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29.1
Introduction

During the past few decades, the field of nanoscience and nanotechnology has
undergone a revolution that parallels the extraordinary advances in surface science
instruments and techniques. The nano-era is posited as having begun in the early
1980s with the invention of scanning probe microscopy which allowed one to
monitor, measure, and manipulate matter at the nanoscale level. Dramatic new
insights have come from the application of this and other new experimental tools.
The ability to precisely control atoms and build molecules at extremely small length
scales is leading to unprecedented breakthroughs in electronics [1, 2], photonics
[3, 4], medicine [5], and energy production [6].

In particular, the formation of periodically ordered structures offers the possibility
of direct fabrication of semiconductor quantum nanostructures in which a narrow
gap material is embedded into a matrix of a wide-gap material providing a confined
potential for carriers. Periodic structures of such inclusions create a superlattice
comprising quantum wells, quantum wires, and quantum dots (QDs). QDs, the
ultimate limit of low-dimensional structures, have become a fascinating subject
both for the basic research and for device application.

The most powerful and common method to obtain high-quality QDs consists in
exploiting the Stranski–Krastanov (SK) growth mode during strained heteroepitax-
ial growth, in which QDs spontaneously form on top of a thin wetting layer (WL).
A prototype system for studying the fascinating and complex phenomena related
to the strain-driven heteroepitaxy and for investigating the properties of QDs’
spontaneous formation is Ge/Si. As a model system, Ge on vicinal Si(001) makes it
possible to investigate strain relaxation, growth instabilities, and three-dimensional
(3D) island formation and self-organization. Moreover, by changing the substrate
miscut, it is possible to tune both the energetic and the kinetic factors governing
the growth of single nanostructures [7].

There is a huge literature on the SK growth of Ge on Si surfaces and many
excellent monographs and review papers surveying the different aspects of the
subject have been written [7–11]. Most of them are aimed at researchers with some
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preliminary knowledge on the matter, whereas it is rather difficult to find a concise
handbook providing a unified picture to connect the experimental trend with the
basic knowledge on nucleation, crystal growth, and theory of epitaxy.

This chapter is intended neither as a comprehensive overview of all the growth
nor as a survey of the methods employed to investigate and characterize semicon-
ductor nanostructures. Its purpose, rather, is to present an original connection
between the physical mechanisms at the origin of nanostructure formation and the
basic principles of nucleation and epitaxial growth theory. We aim to provide an
introductory guide, easily accessible to nonspecialized readers, to tackle the fun-
damental ingredients involved in the epitaxial growth of Ge/Si semiconductor QDs
(e.g., substrate symmetry, bulk/surface elastic energy balance, and intermixing).
The idea is to connect the factors that play an important role in the growth process
to the fundamentals of nucleation theory, thereby providing a general purpose tool
that can be applied to similar systems such as the III–V heteroepitaxial growth of
nanostructures. For this reason, we deliberately avoided including details that could
not be extended to similar systems. The reader interested in further discussion may
refer to the excellent specialized review papers listed in the reference section. Also,
we have chosen, whenever possible, an analytical approach the reader can actually
follow without accepting it as given. This sometimes has required a simplified
mathematical treatment and modeling with respect to up-to-date literature, but
preserves the physical meaning underneath.

The chapter is organized as follows: after an introductory section in which the
basic concepts and definitions are specified, the classical Bauer’s classification of
the epitaxial growth modes is examined, extending to a generalized thermodynamic
criterion for the mechanism of growth in Sections 29.2. The equilibrium shape
of 3D dots grown on a flat substrate of different lattice constant is the subject of
Section 29.3. In Section 29.4, the effect of the substrate morphology is handled:
in particular, how much the substrate vicinality can produce a fine shaping of
GeSi nanostructures is studied in agreement with the experimental results. To get
over the elastic relaxation, in Section 29.5, the influence of intermixing on QD
nucleation is considered. Finally, in Section 29.6, we address an issue regarding
nanotechnology applications, namely, the elastic interaction between Ge islands
on vicinal Si substrates and its effect on the lateral ordering of nanostructures.

29.2
Thermodynamic Criterion of the Growth Mode

29.2.1
Epitaxial Growth: Basic Concepts and Definitions

The word epitaxy derives from the Greek prefix epi meaning ‘‘upon’’ or ‘‘over’’ and
taxis meaning ‘‘arrangement’’ or ‘‘order’’ and refers to the oriented growth of a
crystalline material on the single crystal surface of a different material. The term
was coined by Royer [12] in 1928 to distinguish the phenomenon of epitaxial growth
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Figure 29.1 Schematic representation of the three primary modes of thin-film growth
according to Bauer’s classification: (a) Frank–van der Merwe (FM) or layer-by-layer mech-
anism; (b) Volmer–Weber (VW) mechanism or island growth; and (c) Stranski–Krastanov
(SK) or layer-by-layer followed by island growth.

from the usual crystal growth that occurs when a single crystal film is grown on the
surface of the same material. Strictly speaking, epitaxial growth takes place when
deposit and substrate crystals differ chemically or geometrically owing to the nature
and strength of the chemical bonds, on one hand, and the crystal lattice structures,
on the other. From a thermodynamic standpoint, this means that both substrate
and deposit crystals have different chemical potentials. Furthermore, it also means
that the chemical potential of the growing epilayer μ(n) varies with the film
thickness n and differs from that in the bulk deposit crystal (μ(n) �= μ∞), because
of the interaction with the substrate. As will be shown in the following sections, the
thickness dependence of the chemical potential defines a thermodynamic criterion
[13–16] for the mechanism of growth of epitaxial films, which is equivalent to that
given by Bauer [17] in terms of the specific surface energies. Following Bauer’s
approach, the mode of epitaxial growth is classically discussed on the basis of the
interrelation of the specific free surface energies of the deposit (σ ), the substrate
(σs), and the substrate–deposit interface (σi). Layer-by-layer growth or Frank–van
der Merwe (FM) mode (Figure 29.1a) is expected when the change in surface energy
accompanying the deposition process �σ = σ + σi − σs is negative, namely

σs > σ + σi (29.1)

Conversely, in the case of incomplete wetting or Volmer–Weber (VW) mode

σs < σ + σi (29.2)

the film grows as isolated 3D islands (Figure 29.1b). Layer-by-layer followed by 3D
islanding (Figure 29.1c), or SK mechanism, takes place when �σ changes sign
from negative to positive after some characteristic thickness due to the misfit strain
energy accumulated in the deposited layers.

Before discussing the classification of the growth modes in terms of thickness
variation of chemical potential, we first derive the classical Bauer’s criterion.

29.2.2
Bauer’s Criterion for the Equilibrium Shape

The classification of the epitaxial growth modes was originally given by Bauer as a
result of a thermodynamic analysis of the wetting of the substrate by the deposit
film [17]. Here, we derive the same criterion following the atomistic approach to the
equilibrium shape of the deposit crystal, first introduced by Stranski and Kaischew
[16, 18, 19].
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Figure 29.2 (a) Representation of Kossel
crystal; the most important sites an atom
can occupy on the crystal surface are indi-
cated: one-atom adsorbed on the crystal
face, two-atom adsorbed at the step edge,
three-atom in half-crystal (kink) position,

four-atom embedded into the step edge,
and five-atom incorporated into the face. (b)
ψ1, ψ2, and ψ3 are the interaction energy
between first, second, and third nearest
neighbors, respectively.

The simplest atomistic model of a crystal was developed by Kossel [20] and
consists of a simple cubic crystal in which the binding of atoms is assumed to be
only determined by the number of neighbors. Despite its simplicity, this model
provides a viable route to bridge the thermodynamic and atomic descriptions of
crystal growth. In Kossel’s model, atoms are represented as cubes with interaction
energy ψ1 between nearest neighbors (cubes sharing a common face) and ψ2

between next-nearest neighbors (cubes sharing a common edge); longer-range
interactions are much weaker and are omitted, for simplicity. (Figure 29.2).

The specific surface energy of a crystal face is evaluated from the energy
necessary for detachment of an additional column of atoms from the same face.
For the (100) surface, the value of the surface energy is then

σ100 = ψ1 + 4ψ2

2a2
(29.3)

as one bond between first neighbors and four bonds between second neighbors
should be broken. The interatomic distance a determines the area per atom, a2.

The atomistic approach of Stranski and Kaischew can be also used to find the
equilibrium shape of a 3D crystal lying on a foreign substrate. Because at the
equilibrium the probability of building up a new crystal plane should be equal to
the probability of its dissolution, the energy per atom of disintegration of a crystal
plane into single atoms is a measure of the equilibrium and must have one and
the same value for all crystal planes belonging to the equilibrium shape. This
equilibrium energy value is known as mean separation work.

Consider a Kossel crystal with n atoms in the horizontal edges and n′ atoms
in the vertical edges deposited on a foreign substrate with cubic structure as well
(Figure 29.3). Following the steps of the disaggregation process schematized in
Figure 29.4a, the mean separation work calculated for the top (100) face is

ϕ(100) = 1

n2
[n2ψ + 2n(n − 1)ψ ] = 3ψ − 2ψ

n
(29.4)

where only first-neighbor bonds (ψ1≡ψ) have been considered. Note that only
bonds between like atoms are broken in the disintegration of the upper base.
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Figure 29.3 Kossel crystal with n atoms in the horizontal edges and n′ atoms in the verti-
cal edges deposited on a foreign substrate.
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Figure 29.4 For the evaluation of the equi-
librium shape of a crystal lying on a for-
eign substrate according to the atomistic
approach of Stranski and Kaischew. n and
n′ denote the numbers of atoms in the hor-
izontal and vertical edges, respectively. The
different steps and the corresponding energy

costs for disintegration of (a) the upper
crystal face and (b) of the side face are indi-
cated: first, the crystal plane is detached
from the crystal block; then the plane is dis-
integrated into atom rows and each row is
disintegrated into single atoms.

On the other hand, it is found from Figure 29.4b that the energy needed for
disintegration of the side (001) face is

ϕ(001) = 1

n′n
[nn′ψ + nψ ′ + n′(n − 1)ψ + (n′ − 1)nψ ] = 3ψ − ψ − ψ ′

n′ − ψ

n
(29.5)
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Figure 29.5 For the determination of the specific energy of the interface between a deposit
crystal (D) on a foreign substrate (S).

where ψ ′ is the energy to break a bond between unlike atoms. At the equilibrium,
the mean separation works of the different faces have to be equal (ϕ(100) =ϕ(001))
and this condition determines the equilibrium shape ratio n′/n of the deposit crystal
as

n′

n
= ψ − ψ ′

ψ
(29.6)

Taking n′ = 0 as a condition for a 2D nucleus, it can be inferred from Equation
29.6 that the crystallization process proceeds with VW growth of 3D adatom clusters
or islands when adatom–adatom interactions are stronger than those of the adatom
with the surface (i.e., ψ >ψ ′). The opposite case, in which the overlayer–substrate
interaction exceeds the interaction between neighboring adatoms (ψ ≤ψ ′), leads
to the 2D FM growth mode.

To recover the usual 3-σ Bauer’s criterion, we have to reformulate Equation 29.6
in terms of surface energies. To this end, we examine the energy balance of the
following process (Figure 29.5): (i) dissociation of a pair of substrate atoms (S) and
a pair of deposit atoms (D) and (ii) formation of two pairs of S–D dimers. For
the dissociation step (i), we expand the energies ψS and ψD =ψ , whereas we gain
energy −2ψS−D = −2ψ ′ during step (ii). The excess energy required to balance the
above-mentioned process is 2ψi

2ψi = ψS + ψ − 2ψ ′ (29.7)

Using the definitions of the specific surface energy σS = ψS/2a2 and σ = ψ/2a2

for the substrate and the deposit crystal, respectively, we obtain

σi = σS − σ + ψ − ψ ′

a2
(29.8)

where the specific interfacial energy σi = ψi/a2 is defined as the excess energy of
the boundary per unit area. Combining Equations 29.6 and 29.8, we deduce the
Bauer’s criterion from the condition for equilibrium shape of a 3D cubic nucleus
on a foreign substrate

n′

n
= ψ − ψ ′

ψ
= σ + σi − σS

2σ
= �σ

2σ
(29.9)

As follows from the previous equation, the so-called adhesion parameter � =
1 − ψ ′/ψ [21] is equivalent to the Bauer’s surface energy change �σ and accounts
for the wetting of the substrate by the overgrowth. The limiting cases of VW and
FM growth occur, respectively, for 0 < � < 1 and � ≤ 0.
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In case a lattice misfit f between substrate and deposit crystal is present,
an additional contribution due to strain and, eventually, dislocation energy is
introduced in the interfacial energy, which becomes

σ ∗
i = σi + �el(ε) + �disl(f − ε) (29.10)

where the strain energy per unit area �el and the misfit dislocation energy �disl

per unit area depend on the homogeneous strain ε and the dislocation density
f − ε, respectively. A perceptible misfit, σ ∗

i is indeed responsible for the transition
from layer-by-layer growth to 3D growth in the SK mode. The latter mechanism is
therefore characterized by the conditions � < 0, f �= 0.

29.2.3
Thickness Variation of Chemical Potential and Growth Modes

The position of an atom on a crystal surface determines how strongly the atom
itself is bounded to the crystal. Consider as an example the cubic face of a Kossel
crystal depicted in Figure 29.2. We recognize five different atomic sites: (i) atoms
incorporated into the outermost crystal plane or (ii) embedded into the step edge;
(iii) atoms in kink position or adsorbed either (iv) at the step or (v) on the crystal face.
For all the positions except site (iii), atoms have a different number of saturated
and unsaturated bonds, and detachment from these sites results in a change in
the surface energy. For kink sites, however, detachment has exactly the same
energetic balance as attachment has, and therefore the two events occur with the
same probability. It follows that the equilibrium vapor pressure P∞ and chemical
potential μ∞ of a bulk crystal is determined by the work of separation from kink
sites ϕ1/2 [19–22]:

μ∞ = μ0 + kT ln P∞ = −ϕ1/2 + kT ln

[
(2πm)

3
2 (kT)

5
2

h3

]
(29.11)

where m is the atomic mass, h the Planck constant, and μ0 = μ∞(T = 0). As the
work ϕ1/2 is always equal to the energy required to break half of the bonds of an
atom situated in the bulk of the crystal, the kink site is also known as the half-crystal
position.

From Figure 29.2, it can be easily seen that to detach an atom from the half-crystal
site of a bulk Kossel crystal, if only first-neighbor bonds are considered, three bonds
have to be broken: two lateral bonds with half-crystal plane and half-crystal row and
one normal bond with the underlying half-crystal block. Thus, ϕ1/2 = 3ψ . Consider
a monolayer on the surface of a foreign crystal, and work of separation from the
half-crystal position ϕ′

1/2 now reads

ϕ′
1/2 = 2ψ + ψ ′ = ϕ1/2 − (ψ − ψ ′) (29.12)

where the normal bonding with the foreign substrate atoms has been taken into
account. Bearing in mind Equation 29.11, we find that the chemical potential of the



870 29 Semiconductor Quantum Dots: Model Case Ge/Si

μ∞ = −ϕ1/2 + kT ln
(2πm )3/2 (kT )5/2

h3
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Figure 29.6 Chemical potential of (a) a bulk deposit and (b) of a thin epilayer.

overgrowth layer μ is related to that of the bulk deposit crystal μ∞ (Figure 29.6) by

μ = −ϕ′
1/2 + kT ln

[
(2πm)

3
2 (kT)

5
2

h3

]
= μ∞ + (ψ − ψ ′) (29.13)

Combining Equations 29.8 and 29.13, we can write the chemical potential of the
adsorbed monolayer in terms of the change of the surface energy connected with
its deposition

μ = μ∞ + (ψ − ψ ′) = μ∞ + a2(σi + σ − σS) (29.14)

In the above-mentioned equation, the interatomic energies ψ and ψ ′ have,
respectively, the meaning of the energy of desorption of an atom from the same
crystal ϕd and from a foreign substrate ϕ′

d.
As evident from Equation 29.14, the chemical potential of the first deposited

monolayer differs from that of the bulk deposit crystal. This is partly due to the
modified atomic interaction across the interface (i.e., ψ ′ �= ψ or equivalently ϕ′

d �=
ϕd). On the other hand, the lattice misfit leads to the appearance of homogeneous
strain and misfit dislocations. Obviously, the presence of the substrate will affect
differently the atoms in the first, second, and third layers, and so on. Combining
Equations 29.10 and 29.14, we make explicit the dependence on the overlayer
thickness and obtain the generalized expression for the chemical potential of the
nth monolayer deposited on the foreign substrate in the presence of lattice misfit

μ(n) = μ∞ + [ϕd − ϕd
′(n) + ξel(n) + ξdisl(n)] = μ∞ + a2(σ ∗

i (n) + σ − σS)

(29.15)

where ξel = a2�el and ξdisl = a2�disl are the energies per atom of the homogeneous
strain and misfit dislocations. By inspecting Equation 29.15, it is clear that the
Bauer’s criterion of the growth mode in terms of �σ can be reformulated on
the basis of the variation of the chemical potential with the film thickness. That
is, the condition �σ < 0 for FM growth is equivalent to �μ ≡ μ(n) − μ∞ < 0,
whereas VW islanding will occur for �μ > 0 (Figure 29.7). In the case of SK growth,
a planar film is deposited as long as μ(n) < μ∞; at a certain critical coverage nc,
the chemical potential of the 2D film becomes higher than that of the bulk deposit
crystal and 3D islands are formed (Figure 29.7).
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Figure 29.7 Schematic representation of the dependence of the chemical potential on the
film thickness for Volmer–Weber (VW), Stranki–Krastanov (SK), and Frank–van der Merwe
(FM) growth. Adapted from [21].

29.2.4
Generalized Thermodynamic Criterion for the Mechanism of Growth

In the previous section, we derived the thermodynamic condition for occurrence
of planar growth and clustering by making a strong use of specialized arguments
of crystal growth theory. Here, following the seminal work of Peierls [13], we show
that the same results can be inferred directly from a very general discussion of the
possible forms of the free energy of the film as a function of thickness.

Let G(n) be the Gibbs free energy per unit area of a uniform adsorbed layer
containing n atoms per unit area. What we know for sure about the shape of
G(n) is that the function decreases monotonically with n, as the chemical potential
μ = ∂G/∂n must be negative. In Figure 29.8, the simplest possible shape of G(n)
satisfying the previous condition appears as a continuous line. The value of G for

Free-energy of the substrate

Free-energy of the
bulk adsorbate

n

σs,0

α (n)

α∞α∞ = σ + σ i 

G

Figure 29.8 Schematic dependence of the Gibbs free energy per unit area of a uniform
film versus thickness n in case of a positive curvature from the very beginning of adsorp-
tion (layer-by layer growth). The dashed-dotted line is the asymptote to large n, and the
dashed line is the tangent at an arbitrary n. Adapted from Peierls [13].
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n = 0, that is, the intercept with the G-axis, is obviously the free surface energy,
σS,0, of the interface substrate–vacuum. On the other hand, because at large n the
system consists of a substrate and a thick adsorbate, the asymptote (dashed-dotted
line) gives the free energy of the bulk adsorbate. For large n, there will be an
interface separating the adsorbate from the substrate and another one between
the adsorbate and the vapor. Following the asymptote back to n = 0, we make the
adsorbate thinner, leaving the energies of the phase boundaries only. Therefore,
α∞ (Figure 29.8) is given by

α∞ = σ + σi (29.16)

where σi and σ are the free energies of the substrate–adsorbate and
adsorbate–vapor interface, respectively.

The tangent at an arbitrary n (dashed line) has an intercept with the G-axis, which
we define α(n). Evidently

α(n) = G(n) − n
dG

dn
(29.17)

and differentiating the above-mentioned equation one obtains

dα(n)

dn
= −n

d2G

dn2
= −n

dμ

dn
(29.18)

or, equivalently,

dα(n) = −ndμ (29.19)

This is identical with the Gibbs adsorption isotherm

dσs(n) = −ndμ (29.20)

which correlates the change dσs(n) in the surface energy of the substrate with
the amount n per unit area of an adsorbate of chemical potential μ. Clearly, the
interfacial tension between the solid and the vapor is affected by adsorption; this
results in a reduction in σs of an amount equal to the so-called spreading pressure
φ of the film [23]

φ = −dσs(n) (29.21)

Bearing in mind Equation 29.21, we combine Equations 29.19 and 29.20 and
obtain, after integration,

α(n) = −φ + C (29.22)

where C is an integration constant. For n = 0, φ vanishes, whereas it is evident
from Figure 29.8 that α is σS,0. Then, C = σS,0 and

α(n) = −φ + σS,0 = σS(n) (29.23)

Subtracting Equation 29.23 from Equation 29.16, we link the shape of the free
energy with the Bauer’s criterion in terms of surface energies

α∞ − α(n) = σ + σi − σS (29.24)
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Figure 29.9 Schematic dependence of the Gibbs free
energy per unit area of a uniform film versus thickness n
in case of a negative curvature from the very beginning of
adsorption (3D islanding). The dashed-dotted line is the
asymptote to large n. Adapted from Peierls [13].

If G(n) tends to the asymptote from the above, as in the case illustrated in
Figure 29.8, evidently α∞ − α(n) < 0; this means the condition for complete
wetting �σ < 0 is satisfied for all n. We also notice that for the shape of G(n)
shown in Figure 29.8 the curvature is everywhere positive. Thus, complete wetting
occurs when d2G/dn2 > 0 or, in other words, when dμ/dn > 0. As every next
monolayer has a higher chemical potential, the completion of the first monolayer
before the start of the second one, of the second before the start of the third, and so
on, is thermodynamically favored and layer-by-layer growth is therefore expected.
In fact, the chemical potential μ = dG/dn of the planar film is everywhere lower
than that of the bulk adsorbate, μ∞, which is the slope of the asymptote.

In the opposite situation, when G(n) has a negative curvature all the way
(Figure 29.9), α∞ > α(n) for all n and, thus, �σ > 0. As the latter conditions imply
that dμ/dn < 0, the formation of a second monolayer before the completion of
the first one is thermodynamically favored, leading to 3D islanding. As expected,
in this case the chemical potential of the bulk adsorbate μ∞ (i.e., the slope of the
asymptote) is lower than μ for all n.

The case of SK growth corresponds to a curve G(n) with an inflection point
(Figure 29.10). In this case, there exists a coverage nc for which the tangent is
parallel to the asymptote, that is, the film has the same chemical potential of the
bulk adsorbate μ∞. Between 0 and nc, a planar film is still stable and the chemical
potential μ rises with n to reach the bulk value at nc. The amount of adsorbate
at n = nc, which wets completely the substrate is known as the wetting layer. For
n > nc, the uniform layer is unstable, and clusters with bulk properties are thus
formed.

It can be noticed that differentiation of the G(n) curves in Figure 29.8, Figure 29.9,
Figure 29.10 gives the three μ(n) curves shown in Figure 29.7. It follows that
the three classes defined by Peierls and Dash [13, 23] on the basis of thickness
dependence of the free energy represent the mechanisms of growth of thin epitaxial
films.

29.3
Stability of the Quantum Dot Morphology

In molecular beam epitaxy (MBE), films are grown from gaseous precursors.
The substrate acts as a seed crystal providing a template for positioning the first
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Figure 29.10 Schematic dependence of the
Gibbs free energy per unit area of a uniform
film versus thickness n in case an inflection
point is present (SK growth). The dashed-
dotted line is the asymptote to large n. At

the coverage nc the tangent to G(n) is par-
allel to the asymptote and has a slope equal
to the bulk chemical potential μ∞. Adapted
from Peierls [13].

impinging atoms of the film, and each atomic layer has the same function for the
next layer. As illustrated in Section 29.2.1, in the heteroepitaxy of a material A on a
substrate B, the growth morphology is mainly determined by the surface energies
of the overlayer, of the substrate, and of the interface. The SK growth occurs
when there is an initial wetting of the substrate but, with increasing overlayer
thickness, surface energies are changed by surface stress or by interface mixing
and/or segregation, so that at a critical thickness of A the initial wetting condition
does not hold anymore and islands start forming from then on. As it will be shown
in this section, the strain inherently introduced in lattice mismatched systems is at
the origin of 3D islanding.

Strain in heteroepitaxy has a twofold origin: (i) the difference in the lattice
parameters and (ii) the difference in the thermal expansion coefficient between
the epilayer and the substrate. Although, in most cases, both parameters have
different values in the epitaxial layer and in the substrate, the lattice parameter
mismatch is generally the more significant of these two parameters. For example,
the lattice constants of Si and Ge at room temperature are aSi = 5.432 Å and
aGe = 5.658 Å. Thus, the lattice mismatch in the Ge/Si system at room temperature
is approximately 4 × 10−2. On the other hand, the linear thermal expansion
coefficient of Si and Ge are 2.7 × 10−6 K−1 and 5.9 × 10−6 K−1, respectively [24].
This produces a difference in thermal expansion coefficient of Si and Ge of order
3.2 × 10−6 and a strain of order (3.2 × 10−6) δT for a temperature change of δT .
Therefore, even considering a temperature incursion of 1273 K, which corresponds



29.3 Stability of the Quantum Dot Morphology 875

(b)(a)

a ll

a⊥

Figure 29.11 Schematics of an epitaxial layer pseudomorphically grown on a foreign sub-
strate. As the intrinsic lattice parameter of the epilayer is larger than that of the substrate
(panel (a)), the unit cell of the film is tetragonally distorted (panel (b)).

to the maximum practical growth temperature on the Ge/Si system, thermal strains
are one order of magnitude less than lattice mismatch strains.

When the growth of the overlayer is pseudomorphic or coherent, the heteroepitaxial
layer does not keep its own lattice constant ae but is tetragonally distorted to the
substrate lattice parameter as (Figure 29.11). The lattice mismatch f between the
substrate and the epilayer is defined as f = (ae − as)/ae. If the lattice parameter
difference is accommodated entirely elastically (without the formation of misfit
dislocations), and ignoring the effects of differential thermal expansion coefficients,
the elastic strain of the epilayer in the plane of the interface is given by

ε// = 2
(as − ae)

(ae + as)
≈ (as − ae)

ae
= −f (29.25)

For ae > as, as in the case of Ge/Si, the strain in the epitaxial layer is compressive
and ε// is negative; for ae < as, the film is stretched and the in-plane strain is tensile
(ε// > 0). Owing to the biaxial in-plane distortion, the epitaxial layer relaxes along
the interface normal and produces an out-of-plane strain component

ε⊥ = 2
ν

(1 − ν)
f (29.26)

where ν is the Poisson ratio of the epilayer material. This means that biaxial
compression within the pseudomorphic Ge layers grown on Si induces an outward
distortion in the growth direction. For νGe = 0.273, one finds that the lattice constant
of a Ge film along the interface normal is about 3% larger.

The elastic strain energy per unit area (Equation 29.10) stored in the epitaxial
film is

�el = E

(1 − v)
ε//

2d (29.27)

where E is the Young’s modulus and d the film thickness. For a Ge/Si film, we
have E = 103 GPa [24] and therefore an elastic energy density ρ2D = Eε2

///(1 − ν)

of 1.41 meV Å−3. For an epilayer thickness of 50 Å, this produces a surface strain
energy of ∼ 70 meV Å−2 comparable to the magnitude of surface energies. As the
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hh
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α

Figure 29.12 For the evaluation of the free-energy gain of 3D islanding with respect to a
flat film. α is the contact angle of the 3D pyramid of height h and lateral edge L.

elastic energy increases linearly with layer thickness (Equation 29.27), it possibly
drives the 2D-to-3D growth transition.

The critical thickness dc at which islanding takes place can be determined by
examining the free-energy balance of a planar epilayer film of volume V with respect
to a configuration in which an island of the same volume is formed on a very
thin 2D WL [25–27] (Figure 29.12). The total free energy of the 2D configuration
(Figure 29.12a) reads

F2D = E

(1 − ν)
ε2
//V + (σ + σi)Sfilm (29.28)

where the first term gives the elastic strain energy and the second one gives
the surface energy of the film σ of area Sfilm and the island–substrate interface
energy σi. For the configuration of Figure 29.12b, the total free energy is instead

F3D = R
E

(1 − ν)
ε2
//V + (σ + σi)Sfilm + γ S − σ B (29.29)

where γ is the specific free energy of the island facets of area S and B is the base
area. Note that the formation of a 3D island enables the elastic relaxation of strain,
reducing the elastic energy term of a factor R < 1 with respect to the planar film.
It follows that the trade-off between the 3D and the 2D configurations becomes

�F = (R − 1)
E

(1 − ν)
ε2
//V + γ S − σ B (29.30)

Obviously, both the surface energy cost and the strain energy relaxation due to
island formation inherently depend on the island shape. Incidentally, we note that
edge energies of the island, scaling as V1/3, have been omitted in Equations 29.29
and 29.30. Considering a regular square-based pyramid with facet inclination α,
we derive the analytical expression of the base and lateral surface areas in terms of
the island volume and assume, for concreteness, γ = σ , obtaining

�F = (R − 1)
E

(1 − ν)
ε2
//V + γ

(
6

tan α

) 2
3

(sec α − 1)V
2
3 (29.31)
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Figure 29.13 Critical thickness dc for 3D islanding as a function of the island contact
angle α.

3D-to-2D islanding occurs when F2D becomes larger than F3D, namely, at the
critical film volume Vc for which �F = 0. Thus, the critical thickness at which
islanding takes place can be estimated as

dc = V
1
3

c = �Fs(1 − ν)

(1 − R)Eε2
//

(29.32)

where we write �Fs = γ (6/ tan α)
2
3 (sec α − 1) for compactness. For very shallow

islands, the elastic problem has an approximate solution (1 − R) ∝ tan α [25–28].
The resulting behavior of dc as a function of the contact angle of the island facets
is shown in Figure 29.13. Despite being highly simplified, the plot shows that the
evolutionary path for the 2D-to-3D transition is one for which the contact angle
increases continuously from planar to a 3D morphology [29, 30]. This is because
the surface free-energy term �Fs, causing the formation of a 3D morphology to be
an activated process, scales with the sidewall angle of the islands. Less new surface
is created when the morphology is shallower, and hence the activation energy is
also lower.

This continuous islanding process is experimentally observed in Ge/Si heteroepi-
taxy and occurs between 3.2 and 3.8 monolayers (ML) of Ge (1 ML = 1.4 Å) [31–33].
Figure 29.14 shows the onset of 3D islanding of Ge on the Si(001) surface imaged
in real time during the growth using scanning tunneling microscopy (STM) [33]. It
can be seen that the initial step of the 3D transition takes place via the formation
of shallow mounds with a height-to-base ratio ranging between 0.015 and 0.03,
which become progressively larger and steeper and finally evolving in complete
square-base pyramids bounded by {105} facets.

In order to obtain more quantitative information, one has to abandon the
mathematical simplicity of isotropic elasticity. In fact, silicon and germanium are
highly anisotropic materials, with elastic behavior that depends on the crystal
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Figure 29.14 Real-time STM experiment studying the growth of Ge pyra-
mids on the Si(001) surface. (a) Evolution of the profile of the pyramid
versus coverage. (b–i) STM images (250 × 80 × 3) nm3 extracted from the
movie of Ge deposition at 500 ◦C for increasing Ge coverage.

orientation. For example, the possible values of the Young’s modulus for Si range
from 130 to 188 GPa [34] and, hence, the use of an average elastic constant is
a significant approximation producing errors of an order of 10–20%. We shall
therefore make use of complete anisotropic description in the subsequent analysis.

We recall that the fundamental law of linear elasticity – that is, Hooke’s
law – describes the relationship between stress σ and strain ε in terms of stiffness C

σ = C ε (29.33)

For isotropic uniaxial crystals, stiffness C can be represented by a single value of
Young’s modulus E. In an anisotropic material, a fourth rank tensor with 34 = 81
terms is required to relate the second rank tensors of stress and strain. In this case,
Hooke’s law is written as

σij = Cijklεkl (29.34)

Note that all indices span between 1 and 3 and that the sum over repeated indices
is understood. In cubic semiconductors such as Si and Ge, the complex stiffness
tensor is described by three independent components, the values of which are
summarized in Table 29.1.
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Table 29.1 Lattice and elastic constants of Ge and Si.

Element Si Ge

Lattice parameter: a (Å) 5.432 5.658
Elastic moduli: C11 (GPa) 160.2 121.6
C12 (GPa) 62.1 46.5
C44 (GPa) 76.2 64.3

For the (001) crystal plane, the Poisson ratio and the Young’s modulus in terms
of the anisotropic elastic constants become

ν001 = C12

(C11 + C12)
; E001 = (C11 − C12)(C11 + 2C12)

(C11 + C12)
(29.35)

and the elastic strain energy per unit area (Equation 29.27) of an anisotropic planar
epitaxial film is

�el =
[

C11 + C12 − 2
C12

2

C11

]
ε//

2d (29.36)

The determination of the elastic relaxation for realistic 3D island’s shapes is, how-
ever, a challenging task. Several approaches have been applied to the computation
of elastic fields in semiconductor QDs. As already mentioned, continuum models
giving analytical solutions have the advantage of giving fast, semiquantitative esti-
mates. Most of them are based on the usage of Green’s functions: starting from
the Green function of a point-like inclusion of the deposit crystal on a semi-infinite
substrate [35], the elastic field due to a macroscopic island is obtained integrating
this function over the island volume. For example, the estimate of R giving the
qualitative behavior of dc in Figure 29.13 is based on a method, commonly known
as flat-island approximation, developed in this framework [26], [36]. Generally, the
method fails in determining the elastic fields in steep islands, even if an improve-
ment has been recently proposed, which has shown to yield consistent estimates
also for this case [37]. The critical drawback for analytical solutions to the elastic
problem is that they can be computed for simple island shapes only.

To handle the complexity of realistic 3D geometry, one has to employ the
computational power of numeric simulations. Two approaches are particularly
suited for determining key phenomena associated with strain energy relaxation
in QD structures: molecular dynamics (MD) and finite element (FE) methods.
In MD, strain distribution is obtained starting from the interactions and the
displacements of single atoms in the system. Being atomistic, MD simulations
have the advantage of taking into account atomic-scale features, such as surface
reconstructions, or inhomogeneous alloying [38–44]. On the other hand, MD
calculations are computationally very demanding when treating systems, such as
semiconductor QDs, which consist of a few million atoms. For this scale, finite
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element (FE) simulations have been shown to be robust and reliable by direct
comparison with atomistic calculations [45], being, however, much more easily
accessible [46–48].

The basic premise of an FE calculation is that the elastic body can be approximated
by an assemblage of discrete elements (typically a tetrahedron for 3D problems).
The set of elements, together with their vertices (nodes), constitute the finite mesh.
Generally, the distribution of the mesh element is not uniform throughout the
space, but is made finer in regions where the elastic energy is expected to be
higher – that is, inside the island. The core idea is that the nodal values of any field
variable f (r) and the interpolation functions for the elements completely define the
behavior of the field variable within the elements.

Consider the model depicted in Figure 29.15, that is, a deposit crystal in
the shape of a pyramid on a substrate having different lattice parameters. In
particular, hereafter we discuss the case of a compressive deposit crystal. The initial
strain condition is set by the lattice mismatch f : before relaxation, the deposit is
compressively strained to the substrate lattice parameter in the three perpendicular
directions (in plane x and y, and out-of-plane z) and the initial condition thus
reads εxx = εyy = εzz = −f , where εxx, εyy, and εzz represent the three diagonal
component of the strain tensor. Indeed, lattice mismatch is at the origin of the stress
field in the heteroepitaxial structure. In the framework of continuum elasticity, a

[0
10

]

[001]

[100]

x

y

z

L

h
θ

Figure 29.15 Geometric model of a Ge pyramid on a Si(001) substrate used in FE
simulations.
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crucial problem is how to mimic the lattice mismatch [49]. As it will be shown
in the following, the misfit strain experienced by the island can be conveniently
treated following the Eshelby formalism for inclusions [50]. An inclusion is a region
completely embedded in a surrounding medium (matrix), which undergoes a
permanent deformation. If taken away from the medium, the inclusion would
experience a deformation to restore the zero-stress condition, assuming a uniform
strain ε∗

ij called eigenstrain. Therefore, the eigenstrain is defined as the value of the
strain field at which the stress field is zero by the following equation

σij = C ijkl(εij − ε∗
ij) (29.37)

In our epitaxial system, the island acts as a stressor, leading to a condition of
stress due to the lattice mismatch. According to the eigenstrain principle, if we
were able to take the compressed island away from the substrate, it would undergo
an elastic dilation to recover its own lattice parameter. As a consequence, the
eigenstrain is simply

ε∗
ij = f δij (29.38)

where δij is the Kronecker delta. In point of fact, the island is not able to reach the
state of eigenstrain – that is, the condition of zero stress – but both the substrate
and the island deform in order to minimize the elastic energy: solving the elastic
problem of a heteroepitaxial island involves finding the displacement field due to
the condition of eigenstrain in the entire space which is, as a matter of fact, the
Eshelby’s problem of inclusion. Thus, the final elastic-energy distribution can be
obtained by allowing the system to relax, as far as the elastic equilibrium is reached.
At the equilibrium, the sum of forces inside the elastic body has to balance the
external force Ti acting on it; thus, the equilibrium equation can be written as

− ∂

∂xj

σij(u) = Ti (29.39)

where u is the displacement field. In our case, there are no external forces, as the
island itself is at the origin of the stress in the system; so, Ti = 0. With reference
to Figure 29.15, two types of boundary conditions are applied. The Dirichlet
condition ui = 0 is imposed on the bottom of the simulation box, whereas the other
boundaries are free surfaces at which the null-stress condition σ•n = 0 holds (n is
the normal to any free surface). The elastic problem described by Equation 29.39
is solved self-consistently using the constitutive stress–strain relations 29.37 and
29.38 which, for a cubic symmetry, have the form

σii = (C11 − C12)εii + C12f

σij = C44 εij (i �= j) (29.40)

Once the initial strain condition is assigned, the FE solver determines by an
iterative procedure the displacement field u minimizing the elastic energy (per
unit volume) of the system ρ = 1

2

∑
klmn

Cklmnεklεmn which, for a structure with cubic
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structure, reduces to

ρ = C11

2
(ε2

xx + ε2
yy + ε2

zz) + 2C44(ε2
xy + ε2

yz + ε2
xz) +

2C12(εxxεyy + εxxεzz + εyyεzz) (29.41)

After minimization, the total elastic energy of the system is evaluated by
integrating the local energy density over the island and the substrate volumes

ρ3DV =
(∫

isl
ρ (r) dr +

∫
sub

ρ(r) dr
)

(29.42)

So far, the thin WL under the island has not been taken into account. Introducing
a very thin layer in FE calculations requires a high number of mesh elements,
which increases the computational effort. Moreover, as the thickness of the WL is
fixed (e.g., ∼3 ML for Ge/Si) independently of the island size, its weight over the
whole elastic body depends on the island volume. Thus, FE simulation including
the WL is not fully self-similar. A relevant question to be addressed is the extent to
which neglecting the WL affects the simulations. A rough estimate of the weight of
WL is inferred by evaluating the total energy Esub stored in the substrate (i.e., the
second integral in Equation 29.42) with and without this thin planar epilayer.

In Figure 29.16, the normalized change of Esub has been calculated for Ge/Si
pyramids having the same volume but different facet inclination. It can be seen
that the WL plays a role in the elastic relaxation of the system only for very shallow
island morphology. Steeper islands, in fact, exert an elastic loading deeper in the
substrate and as such the presence of the WL becomes, in their case, negligible.

FE simulations can be successfully used to evaluate the relaxation factor R
appearing in Equation 29.31 for 3D island shapes within anisotropic elasticity.
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Figure 29.16 Relative weight of WL in FE simulations as a function of the facet inclination
of Ge pyramid. EWL

sub is the elastic energy stored in the substrate including the WL, whereas
Esub is the same term neglecting the presence of the WL.
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Figure 29.18 Cross-sectional maps of the εxx strain component for Ge islands of aspect
ratio (a) r = 0.1 and (b) r = 0.7.

For a direct comparison with experimental data, the island geometry is usually
expressed in terms of the height to-square-root of the base ratio or aspect ratio r.
For square-based pyramids, r is simply tan α/2. In Figure 29.17, we report the
aspect-ratio dependence of the relaxation factor for pure Ge islands grown on the
Si(001) surface. It can be clearly seen that R decreases monotonically as the facet
inclination gets higher, thus indicating that steeper structures provide a better
elastic relaxation. The underlying reason can be found by carefully analyzing the
strain distribution after elastic relaxation for different island shapes (Figure 29.18).
The maps are vertical cross sections of the εxx strain tensor component inside
the islands. A common feature is the highly nonuniform strain field both in the
island and in the substrate. As opposed to the homogeneous case of a planar film
(Equations 29.25 and 29.26), in 3D structures elastic energy relief is based on strain
redistribution within the island and on strain propagation inside the substrate.
Directly under the island, the Si lattice is expanded and the tensile dilation induces
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a consequent compression immediately outside the island edges. Inside the island,
the compressive strain field decreases, moving from the substrate toward the island
top, where the elastic relaxation is higher. By comparing the two strain maps, it is
clear that the steeper the island, the more effective is the relaxation of misfit strain.
The functional dependence of the relaxation factor is not restricted to the pyramid
case but it holds also for other geometrical shapes [51]. It is therefore tempting to
find an analytical form to describe the behavior of R as a function of the aspect
ratio. A simple exponential form [52] R(r) = e−kr with k = 1.839 is suitable to fit FE
data except at high values of r (Figure 29.17). Clearly, steep islands provide better
elastic relaxation, but, on the other hand, they exert an elastic load that penetrates
more deeply into the substrate, as shown in Figure 29.18. The effect of substrate
loading is correctly taken into account in (Equation 29.42), whereas it is neglected
by using a single-exponential decay fitting function. To compensate for this bias,
one could add a positive exponential ek2r factor to R(r) [49].

Using a single exponential for R(r), the total energy difference between the island
and planar configurations (Equation 29.31), written in terms of the aspect ratio r,
turns into a fully analytical form

�F(r,V) = (e−kr − 1)ρWLV + γ

(
3

r

) 2
3 (√

4r2 + 1 − 1
)

V
2
3 (29.43)

where ρWL = �el/d. This provides a scaling expression for the energy balance
driving the morphological evolution of islands with volume, which is useful for
comparing the relative thermodynamic stability of different island shapes [52].

For a given volume, the equilibrium aspect ratio corresponds to the minimum of
�F(r); therefore, the shape evolution with volume is found by setting ∂�F(r,V)

∂r = 0,
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the equilibrium island shape at increasing volume according to Equation 29.44.
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Figure 29.20 Thermodynamically favored island’s aspect ratio as a function of volume. The
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giving

e−kr = 2

3
1
3 k

(
γ

ρWL

) [
2r2 − 1 + √

4r2 + 1

r
5
3
√

4r2 + 1

]
1

V
1
3

(29.44)

and solving Equation 29.44 for different volumes. As shown in Figure 29.19, the
solution is straightforwardly obtained graphically and the aspect ratio as a function
of the island’s volume is illustrated in Figure 29.20. The general trend, that is,
the increase in aspect ratio with island volume, is expected because, in the small-
volume limit, the surface cost of islanding is dominant and shallow islands are
energetically favored. As the volume grows, the volume term becomes increasingly
important and, thus, the better elastic relaxation, provided by steeper morphologies,
counterbalances the larger exposed surface.

What one learns from the above-mentioned simple model is that thermodynamics
drives the morphological evolution of strained epitaxial nanostructures, dictating
the progressive increase of aspect ratio with increasing island volume. This finding
matches the experiment for a variety of semiconductor epitaxial systems [10].

Figure 29.21 shows experimental values of the aspect ratio as a function of
volume for Ge islands grown on the Si(001) surface at 600 ◦C. As evident, the
larger the island, the steeper is the island’s facet inclination. By carefully inspecting
the experimental plot, it can be seen that sudden slope changes at characteristic
island volumes are superimposed on the monotonic increase of the r curve. These
features correspond to distinct morphological transitions in the island’s shape. In
our oversimplified picture, we have assumed pyramid shapes only, but, actually, the
overall geometry of islands also evolves as the Ge growth proceeds. This is apparent
in Figure 29.22, where the principal islands’ morphologies observed in Ge/Si(001)
are shown. As already pointed out, at the onset of 3D islanding, very shallow
mounds, referred to as prepyramids [31–33], are formed (Figure 29.22a). They have
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Figure 29.21 Experimental evolution of island’s aspect ratio with volume for Ge islands
grown on Si(001). Arrows point to the discontinuities that indicate a shape change in the
islands.

a low aspect ratio, ∼0.04, and are nonfaceted. We remark that faceting is highlighted
by applying an image-analysis tool known as facet plot (FP) to STM images [53].
It consists of a 2D histogram displaying the component of the surface gradient
on the horizontal and vertical axes: faceting thus produces well-defined spots in
the FP. The diffuse halo in Figure 29.22b therefore indicates that prepyramids do
not contain distinct facets. Nonfaceted islands evolve into square-based pyramids
(Figure 29.22c) when Ge growth continues [32]. As shown in panel (d), pyramids
are bounded by four {105} facets, forming an angle of ∼11◦ with the (001) plane
(r = 0.1).

Faceting denotes anisotropic surface energy and it is therefore inconsistent with
the assumption γ = σ in Equation 29.31. In particular, the distinguishing features
of the Ge(105) surface reconstruction [40, 54–56] makes the inclusion of surface
energy anisotropy absolutely essential to match quantitatively the experimental
results. The Ge(105) surface is a well-documented case of rebonded-step (RS)
reconstruction stable surface. In the RS structure, the surface is partitioned into
nanoscale {001} facets by nonrebonded SA steps and rebonded SB steps [55]. As a
result, the uppermost dimers in the (2 × 1) unit cell form the characteristic array of
U-shaped structures, organized into zigzag rows orthogonal to the [010] direction,
which are observed in high-resolution filled-state STM images (Figure 29.23). Such
a structure is highly stabilized under compressive strain and, therefore, the (105)
surface energy results to be severely lowered in the Ge/Si heteroepitaxy. In order
to include this effect in the total free-energy gain of islanding (Equation 29.30), a
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Figure 29.22 STM images showing the principal islands’ morphologies observed in
Ge/Si(001) epitaxy: (a) prepyramids; (c) pyramids; (e) domes; and (g) barns. Panels (b),
(d), (f), and (h) show the corresponding FPs.
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Figure 29.23 STM image showing the RS reconstruction of the {105} facets of Ge pyra-
mids. The image was acquired with the following parameters; V =−1.85 V; I = 0.85 nA.
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possible approach is to combine FE calculations for the elastic term with ab initio
density functional theory (DFT) data for the strain-dependent corrections to the
(105) surface energy [55].

A further shape transition occurs between pyramids and larger islands, called
domes [57–59]. The domes have a perfect fourfold symmetry as in the case of
pyramids, but a more complex morphology, including four {105}, four {113}, and
eight {15 3 23} facets (Figure 29.22e,f). It is reasonable to assume that domes are the
result of the growth of pyramids beyond a critical size, at which a shape transition
takes place. Such a transformation is still not fully settled, although the growth
sequence of flat pyramid-stepped pyramid domes starting from the more relaxed
top of pyramids seems favored from a kinetic view point [59]. Finally, dome islands
may eventually dislocate and larger islands named ‘‘barns’’ [60] (Figure 29.22g,h)
and ‘‘superdomes’’ with interfacial misfit dislocations appear, depending on the
growth conditions [61–64]. We remark that the discussion has been limited here
to pyramid shapes because their simple geometry was particularly suitable for the
illustrative purpose of this chapter. The more complex shape of domes and barns is
however easily accessible by FE simulations even within a full anisotropic material
description.

29.4
Effect of Vicinality on the Shape of Quantum Dots

In this section, we aim at illustrating how much substrate vicinality allows a
fine shaping of nanostructures in the Ge/Si(001) system. The complex miscut-
dependent nature of vicinal surfaces introduces the concept of asymmetry into the
basic phenomena, leading to the formation and evolution of self-assembled QDs
[65–67]. Besides its important implications for the growth process, asymmetry has
a technological relevance, as it is potentially able to split degeneracy of QD states
and provide optical anisotropy [68, 69]

If the cleavage plane is slightly misoriented from a high-symmetry (singular)
plane, the surface breaks up into a staircase of terraces limited by steps, and
is referred to as a vicinal. The relevant angles of the vicinal surfaces are the
misorientation or miscut polar angle θ and the azimuthal angle φ (Figure 29.24).
tan θ determines the step (number) density and tan φ the density of kinks on
the step edge. For the sake of illustration, here we will consider the vicinal
surface of Si(001) misoriented toward the [110] direction for which φ is zero. This
corresponds to minimizing the density of surface kinks. Figure 29.25 shows the
surface morphology of vicinal Si(001) surfaces at increasing miscut angles: it can
be clearly seen that increasing the step density by increasing θ reduces the terrace
width [70].

Several experimental studies have observed extended {105} faceting on Si(001)
misoriented substrates [66, 71–76]. Therefore, the {105} energetics appears to be
crucial in determining the morphological evolution of Ge islands on vicinal Si(001)
surfaces.
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Figure 29.24 Schematics of a surface vicinal to a high index surface. The density of steps
and kinks is determined by the miscut polar angle θ and the azimuthal angle φ. l is the
average distance between steps and d is the average distance between kinks.
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Figure 29.25 STM images of vicinal Si(001) surfaces at increasing miscut angle: (a) θ = 2◦;
(b) θ = 4◦; (c) θ = 6◦; and (d) θ = 8◦.

While on the flat Si (001) surface a {105} pyramidal island has a perfect fourfold
symmetry and almost square base with each side oriented along the <010>

directions (Figure 29.26a), it progressively elongates along the [110] direction
as the substrate miscut gets higher, and its base becomes a distorted rhombus
(Figure 29.26b–e).
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Figure 29.26 Shape evolution of Ge islands
on vicinal Si(001) surfaces. (a) θ = 0◦;
(b) θ = 1.5◦; (c) θ = 2◦; (d) θ = 4◦; and
(e) θ = 6◦. From the schematics, it is evi-
dent that the perfect fourfold symmetry of

square-based islands on the flat surface is
broken by the miscut. The miscut-dependent
asymmetry can be described in terms of the
ratio between the lengths of the shortest
(Lm) and the longest (LM) island’s sides.

θ

θ
β

[110]
[551]

[551]

(001)

Figure 29.27 Schematic representation of a {105} pyramid lying on a vicinal surface.

This shape evolution is accompanied by the increase in surface area of the
facets along the step-down direction at the expense of the other two facets. In
the following, we show that a strict correlation exists between the morphological
evolution and the energetic factors that govern the {105} faceting at atomic scale.

Consider a simple geometric model of a {105} pyramid grown on a vicinal
surface (Figure 29.27). The [551] intersection line of adjacent {105} facets forms an
angle with the (001) plane (indicated as β + θ in the sketch), which is determined
by the geometry of the facets and is equal to 8.05◦ [76]. To allow {105} faceting,
this angle must never change, producing the observed elongation toward the
miscut direction. By using elementary geometry, the expected miscut-dependent
asymmetry in terms of the ratio between the longest and the shortest sides of the
pyramid is straightforwardly calculated as

Lm

LM
=

√
csc28◦ + csc2(8◦ + θ )

csc28◦ + csc2(8◦ − θ )
(29.45)
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Figure 29.28 Lm/LM ratio as a function of the miscut angle. The filled dots are the exper-
imental values measured from STM images, while the continuous line represents the
expected analytical ratio for an ideal {105} pyramid calculated from Equation 29.45.

and shown in Figure 29.28 as a function of the miscut angle. The match between the
analytical ratio obtained from Equation 29.45 (continuous line) and experimental
data (full circles) is impressive, confirming that the problem of dot shape can be
handled with the simple geometrical model.

The excess total free-energy change of the island with respect to a flat epilayer of
Ge can be obtained from Equation 29.30 with proper allowance for the θ -dependence
[77]

�F(V , θ) = [R(θ) − 1]ρWLV + [γ Cs(θ ) − σ (θ )CB(θ )]V
2
3 (29.46)

Here, Cs(θ ) = S/V
2
3 and CB(θ ) = B/V

2
3 are geometric factors which are simple

increasing functions of the polar angle that can be calculated analytically; σ (θ ) =
σ cos θ + β sin θ is the surface energy density of the vicinal substrate, which
can be estimated from the step formation energy per unit length β = σ [1 −
cos(11.3◦)] csc(11.3◦) [65]. For σ = 60.5 meV Å−2, the specific surface energy of a
8◦ miscut surface is only slightly increased to 60.7 meV Å−2, which is, for our
purposes, a negligible correction.

The dependence of the relaxation factor on the miscut angle for a Ge{105} pyramid
is easily assessed by FE simulations and the results are shown in Figure 29.29.
To gain an insight into the effect of vicinality on QD’s stability, we can make the
simplifying assumption γ = σ = 60.5 meV Å−2 and obtain, for a Ge{105} pyramid
grown on misoriented substrates with θ ranging between 0 and 6◦, the total energy
versus volume curves shown in Figure 29.30.

The activation energy for island formation can be obtained by differentiating
Equation 29.46 with respect to volume, giving

�F∗ = 4

27

[γ Cs(θ ) − σ (θ )CB(θ )]3

(R − 1)2ρ2
WL

(29.47)



892 29 Semiconductor Quantum Dots: Model Case Ge/Si

0
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

1 2 3

Miscut angle θ (°)

R
el

ax
at

io
n 

fa
ct

or
 R

 (
θ)

4 5 6 7 8

Figure 29.29 Relaxation factor computed by FE simulations for the different Ge island
shapes observed on vicinal Si(001) surfaces.
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Figure 29.30 Total free energy of Ge islands grown on vicinal Si(001) surfaces for different
miscut angles. From the top to the bottom, the corresponding miscut angles are 0◦, 6◦, 1◦,
5◦, 2◦, 4◦ and 3◦.

It corresponds to the maximum value of �F at a given θ and the corresponding
volume is the critical volume.

In Figure 29.31, the critical energy is plotted as a function of θ . One can see
that the activation energy first decreases with the increase in the miscut angle, that
is, the nucleation is easier on the vicinal substrate than on the flat substrate. The
nearer the angle approaches 8.05◦, the more the barrier increases, signaling that the
formation of the pyramid is more and more unlikely. It must be noticed, however,
that the activation barrier is strongly dependent on the value of the surface energy
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Figure 29.31 Energy barrier for 3D island formation as a function of miscut angle.

Table 29.2 Strain-relaxed (for Ge epilayers of infinite thickness) surface energies (in
meV Å−2) for Ge/Si surfaces of various orientations.

Surface orientation Surface energies (meV Å−2)

γ (001) 62.44a ; 60.7b : 60.5c

γ (105) 56.90a ; 61.4b

γ (1 1 10) 62.46a

aScopece et al. [78].
bLu et al. [79].
cLi et al. [80].

density γ of the {105} facets and a quantitative estimate would require taking into
account the strain energy correction to the surface energy [55]. As a result of DFT in
the local density approximation and semiempirical calculations, a number of fairly
accurate surface energy values for the most relevant Ge/Si surfaces are available
and are listed in Table 29.2. It is generally found that lowering the surface energy
of the {105} facets under compressive strain flattens the activation energy and
gives rise to the barrierless nucleation process, observed experimentally on the flat
Si(001) surface [29–32].

Despite the approximations made in the analysis, the behavior of the activation
energy displayed in Figure 29.31 indicates that the polar angle of 8◦ should be
treated as a special case of {105} faceting. When the miscut angle is 8.05◦, a pyramid
can no longer form because the [551] line runs parallel to the substrate orientation
(Figure 29.27) and the island rearranges itself into a strongly elongated prism of
triangular cross section bounded by two adjacent {105} facets called nanoripple
(Figure 29.32) [66, 75, 77, 81].

Its morphology is the result of cutting a {105} pyramid along the [110] direction
with a plane tilted by 8.05◦ from the (001) surface, that is, the vicinal Si (1 1 10)
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(a) (b)

[110] [110]

Figure 29.32 (a) STM images of Ge ripples grown on the 8◦ miscut Si(001) surface. Note
that, owing to the geometric constraint of vicinality, the downside of the ripple (enlarged
view in panel (b)) cannot be bounded by {105} facets.

θ = 8° (001)

[551]

Figure 29.33 Geometry of a ripple as resulting from cutting a {105} pyramid with a vicinal
plane misoriented by an 8◦ angle with respect to the (001) surface.

plane. From the sketch shown in Figure 29.33, it is clear that, owing to geometric
constraints, the downside of the ripple cannot be bounded by real facets and it
gradually lowers in height and width as the number of stacked {105} layers decreases
near the end of the island (Figure 29.32b). The ripple is almost a one-dimensional
structure and it could be expected that the edge term neglected in Equation 29.46,
being usually not significant in 3D nucleation, plays a sizable role. As a matter
of fact, an accurate evaluation of the elastic, surface, and edge contribution to
islanding for θ = 8.05◦ shows that it is energetically more convenient to pile up
material on an infinitely long ripple than to form an additional layer on the
WL [82]. This explains the almost perfect alignment of ripples occurring on the
Si (1 1 10) surface under Ge deposition (Figure 29.34).

100 nm

10
0 

nm

2.8 nm

Figure 29.34 3D STM image of the 8◦ miscut Si(001) surface being completely covered
with Ge ripples.
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Figure 29.35 Morphology of Ge domes: (a)
on the flat, (b) on the 8◦ miscut, and (c) on
the 10◦ miscut Si(001) surface. In the insets,
the corresponding FPs are shown. The spots
of the different facets are labeled as follows:

{105} by ©; {113} by α; {15 3 23} by β; and
{111} by δ; the new facets along the miscut
direction on vicinal substrates are indicated
by γ and γ ′.

As islands grow, the morphology is no more just a skewed version of the
symmetric shape on the flat substrate. As predicted by Spencer and Tersoff [65],
topologically asymmetric islands appear in the shape sequence [77]. In comparison
with the domes on the flat surface (Figure 29.35a), which have two symmetric
{113} facets along the [110] direction (indicated by α in the corresponding FP), the
domes grown on highly misoriented substrates have different set of facets (γ and
γ ′) on the opposite sides (Figure 29.35b,c). FE calculations, made on 3D islands,
show that the anisotropic shapes reflect the anisotropy of the elastic displacement
field along the miscut direction [77].

In this context, an especially interesting surface is Si(111), on which Ge islands
nucleate in the form of truncated tetrahedra with {111} and {113} facets.

On highly stepped vicinal surfaces, the anisotropic strain relaxation of Ge triggers
the formation of islands directly from step-edge nanoprotrusions [83] (Figure 29.36).
As the orientation of the (111) terraces coincides with a dominant low-energy
facet, the protrusions propagate through the steps without disintegrating into other

320 nm 500 nm 120 nm

(a) (b) (c)

Figure 29.36 STM images of the 5◦ miscut Si(111) surface at increasing Ge coverage: (a)
3.9 ML; (b) 4.3 ML; and (c) 4.8 ML.
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Figure 29.38 (a–h) STM images of differ-
ent stages of Ge island formation on the
1.5◦ miscut Si(111) surface. The images
were taken at a nominal Ge coverage of
4.8 ML over an area of ∼ 20 μm2 of the
sample. The [−1 −1 2] miscut direction is

indicated by arrows. (i) FE simulations of the
in-plane strain tensor ε for 3D models of Ge
islands based on the experimental geome-
try extracted from STM images. The white
arrows indicate the direction of the island
growth observed in the experiment.
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facets, as occurs on vicinal Si(001) substrates, and grow in height following the
misorientation of the substrate while advancing through the steps. As the average
terrace width drops suddenly when the vicinal angle increases between 0 and 1◦ [83],
step protrusions spread across many steps and, hence, become effectively 3D. Their
aspect ratio is set by the average surface misorientation tan(θ ) ≈ θ (Figure 29.37).
Therefore, Ge/Si islands acquire a characteristic huglike morphology which is
controlled by the equilibrium strain field within the island and the substrate
(Figure 29.38). Using the above-mentioned FE analysis, one finds that the growth
is promoted along the rims but hindered in the center of the islands, explaining
the appearance of the characteristic morphology.

29.5
Beyond the Elastic Relaxation: the Effect of Intermixing on Quantum Dot Nucleation

Here, we discuss some aspects of the epitaxial growth of QDs that go beyond the
problem of elastic relaxation and were glossed over in the previous sections.

One point which has not been fully examined is what specific surface energy
of the substrate σ has to be introduced in the free-energy balance of islanding
(e.g., in Equations 29.29–29.43). In fact, it has been shown in Section 29.2 that
the interface energy of a strained epilayer depends on the film thickness. Even
ignoring the chemical contribution of interface energy in the case of coherent SK
growth, in which the strained material wets the substrate before forming islands,
one should include the effect of lattice distortion due to the misfit strain acting on
the film. In principle, the task is not at all trivial and requires a detailed knowledge
of the atomistic structure of surface atom bonding via first-principles calculations
[79, 84]. Nonetheless, it has been recently proposed that the thickness dependence
of the surface energy density of a growing film can be described by a simple
analytical form, implying a nearly exponential decrease in the surface energy σ

with the thickness d [80]

σ (d) = σ∞
s + (σ∞

film − σ∞
S )

(
1 − e

−d
η

)
(29.48)

In the previous relation, σ∞
s is the surface energy of the bare substrate (e.g., of

Si for Ge/Si), whereas σ∞
film is that of the infinitely thick epilayer. For Ge/Si, it is

found that Equation 29.48 nicely fits the ab initio data for η = 1: At low thickness
(d < 2 ML), the correction is effective and surface energy drops from the value of
the bare Si toward that of the bulk Ge deposit, slightly changing when Ge coverage
is increased further. Therefore, for WL thickness between 3 and 4 ML of Ge, at
which nucleation of 3D islands occurs [33], one can generally use the surface
energy density of a strained infinite Ge film without altering significantly the total
free-energy gain.

The energy gain of islanding is instead crucially altered by substrate-deposit
alloying because, according to Equation 29.27, the volume strain energy density
has a quadratic dependence on the misfit parameter. Therefore, a decrease in
the lattice mismatch between the substrate and the growing layer is expected to
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lead to a substantial fall in the strain energy density. In these circumstances,
intermixing of the Ge film with Si to form a Si1−x Gex random alloy of average
lattice mismatch f (x) = 0.04x and average composition x close to 0.50 [85, 86] is
a highly favored process to reduce lattice mismatch [87]. As a direct experimental
evidence of intermixing within the WL, we mention the buckled Ge dimer sites on
Si(001) substrates observed by STM [88, 89].

It is an experimental fact that the equilibrium shape of the islands, as determined
by the elastic field relaxation, is not excessively changed by intermixing at the
typical temperatures used in growth experiments [90]. As a consequence, the effect
of alloying may be viewed as a correction to the morphology predicted by the elastic
FE analysis applied to unalloyed islands. One can consider, as a first approximation,
a uniform alloy and use, according to the Vegard’s law, elastic constants linearly
interpolated between Si and Ge ones, namely,

Cij(x) = CGe
ij x + CSi

ij (1 − x) (29.49)

where CGe
ij and CSi

ij are the stiffness tensors of pure Ge and Si, respectively
(Table 29.1). Using the elastic constant and the lattice parameters of the alloy, we
perform FE simulations of elastic relaxation of Si1−x Gex islands of different aspect
ratio r following the lines described in Section 29.3 but varying the Ge composition
x between 0 and 1. The elastic energy density of each island is then compared to that
of a Si1−x Gex strained film of the same composition, which reads (Figure 29.39)

ρWL(x) =
{

C11 (x) + C12(x) − 2[C12(x)]2

C11(x)

}
[f (x)]2 (29.50)

and the relaxation factor R(r,x) is computed. As evident from Figure 29.40, the
scaling with the aspect ratio is only slightly dependent on the island’s composition,
being, in any case, nicely fitted by an exponential form R(r, x) = e−k(x)r [52]. The
decay constant k(x) shows, in fact, a weak linear dependence on Ge composition
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Figure 29.39 Elastic energy density of a flat Si1−x Gex epilayer grown on Si as a function of
the Ge content.
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Figure 29.41 Dependence of the decay constant k(x) in Equation 29.43 on the Ge content
x in the alloy.

(Figure 29.41). The decrease of the decay constant with Ge content is expected as
Ge has somewhat smaller elastic constants than Si does (Table 29.1).

Taking into account the composition dependence in Equation 29.44, one can
find the true path of the island’s shape evolution, that is, the preferential aspect
ratio for each volume, as a function of the alloying content (Figure 29.42). From the
results, it is clear that in Si1−xGex intermixed islands the morphological evolution
toward a steeper island’s shape is shifted to larger critical volumes depending on
the Ge composition x. This finding matches experimental data [7, 91], and reveals
that alloying cooperates/competes with shape change toward a complete elastic
relaxation. As evident from Figure 29.18, the mechanisms described in Section 29.3
for pure Ge islands do not fully relieve the strain energy that remains concentrated
at the bottom edges of the islands. In this context, the injection of Si atoms from the
substrate, causing elastic energy relaxation to be also mediated by alloying, provides
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Figure 29.43 Relative difference of relaxation factors between shallow (r = 0.05) and steep
(r = 0.7) Si1−x Gex islands as a function of the Ge content in the alloy.

a particularly efficient pathway toward strain relaxation. The second interesting
observation comes from the comparison of the energy gain of 3D islanding as a
function of the alloying, obtained by plotting the relative difference of relaxation
factors �R/R between shallow (r = 0.05) and steep islands (r = 0.7) for different
Ge compositions (Figure 29.43). As shown, Ge redistribution further broadens the
free-energy gap between shallow and steep islands [92].

Despite the intriguing hints examined, the assumption of uniform alloying
is not consistent with experimental results, which indicates, instead, relatively
nonhomogeneous concentration profiles. Scattering experiments directly probing
the composition map inside the islands, such as anomalous X-ray scattering at the
K-edge of Ge at 11.103 KeV [90, 93] or X-ray scattering [94], find an increase in
the average Ge content moving from the base toward the top, sometimes with a
change of concentration at a given height. For instance, Wiebach et al. [94] report
Ge concentrations of 25% in the lower and 30% in the upper part at about one-third
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Figure 29.44 Diffuse scattering maps of
(400) surface reflection for Ge domes using
two different X-ray photon energies (a)
11.103 KeV (Ge K edge) and (b) 11.005 KeV.
The intensity color scale is logarithmic.
(c) and (d) are angular scans at constant
radial position qr corresponding to the
dashed line in (a) and (b). Several fits cor-
responding to different lateral composition

profiles are shown for the scans carried
out at 11.103 KeV (c) and 11.005 KeV (d).
The corresponding Ge concentration pro-
files used in these fits are plotted at the
inset. Reprinted with permission from A.
Malachias, et al., Phys. Rev. Lett, 91, 176101
(2003). Copyright 2003 by the American
Physical Society.

of the island height, while Malachias et al. [90] find a Si-rich core covered by a
Ge-rich external shell, as shown in Figure 29.44.

Different models (for a recent review, see [95]) have been considered, exploit-
ing thermodynamic and/or kinetic factors as the driving force toward alloying.
Nonetheless predicting both the equilibrium shape and composition of the dots
remains a challenging task. However, if one neglects bulk diffusion and assumes
that surface diffusion is fast, the concentration c(r, z) and the dot shape h(r) can
be calculated in close form for a Ge island on Si(001) in the small-island limit
[96]. The starting equations are the constitutive equations (Equation 29.40) for the
stress with the inclusion in the diagonal components of the strain tensor εij of
a compositional strain −η [c(r, z) − c0] proportional to the expansion coefficient
η of Ge within a WL film of negligible thickness and zero in the Si substrate.
c0 is the average composition of the island of volume V . Si1−x Gex is taken as a
fully miscible random alloy, a highly appropriate assumption for this system [97],
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the island surface having chemical potentials μi = dGi/dc for each atomic species
(i = Ge and Si), which also depend on the elastic strain and composition. The island
shape is computed self-consistently through the equilibration condition, Equation
29.39, the nonuniform stress field resulting in a nonuniform composition along
the surface. For a small island of low aspect ratio, the equilibrium h(r) and c(r, z)
profiles can be disentangled, giving

h(r) = A

⎡
⎣a0 +

∞∑
j=1

aj J0

(zjr

R

)⎤
⎦ (29.51)

and

c(r, z) = C

[
α + L

r

d

dr

(
r

d h (r)

dr

)]
z

h(r)
(29.52)

where J0 is the zeroth order Bessel function and zj is the jth zero of J1(z). L is
a length scale factor and C sets the amount of strain-induced segregation that
increases with the lattice misfit ε = −η x. As the island grows, the burial of
successive layers with variable composition gives the scaled profiles depicted in
Figure 29.45. From the composition map, it is evident that the large Ge atoms tend
to segregate close to the apex of the island where the elastic strain is minimum, a
feature that is often encountered experimentally. However, other authors [98, 99]
have understood the observation of Si enrichment of the corners of faceted islands
as an indication of relevant kinetic restrictions, which cannot be included in the
above-mentioned simplified model.
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Figure 29.45 Island shape and composition
map according to Equation 29.52. The lateral
size of the island is L. The composition map
is a contour plot of the composition profile
C/C0, the scaled deviation from a reference

composition C0. The step between contours
is 0.25, vertical lines are the zero contours,
and dark corresponds to the larger misfit
component (i.e., Ge). Adapted from [96].
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In principle, the concentration profiles minimizing the system free energy of
the system may be obtained through atomistic Monte Carlo (MC) simulations
[38, 100, 101] using an iterative procedure consisting of chemical-species random
exchange, energy optimization, and acceptance probability determined by Boltz-
mann statistical weights. Nevertheless, a major limit to extensive application of
this approach is the demanding computational cost when treating islands with
realistic size/shape: note that a scaling-down approach is intrinsically limited by
the need of reproducing facets with a minimum physically meaningful extension
[92]. An interesting method for fast self-consistent calculation of SiGe distribution
minimizing the elastic energy is based on a combined MC-FE approach [92, 102]. In
the latter, an additional mesh is used to define a nonuniform composition grid, the
values thereto assigned being randomly changed (maintaining constant the average
composition) by an MC iterative procedure with an acceptance criterion based on
the minimization of elastic energy at each step by FE calculations. This ensures
that changes in the elastic field accompanying SiGe redistribution are correctly
described in complex island’s geometries. Even though the system evolution is
supposed to be governed by thermodynamics only, this approach has been found
to produce iso-composition maps closely matching that obtained by selective wet
chemical etching [99] (Figure 29.46) for moderate growth temperature (T ∼ 580 ◦C).
Instead, the experimental tomographies for islands grown at higher temperature
reveal composition profiles much more uniform than the simulated ones [92], thus
revealing that kinetic effects cannot be neglected anymore in this growth regime.
Thus, the development of methods capturing kinetics and thermodynamics alto-
gether is required to simulate the actual dynamics of nanostructure evolution
in the full range of growth temperature. To this end, a particularly promising
approach, recently developed by Tu and Tersoff [103], has been able to qualitatively
reproduce many striking phenomena observed experimentally in heteroepitaxial
systems, even if for a simplified 2D model system.

29.6
Elastic Interaction between Ge Islands on Vicinal Si Substrates

The ultimate understanding of in-plane interactions of self-assembled nanostruc-
tures at surfaces is an urgent need for nanotechnology. In Section 29.4 we have
shown that a fine shaping of Ge islands is possible on Si(001) by changing the
miscut angle. This offers a direct way to alter the elastic-interaction potential
among islands, which is greatly influenced by the detailed island’s shape, and
study the elastic interaction across a variety of realistic configurations of strain
fields [67, 104].

The resulting effect depends on the intensity of the elastic field and, hence, on
the island size. For small-volume islands (pyramids and ripples), the symmetry
breaking of the elastic field induced by vicinality modifies the local spatial ordering
of islands. For large multifaceted domes, the modified elastic pattern is able to
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(a) (d)

(b) (e)

(c) (f)

100 nm [110]

Figure 29.46 Atomic force microscopy
(AFM) topographies showing the morphology
of Ge islands grown on Si(001) before (left
column) and after 10 min of 31% H2O2 etch-
ing (right column). The growth temperatures
are 580 ◦C for (a) and (d), 600 ◦C for (b) and
(e) and 620 ◦C for (c) and (f). The insets
show a higher magnification (80 × 80) nm2

of (d) the two different observed etched
structures for pyramid islands, and (e) the
protrusions in the ring structures of the

etched domes. The encircled islands in (d)
are examples of pyramids without apex while
the ones enclosed by squares correspond to
pyramids with apex. The gray scale in (a–c)
is related to the local surface slope while in
(d–f) it represents a combination of local
surface height and gradient so as to enhance
small-scale morphological details. Reprinted
with permission from A. Katsaros, et al.,
Phys. Rev. B, 72, 195320 (2005). Copyright
2005 by the American Physical Society.

force the growth of Ge toward pathways completely different from those on the flat
substrate.

Misfit islands interact repulsively through their mutual strain fields in the
substrate [105, 106, 107]. Their mutual interaction energy Y is the extra energy
density needed to create an island in a certain location when another island already
exists nearby and is given by

Y = U(r) − U(∞) (29.53)

where U(r) is the total strain energy (per unit volume) stored in the substrate and
in the islands for the relative position of the island pair defined by r.
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Figure 29.47a shows FE calculations of the elastic interaction energy for square-
based Ge pyramids on the flat Si(001) surface. For the two relevant configurations
of an island pair, the interaction energy is almost isotropic. This is not the case with
the Ge islands grown on vicinal substrates for which elastic interactions have a
strong directional dependence (Figure 29.47b,c). When the misorientation angle is
increased, the lowest energy configuration is achieved by aligning the pair along the
[110] miscut direction. The latter configuration allows for a larger elastic relaxation
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Figure 29.47 (a–c) Elastic interaction
energy for different configurations of an
island pair (a) on the flat, (b) on the 6◦

miscut, and (c) on the 8◦ miscut Si(001)
surfaces (vertical axis in arbitrary units, hor-
izontal axis in units of the average island
side). The data in the panel (a) are fitted
to a r−3 function at large island separa-
tions (dotted curve) and to an exponential

function at short separations (dashed curve).
The vertical line marks the boundary between
the two regimes. Elastic energy density maps
of an island pair on (d) 6◦ miscut and (e)
8◦ miscut surfaces. Each plot is displayed
with two different scales giving the elastic
relaxation within the islands and on the sub-
strate around them.
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Figure 29.48 Spatial distribution of nearest-neighbor distances of Ge islands on: (a) flat,
(b) 1.5◦ miscut, (c) 2◦ miscut, (d) 4◦ miscut, (e) 6◦ miscut, and (f) 8◦ miscut Si(001) sam-
ples. The arrows indicate the [110] direction.
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of the substrate in between the islands, as shown by the energy maps displayed in
Figure 29.47d,e.

It is worth noting that, at large distances, where the actual shape of the island is
immaterial, the elastic interaction can be described as the interaction between two
concentrated distributions of dipoles and, thus, scales as r−3 [105] (dotted curve
in (Figure 29.47a)). Conversely, the point-island approximation is inappropriate at
smaller separations at which the exact details of the elastic energy curve strongly
depend on the island’s shape.

The anisotropy of strain field profiles inside and around each island modifies
the local spatial organization of Ge nanostructures. By measuring the spatial
distribution of nearest-neighbor distances (SDNN) on different vicinal substrates,
it is found that the local arrangement of islands becomes anisotropic with an
increasingly miscut angle (Figure 29.48).

The SDNN is calculated from a systematic analysis of STM images. First, the
centers of mass of all islands are identified. Then, for each island, the nearest
neighbor is found by calculating the distances between the corresponding centers
of mass. Each panel in Figure 29.48 shows the position of the nearest neighbors
measured on the related vicinal substrate. It can be seen that the relative density of
nearest neighbors (given by the color scale) is almost isotropic for flat substrates,
whereas it is markedly increased along the [110] direction at high miscuts. Thus,
the morphological anisotropy of islands at high misorientation angles breaks the
isotropy of elastic potential, producing directions of reduced elastic interaction
energy. As long as the volume of islands is small (e.g., for pyramids and ripples),
the effect of elastic anisotropy on Ge/Si heteroepitaxy is limited to short-range local
ordering interactions. Nonetheless, the much more intense elastic interactions
between Ge domes can also be tuned with substrate vicinality. Figure 29.49a shows
the island’s interaction energy calculated for a pair of Ge domes grown on the
flat Si(001) surface; the corresponding contour plot is reported in Figure 29.49b.
The interaction potential reflects the fourfold symmetry of the island and results
in an energetic barrier to island coalescence with local minima around the <001>

directions. The shape of the interaction energy surface is strongly modified
for the domes on the vicinal substrate (Figure 29.49c,d). The breaking of the
island’s symmetry induced by substrate vicinality produces directions along which
islands can get into contact with low elastic repulsion. Specifically, elastically soft
configurations are achieved for islands interacting within an angular window of
approximately ±60◦ about the [110] miscut direction (Figure 29.49d). This modified
elastic pattern orients Ge/Si heteroepitaxy toward an extended coalescence regime
in which the impingement directions are dictated by the shape of the elastic
potential. STM images clearly show that extensive coalescence occurs on 8◦ and
10◦ miscut Si(001) surfaces (Figure 29.50). Moreover, along the elastically soft
directions around [110], the number of impingements is impressively higher, as
shown by a statistical analysis of the distribution of impingement directions of
domes grown on highly misoriented substrates (Figure 29.49e,f). This indicates
that the elastic interaction anisotropy is the main driving force for the observed
growth evolution of Ge on vicinal surfaces. The experimental evidence that the



908 29 Semiconductor Quantum Dots: Model Case Ge/Si

0

10

Y
 (

m
eV

 Å
–3

)

Y
 (

m
eV

 Å
–3

)

–10

[110]

[1
10

]
–10

Distance along [010]

Distance along [010]

D
is

ta
nc

e 
al

on
g 

[1
00

]

Distance along [100]

–5 0 5 10

0

0.04

0.08

0

10

Y
 (

m
eV

 Å
–3

)

–10

[110]

–10
Distance along [010]

Distance along [100]

–5 0 5 10

0

0.04

0.08

0.06

0.05

0.04

0.03

0.02

0.01

0
–5

–5 0 5

0

5

Y
 (

m
eV

 Å
–3

)

[1
10

]

Distance along [010]

D
is

ta
nc

e 
al

on
g 

[1
00

]

0.06

0.05

0.04

0.03

0.02

0.01

0–5
–5 0 5

0

5

[010]

Counts
20

10

[1
00

]

[010]

[1
00

]

[1
10

]

[–110]

Counts
15

10

5

[1
10

]

[–110]

(a)

(b)

(d)

(c)

(f)(e)

Figure 29.49 (a) Interaction energy surface
of Ge domes on the flat Si(001) surface and
(b) corresponding contour plot. (c) Inter-
action energy surface of Ge domes on 10◦

miscut Si(001) surface and (d) correspond-
ing contour plot (The region of reduced

interaction energy around the miscut direc-
tion is highlighted). Angular distribution of
impingement directions measured (e) on
8◦ miscut Si(001) substrates and (f) on 10◦

miscut Si(001) substrates.

symmetry breaking of the elastic field can be used to effectively direct the pathway of
Ge heteroepitaxy lays the groundwork for new self-assembling strategies designed
to suit the natural shape of the elastic interactions among nanostructures. Finally,
this analysis is readily applicable to other heteroepitaxial systems for which the
elastic field is a common key parameter.
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Figure 29.50 STM images showing the extended coalescence regime of domes (a,b) on
the 8◦ miscut and (c,d) on the 10◦ miscut Si(001) surfaces.

29.7
Summary

We have presented a short illustration of the basic concepts related to the epitaxial
growth of semiconductor QDs through a critical analysis of a few experimental
and theoretical aspects concerning Ge on Si(001). Owing to its simplicity and
ongoing interest for device applications, this system can be regarded as a model
one in heteroepitaxy. First, we have obtained the classical Bauer criterion for the
equilibrium of small 3D clusters with the parent phase following the atomistic
approach of Stranski and Kaischew, which introduces the concept of mean sepa-
ration work. Then we derive the thermodynamic condition for the occurrence of
planar growth and clustering from the dependence of the Gibbs free energy and
chemical potential on the thickness of the adsorbed layer.

Then the stability of QD morphology is examined. The relaxation of the bulk
and surface elastic strain is illustrated in the framework of continuum elasticity
theory and useful analytical formulas applicable to simple morphologies are given.
The results of modeling are compared with the experimental STM data taken on
SiGe as a function of coverage to assess the validity of model descriptions against
realistic growths. In this context, we consider in Section 29.4 the effect of substrate
symmetry – that is, crystallographic orientation, steps, and vicinality – on QD shape
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and stability. In Section 29.5, we address the problem of intermixing starting from
homogeneous alloying and then shifting to more realistic compositional maps. In
the last section, we present results on the control of elastic interactions between
dots and on their effect on lateral ordering. A variety of realistic configuration of
strain fields is analyzed.
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