any weights on how the
disturbances enter the system. The choice of Qxr leaves
some freedom to our assumption of invariance of the dis-
turbances over different trials, while the low magnitude of
the values in Rk emphasizes the considerable trust we give
to the measurements.

The following tuning matrices are chosen for the controller
presented in (28), which runs at a sampling frequency of 100
Hz,

position lin. velocity attitude ang. velocity
— S ——
Q = diag (2007 200, 30, 10, 10, 10, 40, 40, 10, 10, 10, 5)

R=1073 - diag (1.7,0.85,15,1.7,0.85,15,1.7,0.85,15) .

T, Ty 1,121 To2,Ty,2,Tz2 Te3,Ty,3,T%3

The remaining tuning parameters are summarized in Table
I. The desired task is to track a circle with a diameter of
20 cm in 6 s. Six consecutive trials have been performed.
The resulting tracking performance is shown in Figure 4.*

Due to the estimation of the disturbances 7, the predic-
tions of the MPC are more accurate as the number of trials
increases, which improves the tracking performance. The
repeatable disturbances are most likely due to asymmetries
in the mass distribution of the real system.

VII. CONCLUSION

A parametrized MPC approach has been extended to the
trajectory tracking case, and a learning scheme has been
introduced. To this extent, the inherent limitations of the
Laguerre functions that are used to parametrize the state
and input trajectories are addressed by introducing multi-
ple prediction intervals. Still, accounting for large constant
disturbances remains challenging due to the decaying nature

4A video showing some of the experiments can be found at the following
link: https://youtu.be/GgIwrnoNvTY.

T
0.1
= = = Reference
e Trial 1
_ Trial 2
E o} = Trial 3
>
wem Trial 6
—0.1]-
! ! !
—0.2 —0.1 0
x[m]

Fig. 4. Trajectory tracking of a circle (counter-clockwise direction, starting
from the origin). The feasible (parametrized) trajectory matches the desired
trajectory in the zy-plane, and is therefore not shown. The system improves
the accuracy of the predictions used for MPC, increasing the tracking
performance over subsequent trials, before reaching a steady-state after six
trials.

of the basis functions and requires careful tuning. The same
applies to disturbances that quickly change in time, due to
the bounded derivative of the basis functions. The method
has been tested on an unmanned aerial vehicle, showing
satisfactory tracking performance, and achieving a sampling
frequency of 100 Hz. The experiments have also shown how
the system improves in performing the task over subsequent
trials.

ACKNOWLEDGMENT

The authors would like to thank Marc-Andre Corzillius,
Michael Egli, Tobias Meier and Lukas Frohlich for their
contribution to the development of the Flying Platform.

The experiments of this research were carried out in the
Flying Machine Arena. A list of present and past participants
is available at http://flyingmachinearena.org/
people/.

REFERENCES

[1] M. Morari and J. H. Lee, “Model predictive control: past, present
and future,” Computers & Chemical Engineering, vol. 23, no. 4-5, pp.
667-682, 1999.

[2] M. Alamir and G. Bornard, “Stability of a truncated infinite con-
strained receding horizon scheme: the general discrete nonlinear case,”
Automatica, vol. 31, no. 9, pp. 1353-1356, 1995.

[3] M. Muehlebach and R. D’Andrea, “Parametrized infinite-horizon
model predictive control for linear time-invariant systems with input
and state constraints,” American Control Conference, pp. 2669-2674,
2016.

[4] M. Hofer, M. Muehlebach, and R. D’Andrea, “Application of an
approximate model predictive control scheme on an unmanned aerial
vehicle,” International Conference on Robotics and Automation, pp.
2952-2957, 2016.

[5] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 267-278, 2009.

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient interior point methods for multistage problems arising
in receding horizon control,” Conference on Decision and Control, pp.
668-674, 2012.

L. Wang, “Continuous time model predictive control design using or-
thogonal functions,” International Journal of Control, vol. 74, no. 16,
pp. 1588-1600, 2001.

——, Model Predictive Control System Design and Implementation
Using MATLAB. Springer, 2009.

W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray, “Model
predictive control of a thrust-vectored flight control experiment,” JFAC
World Congress, vol. 35, no. 1, pp. 355-360, 2002.

F. Kiihne, J. M. G. da Silva Jr., and W. F. Lages, “Mobile robot
trajectory tracking using model predictive control,” Latin American
Robotics Symposium, 2005.

T. Faulwasser and R. Findeisen, “A model predictive control approach
to trajectory tracking problems via time-varying level sets of Lyapunov
functions,” Conference on Decision and Control and European Control
Conference, pp. 3381-3386, 2011.

A. Alessandretti, A. P. Aguiar, and C. N. Jones, “Trajectory-tracking
and path-following controllers for constrained underactuated vehicles
using model predictive control,” European Control Conference, pp.
1371-1376, 2013.

S. Gros, R. Quirynen, and M. Diehl, “Aircraft control based on fast
non-linear MPC & multiple-shooting,” Conference on Decision and
Control, pp. 11421147, 2012.

K. Alexis, G. Nikolakopoulos, and A. Tzes, “On trajectory tracking
model predictive control of an unmanned quadrotor helicopter subject
to aerodynamic disturbances,” Asian Journal of Control, vol. 16, no. 1,
pp. 209-224, 2014.

B. Vanek, T. Péni, J. Bokor, and G. Balas, “Practical approach to
real-time trajectory tracking of UAV formations,” American Control
Conference, pp. 122-127, 2005.

Z. Bien and J. X. Xu, Iterative Learning Control: Analysis, Design,
Integration and Applications. Kluwer Academic Publishers, 1998.
Y. Wang, F. Gao, and F. J. Doyle III, “Survey on iterative learning
control, repetitive control, and run-to-run control,” Journal of Process
Control, vol. 19, no. 10, pp. 1589-1600, 2009.

A. Schoellig and R. D’ Andrea, “Optimization-based iterative learning
control for trajectory tracking,” European Control Conference, pp.
1505-1510, 2009.

A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216-1226, 2013.

N. Amann, D. H. Owens, and E. Rogers, “Predictive optimal iterative
learning control,” International Journal of Control, vol. 69, no. 2, pp.
203-226, 1998.

T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control
policies for autonomous aerial vehicles with MPC-guided policy
search,” International Conference on Robotics and Automation, pp.
528-535, 2016.

E. J. Adam and A. H. Gonzalez, “Iterative learning - MPC: An
alternative strategy,” in Frontiers in Advanced Control Systems, G. L.
de Oliveira Serra, Ed. InTech, 2012, ch. 9.

K. K. Tan, S. N. Huang, T. H. Lee, and A. Tay, “Disturbance com-
pensation incorporated in predictive control system using a repetitive
learning approach,” Systems & Control Letters, vol. 56, no. 1, pp.
75-82, 2007.

J. R. Cueli and C. Bordons, “Iterative nonlinear model predictive
control. Stability, robustness and applications,” Control Engineering
Practice, vol. 16, no. 9, pp. 1023-1034, 2008.

P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predic-
tive control on a quadrotor: Onboard implementation and experimental
results,” International Conference on Robotics and Automation, pp.
279-284, 2012.

M. Muehlebach and R. D’ Andrea, “Approximation of continuous-time
infinite-horizon optimal control problems arising in model predictive
control,” Conference on Decision and Control, pp. 1464-1470, 2016.
K. J. Astrém and R. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlin-
ear Approaches. Wiley, 2006.

M. Muehlebach and R. D’Andrea, “The Flying Platform - A testbed
for ducted fan actuation and control design,” Mechatronics, vol. 42,
pp. 52-68, 2017.

