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Introduction

Definitions: Modeling and Analysis of Dynamic Systems

Dynamic Systems
systems that are not static, i.e., their state evolves w.r.t. time, due
to:

@ input signals,
@ external perturbations,
@ or naturally.
For example, a dynamic system is a system which changes:

@ its trajectory — changes in acceleration, orientation, velocity,
position.

@ its temperature, pressure, volume, mass, etc.

@ its current, voltage, frequency, etc.
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Introduction

Examples of “Dynamic Systems”
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Introduction

Definition: “Modeling and Analysis”

the field of science which formulates a mathematical representation
of a system:

© for analysis/understanding (unstable, stable, observable,
controllable, etc.)

@ simulation

© control purposes.

u 7 y
——> System X -

Usually, we have to deal with nonlinear time-varying system.

Nonlinear System

A system for which the output is not directly proportional to the
input. Example of nonlinearities?




Introduction

Definition: “Modeling and Analysis”

N
— System X N

z(t) = f(z(@t),u(t),t), z()eR™ut)eR™

y(t) = gla(t),ult),t), y(t) € R

or as a transfer function (linear time-invariant system)

Y(s)=[D+C(sl — A)_IB] U(s), y(t)eCP, u(t)eC™
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Introduction

Model Synthesis

Types of Model

@ “black-box models”: derived from experiments only

@ “grey-box models” : model-based, experiments need for
parameter identification, model validation

@ “white-box models”: no experiments at all
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Introduction

Model Synthesis

Types of Model

@ “black-box models”: derived from experiments only

@ “grey-box models” : model-based, experiments need for
parameter identification, model validation

@ “white-box models”: no experiments at all
>

Model-based System Description

@ Based on physical first principles.

@ This approach has 2 major benefits (comp. to exp. methods),
the models obtained:

@ are able to extrapolate the system behavior (valid beyond the
operating conditions used in model validation).

Q useful, if the real system is not available (still in planning
phase or too dangerous for real experiments).

A\
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Introduction

Why Use Models?

© System analysis and synthesis
© Feedforward control systems

© Feedback control systems
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Introduction

Why Use Models?

Imagine you are to design a system. Good practice in engineering
is to consider:

1. System analysis

@ What are the optimal system parameters (performance, safety,
economy, etc.)?

@ Can the system be stabilized and, if yes, what are the “best”
(cost, performance, etc.) control and sensor configurations?

@ What happens if a sensor or an actuator fails and how can the
system's robustness be increased?

If the real system is not available for experimentation — a
mathematical model must be used to answer these questions.
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Introduction

Why Use Models?

1. System analysis

Example: Geostationary Satellite

#E

Figure: Geostationary Satellite

Constant altitude, circular orbit, constant angular velocity, despite
external disturbances
— Need for a stabilizing controller
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Introduction

Why Use Models?

1. System analysis

Example: Geostationary Satellite

<

S o=

Figure: Geostationary Satellite

© What is an optimal geometric thruster configuration?
© Minimum thruster size? amount of fuel?

© What kind of sensors are necessary for stabilization?

© What happens if an actuator fails?
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Introduction

Why Use Models?

2. Feedforward control systems

@ What are the control signals that yield optimal system
behavior (shortest cycle time, lowest fuel consumption, etc.)?

@ How can the system response be improved: speed, precision..?

@ How much is lost when trading optimality for safety,
reliability..?
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Introduction

Why Use Models?

3. Feedback control systems

@ How can system stability be maintained for a given set of
expected modeling errors?

@ How can a specified disturbance rejection (robustness) be
guaranteed for disturbances acting in specific frequency
bands?

@ What are the minimum and maximum bandwidths that a

controller must attain for a specific system in order for
stability and performance requirements to be guaranteed?
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Introduction

Why Use Models?

3. Feedback control systems
Example: Magnetic Bearing

o
)
=

Figure: Cross section of a magnetic bearing
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Introduction

Scope of the lecture

Questions addressed in this lecture:
@ How are these mathematical models derived?

@ What properties of the system can be inferred from these
models?

Objectives:
© assemble some methods for model design in a unified way

© suggest a methodology to formulate mathematical models (on
any arbitrary system).

Keep in mind: however hard we try to model a system, it will
always contain:

© approximations
@ uncertainties

© modeling or parameter errors ... —_—



Introduction

Case Studies
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Introduction

Case Studies

m = lkg

R,©
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Introduction

Case Studies
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System Modeling for Control

2. System Modeling for Control
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System Modeling for Control

Types of Modeling: Definitions

u N y
— System X N

Figure: General definition of a system, input u(t) € R™, output
y(t) € RP, internal state variable z(t) € R™.

Mathematical models of dynamic systems can be subdivided into
two broad classes

© parametric models (PM)
@ non-parametric models (NPM) .
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System Modeling for Control

Types of Modeling: Definitions

u N y
— System X N

Figure: General definition of a system, input u(t) € R™, output
y(t) € RP, internal state variable z(t) € R™.

Mathematical models of dynamic systems can be subdivided into
two broad classes

© parametric models (PM)
@ non-parametric models (NPM) .

What are the differences between these 2 classes of modeling?
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System Modeling for Control

Types of Modeling: Example

W -
—N\o— m
W ONNe®

Figure: Spring mass system with viscous damping

Parametric Model

Differential equation
mi(t) + dy(t) + ky(t) = F(t)

Parameters: mass: m, viscous damping: d, spring constant: k
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System Modeling for Control

Types of Modeling: Example

Non Parametric Model
Impulse response of a damped mechanical oscillator

d

time 4 output y(t

0.5 00
1 | 4.5201e-01
2 | 3.3873e-01f
0.4 3 | 1.4459¢-01
) 4 | 2.6475e-02
5 |-1.5108e-02
6 |-1.7721e-02
0.3 7 |-9.6283e-03
8 |-2.9319e-03
9 | 1.3013e-04
0.2 10 | 8.0621e-04|

0.1

1 2 3 4 5 6 7 8 9
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System Modeling for Control

Types of Modeling: Discussion

Non parametric models have several drawbacks
@ they require the system to be accessible for experiments
©Q they cannot predict the behavior of the system if modified

© not useful for systematic design optimization

During this lecture, we will only consider parametric modeling. )

23 /33



System Modeling for Control

Parametric Models

2 types:
©Q “forward” (regular causality)
@ ‘"backward" (inverted causality)

causality? causes/effects, inputs/outputs
v(ty—

F@g}n ko + k1U2(t)

O

Figure: Car moving in a plane.

O
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System Modeling for Control

Parametric Models

“Forward” models

m%v(t) = ko + kw(0)2) + F()

System input: Traction force F' [N].

System output: actual fuel mass flow m () (or its integral)

m () = {u+ eF(t)}(t) (1)

Mass of total fuel consumption is

mfuel(t) :\/O TT?, (T)dT
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System Modeling for Control

Parametric Models

“Backward” models
Look at the speed history:

v(ti):vi, izl,...,N, ti—ti_1:5

Invert the causality chain to reconstruct the applied forces

o(ty) +v(tio1)\?
)

U(ti) — U(ti_l)

FZ‘R'J
(ts) ~ m

+k0—|—/€1<

Insert resulting force F'(¢;) and known speed v(t;) into (1)
compute the mass of the total consumed fuel:

N
Miyel = Z 7;{1 (tz)5
=1
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System Modeling for Control

Modeling Fundamentals

@ b) signals with “relevant” dynamics;
@ a) signals with “fast” dynamics;

@ ) signals with “slow” dynamics.

variables b)

T exitation time

Figure: Classification of variables
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System Modeling for Control

When modeling any physical system: 2 main classes of objects to

take into account:
@ ‘reservoirs,” accumulative element, for ex: of thermal or
kinetic energy, of mass or of information;

Q “flows,” for instance of heat, mass, etc. flowing between the
reservoirs.
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System Modeling for Control

When modeling any physical system: 2 main classes of objects to

take into account:

@ ‘reservoirs,” accumulative element, for ex: of thermal or
kinetic energy, of mass or of information;

Q “flows,” for instance of heat, mass, etc. flowing between the
reservoirs.

Fundamental notions

@ The notion of a reservoir is fundamental: only systems
including one or more reservoirs exhibit dynamic behavior.

@ To each reservoir there is an associated “level” variable that is
a function of the reservoir's content (in control literature:
“state variable").

@ The flows are typically driven by the differences in the
reservoir levels. Several examples are given later.
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System Modeling for Control

Modeling Methodology: Reservoir-based Approach

o
2]

o

© 0

define the system-boundaries (what inputs, what outputs, ...);

identify the relevant “reservoirs” (for mass, energy, information,
..) and corresponding “level variables” (or state variables);

“

formulate the differential equations (“conservation laws") for all
relevant reservoirs as shown in eq. (2)

d
pn (reservoir content) = Z inflows — Z outflows;

formulate the (usually nonlinear) algebraic relations that express the
“flows” between the “reservoirs” as functions of the “level
variables”;

resolve implicit algebraic loops, if possible, and simplify the resulting
mathematical relations as much as possible;

identify the unknown system parameters using some experiments;

validate the model with experiments that have not been used to

identify the system parameters. o



System Modeling for Control

Example: Water Tank

M (t)

y(t)

Figure: Water tank system, m(t) mass of water in tank, h(¢)
corresponding height, F' tank-floor area, A = out flow orifice area
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System Modeling for Control

Modeling the water tank

Step 1: Inputs/Outputs

@ System input is: incoming mass flow m;, (t).

@ System output is: water height in the tank h(t).
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System Modeling for Control

Modeling the water tank

Step 1: Inputs/Outputs

@ System input is: incoming mass flow m;, (t).

@ System output is: water height in the tank h(t).

Step 2: Reservoirs and associated levels

@ One relevant “reservoir”: mass of water in tank: m(t).

@ Level variable: height of water in tank : A(t).
Assumptions: Sensor very fast (type a) variable. Water
temperature (density) very slow (type c) variable — mass and
height strictly proportional.
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System Modeling for Control

Modeling the water tank

Step 3: Differential equation
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System Modeling for Control

Modeling the water tank

Step 3: Differential equation

Step 4: formulate algebraic relations of flows btw reservoirs

Mass flow leaving the tank given by Bernoulli’s law

Mout () = Apu(t) = /2Ap(t)/p, Ap(t) = pgh(t)

therefore

%m(t) — pF%h( t) = u(t) — Ap\/2gh(t)
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System Modeling for Control

Modeling the water tank

Causality Diagrams

mass reservoir

e
S

y(t)

DA

orifice
;;Lout (t)

Figure: Causality diagram of the water tank system, shaded blocks
represent dynamical subsystems (containing reservoirs), plain blocks
represent static subsystems.
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