Topology Optimization
State-of-the-Art and Future Perspectives

Ole Sigmund
TopOpt-Group (www.topopt.dtu.dk)
Dept. of Mechanical Engineering
Technical University of Denmark (DTU)

Topology Optimization in Aerospace

Bendsøe and Kikuchi (1988)

Design domain
FE-Discretization
Interpretation
Optimal material redistribution

Topology Optimization Applications

Autonomous industry (Fabian Duddeck)
Wind turbines (SUZLON and FE-Design GmbH)
Reconstructive surgery (Paulino/Sinn-Hanlon)
Micromachines (DTU Nanotech)

Acoustics
Small antennas
Extreme materials
Cloaking
Energy harvesting
Nano-photonics
Fluids
Structural colours
Applications in Architecture/Design

Discrete topopt formulation

\[
\begin{align*}
\min_{\rho} & : \Phi(\rho, U(\rho)) \\
\text{s.t.} & : \sum_{e=1}^{N} v_e \rho_e = v^T \rho \leq V^* \\
& : g_i(\rho, U(\rho)) \leq g_i^*, \quad i = 1, \ldots, M \\
& : \rho_e = \begin{cases} 0 \text{ (void)} \\ 1 \text{ (material)} \end{cases}, \quad e = 1, \ldots, N \\
& : K(\rho) U = F
\end{align*}
\]

0/1 Integer problem

- Combinations:
 - \(N=10, M=5 \Rightarrow 252 \)
 - \(N=20, M=10 \Rightarrow 185,000 \)
 - \(N=40, M=20 \Rightarrow 1.4 \times 10^9 \)
 - \(N=100, M=50 \Rightarrow 10^{20} \)

SIMP-approach

Objective function: \(\Phi(U(\rho)) \)
Equilibrium (FEM): \(K(\rho) U = F \)

Stiffness interpolation:

Sensitivity analysis – adjoint method

Augmented objective function: \(\Phi = \Phi(U(\rho)) + \lambda^T(KU - F) \)
Differentiate: \(\Phi' = \frac{\partial \Phi}{\partial U} U + \lambda^T(K'U + KU') \)
Collect \(U' \) terms: \(\lambda^T K + \frac{\partial \Phi}{\partial U} U' = 0 \Rightarrow \lambda^T (K + \frac{\partial \Phi}{\partial U}) = 0 \)
Adjoint problem: \(K^T \lambda = - \left(\frac{\partial \Phi}{\partial U} \right)^T \)
Final sensitivity: \(\Phi' = \lambda^T K'U \)
The Topology Optimization Process

- Initialize FEM
- Finite Element Analysis (Elastic, Thermal, Electrical, etc.)
- Sensitivity Analysis
 - Regularization (filtering)
 - Optimization (material redistribution)
- Sensitivity analysis by adjoint method
 \[\frac{d\Phi}{d\rho_c} = \frac{\partial \Phi}{\partial \rho_c} + \lambda^T \left(\frac{\partial K}{\partial \rho_c} U + \frac{\partial F}{\partial \rho_c} \right) \]
 \[K^T \lambda = -\frac{\partial \Phi}{\partial U} \]
- Mathematical Programming, Method of Moving Asymptotes (MMA) by Svanberg (1987)

Regularization by low-pass filtering

- Neighborhood:
 \[N_e = \{ i \mid ||x_i - x_e|| \leq R \} \]
- Sensitivity filtering (Sigmund 1997, Sigmund&Maute 2012)
 \[\overline{\partial \Phi} = \sum_{i \in N_e} H(x_i) \frac{\partial \Phi}{\partial \rho_c} \overline{\rho_c} \]
- Density filtering (Bruns&Tortorelli/Bourdin 2001)
 \[E_c(\rho) = \overline{\rho_c} E_0, \quad \overline{\rho_c} = \sum_{i \in N_e} H(x_i) \rho_i \]
- PDE-based filtering (Lazarov&Sigmund 2011)
 \[-\nu^2 \Delta \overline{\rho_c} + \overline{\rho_c} = \rho \]

The "TopOpt App"

- The "TopOpt App": AppStore (iOS)
 - Google Play (Android)
 - Web-version: www.topopt.dtu.dk

The "TopOpt3d App"

- The "TopOpt3d App": AppStore, iOS and PC – see www.topopt.dtu.dk

Stats: November 2015:
- Android: 4900, iOS: 9000, web: 9700
- iOS: 2600, web: 730

See www.topopt.dtu.dk for more information.
TopOpt Rhino plugin

Public Codes

99 Line basic Matlab (Including FE, grad’s, OC)
OS, A 99 line topology optimization code written in MATLAB, SMO, 2001, 22, 120-127

88 line advanced Matlab (+advanced filters)
Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. & OS, Efficient topology optimization in MATLAB using 88 lines of code, SMO, 2011, 43, 1-16

On multigrid-CG for efficient topology optimization
Amir, O.; Aage, N. & Lazarov, B.S., Efficient topology optimization in MATLAB using 88 lines of code, SMO, 2011, 43, 1-16

Topology optimization using PETSc:
An easy-to-use, fully parallel, open-source topology optimization framework
Aage, N; Andreassen, E. & Lazarov, B.S., 2015, SMO, 51, 565-572

Freely downloadable from www.topopt.dtu.dk

Challenges and goals

Methods
• Manufacturing limitations/uncertainties
• Feature control – advanced geometry control
• Adaption to Additive Manufacturing (AM)
• Super large scale

Applications
• Extremal material design
• Non-linearities
• Multiphysics
• Wave propagation
• Multiscale

Length-scale control and robustness
Compliant mechanism design

Sensitivity filtering

Density filtering

\[
-\rho \Delta \rho + \rho = 0
\]

\[
\rho \rightarrow \tilde{\rho}(\rho) \rightarrow \hat{\rho} \tilde{\rho}(\rho)
\]

Local geometry control

Erosion
Sigmund (2007)
\[\eta = 1 \]

"Volume preserving"
Xu et al (2010)
\[\eta = 0.5 \]

Dilation
\[\eta = 0 \]

Robust formulation

\[
\min_{\rho} \max_{\Phi} \left(\Phi(\tilde{\rho}(\rho)), \Phi(\tilde{\rho}^m(\rho)), \Phi(\tilde{\rho}^d(\rho)) \right)
\]

s.t.:
\[
K(\tilde{\rho}^e) U^e = F,
K(\tilde{\rho}^m) U^m = F,
K(\tilde{\rho}^d) U^d = F,
g = V(\tilde{\rho}^d)/V^* - 1 \leq 0
\]

\[0 \leq \rho \leq 1 \]

\[\tilde{\rho}^e = \tilde{\rho}_{\eta=0.5+\Delta \eta}, \quad \tilde{\rho}^m = \tilde{\rho}_{\eta=0.5}, \quad \tilde{\rho}^d = \tilde{\rho}_{\eta=0.5-\Delta \eta} \]

Wang, Lazarov and Sigmund, SMO, 43, 767-784, (2011)
Robust topopt formulation

Uniform over/under etching

Over etched
Blue print
Under etched

Unique length scale control: c.f. Wang, Lazarov and Sigmund, SMO (2011), Qian and Sigmund, CMAME (2012)

Ole Sigmund, Mechanical Engineering, Solid Mechanics
Technical University of Denmark

Robust electrostatic actuator design

Qian and Sigmund, CMAME (2012)

Ole Sigmund, Mechanical Engineering, Solid Mechanics
Technical University of Denmark

Robust electrostatic actuator design

Qian and Sigmund, CMAME (2012)

Ultra high resolution TopOpt
(overcoming the Duplo problem)

Qian and Sigmund, CMAME (2012)

Ole Sigmund, Mechanical Engineering, Solid Mechanics
Technical University of Denmark
Previous work in aircraft wing design

Stanford & Dunning, *Journal of Aircraft*, 2015, 52, 1298-1311:

"... the resulting structure typically bears no resemblance to traditional rib/spar networks, which may indicate one of two things. The first is that the appropriate physics, load cases, and/or constraint boundaries were not included in the optimization problem, and if they had been, the resulting topology would qualitatively approach a lattice of ribs and spars. The second is that the design problem was properly defined, and that the non-traditional topology may present an interesting new direction for efficient wing structures."

+100M design variables

The code:
- PETSc based – highly scalable
- Solver: F-GMRES with MG preconditioner.
- Open source (topopt.dtu.dk)
- Includes filters, MMA, IO.
- Comes with minimum compliance example

Aage; Andreassen & Lazarov, *SMO*, 2015, 51, 565-572
NASA Common Research Model

Geometry and pressure load data from NASA:

Meshing by structured slices:

~**1 billion** elements (1216 x 256 x 3456)...

... largest element size ~ 8 mm

Results: 135 million elements

Material design and non-linearities

Material with negative Poisson’s ratio

- FE on one cell with periodic B.C.
- Minimize Poisson’s ratio
- Constraint on bulk modulus and symmetry

Sigmund (1995)
3D Manufacturing and testing

Negative thermal expansion coefficient

3d negative thermal expansion

Finite deformations

\[\alpha_{\text{red}} = 3.5 \]
\[\alpha_{\text{blue}} = 1 \]
\[E_{\text{red}} = 1 \]
\[E_{\text{blue}} = 3.5 \]
\[\nu^H = 0.18 \]
\[E^H = 0.0016 \]
\[\alpha^H = -5.4 \]

Produced by Erik Andreassen

Wang et al., CMAME, 2014, 276, 453-472
Clausen et al., Adv. Mater., 2015, 27(37), 5523-5527
Manufacturing using Direct Ink Writing

Design adapted to Direct Ink Writing

Uniform feature design using superellipses

Optimized designs for $\nu \in -0.8:0.2:0.8$
All designs printed row- and columnwise

Deformation pattern for $\nu = -0.8$

Complete set of realized designs

Numerics vs experiments
Parameterization for any $\nu \in [-0.8, 0.8]$

3D Poisson’s ratio -0.8

Small deformation:

Finite deformation:

Wang et al., 2016, to be submitted

Cooling fins for LED lamps

HYPERCOOL – Cool Danish Design

Thermofluidics
Intuitive designs by industrial designer

Thermofluidic equations

Incompressible Navier-Stokes equation for porous flow

\[
\mathbf{u} \cdot \nabla \mathbf{u} - Pr \nabla \cdot (\nabla \mathbf{u}) + \alpha \mathbf{u} + \nabla p = -Gr Pr^2 e g T
\]

\[
\nabla \cdot \mathbf{u} = 0
\]

Convection-diffusion equation

\[
\mathbf{u} \cdot \nabla T - \nabla \cdot (K \nabla T) = q
\]

Optimization of fluid mixing

Natural convection cooler problem

Andreasen; Gersborg & OS, *JNNM*, 2009, 61, 498-513
Conclusions

- TO is efficient in solving wide classes of engineering design problems
- Here mostly concentrated on solids – lots of application in fluids, thermofluidics, electromagnetics, nano-optics, etc.
- We are at the verge of being able to skip the post-processing step and send TO results directly to (additive) manufacturing
- Still several interesting challenges:
 - Large scale
 - Non-linearities
 - Multiphysics
 - Multiscale
 - Taking advantage of new manufacturing possibilities
Further reading

TopOpt background

- OS, On the usefulness of non-gradient approaches in topology optimization, SMo, 2011, 43, 589-596
- Schevenels, Lazarov & OS, Robust TopOpt account. f. spat. varying man. err., CMAME, 2011, 200, 3613-3627

Codes

- Aage; Andreassen & Lazarov, B.S., TopOpt using PETSc: An easy-to-use, fully parallel, open-source topopt framework, SMo, 2015, SMo, 51, 565-572

Material Design

- Clausen; Wang; Jensen; OS & Lewis, Topology Optimized Architectures with Programmable Poisson’s Ratio over Large Deformations, Advanced Materials, 2015, 27, 5523-5527

Fluid Applications

See www.topopt.dtu.dk for more

Ole Sigmund, Mechanical Engineering, Solid Mechanics
Technical University of Denmark

Probability-based topology optimization

Random geometry errors

\[\min \frac{m_{\phi} + k\sigma_{\phi}}{\rho} \]
\[\text{s.t. } K(\tilde{\rho}g(x,\theta),\tilde{\rho}(\rho))U(\theta) = F \]
\[g = m_{V}/V^* - 1 \leq 0 \]
\[0 \leq \rho \leq 1 \]

\(m_{\phi} \): mean value of \(\phi \)
\(\sigma_{\phi} \): standard deviation of \(\phi \)
\(k \): weighting factor
\(m_{V} \): mean value of \(V \)

MC
Stochastic collocation
Stochastic perturbation

Schevenels, Lazarov & Sigmund, CMAME, 2011, 200, 3613-3627

Ole Sigmund, Mechanical Engineering, Solid Mechanics
Technical University of Denmark

Localized random variations

Probabilistic design

\[\phi = -1.03 \]
\[m_{\phi} = -0.26 \]
\[\sigma_{\phi} = 0.36 \]

\[\phi = -0.94 \]
\[m_{\phi} = -0.91 \]
\[\sigma_{\phi} = 0.02 \]
Smooth boundaries