Topic: Modeling of Mechanical Systems using Lagrange
Discussion: 10. \& 12.10.2017

Problem 1 (Clown - HS10)

During a visit of the famous Circus Fantasticus you observe a clown, who balances on a ladder as depicted in Figure 1(a). The system can be modeled as follows: the ladder is a rigid body with length $2 l_{1}$, mass m_{1}, center of gravity S_{1}, and moment of inertia Θ_{1} with respect to its center of mass S_{1}. The clown is a rigid body with length $2 l_{2}$, mass m_{2}, center of gravity S_{2}, and moment of inertia Θ_{2} with respect to its center of mass S_{2}. The ladder is free to rotate about a frictionless pivot in the origin O. Furthermore, the clown is free to rotate about a frictionless pivot denoted as S_{1}. The force F, which is exerted by the clown's hand on the ladder, acts on the clown and the ladder as shown in Figure 1(b). Gravitational acceleration g acts in $-y$ direction. Furthermore, no friction is assumed in any element of the system.

Figure 1: Clown on Ladder.

For brevity, the time dependency of the variables α, β, F and q is not shown. Simplify the results as far as possible.
a) The angles α and β, depicted in Figure 1(b), are possible minimal coordinates for this system. Please give a further option of minimal coordinates.
b) Derive the potential energy of the ladder U_{1} as a function of α and β.
c) Derive the potential energy of the clown U_{2} as a function of α and β.
d) Derive the kinetic energy of the ladder T_{1} as a function of α and β.
e) Derive the kinetic energy of the clown T_{2} as a function of α and β. (Hint: $\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)=\cos (\alpha+\beta)$.)
f) Calculate the equations of motion by using Lagrange II with the minimal coordinates $q=(\alpha \beta)^{\mathrm{T}}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\beta}}\right)-\frac{\partial L}{\partial \beta}=Q_{2}
$$

where

$$
L=L(q)=\sum_{i=1,2} T_{i}(q)-U_{i}(q)
$$

is the Lagrange function. Hint: You do not have to derive $Q_{2}=Q_{2}(q, F)$.
g) From

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\alpha}}\right)-\frac{\partial L}{\partial \alpha}=Q_{1}
$$

the following equation of motion results:

$$
\begin{aligned}
Q_{1}= & \left(l_{1}^{2}\left(m_{1}+m_{2}\right)+\Theta_{1}\right) \ddot{\alpha}-m_{2} l_{1} l_{2}\left(\ddot{\beta} \cos (\alpha+\beta)-\dot{\beta}^{2} \sin (\alpha+\beta)\right) \\
& -\left(m_{1}+m_{2}\right) l_{1} g \sin (\alpha)
\end{aligned}
$$

Please calculate the inertia matrix $M(q)$ of the system.
h) Color the clown.

Problem 2 (Disk on the Hills)

A disk of radius r, mass m and moment of inertia Θ_{C} rolls without slipping on a circular profile of radius R. The center of the disk is connected to the vertical axis with a spring of stiffness k and zero unstreched length. The spring force acts always in the horizontal direction, while gravity acts in the vertical direction, as indicated in Figure 2. Denote with ψ the rotation angle of the disk about its center C. Denote with θ the angular position of the center of the disk with respect to the center of the circular profile. Denote with O the contact point between disk and circular profile.

Figure 2: Disk on the hills
a) Find an expression which describes the no-slip condition. Are θ and ψ independent variables? How does this affect the analysis of the system?
b) Find the system equation of motion using the Lagrange Formalism, as presented in the lecture.

Hints:

- Use θ as generalized coordinate.
- The spring is unstreched when $\theta=0$.
- No friction is assumed in any element of the system.

