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Introduction
System Modeling for Control

Definitions: Modeling and Analysis of Dynamic Systems

Dynamic Systems

systems that are not static, i.e., their state evolves w.r.t. time, due
to:

input signals,

external perturbations,

or naturally.

For example, a dynamic system is a system which changes:

its trajectory → changes in acceleration, orientation, velocity,
position.

its temperature, pressure, volume, mass, etc.

its current, voltage, frequency, etc.
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Examples of “Dynamic Systems”
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System Modeling for Control

Definition: “Modeling and Analysis”

the field of science which formulates a mathematical representation
of a system:

1 for analysis/understanding (unstable, stable, observable,
controllable, etc.)

2 simulation
3 control purposes.
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Usually, we have to deal with nonlinear time-varying system.

Nonlinear System

A system for which the output is not directly proportional to the
input. Example of nonlinearities?
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Definition: “Modeling and Analysis”
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ẋ(t) = f(x(t), u(t), t), x(t) ∈ R
n, u(t) ∈ R

m

y(t) = g(x(t), u(t), t), y(t) ∈ R
p

or as a transfer function (linear time-invariant system)

Y (s) =
[

D + C(sI −A)−1B
]

U(s), y(t) ∈ C
p, u(t) ∈ C

m
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Model Synthesis

Types of Model

“black-box models”: derived from experiments only

“grey-box models” : model-based, experiments need for
parameter identification, model validation

“white-box models”: no experiments at all
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Model Synthesis

Types of Model

“black-box models”: derived from experiments only

“grey-box models” : model-based, experiments need for
parameter identification, model validation

“white-box models”: no experiments at all

Model-based System Description

Based on physical first principles.

This approach has 2 major benefits (comp. to exp. methods),
the models obtained:

1 are able to extrapolate the system behavior (valid beyond the
operating conditions used in model validation).

2 useful, if the real system is not available (still in planning
phase or too dangerous for real experiments).
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Why Use Models?

1 System analysis and synthesis

2 Feedforward control systems

3 Feedback control systems
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Why Use Models?

Imagine you are to design a system. Good practice in engineering
is to consider:

1. System analysis

What are the optimal system parameters (performance, safety,
economy, etc.)?

Can the system be stabilized and, if yes, what are the “best”
(cost, performance, etc.) control and sensor configurations?

What happens if a sensor or an actuator fails and how can the
system’s robustness be increased?

If the real system is not available for experimentation → a
mathematical model must be used to answer these questions.
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System Modeling for Control

Why Use Models?

1. System analysis

Example: Geostationary Satellite

Figure: Geostationary Satellite

Constant altitude, circular orbit, constant angular velocity, despite
external disturbances
→ Need for a stabilizing controller
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Why Use Models?

1. System analysis

Example: Geostationary Satellite

Figure: Geostationary Satellite

1 What is an optimal geometric thruster configuration?

2 Minimum thruster size? amount of fuel?

3 What kind of sensors are necessary for stabilization?

4 What happens if an actuator fails?
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Why Use Models?

2. Feedforward control systems

What are the control signals that yield optimal system
behavior (shortest cycle time, lowest fuel consumption, etc.)?

How can the system response be improved: speed, precision..?

How much is lost when trading optimality for safety,
reliability..?

A

B
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Why Use Models?

3. Feedback control systems

How can system stability be maintained for a given set of
expected modeling errors?

How can a specified disturbance rejection (robustness) be
guaranteed for disturbances acting in specific frequency
bands?

What are the minimum and maximum bandwidths that a
controller must attain for a specific system in order for
stability and performance requirements to be guaranteed?
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Why Use Models?

3. Feedback control systems

Example: Magnetic Bearing

Figure: Cross section of a magnetic bearing
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Scope of the lecture

Questions addressed in this lecture:

1 How are these mathematical models derived?

2 What properties of the system can be inferred from these
models?

Objectives:

1 assemble some methods for model design in a unified way

2 suggest a methodology to formulate mathematical models (on
any arbitrary system).

Keep in mind: however hard we try to model a system, it will
always contain:

1 approximations

2 uncertainties

3 modeling or parameter errors ...
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Case Studies
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Case Studies
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Case Studies
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2. System Modeling for Control
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Types of Modeling: Definitions
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Figure: General definition of a system, input u(t) ∈ Rm, output
y(t) ∈ Rp, internal state variable x(t) ∈ Rn.

Mathematical models of dynamic systems can be subdivided into
two broad classes

1 parametric models (PM)

2 non-parametric models (NPM) .
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Types of Modeling: Definitions
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Figure: General definition of a system, input u(t) ∈ Rm, output
y(t) ∈ Rp, internal state variable x(t) ∈ Rn.

Mathematical models of dynamic systems can be subdivided into
two broad classes

1 parametric models (PM)

2 non-parametric models (NPM) .

Question:

What are the differences between these 2 classes of modeling?
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Types of Modeling: Example

y(t)

k

d
m

ẏ(t)

Figure: Spring mass system with viscous damping

Parametric Model

Differential equation

mÿ(t) + dẏ(t) + ky(t) = F (t)

Parameters: mass: m, viscous damping: d, spring constant: k
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Types of Modeling: Example

Non Parametric Model

Impulse response of a damped mechanical oscillatorPSfrag

y(t)

k

d
m

ẏ(t)
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Types of Modeling: Discussion

Non parametric models have several drawbacks

1 they require the system to be accessible for experiments

2 they cannot predict the behavior of the system if modified

3 not useful for systematic design optimization

During this lecture, we will only consider parametric modeling.
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Parametric Models

2 types:

1 “forward” (regular causality)

2 “backward” (inverted causality)

causality? causes/effects, inputs/outputs

v(t)

F (t) m k0 + k1v
2(t)

Figure: Car moving in a plane.

G. Ducard c© 24 / 33



Introduction
System Modeling for Control

Parametric Models

“Forward” models

m
d

dt
v(t) = −{k0 + k1v(t)

2}+ F (t)

System input: Traction force F [N].

System output: actual fuel mass flow
∗

m (t) (or its integral)

∗

m (t) = {µ+ ǫF (t)}v(t) (1)

Mass of total fuel consumption is

mfuel(t) =

∫ t

0

∗

m (τ)dτ
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Parametric Models

“Backward” models
Look at the speed history:

v(ti) = vi, i = 1, . . . , N, ti − ti−1 = δ

Invert the causality chain to reconstruct the applied forces

F (ti) ≈ m
v(ti)− v(ti−1)

δ
+ k0 + k1

(

v(ti) + v(ti−1)

2

)2

Insert resulting force F (ti) and known speed v(ti) into (1)
compute the mass of the total consumed fuel:

mfuel =

N
∑

i=1

∗

m (ti)δ
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Modeling Fundamentals

b) signals with “relevant” dynamics;

a) signals with “fast” dynamics;

c) signals with “slow” dynamics.

variables
a)

b)

c)

exitation time

Figure: Classification of variables
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When modeling any physical system: 2 main classes of objects to
take into account:

1 “reservoirs,” accumulative element, for ex: of thermal or
kinetic energy, of mass or of information;

2 “flows,” for instance of heat, mass, etc. flowing between the
reservoirs.
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When modeling any physical system: 2 main classes of objects to
take into account:

1 “reservoirs,” accumulative element, for ex: of thermal or
kinetic energy, of mass or of information;

2 “flows,” for instance of heat, mass, etc. flowing between the
reservoirs.

Fundamental notions

The notion of a reservoir is fundamental: only systems
including one or more reservoirs exhibit dynamic behavior.

To each reservoir there is an associated “level” variable that is
a function of the reservoir’s content (in control literature:
“state variable”).

The flows are typically driven by the differences in the
reservoir levels. Several examples are given later.
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Modeling Methodology: Reservoir-based Approach

1 define the system-boundaries (what inputs, what outputs, . . . );

2 identify the relevant “reservoirs” (for mass, energy, information,
. . . ) and corresponding “level variables” (or state variables);

3 formulate the differential equations (“conservation laws”) for all
relevant reservoirs as shown in eq. (2)

d

dt
(reservoir content) =

∑

inflows−
∑

outflows;

4 formulate the (usually nonlinear) algebraic relations that express the
“flows” between the “reservoirs” as functions of the “level
variables”;

5 resolve implicit algebraic loops, if possible, and simplify the resulting
mathematical relations as much as possible;

6 identify the unknown system parameters using some experiments;

7 validate the model with experiments that have not been used to
identify the system parameters.
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Example: Water Tank

∗

min(t)

∗

mout (t)
F

A
y(t)

h(t)

m

Figure: Water tank system, m(t) mass of water in tank, h(t)
corresponding height, F tank-floor area, A = out flow orifice area
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Modeling the water tank

Step 1: Inputs/Outputs

System input is: incoming mass flow
∗

min (t).

System output is: water height in the tank h(t).
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Modeling the water tank

Step 1: Inputs/Outputs

System input is: incoming mass flow
∗

min (t).

System output is: water height in the tank h(t).

Step 2: Reservoirs and associated levels

One relevant “reservoir”: mass of water in tank: m(t).

Level variable: height of water in tank : h(t).
Assumptions: Sensor very fast (type a) variable. Water
temperature (density) very slow (type c) variable → mass and
height strictly proportional.
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Modeling the water tank

Step 3: Differential equation

d

dt
m(t) = u(t)−

∗

mout (t)
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Modeling the water tank

Step 3: Differential equation

d

dt
m(t) = u(t)−

∗

mout (t)

Step 4: formulate algebraic relations of flows btw reservoirs

Mass flow leaving the tank given by Bernoulli’s law

∗

mout (t) = Aρv(t), v(t) =
√

2∆p(t)/ρ, ∆p(t) = ρgh(t)

therefore

d

dt
m(t) = ρF

d

dt
h(t) = u(t)−Aρ

√

2gh(t)
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Modeling the water tank

Causality Diagrams
replacements

∗

min(t) = u(t)

∗

mout (t)

mass reservoir

orifice

y(t)
h(t)

-

+

Figure: Causality diagram of the water tank system, shaded blocks
represent dynamical subsystems (containing reservoirs), plain blocks
represent static subsystems.
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