

151-0573-00 **System Modeling** (HS 2017)

Topic: Modeling of Mechanical Systems using Lagrange

Discussion: 10. & 12.10.2017

balernac@ethz.ch, October 9, 2017

Institut für Dynamische Systeme und Regelungstechnik **Prof. L. Guzzella**

Prof. R. D'Andrea

Exercise 3

Problem 1 (Clown - HS10)

During a visit of the famous Circus Fantasticus you observe a clown, who balances on a ladder as depicted in Figure 1(a). The system can be modeled as follows: the ladder is a rigid body with length $2l_1$, mass m_1 , center of gravity S_1 , and moment of inertia Θ_1 with respect to its center of mass S_1 . The clown is a rigid body with length $2l_2$, mass m_2 , center of gravity S_2 , and moment of inertia Θ_2 with respect to its center of mass S_2 . The ladder is free to rotate about a frictionless pivot in the origin O. Furthermore, the clown is free to rotate about a frictionless pivot denoted as S_1 . The force F, which is exerted by the clown's hand on the ladder, acts on the clown and the ladder as shown in Figure 1(b). Gravitational acceleration g acts in -ydirection. Furthermore, no friction is assumed in any element of the system.

Institute for Dynamic Systems and Control

IDSC

Figure 1: Clown on Ladder.

For brevity, the time dependency of the variables α , β , F and q is not shown. Simplify the results as far as possible.

- a) The angles α and β , depicted in Figure 1(b), are possible minimal coordinates for this system. Please give a further option of minimal coordinates.
- **b)** Derive the potential energy of the ladder U_1 as a function of α and β .
- c) Derive the potential energy of the clown U_2 as a function of α and β .
- d) Derive the kinetic energy of the ladder T_1 as a function of α and β .
- e) Derive the kinetic energy of the clown T_2 as a function of α and β . (Hint: $\cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) = \cos(\alpha + \beta)$.)
- f) Calculate the equations of motion by using Lagrange II with the minimal coordinates $q = (\alpha \ \beta)^{\mathrm{T}}$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\beta}} \right) - \frac{\partial L}{\partial \beta} = Q_2$$

where

$$L = L(q) = \sum_{i=1,2} T_i(q) - U_i(q)$$

is the Lagrange function. Hint: You do not have to derive $Q_2 = Q_2(q, F)$.

g) From

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\alpha}} \right) - \frac{\partial L}{\partial \alpha} = Q_1$$

the following equation of motion results:

$$Q_{1} = \left(l_{1}^{2}(m_{1}+m_{2})+\Theta_{1}\right)\ddot{\alpha}-m_{2}l_{1}l_{2}\left(\ddot{\beta}\cos(\alpha+\beta)-\dot{\beta}^{2}\sin(\alpha+\beta)\right) - (m_{1}+m_{2})l_{1}g\sin(\alpha) \quad .$$

Please calculate the inertia matrix M(q) of the system.

h) Color the clown.

Problem 2 (Disk on the Hills)

A disk of radius r, mass m and moment of inertia $\Theta_{\rm C}$ rolls without slipping on a circular profile of radius R. The center of the disk is connected to the vertical axis with a spring of stiffness k and zero unstreched length. The spring force *acts always in the horizontal direction*, while gravity acts in the vertical direction, as indicated in Figure 2. Denote with ψ the rotation angle of the disk about its center C. Denote with θ the angular position of the center of the disk with respect to the center of the circular profile. Denote with O the contact point between disk and circular profile.

Figure 2: Disk on the hills

- a) Find an expression which describes the no-slip condition. Are θ and ψ independent variables? How does this affect the analysis of the system?
- b) Find the system equation of motion using the Lagrange Formalism, as presented in the lecture.
 Hints:

- Use θ as generalized coordinate.
- The spring is unstreched when $\theta = 0$.
- No friction is assumed in any element of the system.