

Lecture 8 – Turbocharger Modeling

System Modeling – Institute for Dynamic Systems and Control (IDSC)

Camillo Balerna Dr. Guillaume Ducard

Lecture Overview

Turbocharger modeling

- Turbine & Compressor
- Causality diagram
- Inputs, outputs
- Maps and operation

Source: https://auto.howstuffworks.com/turbo2.htm

Turbocharged internal combustion engines

- Engine power modeling
- Naturally aspirated (NA) Vs turbocharged (TC) engines
- Benefits of turbocharging
- F1 electrified turbocharger

Turbocharger

Source: https://auto.howstuffworks.com/turbo2.htm

Turbine

Turbine – Causality Diagram

<u>Inputs</u>

- $\boldsymbol{\vartheta}_3$: Temperature before the turbine [K]
- *p*₃: pressure before the turbine [Pa]
- *p*₄: pressure after the turbine [Pa]
- ω_t : Turbine speed [rad/s]
- u_{vng} : Variable nozzle geometry control input [-]

$$\left. \right\} \qquad \Pi_t = \frac{p_3}{p_4} = \frac{p_{bef,t}}{p_{aft,t}}$$

Turbine – Causality Diagram

<u>Outputs</u>

- ϑ_4 : Temperature of the flow exiting the turbine [K]
- \dot{m}_t : Mass flow through the turbine [Kg/s]
- *T_t*: Torque generated by the turbine [Nm]

Turbine – Outputs

• **Temperature** of the flow exiting the turbine

$$\vartheta_{4} = \vartheta_{3} \cdot \left[1 - \eta_{t} \cdot \left(1 - \Pi_{t}^{\frac{1-\kappa}{\kappa}} \right) \right]$$

• Mass Flow through the turbine

$$\dot{m}_{t} = \frac{p_{3}}{p_{ref,0}} \cdot \sqrt{\frac{\vartheta_{ref,0}}{\vartheta_{3}}} \cdot \dot{\mu}_{t}$$

• Torque produced by the turbine

$$T_{t} = \frac{P_{t}}{\omega_{t}} = \frac{\dot{m}_{t} \cdot c_{p} \cdot \vartheta_{3}}{\omega_{t}} \cdot \left[1 - \Pi_{t}^{\frac{1-\kappa}{\kappa}} \right] \cdot \eta_{t}$$

Turbine – Outputs derivation

Open system

$$\frac{dE}{dt} = \dot{H}_{in} - \dot{H}_{out} - \dot{W}_t + \dot{Q}$$

• Turbine does **not store energy** over time $\Rightarrow \frac{dE}{dt} = 0$

• Turbine is assumed to be **adiabatic** (no heat transfer) $\Rightarrow \dot{Q} = 0$

$$P_t = \dot{W}_t = \dot{H}_{in} - \dot{H}_{out} = \dot{m}_t \cdot c_p \cdot (\vartheta_3 - \vartheta_4)$$

Isentropic relation

$$\frac{\vartheta_3}{\vartheta_{4,is}} = \left(\frac{p_3}{p_4}\right)^{\frac{(\kappa-1)}{\kappa}} = \Pi_t^{\frac{(\kappa-1)}{\kappa}}$$

Isentropic efficiency

$$\eta_t = \frac{\vartheta_3 - \vartheta_4}{\vartheta_3 - \vartheta_{4,is}}$$

Turbine exit temperature

$$\vartheta_4 = \vartheta_3 \cdot \left[1 - \eta_t \cdot \left(1 - \Pi_t^{\frac{1-\kappa}{\kappa}} \right) \right]$$

<u>Turbine power produced</u> $P_t = \dot{m}_t \cdot c_p \cdot \vartheta_3 \cdot \left[1 - \prod_t^{\frac{1-\kappa}{\kappa}}\right] \cdot \eta_t$

Turbine – Outputs

• **Temperature** of the flow exiting the turbine

$$\vartheta_{t} = \vartheta_{3} \cdot \left[1 - \eta_{t} \cdot \left(1 - \Pi_{t}^{\frac{1-\kappa}{\kappa}}\right)\right]$$

• Mass Flow through the turbine

$$\dot{m}_{t} = \frac{p_{3}}{p_{ref,0}} \cdot \sqrt{\frac{\vartheta_{ref,0}}{\vartheta_{3}}} \cdot \dot{\mu}_{t}$$

• Torque produced by the turbine

$$T_{t} = \frac{P_{t}}{\omega_{t}} = \frac{\dot{m}_{t} \cdot c_{p} \cdot \vartheta_{3}}{\omega_{t}} \cdot \left[1 - \Pi_{t}^{\frac{1-\kappa}{\kappa}}\right] \cdot \eta_{t}$$

Turbine – Efficiency Map

• Since the turbine efficiency mainly depends on the <u>angle of incidence</u> of the inflowing gas, the turbine blade speed ratio \tilde{c}_{us} is used as variable.

Turbine – Efficiency Map

Source: https://www.dieselnet.com/tech/air_turbo_vgt.php

Turbine – Outputs

• **Temperature** of the flow exiting the turbine

$$\vartheta_{t} = \vartheta_{3} \cdot \left[1 - \eta_{t} \cdot \left(1 - \Pi_{t}^{\frac{1-\kappa}{\kappa}} \right) \right]$$

• Mass Flow through the turbine

$$\dot{m}_{t} = \frac{p_{3}}{p_{ref,0}} \cdot \sqrt{\frac{\vartheta_{ref,0}}{\vartheta_{3}}} \dot{\mu_{t}}$$

• Torque produced by the turbine

$$T_{t} = \frac{P_{t}}{\omega_{t}} = \frac{\dot{m}_{t} \cdot c_{p} \cdot \vartheta_{3}}{\omega_{t}} \cdot \left[1 - \Pi_{t}^{\frac{1-\kappa}{\kappa}} \right] \cdot \eta_{t}$$

Turbine – Mass Flow Map

- For control purposes, the <u>mass flow</u> behaviour of fluid-dynamic turbines can be <u>modeled quite well as orifice</u> → compressible flow through a <u>valve</u>.
- If the turbine is a <u>Variable Nozzle Turbine</u> (VNT) or <u>Variable Geometry</u> <u>Turbine</u> (VGT), the mass flow and its maximum value depend on the nozzle position (as it is for the compressible flow through a valve).

Turbine – Mass Flow Map

Fixed Geometry

Source: https://www.dieselnet.com/tech/air_turbo_vgt.php

Turbine – Mass Flow Map

Variable Geometry

Turbine – Variable Geometry Turbine (VGT)

At Low Engine Speed

- \rightarrow low mass flow
- \rightarrow low pressure
- \rightarrow low turbine power

Narrow inlet area

- → Better incidence
- → Increased efficiency
- → Increased power

Source: https://www.intmarketing.org/en/automotive/113-variable-turbine-geometry.html

Compressor

Compressor

Compressor – Causality Diagram

<u>Inputs</u>

- *p*₁: Pressure before the compressor [Pa]
- *p*₂: Pressure after the compressor [Pa]
- $\boldsymbol{\vartheta}_1$: Temperature before the compressor [K]
- *ω_c*: Compressor speed [rad/s]

Compressor – Causality Diagram

<u>Outputs</u>

- ϑ_c : Temperature of the flow exiting the compressor [K]
- \dot{m}_c : Mass flow through the compressor [Kg/s]
- *T_c*: Torque absorbed by the compressor [Nm]

Compressor – Outputs

• **Temperature** of the flow exiting the compressor

Compressor – Outputs derivation

Open system

$$\frac{dE}{dt} = \dot{H}_{in} - \dot{H}_{out} - \dot{W}_c + \dot{Q}$$

• Compressor does **not store energy** over time $\Rightarrow \frac{dE}{dt} = 0$

• Compressor is assumed to be **adiabatic** (no heat transfer) $\Rightarrow \dot{Q} = 0$

$$P_c = -\dot{W}_c = \dot{H}_{out} - \dot{H}_{in} = \dot{m}_c \cdot c_p \cdot (\vartheta_2 - \vartheta_1)$$

Isentropic relation

$$\frac{\vartheta_{2,is}}{\vartheta_1} = \left(\frac{p_2}{p_1}\right)^{\frac{(\kappa-1)}{\kappa}} = \Pi_c^{\frac{(\kappa-1)}{\kappa}}$$

Isentropic efficiency

$$\eta_{c} = \frac{\vartheta_{2,is} - \vartheta_{1}}{\vartheta_{2} - \vartheta_{1}}$$

 $\frac{\text{Compressor exit temperature}}{\vartheta_2 = \vartheta_1 + \left[\Pi_c^{\frac{\kappa-1}{\kappa}} - 1\right] \cdot \frac{\vartheta_1}{\eta_c}}$ Compressor power absorbed

$$P_c = \dot{m}_c \cdot c_p \cdot \vartheta_1 \cdot \left[\prod_c^{\frac{\kappa - 1}{\kappa}} - 1 \right] \cdot \frac{1}{\eta_c}$$

Camillo Balerna | 07/11/2017 | 22

Compressor – Outputs

• **Temperature** of the flow exiting the compressor

Compressor – Mass Flow & Efficiency Map

Compressor – Mass Flow & Efficiency Map

Source: http://www.enginelabs.com/engine-tech/poweradders/understanding-compressor-maps-sizing-a-turbocharger/

Compressor – Operational Limits

Formula 1 – Turbocharged Engine

Source: https://sport.sky.it/formula1/2017/03/21/formula-1--il-dizionario--power-unit-ed-elettronica.html

Internal Combustion Engine

Engine Power can be approximated as following:

 $P_{engine} = P_{comb,fuel} + P_{fric} + P_{pump}$

• **Engine Power** coming from the **fuel combustion**:

$$P_{comb,fuel} = e_{comb} \cdot P_f = e_{comb} \cdot H_l \cdot \dot{m}_{fuel} \approx k_1 \cdot \dot{m}_{fuel}$$

• Engine Power coming from the pistons mechanical friction:

 $P_{fric} \approx k_2 \prec$

• **Engine Power** coming from the **gas exchange**:

$$P_{pump} = (p_{intake} - p_{exhaust}) \cdot V_d \cdot \frac{\omega_e}{4\pi} \approx \frac{k_3 \cdot (p_{intake} - p_{exhaust})}{k_3 \cdot (p_{intake} - p_{exhaust})}$$

Assume constant

engine speed ω_e

Internal Combustion Engine

• **Engine Power**, neglecting the friction and assuming $p_{intake} = p_{exhaust}$:

 $P_{engine} \approx k_1 \cdot \dot{m}_{fuel} + k_3 \cdot (p_{intake} - p_{exhaust}) \approx k_1 \cdot \dot{m}_{fuel}$

• **Air to Fuel Ratio** is defined as following:

$$\lambda_{AF} = \frac{\dot{m}_{air}}{\dot{m}_{fuel}} \cdot \frac{1}{\sigma_0} \qquad \qquad \lambda_{AF} = 1 \qquad \qquad \dot{m}_{fuel} = \frac{\dot{m}_{air}}{\sigma_0}$$

• **Engine Air Mass Flow** is approximated as following:

$$\dot{m}_{air} = \frac{p_{intake}}{R_{air} \cdot \vartheta_{intake}} \cdot \frac{\omega_e}{4\pi} \cdot V_d \cdot \lambda_{vol} \approx k_4 \cdot p_{intake}$$

$$P_{engine} \propto \dot{m}_{fuel} \propto \dot{m}_{air} \propto p_{intake}$$

$$NA \rightarrow 1 \text{ bar} \rightarrow 100 \text{ kW}$$

$$TC \rightarrow 4 \text{ bar} \rightarrow 400 \text{ kW}$$

Turbocharged Engine

• **Engine Power**, neglecting the friction and for a specific \dot{m}_{fuel} :

 $P_{pump,NA} \approx 0 \ kW$ $P_{pump,TC} \approx 26 \ kW$

Engine Response

Turbocharger

Formula 1 – Engine Response

How and how fast is the **engine power response** of a **conventional turbocharger** compared to an **electrified turbocharger** (e.g. F1) **?**

Formula 1 – Engine Response

Electrified Turbocharger

IDSC Open Lab 2017

EHzürich

Open Lab 2017

Date: Thursday, 9. November, 2017 Time: 18:00 - 20:00 Location: ML Building Sonneggstrasse 3, 8092 Zurich Opening: ML E 12 Demos: Various locations

Open Lab 2017

Institute for Dynamic Systems and Control Prof. R. D'Andrea, Prof. E. Frazzoli, Prof. Ch. Onder, Prof. M. Zeilinger Live Demos

IDSC

IDSC Open Lab 2017

ML K37.1

Formula 1 Power Unit

Efficient control algorithms are designed for the hybrid electric propulsion system of the Formula 1 car, in order to achieve the fastest possible lap-time. (Presentations in English or German)

Mauro Salazar, maurosalazar@idsc.mavt.ethz.ch | Camillo Balerna, balernac@idsc.mavt.ethz.ch

http://www.idsc.ethz.ch/research-guzzellaonder/research-projects/Formula1.html