Einführung Statistik
Weiterbildungs-Lehrgang 2015–2017

Markus Kalisch, Lukas Meier, Peter Bühlmann, Hansruedi Künsch
und Alain Hauser

April 2015
Inhaltsverzeichnis

1 Einführung (Stahel, Kap. 1)
1.1 Was ist Statistik? 1
1.2 Was ist der Inhalt dieses Kurses? 3
1.3 Software 4
1.4 Literatur 4

2 Modelle für Zähldaten
2.1 Grundbegriffe der Wahrscheinlichkeitsrechnung (Stahel, Kap. 4.1, 4.2) 5
2.2 Diskrete Wahrscheinlichkeitsmodelle 9
2.3 Unabhängigkeit von Ereignissen 10
2.4 Bedingte Wahrscheinlichkeiten (Stahel, Kap. 4.7) 11
2.4.1 Satz der totalen Wahrscheinlichkeit und Satz von Bayes 13
2.5 Zufallsvariable (Stahel, Kap. 4.3, 4.4) 16
2.6 Binomialverteilung (Stahel Kap. 5.1) 17
2.7 Kennzahlen einer Verteilung (Stahel Kap. 5.3) 19
2.7.1 Kumulative Verteilungsfunktion 20
2.8 Poissonverteilung (Stahel Kap. 5.2) 20
2.8.1 Poisson-Approximation der Binomial-Verteilung 21
2.8.2 Summen von Poisson-verteilten Zufallsvariablen 21
2.9 Software 22

3 Statistik für Zähldaten
3.1 Drei Grundfragestellungen der Statistik (Stahel Kap. 7.1) 25
3.2 Schätzung, statistischer Test und Vertrauensintervall bei Binomial-Verteilung (Stahel Kap. 7.2, 8.2, 9.1, 9.2) 26
3.2.1 (Punkt-)Schätzung 26
3.2.2 Statistischer Test 28
3.2.3 Vertrauensintervall 35
3.3 Software 36

4 Modelle und Statistik für Messdaten
4.1 Lernziele 41
4.2 Einleitung 42
4.3 Deskriptive Statistik (Stahel, Kap. 2 und 3.1, 3.2) 42
4.3.1 Kennzahlen 42
4.3.2 Grafische Methoden 45
4.3.3 Analogien zwischen Modellen und Daten 47
4.4 Stetige Zufallsvariablen und Wahrscheinlichkeitsverteilungen (Stahel, Kap. 6.1 – 6.4, 11.2) 48
4.4.1 (Wahrscheinlichkeits-)Dichte 49
4.4.2 Kennzahlen von stetigen Verteilungen 49
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Wichtige stetige Verteilungen (Stahel, Kap. 6.2, 6.4, 6.5, 11.2)</td>
<td>50</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Uniforme Verteilung</td>
<td>50</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Exponential-Verteilung</td>
<td>51</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Normal-Verteilung (Gauss-Verteilung)</td>
<td>52</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Funktionen einer Zufallsvariable</td>
<td>53</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Überprüfen der Normalverteilungs-Annahme</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Funktionen von mehreren Zufallsvariablen (Stahel, Kap. 6.8 – 6.11)</td>
<td>56</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Unabhängigkeit und i.i.d. Annahme</td>
<td>57</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Kennzahlen und Verteilung von X_n</td>
<td>58</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Verletzung der Unabhängigkeit</td>
<td>62</td>
</tr>
<tr>
<td>4.7</td>
<td>Statistik für eine Stichprobe (Stahel, Kap. 8.3 – 8.5, 9.3)</td>
<td>62</td>
</tr>
<tr>
<td>4.7.1</td>
<td>(Punkt-) Schätzungen</td>
<td>63</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Tests für μ</td>
<td>63</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Vertrauensintervall für μ</td>
<td>68</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Tests für μ bei nicht-normalverteilten Daten</td>
<td>69</td>
</tr>
<tr>
<td>4.8</td>
<td>Tests bei zwei Stichproben (Stahel, Kap. 8.8)</td>
<td>70</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Gepaarte Stichprobe</td>
<td>71</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Ungepaarte Stichproben</td>
<td>72</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Weitere Zwei-Stichproben-Tests bei ungepaarten Stichproben</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>Versuchsplanung (Stahel, Kap. 14.1 - 14.2)</td>
<td>75</td>
</tr>
<tr>
<td>4.10</td>
<td>Software</td>
<td>77</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Verschiedenes</td>
<td>77</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Zwei-Stichproben t-Test für ungepaarte Stichproben</td>
<td>77</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Zwei-Stichproben t-Test für gepaarte Stichproben</td>
<td>78</td>
</tr>
<tr>
<td>4.10.4</td>
<td>t-Test für eine Stichprobe</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>Regression</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Lernziele</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Einfache lineare Regression</td>
<td>81</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Das Modell der einfachen linearen Regression</td>
<td>83</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Parameterschätzungen</td>
<td>84</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Tests und Konfidenzintervalle</td>
<td>85</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Das Bestimmtheitsmass R^2</td>
<td>87</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Allgemeines Vorgehen bei einfacher linearer Regression</td>
<td>88</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Residuenanalyse</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Multiple lineare Regression</td>
<td>92</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Das Modell der multiplen linearen Regression</td>
<td>92</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Parameterschätzungen und t-Tests</td>
<td>93</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Der F-Test</td>
<td>94</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Das Bestimmtheitsmass R^2</td>
<td>94</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Residuenanalyse</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Software</td>
<td>95</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Einfache lineare Regression</td>
<td>95</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Multiple Lineare Regression</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>Anhang</td>
<td>101</td>
</tr>
<tr>
<td>6.1</td>
<td>Normalapproximation des Binomialtests: Zwischenrechnung</td>
<td>101</td>
</tr>
</tbody>
</table>
Vorbemerkungen

Dieses Skript basiert weitestgehend auf Vorlagen, die Markus Kalisch, Lukas Meier, Peter Bühlmann und Hansruedi Künsch für ihre Vorlesungen für die Studiengänge Biologie, Pharmazeutische Wissenschaften, Umwelt naturwissenschaften und Bauingenieurwissenschaften verwendet haben. Das erklärt, weshalb fast alle Beispiele im Skript aus diesen Bereichen stammen. Ich, Alain Hauser, möchte den Autoren an dieser Stelle meinen herzlichen Dank aussprechen, ihre in langen Jahren ausgearbeiteten Unterlagen verwenden zu dürfen.

Die Vorlesung behandelt zuerst die Wahrscheinlichkeitsrechnung und Statistik für diskrete Variablen, welche Werte zum Beispiel in \(\{0, 1\} \), in \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \) oder in \(\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\} \) annehmen.

Danach werden die erarbeiteten Konzepte auf stetige Variablen übertragen, mit Wertebereichen zum Beispiel in \(\mathbb{R} \) oder \([0, 1]\). Deshalb ist der Aufbau leicht repetitiv, was sich aber in vorigen Jahren gut bewährt hat.

Schlussendlich wird auf komplexere Modellierung anhand der Regressions-Analyse eingegangen.

Für weitere Erläuterungen verweisen wir jeweils auf das folgende Buch:

Manchmal erklären wir die grundlegenden Begriffe auch an Hand von Glücksspielen, obwohl wir wissen, dass Sie nicht speziell an solchen interessiert sind. Es gibt dort einfach weniger Verständnis- und Interpretationsprobleme als bei anderen Beispielen. Wir hoffen auf Ihr Verständnis.
INHALTSVERZEICHNIS
Kapitel 1

Einführung (Stahel, Kap. 1)

1.1 Was ist Statistik?

Um herauszufinden, ob 477 einfache Bilder durch Zufall entstehen können, muss ich also noch mehr fiktive Alben füllen. Mit dem Computer habe ich eine Million fiktive Alben zufällig gefüllt. Die grösste Anzahl einfacher Bilder war dabei 387. Falls die Bilder wirklich zufällig eingetüet
werden, ist die Wahrscheinlichkeit mit einer Kiste mehr als 387 eingeklebte Bilder zu haben also kleiner als 10^{-6}.

In der Statistik ist das eben geschilderte Vorgehen fundamental und wird Hypothesentest genannt. Ein Hypothesentest besteht aus sechs Schritten:

1. Man stellt ein Modell auf, das erklärt, wie die Daten entstehen. (Wir ziehen 500 Bilder mit Zurücklegen aus einer Menge von 661 Bildern.)

4. Man legt ein Signifikanzniveau fest. (Festgelegte Grenze von 10^{-6})

5. Man bestimmt einen Verwerfungsbereich für die Teststatistik zum gegebenen Signifikanzniveau. (angenommen, die Bilder werden zufällig eingetütet. In der Computersimulation haben wir gesehen, dass die Wahrscheinlichkeit mehr als 387 eingeklebte Bilder zu haben kleiner 10^{-6} ist. Der Verwerfungsbereich ist also $\{388, 389, ..., 500\}$.)

Manchmal wird eine kleine Variante des obigen Verfahrens verwendet. Man berechnet den P-Wert: Angenommen die Nullhypothese stimmt. Wie wahrscheinlich ist es eine Teststatistik zu beobachten, die mindestens so extrem ist wie die beobachtete Teststatistik? Die Antwort liefert der P-Wert. (Wie wahrscheinlich ist es, in meiner Computersimulation 477 oder mehr einfache Bilder zu erhalten? Ich habe es in einer Million Simulationen kein einziges Mal beobachtet. Also ist die Wahrscheinlichkeit sicher kleiner als $\frac{1}{10^6} = 10^{-6}$. Also ist $p < 10^{-6}$.) Der P-Wert

2 Ich habe mich hier für einen einseitigen Test entschieden; es gibt auch zweiseitige Tests. Später erfahren Sie mehr darüber.

3 Für diejenigen, die es ganz genau wissen wollen: Da wir die Wahrscheinlichkeit mit einer Computersimulation ermittelt haben, stimmt das Ergebnis nur approximativ. In unserem Fall ist der Unterschied aber so deutlich, dass das keine praktische Rolle spielt.
1.2 Was ist der Inhalt dieses Kurses?

muss nicht immer so gross sein wie das Signifikanzniveau. Ich habe mein Beispiel so gewählt, dass beide Zahlen gleich sind. Üblicherweise wählt man als Signifikanzniveau $\alpha = 0.05$.

Versuchen Sie, dieses Beispiel zu verstehen. Es ist die Grundlage zu einem grossen Teil des Stoffs in diesem Kurs. Wir werden diese Art von Test noch etliche Male antreffen. Wenn Sie bei einem neuen Test verwirrt sind, blättern Sie zu diesem Beispiel zurücker und versuchen Sie Gemeinsamkeiten zu finden. Dann klärt sich das Problem vielleicht. Falls nicht, fragen Sie!

1.2 Was ist der Inhalt dieses Kurses?

In Kapitel 5 werden wir Zusammenhänge zwischen kontinuierlichen Daten untersuchen. Angenommen, wir wollen die Ausdauerfähigkeit (z.B. VO_{2max}) durch andere Faktoren wie Alter, Trainingsaufwand pro Woche und Zeit für einen 3-km Lauf bestimmen. Wie modelliert man den Zusammenhang zwischen einer kontinuierlichen Grösse und mehreren erklärenden Variablen? Die lineare Regression wird uns hier Antworten liefern.

1.3 Software

1.4 Literatur

Kapitel 2

Modelle für Zähldaten

Lernziele

- Sie kennen die drei Axiome der Wahrscheinlichkeitsrechnung.
- Sie kennen den Begriff der Unabhängigkeit und können einfache Rechenaufgaben lösen.
- Sie kennen den Begriff der Zufallsvariable, der Wahrscheinlichkeitsverteilung und kumulativen Verteilungsfunktion.
- Sie kennen die Binomial- und die Poissonverteilung.
- Sie kennen die Begriffe Erwartungswert, Varianz und Standardabweichung. Sie können diese Werte für einfache Verteilungen berechnen.

2.1 Grundbegriffe der Wahrscheinlichkeitsrechnung (Stahel, Kap. 4.1, 4.2)

Für einfache Beispiele greift man oft auf Glücksspiele wie z.B. Würfel oder Roulette zurück. Es ist uns bewusst, dass diese nichts mit ihrem Fachgebiet zu tun haben. Oft eignen sie sich aber für kurze Illustrationen, insbesondere jetzt am Anfang. Daher erlauben wir uns, diese ab und zu zu verwenden.

Um richtig loslegen zu können, müssen wir am Anfang viele Begriffe neu einführen. Wir werden versuchen, so wenig wie möglich „abstrakt“ zu behandeln (aber so viel wie nötig) und hoffen, dass diese Durststrecke erträglich kurz bleibt.
Für ein Zufallsexperiment führen wir folgende Begriffe ein:

- **Elementarereignis** ω: Ein möglicher Ausgang des Zufallsexperiments.
- **Grundraum** Ω: Die Menge aller Elementarereignisse, d.h. die Menge aller möglichen Ausgänge des Zufallsexperiments.
- **Ereignis**: Eine Kollektion von gewissen Elementarereignissen, also eine Teilmenge $A \subset \Omega$. "Ereignis A tritt ein" heisst: Der Ausgang ω des Zufallsexperiments liegt in A. Oft beschreiben wir ein Ereignis auch einfach nur in Worten, siehe auch die Beispiele unten.

Wie sieht das an einem konkreten Beispiel aus?

Beispiele:

- Eine Münze wird zwei mal geworfen. Mit K bezeichnen wir "Kopf" und mit Z "Zahl".
 Ein Elementarereignis ist zum Beispiel $\omega = ZK$: Im ersten Wurf erscheint "Zahl" und im zweiten "Kopf".
 Es ist $\Omega = \{KK, KZ, ZK, ZZ\}$, Ω hat also 4 Elemente. Wir schreiben auch $|\Omega| = 4$.
 Das Ereignis "Es erscheint genau 1 Mal Kopf" ist gegeben durch die Menge $A = \{KZ, ZK\}$.

- Messung der Druckfestigkeit von Beton [MPa, Megapascal]: das Resultat ist hier eine Messgröße. Ein Elementarereignis ist einfach eine positive reelle Zahl, z.B. $\omega = 31.2$ MPa.
 Es ist also $\Omega = \mathbb{R}^+$ (die Menge der positiven reellen Zahlen).

Oft betrachtet man mehrere Ereignisse zusammen, z.B. ein Ereignis A und ein Ereignis B. Man interessiert sich z.B. dafür, wie wahrscheinlich es ist, dass A und B gemeinsam eintreten oder man interessiert sich für die Wahrscheinlichkeit, dass mindestens eines der beiden Ereignisse eintritt.

Für solche Fälle ist es nützlich, sich die Operationen der Mengenlehre und deren Bedeutung in Erinnerung zu rufen.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchschnitt</td>
<td>$A \cap B$</td>
<td>"A und B"</td>
</tr>
<tr>
<td>Vereinigung</td>
<td>$A \cup B$</td>
<td>"A oder B" ("oder" zu verstehen als "und/oder")</td>
</tr>
<tr>
<td>Komplement</td>
<td>A^c</td>
<td>"nicht A"</td>
</tr>
<tr>
<td>Differenz</td>
<td>$A \setminus B = A \cap B^c$</td>
<td>"A ohne B"</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Operationen der Mengenlehre und ihre Bedeutung.

Statt dem Wort "Durchschnitt" verwendet man manchmal auch den Begriff "Schnittmenge".

A und B heissen **disjunkt** (d.h. A und B schliessen sich gegenseitig aus und können daher nicht zusammen eintreten), falls $A \cap B = \emptyset$, wobei wir mit \emptyset die **leere Menge** (d.h. das unmögliche Ereignis) bezeichnen.

Ferner gelten die sogenannten **De Morgan’sche Regeln**

- $(A \cap B)^c = A^c \cup B^c$
- $(A \cup B)^c = A^c \cap B^c$.

Alle diese Begriffe, Operationen und Regeln lassen sich einfach mit sogenannten Venn-Diagrammen illustrieren, siehe Abbildung 2.1.

Abbildung 2.1: Illustration der Operationen der Mengenlehre an Venn-Diagrammen: \(A \cap B \), \(A \cup B \), \(A^c \) und \(A \setminus B \) jeweils entsprechend markiert (von links nach rechts).

Beispiel: Sei \(A \) das Ereignis “Stahlträger 1 hat strukturelle Mängel” und \(B \) das entsprechende Ereignis bei Stahlträger 2. Das Ereignis \(A \cup B \) bedeutet dann: “Mindestens einer der beiden Stahlträger hat strukturelle Mängel” (dies beinhaltet die Möglichkeit, dass beide Mängel haben). Die Schnittmenge \(A \cap B \) ist das Ereignis “Beide Stahlträger haben strukturelle Mängel”, \(A^c \) bedeutet, dass Stahlträger 1 keine Mängel aufweist, etc.

Bis jetzt haben wir zwar teilweise schon den Begriff “Wahrscheinlichkeit” verwendet, diesen aber noch nicht spezifiziert.

Wir kennen also den Grundraum \(\Omega \) bestehend aus Elementareignissen \(\omega \) und mögliche Ereignisse \(A, B, C, \ldots \). Jetzt wollen wir einem Ereignis aber noch eine Wahrscheinlichkeit zuordnen und schauen, wie man mit Wahrscheinlichkeiten rechnen muss.

Für ein Ereignis \(A \) bezeichnen wir mit \(P(A) \) die **Wahrscheinlichkeit**, dass das Ereignis \(A \) eintritt (d.h. dass der Ausgang \(w \) des Zufallsexperiments in der Menge \(A \) liegt). Bei einem Wurf mit einer fairen Münze wäre für \(A=\)“Münze zeigt Kopf” also \(P(A) = 0.5 \).

Es müssen die folgenden Rechenregeln (die sogenannten Axiome der Wahrscheinlichkeitsrechnung von Kolmogorov) erfüllt sein.

Axiome der Wahrscheinlichkeitsrechnung (Kolmogorov)

(A1) \(0 \leq P(A) \leq 1 \)

A2) \(P(\Omega) = 1 \)

(A3) \(P(A \cup B) = P(A) + P(B) \) für alle Ereignisse \(A, B \) die sich gegenseitig ausschließen (d.h. \(A \cap B = \emptyset \)).

(A1) bedeutet, dass Wahrscheinlichkeiten immer zwischen 0 und 1 liegen und (A2) besagt, dass das sichere Ereignis \(\Omega \) Wahrscheinlichkeit 1 hat.

Weitere Rechenregeln werden daraus abgeleitet, z.B.

\[
P(A^c) = 1 - P(A) \quad \text{für jedes Ereignis } A \quad (2.1)
\]

\[
P(A \cup B) = P(A) + P(B) - P(A \cap B) \quad \text{für je zwei Ereignisse } A \text{ und } B \quad (2.2)
\]

\[
P(A_1 \cup \ldots \cup A_n) \leq P(A_1) + \ldots + P(A_n) \quad \text{für je } n \text{ Ereignisse } A_1, \ldots, A_n \quad (2.3)
\]

\[
P(B) \leq P(A) \quad \text{für je zwei Ereignisse } A \text{ und } B \text{ mit } B \subseteq A \quad (2.4)
\]

\[
P(A \setminus B) = P(A) - P(B) \quad \text{für je zwei Ereignisse } A \text{ und } B \text{ mit } B \subseteq A \quad (2.5)
\]
Wenn man sich Wahrscheinlichkeiten als Flächen im Venn-Diagramm vorstellt (die Totalfläche von \(\Omega \) ist 1), so erscheinen diese Rechenregeln ganz natürlich. Verifizieren sie dies als Übung für alle obigen Regeln.

Interpretation von Wahrscheinlichkeiten

Wir haben gesehen, welche Rechenregeln Wahrscheinlichkeiten erfüllen müssen. Doch wie interpretiert man eine Wahrscheinlichkeit überhaupt? Die beiden wichtigsten Interpretationen sind die “Idealisierung der relativen Häufigkeit bei vielen unabhängigen Wiederholungen” (die sogenannte **frequentistische Interpretation**) und das (subjektive) “Mass für den Glauben, dass ein Ereignis eintreten wird” (die sogenannte **bayes’sche Interpretation**).

Zur frequentistischen Interpretation:

Wenn ein Ereignis \(A \) eines Zufallsexperiments Wahrscheinlichkeit \(1/2 \) hat, so werden wir bei vielen unabhängigen Wiederholungen des Experiments bei ca. der Hälfte der Fälle sehen, dass das Ereignis eingetreten ist (eine mathematische Definition für Unabhängigkeit werden wir später sehen). Für eine unendliche Anzahl Wiederholungen würden wir exakt \(1/2 \) erreichen. Man denke z.B. an den Wurf mit einer Münze. Wenn man die Münze sehr oft wirft, so wird die relative Häufigkeit von “Kopf” nahe bei \(1/2 \) liegen, siehe Abbildung 2.2. Die frequentistische Interpretation geht also insbesondere von einer Wiederholbarkeit des Zufallsexperiments aus.

Etwas formeller: Sei \(f_n(A) \) die relative Häufigkeit des Auftretens des Ereignisses \(A \) in \(n \) unabhängigen Experimenten. Dieses Mass \(f_n(\cdot) \) basiert auf Daten oder Beobachtungen. Falls \(n \) gross wird, so gilt

\[
 f_n(A) \xrightarrow{n \to \infty} P(A).
\]

Man beachte, dass \(P(A) \) auch ein theoretisches Mass in einem **Modell** ist (wo keine Experimente oder Daten vorliegen).

Abbildung 2.2: Relative Häufigkeiten \(f_n(A) \) für das Ereignis \(A=“Münze zeigt Kopf” \) beim Wurf mit einer Münze in Abhängigkeit der Anzahl Würfe \(n \).

Zur bayes’schen Interpretation:

Hier ist \(P(A) \) ein Mass für den Glauben, dass ein Ereignis eintreten wird. Sie vermuten zum Beispiel, dass mit Wahrscheinlichkeit 15% auf ihrem Grundstück Ölvorräte vorhanden sind. Dies

Je nach Problemstellung eignet sich die eine oder die andere Interpretation.

2.2 Diskrete Wahrscheinlichkeitsmodelle

Für den Moment nehmen wir an, dass Ω entweder endlich viele Elemente enthält (d.h. $|\Omega| < \infty$) oder dass Ω abzählbar ist (d.h. wir können die Elemente durchnummerieren). Wir können Ω also schreiben als

$$\Omega = \{\omega_1, \omega_2, \ldots\}.$$

Man spricht in diesem Fall auch von einem sogenannten diskreten Wahrscheinlichkeitsmodell. Das Beispiel mit dem Münzwurf passt in dieses Schema, während dies beim Beispiel mit der Druckfestigkeit des Betons nicht der Fall ist, da man die reellen Zahlen nicht durchnummerieren kann. Wie man mit diesem Fall umgeht, werden wir im nächsten Kapitel sehen.

Da Elementarereignisse per Definition disjunkt sind, können wir wegen (A3) die Wahrscheinlichkeit $P(A)$ schreiben als

$$P(A) = \sum_{k : \omega_k \in A} P(\{\omega_k\}),$$

wobei wir mit $\{k : \omega_k \in A\}$ einfach alle Elementarereignisse “sammeln”, die in A liegen (A ist ja eine Menge von Elementarereignissen). Wenn wir also die Wahrscheinlichkeiten der Elementarereignisse kennen, können wir die Wahrscheinlichkeit eines Ereignisses A berechnen, indem wir die entsprechenden Wahrscheinlichkeiten der passenden Elementarereignisse ganz simpel aufsummieren. Wir schreiben hier $\{w_k\}$ um zu unterstreichen, dass wir eine Menge (d.h. ein Ereignis) meinen mit einem Element ω_k.

Ferner gilt

$$1^{(A2)} = P(\Omega) \Rightarrow \sum_{k \geq 1} P(\{\omega_k\}).$$

Die Summe aller Elementarereignisse muss also immer 1 ergeben.

Also: Wenn uns jemand eine “Liste” gibt mit allen Elementarereignissen und deren Wahrscheinlichkeiten, dann muss zwangsläufig die Summe von diesen Wahrscheinlichkeiten 1 ergeben und zudem dient uns diese “Liste” als Werkzeug, um die Wahrscheinlichkeit $P(A)$ eines beliebigen Ereignisses A zu berechnen.

Damit sich die Wahrscheinlichkeiten aller Elementarereignisse zu 1 addieren (siehe oben), haben wir hier

$$P(\{\omega_k\}) = \frac{1}{|\Omega|},$$

für alle $k \geq 1$.

Für ein Ereignis A gilt also im Laplace-Modell

$$P(A) = \sum_{k : \omega_k \in A} P(\{\omega_k\}) = \sum_{k : \omega_k \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl günstige Fälle}}{\text{Anzahl mögliche Fälle}}.$$
Dies kennen sie vermutlich aus der Mittelschule. Dort bestand dann die Wahrscheinlichkeitsrechnung oft darin, durch (mühsames) Abzählen die Anzahl günstiger Fälle zu bestimmen. Wie wir aber sehen werden, geht die Wahrscheinlichkeitsrechnung weit über das Laplace-Modell hinaus. Insbesondere ist das Laplace-Modell für viele Anwendungen ungeeignet. Beispiel: Münzwurf. Für die Elementarereignisse haben wir also

\[P(\{KK\}) = P(\{KZ\}) = P(\{ZK\}) = P(\{ZZ\}) = \frac{1}{4}. \]

Für das Ereignis \(A = \{KZ, ZK\} \) (genau 1 Mal Kopf) gilt demnach

\[P(A) = P(\{KZ\}) + P(\{ZK\}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}. \]

2.3 Unabhängigkeit von Ereignissen

Wenn man die Wahrscheinlichkeiten \(P(A) \) und \(P(B) \) kennt, so können wir nur aus diesen Angaben allein die Wahrscheinlichkeit \(P(A \cap B) \) im Allgemeinen nicht berechnen (siehe Venn-Diagramm!). Es kann z.B. sein, dass die Schnittmenge die leere Menge ist oder dass \(B \) ganz in \(A \) liegt bzw. umgekehrt. Wir sehen anhand der einzelnen Wahrscheinlichkeiten \(P(A) \) und \(P(B) \) also nicht, was für eine Situation vorliegt und können damit \(P(A \cap B) \) nicht berechnen.

Ein Ausnahme bildet der Fall, wenn folgende Produktformel gilt

\[P(A \cap B) = P(A)P(B). \]

Man nennt dann \(A \) und \(B \) (stochastisch) unabhängig.

Man multipliziert in diesem Fall einfach die Wahrscheinlichkeiten. Wenn also \(A \) mit Wahrscheinlichkeit 1/3 eintritt und \(B \) mit Wahrscheinlichkeit 1/6, dann sehen wir sowohl \(A \) wie auch \(B \) (also \(A \cap B \)) mit Wahrscheinlichkeit 1/18, wenn die Ereignisse unabhängig sind. Bei einer grossen Population (\(n \) gross) “sammeln” wir also zuerst alle Fälle, bei denen \(A \) eintritt (ca. 1/3) und davon nochmals diejenigen, bei denen \(B \) eintritt (ca. 1/6) und haben am Schluss so noch ca. 1/18 der ursprünglichen Fälle. Das Ereignis \(B \) “kührt es also nicht”, ob \(A \) schon eingetroffen ist oder nicht, die Wahrscheinlichkeit 1/6 bleibt. Dies muss nicht immer der Fall sein, siehe auch das Beispiel unten.

Typischerweise wird die Unabhängigkeit basierend auf physikalischen und technischen Überlegungen postuliert, indem man verifiziert, dass zwischen zwei Ereignissen \(A \) und \(B \) kein kausaler Zusammenhang besteht (d.h. es gibt keine gemeinsamen Ursachen oder Ausschliessungen).

Achtung: Unabhängige Ereignisse sind nicht disjunkt und disjunkte Ereignisse sind nicht unabhängig (ausser wenn ein Ereignis Wahrscheinlichkeit 0 hat). Unabhängigkeit hängt ab von den Wahrscheinlichkeiten, während Disjunktheit nur ein mengentheoretischer Begriff ist.

Beispiel: Ein Gerät bestehe aus zwei Bauteilen und funktioniere, solange mindestens eines der beiden Bauteile noch in Ordnung ist. \(A_1 \) und \(A_2 \) seien die Ereignisse, dass Bauteil 1 bzw. Bauteil 2 defekt sind mit entsprechenden Wahrscheinlichkeiten \(P(A_1) = 1/100 \) und \(P(A_2) = 1/100 \). Wir wollen zudem davon ausgehen, dass die beiden Ereignisse \(A_1 \) und \(A_2 \) unabhängig voneinander sind.

Die Ausfallwahrscheinlichkeit für das Gerät ist also wegen der Unabhängigkeit gegeben durch

\[P(A_1 \cap A_2) = P(A_1)P(A_2) = \frac{1}{100} \cdot \frac{1}{100} = 10^{-4}. \]
Wir sehen also, dass durch die Annahme der Unabhängigkeit eine kleine Ausfallwahrscheinlichkeit resultiert. Wenn in Tat und Wahrheit in obigem Beispiel aufgrund eines Ausfalls des einen Bauteils das andere Bauteil auch gerade ausfällt (also ist die Unabhängigkeit nicht mehr gegeben), dann steigt die Ausfallwahrscheinlichkeit des Geräts auf 1/100 (da in diesem Fall $A_1 = A_2$ und somit $A_1 \cap A_2 = A_1 = A_2$!)

Wenn man also Ausfallwahrscheinlichkeiten unter der Annahme von Unabhängigkeit berechnet, aber diese in der Realität nicht erfüllt ist, so ist das Resultat oft um einige Größenordnungen zu klein!

Der Begriff der Unabhängigkeit kann auch auf mehrere Ereignisse erweitert werden: Die n Ereignisse A_1, \ldots, A_n heissen unabhängig, wenn für jedes $k \leq n$ und alle $1 \leq i_1 < \ldots < i_k \leq n$ gilt

$$P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k}).$$

Dies bedeutet nichts anderes, als dass die entsprechende Produktformel für alle k-Tupel von Ereignissen gelten muss.

2.4 Bedingte Wahrscheinlichkeiten (Stahel, Kap. 4.7)

Wenn zwei Ereignisse nicht unabhängig sind, können wir also durch das (Nicht-) Eintreten des einen Ereignisses etwas über das andere aussagen (oder “lernen”).

Beispiel: Eine Konstruktion besteht aus zwei Stahlträgern. A priori nehmen wir an, dass ein Träger mit einer gewissen Wahrscheinlichkeit Korrosionsschäden aufweist. Wenn wir jetzt aber wissen, dass der erste Stahlträger Korrosionsschäden hat, werden wir vermutlich annehmen, dass in diesem Falle der zweite Träger eher auch betroffen ist (da sie aus der selben Produktion stammen und den gleichen Witterungsbedingungen ausgesetzt waren etc.). Die Wahrscheinlichkeit für den zweiten Träger (dessen Zustand wir noch nicht kennen) würden wir also nach Erhalt der Information über den ersten Träger höher einschätzen als ursprünglich.

Dies führt zum Konzept der bedingten Wahrscheinlichkeiten. Diese treten zum Beispiel dann auf, wenn ein Zufallsexperiment aus verschiedenen Stufen besteht und man sukzessive das Resultat der entsprechenden Stufen erfährt. Oder salopper: “Die Karten (die Unsicherheit) werden sukzessive aufgedeckt”.

Die **bedingte Wahrscheinlichkeit** von A gegeben B ist definiert als

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Die Interpretation ist folgendermassen: “$P(A \mid B)$ ist die Wahrscheinlichkeit für das Ereignis A, wenn wir wissen, dass das Ereignis B schon eingetroffen ist”.

Wie kann man die Formel verstehen? Da wir wissen, dass B schon eingetreten ist (wir haben also einen neuen Grundraum $\Omega' = B$), müssen wir von A nur noch denjenigen Teil anschauen, der sich in B abspielt (daher $A \cap B$). Dies müssen wir jetzt noch in Relation zur Wahrscheinlichkeit von B bringen: die Normierung mit $P(B)$ sorgt gerade dafür, dass $P(\Omega') = P(B) = 1$. Dies ist auch in Abbildung 2.3 illustriert. Wenn man wieder mit Flächen denkt, dann ist die bedingte Wahrscheinlichkeit $P(A \mid B)$ der Anteil der schraffierten Fläche an der Fläche von B.

Bemerkung: In der Definition sind wir stillschweigend davon ausgegangen, dass $P(B) > 0$ gilt.

Beispiel: Würfel.

Was ist die Wahrscheinlichkeit, eine 6 zu würfeln? Offensichtlich $1/6$! Was ist die Wahrscheinlichkeit, eine 6 zu haben, wenn wir wissen, dass eine gerade Zahl gewürfelt wurde?
Es ist $\Omega = \{1, \ldots , 6\}$, $A = \{6\}$ und $B = \{2, 4, 6\}$. Also ist $A \cap B = \{6\}$. Weiter ist $P(B) = \frac{3}{6} = \frac{1}{2}$. Also haben wir damit

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}.$$

Durch die zusätzliche Information (gerade Augenzahl) hat sich die Wahrscheinlichkeit für eine 6 also geändert.

Bedingte Wahrscheinlichkeiten sind Wahrscheinlichkeiten für spezielle Situationen. Es gelten wieder entsprechende Rechenregeln.

Rechenregeln für bedingte Wahrscheinlichkeiten

$0 \leq P(A \mid B) \leq 1$ für jedes Ereignis A

$P(B \mid B) = 1$

$P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B)$ für A_1, A_2 disjunkt (d.h. $A_1 \cap A_2 = \emptyset$)

$P(A^c \mid B) = 1 - P(A \mid B)$ für jedes Ereignis A

So lange man am “bedingenden Ereignis” B nichts ändert, kann man also mit bedingten Wahrscheinlichkeiten wie gewohnt rechnen. Sobald man aber das bedingende Ereignis ändert, muss man sehr vorsichtig sein (siehe unten).

Weiter gilt für zwei Ereignisse A, B mit $P(A) > 0$ und $P(B) > 0$:

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$ (2.6)

Deshalb können wir die Unabhängigkeit auch folgendermassen definieren:

$$A, B \text{ unabhängig } \iff P(A \mid B) = P(A) \iff P(B \mid A) = P(B)$$ (2.7)

Unabhängigkeit von A und B bedeutet also, dass sich die Wahrscheinlichkeiten *nicht* ändern, wenn wir wissen, dass das andere Ereignis schon eingetreten ist. Oder nochmals: “Wir können nichts von A über B lernen” (bzw. umgekehrt).

Achtung: Oft werden im Zusammenhang mit bedingten Wahrscheinlichkeiten falsche Rechenregeln verwendet und damit falsche Schlussfolgerungen gezogen. Man beachte, dass im Allgemein-
2.4 Bedingte Wahrscheinlichkeiten (Stahel, Kap. 4.7)

\[P(A \mid B) \neq P(B \mid A), \]

\[P(A \mid B^c) \neq 1 - P(A \mid B). \]

Man kann also bedingte Wahrscheinlichkeiten in der Regel nicht einfach "umkehren" (erste Gleichung). Dies ist auch gut in Abbildung 2.3 ersichtlich. \(P(A \mid B) \) ist dort viel größer als \(P(B \mid A) \).

2.4.1 Satz der totalen Wahrscheinlichkeit und Satz von Bayes

Wie wir in (2.6) gesehen haben, kann man

\[P(A \cap B) = P(A \mid B)P(B) \]

schreiben, d.h. \(P(A \cap B) \) ist bestimmt durch \(P(A \mid B) \) und \(P(B) \). In vielen Anwendungen wird dieser Weg beschritten. Man legt die Wahrscheinlichkeiten für die erste Stufe \(P(B) \) und die bedingten Wahrscheinlichkeiten \(P(A \mid B) \) und \(P(A \mid B^c) \) für die zweite Stufe gegeben die erste fest (aufgrund von Daten, Plausibilität und subjektiven Einschätzungen). Dann lassen sich die übrigen Wahrscheinlichkeiten berechnen.

Beispiel: Es sei z.B. \(A = "Ein Unfall passiert" \) und \(B = "Strasse ist nass". \) Wir nehmen an, dass wir folgendes kennen

\[P(A \mid B) = 0.01 \]
\[P(A \mid B^c) = 0.001 \]
\[P(B) = 0.2. \]

Mit den Rechenregeln für Wahrscheinlichkeiten erhalten wir \(P(B^c) = 1 - P(B) = 0.8 \). Können wir damit die Wahrscheinlichkeit für \(A \) bestimmen? Wir können \(A \) schreiben als disjunkte Vereinigung (siehe Venn-Diagramm)

\[A = (A \cap B) \cup (A \cap B^c). \]

Daher haben wir

\[P(A) = P(A \cap B) + P(A \cap B^c) \]
\[= P(A \mid B)P(B) + P(A \mid B^c)P(B^c) \]
\[= 0.01 \cdot 0.2 + 0.001 \cdot 0.8. \]

Dies ergibt \(P(A) = 0.0028 \). Mit der Wahrscheinlichkeit von \(B \) und den bedingten Wahrscheinlichkeiten von \(A \) gegeben \(B \) bzw. \(B^c \) können wir also die Wahrscheinlichkeit von \(A \) berechnen.

Wir schauen also in den einzelnen Situationen (\(B \) bzw. \(B^c \)), was die bedingte Wahrscheinlichkeit für \(A \) ist und gewichten diese mit den entsprechenden Wahrscheinlichkeiten \(P(B) \) bzw. \(P(B^c) \).

Dieses Vorgehen wird besonders anschaulich, wenn man das Zufallsexperiment als sogenannten Wahrscheinlichkeitsbaum darstellt, siehe Abbildung 2.4. In jeder Verzweigung ist die Summe der (bedingten) Wahrscheinlichkeiten jeweils 1. Um die Wahrscheinlichkeit für eine spezifische "Kombination" (z.B. \(A^c \cap B \)) zu erhalten, muss man einfach dem entsprechenden Pfad entlang "durchmultiplizieren". Um die Wahrscheinlichkeit von \(A \) zu erhalten, muss man alle Pfade betrachten, die \(A \) enthalten und die entsprechenden Wahrscheinlichkeiten aufsummieren.

Diese Aufteilung in verschiedene sich gegenseitig ausschließende Situationen (\(B, B^c \)) funktio- niert noch viel allgemeiner und führt zum Satz der totalen Wahrscheinlichkeit.
Abbildung 2.4: Wahrscheinlichkeitsbaum.

Satz der totalen Wahrscheinlichkeit

Wir nehmen an, dass wir \(k \) disjunkte Ereignisse \(B_1, \ldots, B_k \) haben mit
\[
B_1 \cup \ldots \cup B_k = \Omega \quad (\text{"alle möglichen Fälle sind abgedeckt"})
\]
Dann gilt
\[
P(A) \overset{(A3)}{=} \sum_{i=1}^{k} P(A \cap B_i) \overset{(2.6)}{=} \sum_{i=1}^{k} P(A \mid B_i)P(B_i).
\]
Dies ist genau gleich wie beim einführenden Beispiel mit der Strasse und den Unfällen (dort hatten wir \(B_1 = B \) und \(B_2 = B^c \)). Wir haben jetzt einfach \(k \) verschiedene "Verzweigungen". Wenn wir also die (bedingte) Wahrscheinlichkeit von \(A \) in jeder Situation \(B_i \) wissen, dann ist die Wahrscheinlichkeit von \(A \) einfach deren gewichtete Summe, wobei die Gewichte durch \(P(B_i) \) gegeben sind.

\(B_1, \ldots, B_k \) heisst auch **Partitionierung** von \(\Omega \). Sie deckt alle möglichen Fälle ab und zwei Ereignisse \(B_i \) und \(B_j \) können nicht zusammen eintreten. Ein Illustration einer Partitionierung findet man in Abbildung 2.5.

Manchmal will man die bedingten Wahrscheinlichkeiten auch “umkehren”. Sie haben z.B. ein technisches Verfahren entwickelt, um Haarrisse in Oberflächen zu detektieren. Wir betrachten folgende Ereignisse
\[
A = \text{“Technisches Verfahren indiziert, dass Risse da sind”} \\
B_1 = \text{“Oberfläche weist in der Tat Haarrisse auf”} \\
B_2 = B_1^c = \text{“Oberfläche weist in der Tat keine Haarrisse auf”}
\]
Das Verfahren arbeitet nicht ganz fehlerfrei, die Fehlerquote ist aber (auf den ersten Blick) relativ tief (fiktive Zahlen):
\[
P(A \mid B_1) = 0.99 \\
P(A \mid B_2) = 0.03
\]
Zudem nehmen wir an, dass gilt
\[
P(B_1) = 0.001.
\]
2.4 Bedingte Wahrscheinlichkeiten (Stahel, Kap. 4.7)

Wenn die Oberfläche also tatsächlich Risse hat, so weisen wir das mit Wahrscheinlichkeit 0.99 nach. Wenn keine Risse da sind, dann schlagen wir “nur” mit Wahrscheinlichkeit 0.03 fälschlicherweise Alarm. Zudem gehen wir davon aus, dass mit Wahrscheinlichkeit 0.001 überhaupt Risse vorhanden sind (a-priori, ohne einen Test gemacht zu haben).

Die Frage ist nun: Gegeben, dass das technische Verfahren Haarrisse nachweist, was ist die Wahrscheinlichkeit, dass in Tat und Wahrheit wirklich Risse da sind? Oder ausgedrückt in bedingten Wahrscheinlichkeiten: Wie gross ist \(P(B_1 \mid A) \)? Dies können wir mit dem Satz von Bayes beantworten.

Satz von Bayes

Für zwei Ereignisse \(A \) und \(B \) mit \(P(A), P(B) > 0 \) gilt

\[
P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A)}.
\]

In der Situation des Satzes der totalen Wahrscheinlichkeit haben wir

\[
P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{l=1}^{k} P(A \mid B_l)P(B_l)}.
\]

Oft ist das Resultat einer solchen Berechnung stark verschieden von dem, was man intuitiv erwartet.

Beispiel: In obigem Beispiel haben wir also

\[
P(B_1 \mid A) = \frac{P(A \mid B_1)P(B_1)}{P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2)} = \frac{0.99 \cdot 0.001}{0.99 \cdot 0.001 + 0.03 \cdot 0.999} = 0.032.
\]
Obwohl die Spezifikationen von unserem Test auf den ersten Blick gut ausgesehen haben, sagt
hier ein positives Testresultat nicht sehr viel aus! Oder haben wir uns nur verrechnet oder etwas
falsch angewendet? Schauen wir uns die Geschichte einmal mit konkreten Anzahlen an. Wir
nehmen an, dass wir \(n = 100'000 \) Untersuchungen machen. Davon sind im Schnitt 99'900 in der
Tat in Ordnung. In der folgenden Tabelle sehen wir, wie sich die Fälle im Schnitt gemäß den
Fehlerquoten des Tests aufteilen.

<table>
<thead>
<tr>
<th></th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>99</td>
<td>2'997</td>
<td>3'096</td>
</tr>
<tr>
<td>(A^c)</td>
<td>1</td>
<td>96'903</td>
<td>96'904</td>
</tr>
<tr>
<td>Summe</td>
<td>100</td>
<td>99'900</td>
<td>100'000</td>
</tr>
</tbody>
</table>

Wir interessieren uns nun für die Subgruppe, die ein positives Testresultat haben (Zeile \(A \)). Es
sind dies 3'096 Fälle, 99 davon sind wirklich defekt. Also ist der Anteil 99/3'096 = 0.032. Für
die Kommunikation an fachfremde Personen eignet sich eine solche Tabelle in der Regel gut. Die
Anzahlen kann jeder selber rasch nachrechnen bzw. überprüfen.

2.5 Zufallsvariable (Stahel, Kap. 4.3, 4.4)

Oft sind mit einem Zufallsexperiment Zahlenwerte verknüpft, d.h. zu jedem Elementarereignis
\(\omega \) gehört ein Zahlenwert \(X(\omega) = x \).

\[
\begin{align*}
\omega = \text{As} & \quad \mapsto X(\omega) = 11 \\
\omega = \text{König} & \quad \mapsto X(\omega) = 4 \\
\vdots & \\
\omega = \text{Sechs} & \quad \mapsto X(\omega) = 0
\end{align*}
\]

Wie man in diesem Beispiel sieht, ist \(X \) eine Funktion auf dem Grundraum \(\Omega \). Wir halten fest:

Eine **Zufallsvariable** \(X \) ist eine **Funktion**:

\[
X : \Omega \rightarrow \mathbb{R} \quad \omega \mapsto X(\omega)
\]

Die Notation \(X \) (oder auch \(Y, Z, \ldots \)) ist eher ungewohnt für die Bezeichnung einer Funktion, ist
aber üblich in der Wahrscheinlichkeitsrechnung. Sie haben hoffentlich in der Analysis gesehen,
dass man Funktionen wie Zahlen addieren oder multiplizieren kann (man addiert oder multipli-
ziert einfach die Funktionswerte). Summen und Produkte von Zufallsvariablen sind also wieder
Zufallsvariablen.

Konvention: Eine Zufallsvariable wir durch einen **Grossbuchstaben** (z.B. \(X \)) dargestellt.
Der gleiche **Kleinbuchstabe** (z.B. \(x \)) stellt einen konkreten Wert dar, den die Zufallsvariable
annehmen kann. Das Ereignis, dass die Zufallsvariable \(X \) den Wert \(x \) annimmt, können wir dann
so schreiben: \(X = x \).

Bei einer Zufallsvariable ist nicht die Funktion \(X(\cdot) \) zufällig, sondern nur das Argument \(\omega \): Je nach Ausgang des Zufallsexperiments (d.h. von \(\omega \)) erhalten wir einen anderen Wert \(x = X(\omega), x \) ist eine **Realisierung** der Zufallsvariablen \(X \). Wenn wir aber das Experiment zweimal
durchführen und zwei Mal das gleiche Ergebnis \(\omega \) herauskommt, dann sind auch die realisierten
Werte von \(X \) gleich.
Wenn der Grundraum \(\Omega \) diskret ist, dann muss auch der Wertebereich \(W = W_X \) (Menge der möglichen Werte von \(X \)) diskret sein, d.h. endlich oder abzählbar. Wir werden in diesem Kapitel bloss diskrete Zufallsvariablen genauer diskutieren. Insbesondere sind Anzahlen stets diskret, während Messungen besser als kontinuierlich, d.h. mit dem Wertebereich \(\mathbb{R} \) modelliert werden (obwohl man praktisch nur mit endlicher Genauigkeit messen kann).

Wahrscheinlichkeitsverteilung einer Zufallsvariablen

Die Werte einer Zufallsvariablen \(X \) (die möglichen Realisationen von \(X \)) treten mit gewissen Wahrscheinlichkeiten auf. Die Wahrscheinlichkeit, dass \(X \) den Wert \(x \) annimmt, berechnet sich wie folgt:

\[
P(X = x) = P(\{\omega; \ X(\omega) = x\}) = \sum_{\omega; X(\omega) = x} P(\omega).
\]

Beispiel (Forts): \(X \) = Wert einer gezogenen Jass-Karte.

Wahrscheinlichkeit für Zahl 4 = \(P(X = 4) \)

\[
= P(\{\omega; \ \omega = \text{ein König}\})
= P(\text{Eicheln-König}) + P(\text{Rosen-König}) + P(\text{Schellen-König}) + P(\text{Schilten-König})
\]

Die "Liste" von \(P(X = x) \) für alle möglichen Werte \(x \) heisst (diskrete) *(Wahrscheinlichkeits-) Verteilung* der (diskreten) Zufallsvariablen \(X \). Dabei gilt immer

\[
\sum_{\text{alle möglichen } x} P(X = x) = 1.
\]

Beispiel (Forts): \(X \) = Wert einer gezogenen Jass-Karte.

Die Wahrscheinlichkeitsverteilung von \(X \) ist

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x))</td>
<td>4/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
</tbody>
</table>

Umgekehrt ist jede Liste von nichtnegativen Zahlen, die sich zu eins addieren, die Verteilung einer gewissen Zufallsvariablen. Wenn man nur an der Zufallsvariablen \(X \) interessiert ist, kann man den zu Grunde liegenden Raum \(\Omega \) vergessen, man braucht nur die Verteilung von \(X \). Zufallsvariablen sind einfach Zufallsexperimente, bei denen die Ergebnisse Zahlen sind.

2.6 Binomialverteilung (Stahel Kap. 5.1)

Wir betrachten die Situation wo es um das Zählen der Anzahl Erfolge (oder Misserfolge) geht. Solche Anwendungen treten z.B. auf bei der Qualitätskontrolle, Erfolg/Misserfolg bei Behandlungen (medizinisch, biologisch) oder auch bei Glücksspielen.

Die Verteilung einer Zufallsvariable \(X \) mit Werten in \(W = \{0, 1\} \) kann durch einen einzelnen Parameter \(\pi \) beschrieben werden:

\[
P(X = 1) = \pi, \quad P(X = 0) = 1 - \pi, \quad 0 \leq \pi \leq 1.
\]

Diese Verteilung heisst *Bernoulli(\(\pi \))-Verteilung*. Sie beschreibt einfach das Eintreffen oder Nicht-Eintreffen eines bestimmten Ereignisses, z.B. das Ergebnis "Kopf" beim Werfen einer Münze. Falls die Münze fair ist, so ist \(\pi = 1/2 \).
Etwas interessanter wird es, wenn wir das Experiment n Mal wiederholen, also z.B. die Münze n-mal werfen. Der Grundraum Ω besteht dann aus allen “Wörtern” der Länge n, welche man mit den Buchstaben K (für “Kopf”) und Z (für “Zahl”) schreiben kann. Ω hat also 2^n Elemente.

Wir betrachten die Zufallsvariablen

$$X_i = \begin{cases} 1 & \text{falls } K \text{ im } i\text{-ten Wurf} \\ 0 & \text{falls } Z \text{ im } i\text{-ten Wurf.} \end{cases}$$

$$X = \sum_{i=1}^n X_i = \text{Gesamtzahl von Würfen mit } K$$

Um die Verteilung von X bestimmen zu können, müssen wir eine Wahrscheinlichkeit auf Ω festlegen. Wir postulieren, dass die Ereignisse $X_i = 1$ (also “K im i-ten Wurf”) alle die Wahrscheinlichkeit π haben und unabhängig sind. Dann gilt zum Beispiel:

$$P(X = 0) = P(X_1 = \ldots = X_n = 0) = (1 - \pi)^n,$$

$$P(X = 1) = P(\text{ein } X_i = 1 \text{ und alle anderen } X_j = 0) =$$

$$P(X_1 = 1, X_2 = 0, \ldots, X_n = 0) + P(X_1 = 0, X_2 = 1, X_3 = 0, \ldots, X_n = 0) + \ldots = n\pi(1 - \pi)^{n-1}. $$

Um $P(X = x)$ zu berechnen, muss man offenbar bestimmen, auf wieviele Arten man x Einer auf n Plätze anordnen kann. Die Antwort ist gegeben durch den Binomialkoeffizienten

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}.$$

So kommt man auf die Binomial-Verteilung.

Binomial(n, π)-Verteilung:

Eine Zufallsvariable X mit Werten in $W = \{0, 1, \ldots, n\}$ heisst Binomial(n, π)-verteilt, falls

$$P(X = x) = \binom{n}{x} \pi^x (1 - \pi)^{n-x}, \ x = 0, 1, \ldots, n.$$

Dabei ist $0 \leq \pi \leq 1$ der Erfolgsparameter der Verteilung.

Wie in obigem Beispiel motiviert, ist die Binomialverteilung angebracht für die Zufallsvariable “Anzahl Erfolge/Misserfolge” (Eintreten eines bestimmten Ereignis) bei n unabhängigen Versuchen. Das Prädikat “unabhängig” ist wesentlich für die Korrektheit der Binomialverteilung.

Konvention: Wenn man notieren will, dass die Zufallsvariable X einer gewissen Wahrscheinlichkeitsverteilung F folgt, schreibt man abgekürzt: $X \sim F$. Dabei kann F von Parametern abhängen, also z.B. $X \sim F(\theta)$. Wenn also X einer Binomial-Verteilung mit Parametern n und π folgt, schreibt man abgekürzt $X \sim \text{Binomial}(n, \pi)$ oder einfach nur $X \sim \text{Bin}(n, \pi)$.

Beispiel: Bei einer Losbude steht: “Jedes 5. Los gewinnt!”, d.h., die Gewinnwahrscheinlichkeit ist bei jedem Los $\pi = 0.2$. Nehmen wir weiter an, dass das Ziehen von einem Los keinen Einfluss auf das Ziehen des nächsten Loses hat (z.B. gibt es eine riesige Anzahl Lose und die Lostrommel wird nach jedem Verkauf eines Loses gut gemischt). Wir kaufen 100 Lose und bezeichnen mit X die Anzahl Gewinne unter den 100 Losen. Dann ist $X \sim \text{Binomial}(n = 100, \pi = 0.2)$ verteilt. Abgekürzt: $X \sim \text{Binomial}(100, 0.2)$.

Beispiel: Spermasexing (Tages-Anzeiger 6.12.2000)

2.7 Kennzahlen einer Verteilung (Stahel Kap. 5.3)

Da die Methode nicht hundertprozentig sicher ist, können wir das als Zufallsexperiment auffassen. Sei \(X = \text{Anzahl weiblicher gezüchteter Kuhkälber} \). Eine vernünftiges Modell ist dann:

\[
X \sim \text{Binomial}(12, \pi),
\]

wobei \(\pi \) unbekannt ist. Effektiv beobachtet wurden \(x = 11 \) weiblich gezüchtete Kuhkälber: d.h. \(X = x = 11 \) wurde tatsächlich realisiert. Später mehr dazu.

Eigenschaften der Binomialverteilung (siehe Abb. 2.6): \(P(X = x) \) ist maximal wenn \(x \) gleich dem ganzzahligen Teil von \((n + 1)\pi \) ist, und auf beiden Seiten von diesem Wert nehmen die Wahr-}

\[
P(X = x) \]scheinlichkeiten monoton ab. Wenn \(n\pi(1 – \pi) \) nicht allzu klein ist, ist die Verteilung praktisch symmetrisch und hat die Form einer Glocke. Wenn \(n \) gross ist, sind die meisten Wahrscheinlichkeiten \(P(X = x) \) verschwindend klein, d.h. grosse Abweichungen von \((n + 1)\pi \) sind extrem unwahrscheinlich.

2.7 Kennzahlen einer Verteilung (Stahel Kap. 5.3)

Eine beliebige (diskrete) Verteilung kann vereinfachend zusammengefasst werden durch 2 Kenn-

\[
\text{zahlen, den Erwartungswert } \mathbb{E}(X) \text{ und die Standardabweichung } \sigma(X).
\]

Der Erwartungswert beschreibt die mittlere Lage der Verteilung und ist wie folgt definiert:

\[
\mathbb{E}(X) = \sum_{x \in W_X} xP(X = x), \quad W_X = \text{Wertebereich von } X.
\]

Die Standardabweichung beschreibt die Streuung der Verteilung. Rechnerisch ist das Quadrat

\[
\text{der Standardabweichung, die sogenannte Varianz } \text{bequemer:}
\]

\[
\operatorname{Var}(X) = \sum_{x \in W_X} (x – \mathbb{E}(X))^2P(X = x)
\]

\[
\sigma(X) = \sqrt{\operatorname{Var}(X)}.
\]

Die Standardabweichung hat dieselbe Einheit wie \(X \), während die Einheit der Varianz deren

\[
\text{Quadrat ist: Wird z.B. } X \text{ in Metern (} m \text{)} gemessen, so besitzt } \operatorname{Var}(X) \text{ die Dimension Quadratmeter (} m^2 \text{) und } \sigma(X) \text{ wiederum die Dimension Meter (} m \text{).}
\]

Beispiel: Sei \(X \sim \text{Bernoulli}(\pi) \).

Dann:

\[
\mathbb{E}(X) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) = \pi,
\]

\[
\operatorname{Var}(X) = (0 – \mathbb{E}(X))^2P(X = 0) + (1 – \mathbb{E}(X))^2P(X = 1) = (0 – \pi)^2(1 – \pi) + (1 – \pi)^2\pi
\]

\[
= \pi(1 – \pi),
\]

\[
\sigma(X) = \sqrt{\pi(1 – \pi)}.
\]

Für die Binomial-Verteilung erhält man mit einigen Rechnungen

\[
X \sim \text{Binomial}(n, \pi) \Rightarrow \mathbb{E}(X) = n\pi, \quad \operatorname{Var}(X) = n\pi(1 – \pi), \quad \sigma(X) = \sqrt{n\pi(1 – \pi)}.
\]

(Weil \(\text{Bernoulli}(\pi) = \text{Binomial}(1, \pi) \), stimmt das mit obigen Formeln überein). Die Kennzahlen

fassen also sehr gut zusammen, was wir in der Abbildung 2.6 gesehen haben: Die Verteilung

ist um den Erwartungswert konzentriert, die Streuung wächst mit \(n \), aber langsamer als \(n \). Für

festes \(n \) ist die Streuung maximal, wenn \(\pi = 1/2 \).
Beispiel (Forts.) Wir sind wieder bei der Losbude, bei der wir (nach dem vierten Bier) 100 Lose gekauft hatten. Um die Freundin zu beeindrucken, kramen wir unser Statistikwissen hervor und berechnen im Kopf den Erwartungswert und die Standardabweichung der Anzahl Gewinne unter 100 Losen.

\[
\mathbb{E}(X) = n \cdot \pi = 100 \cdot 0.2 = 20
\]

\[
\sigma(X) = \sqrt{n \pi (1 - \pi)} = \sqrt{100 \cdot 0.2 \cdot 0.8} = 4
\]

2.7.1 Kumulative Verteilungsfunktion

Manchmal ist es für Rechnungen nützlicher, statt der “Liste” \(P(X = x) \) (für alle \(x \)) die sukzessiven Summen

\[
\sum_{y \in W_X : y \leq x} P(X = y) = P(X \leq x)
\]

anzugeben. Dabei läuft \(x \) ebenfalls über den Wertebereich \(W_X \) von \(X \). Man kann in dieser Definition aber auch beliebige reelle Werte \(x \) betrachten und erhält dann eine Funktion

\[
F(x) = P(X \leq x) = \sum_{y \in W_X : y \leq x} P(X = y),
\]

Aus der kumulativen Verteilungsfunktion kann man die “Liste” \(P(X = x) \) zurückgewinnen: \(P(X = x) \) ist einfach die Höhe des Sprungs an der Stelle \(x \). Insbesondere gilt für \(X \) mit Wertebereich in den ganzen Zahlen und ganzzahliges \(x \)

\[
P(X = x) = F(x) - F(x - 1), \quad P(X \geq x) = 1 - P(X \leq x - 1) = 1 - F(x - 1).
\]

2.8 Poissonverteilung (Stahel Kap. 5.2)

Der Wertebereich der Binomial(\(n, \pi \))-Verteilung ist \(W = \{0, 1, \ldots, n\} \). Falls eine Zufallsvariable nicht im vornherein einen beschränkten Wertebereich hat, so bietet sich für Zähldaten die Poisson-Verteilung an.

Eine Zufallsvariable \(X \) mit Werten in \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \) heisst Poisson(\(\lambda \))-verteilt, falls

\[
P(X = x) = \exp(-\lambda) \frac{\lambda^x}{x!} \quad (x = 0, 1, 2, \ldots)
\]

wobei \(\lambda > 0 \) ein Parameter der Verteilung ist.
Die Poisson-Verteilung ist die Standardverteilung für unbeschränkte Zähldaten.

Beispiele: Die Poisson\(\lambda\)-Verteilung kann bei folgenden Anwendungen als Modell gebraucht werden:
- Anzahl Schadenmeldungen eines Versicherten pro Jahr,
- Anzahl spontaner Ereignisse in einer Nervenzelle während einer Sekunde via Transmitterfreisetzung an einer Synapse.

Die Kennzahlen sind wie folgt: für \(X \sim \text{Poisson}(\lambda)\):
\[
\mathbb{E}(X) = \lambda, \quad \text{Var}(X) = \lambda, \quad \sigma(X) = \sqrt{\lambda}.
\]

2.8.1 Poisson-Approximation der Binomial-Verteilung

Betrachte \(X \sim \text{Binomial}(n, \pi)\) und \(Y \sim \text{Poisson}(\lambda)\). Falls \(n \) gross und \(\pi\) klein mit \(\lambda = n\pi\), dann:
\[
P(X = x) = \binom{n}{x} \pi^x (1 - \pi)^{n-x} \approx P(Y = x) = \exp(-\lambda) \frac{\lambda^x}{x!} \quad (x = 0, 1, \ldots, n).
\]
Das heisst: für grosse \(n\) und kleine \(\pi\): Binomial\((n, \pi) \approx \text{Poisson}(\lambda)\) für \(\lambda = n\pi\). Mit anderen Worten: die Poisson-Verteilung kann interpretiert werden als Verteilung für *seltene Ereignisse bei vielen unabhängigen Versuchen* (selten für einen einzelnen Fall, die Gesamt-Anzahl kann trotzdem gross sein).

2.8.2 Summen von Poisson-verteilten Zufallsvariablen

Die Poisson-Verteilung hat die folgende Additionseigenschaft: Wenn \(X \sim \text{Poisson}(\lambda_X)\) und \(Y \sim \text{Poisson}(\lambda_Y)\) unabhängig sind, dann ist \(X + Y \sim \text{Poisson}(\lambda_X + \lambda_Y)\). Wenn also zum Beispiel die Anzahlen spontaner Ereignisse in einer Nervenzelle in zwei disjunkten Zeitintervallen Poisson-verteilt und unabhängig sind, dann ist auch das Total wieder Poisson-verteilt. Wir erhalten also eine Poisson-Verteilung für alle Intervalle. Weil sich bei der Addition der Zufallsvariablen die Parameter der Poisson-Verteilung addieren, ist üblicherweise \(\lambda\) proportional zur Länge des betrachteten Zeitintervalls.

Oft entstehen Poisson verteilte Daten von einem sog. Poisson-Prozess auf einem Set \(S\) (z.B. Zeit, Fläche oder Raum) mit Parameter \(\lambda\). Das Modell sagt folgendes aus: Wenn \(S_1, S_2, \ldots, S_n\) nicht überlappende Subsets von \(S\) sind (z.B. Zeitintervalle, Teile der Gesamtfläche oder Teile vom Raum), dann sind die Anzahl Ereignisse \(N_1, N_2, \ldots, N_n\) in jedem Subset unabhängige Zufallsvariablen, die jeweils einer Poisson-Verteilung mit den Parametern \(\lambda \cdot |S_1|, \lambda \cdot |S_2|, \ldots, \lambda \cdot |S_n|\) folgen. Dabei ist \(|S_i|\) die ”Grösse“ von dem Set \(S_i\) (z.B. Zeitauslange in Sekunden, Fläche in \(m^2\) oder Volumen in \(m^3\)).

Beispiel Angenommen ein Büro erhält Telefonanrufe als ein Poisson-Prozess mit \(\lambda = 0.5\) pro Minute\(^1\). Die Anzahl Anrufe in einem 5 Minuten Intervall folgt dann einer Poisson-Verteilung mit Parameter \(\rho = 5 \cdot \lambda = 2.5\). Die Wahrscheinlichkeit, dass es in einem 5 Minuten Intervall keine Anrufe gibt, ist daher \(\exp(-2.5) = 0.082\). Die Wahrscheinlichkeit, dass es genau einen Anruf gibt ist \(2.5 \cdot \exp(-2.5)\).

\(^1\)Beachte, dass hier ”pro Minute“ steht. Der Parameter des Poisson-Prozesses misst immer eine Anzahl geteilt durch etwas (z.B. Zeitdauer, Fläche, Volumen, etc.)
2.9 Software

In der Statistiksoftware R sind sehr viele Wahrscheinlichkeitsverteilungen schon vorprogrammiert. Wenn man eine Zufallsvariable X hat, die einer Verteilung namens “xxx” (xxx steht für eine Abkürzung des Namens der Verteilung, z.B. “binom” oder “pois”) folgt, kann man folgende drei Dinge bequem erledigen:

- $dxxx$ Berechnet $P[X = x]$
- $pxxx$ Berechnet $P[X \leq x]$
- $rxxx$ Liefert eine Zufallszahl gemäß der Verteilung von X

Konkrete Beispiele sind: $dbinom$, $pbinom$, $rbinom$ für die Binomialverteilung und $dpois$, $ppois$, $rpois$ für die Poissonverteilung. Schauen Sie sich die Hilfeseite dieser Funktionen an, in dem Sie vor den Befehl ein “?” tippen. Also z.B. ?dbinom.

Abbildung 2.6: Die Binomialwahrscheinlichkeiten \(P(X = x) \) als Funktion von \(x \) für verschiedene \(n \)’s und \(\pi \)’s. Links ist \(n = 100 \) und \(\pi = 0.1, 0.2, 0.3, 0.4, 0.5 \) (von oben nach unten) und rechts ist \(\pi = 0.5 \) und \(n = 25, 50, 75, 100, 150 \) (von oben nach unten).
Abbildung 2.7: Kumulative Verteilungsfunktion $F(\cdot)$ für $X \sim \text{Binomial}(100,0.5)$. Unten: zoom-in für die Werte $x \in [40,60]$. Die Kreise zeigen an, dass an den Sprungstellen der obere Wert gilt.
Kapitel 3

Statistik für Zähldaten

Lernziele

• Sie kennen die Momentenmethode und die Maximum-Likelihood-Methode zum Schätzen von Parametern und können Sie auf einfache Beispiele anwenden.
• Sie können die sechsstufige Struktur eines statistischen Tests aufschreiben und haben die Bestandteile verstanden. Insbesondere kennen Sie die Begriffe Fehler 1. Art, Fehler 2. Art und Macht eines Tests.
• Sie können testen, ob eine vorgegebene Gewinnwahrscheinlichkeit bei einer Binomialverteilung plausibel ist (Binomialtest) und können den Test auf dem Papier durchführen (einseitig und zweiseitig). Sie können entscheiden, ob ein einseitiger oder ein zweiseitiger Test angebracht ist.
• Sie haben zwei Definitionen des P-Wertes verstanden und können ihn in kleinen Beispielen auf dem Papier berechnen.
• Sie haben begriffen, was ein Vertrauensintervall ist. Sie können ein approximatives Vertrauensintervall für eine Gewinnwahrscheinlichkeit berechnen.
• Sie können einen Binomialtest mit R durchführen und auswerten.

3.1 Drei Grundfragestellungen der Statistik (Stahel Kap. 7.1)

Die Statistik fasst Beobachtungen als Realisierung von Zufallsvariablen auf. Sie untersucht dann, was für Schlüsse man aus den Beobachtungen über die zu Grunde liegende Verteilung ziehen kann. Meist zieht man nur Verteilungen in Betracht, die bis auf einen (oder wenige) Parameter bestimmt sind und möchte dann Fragen über diesen Parameter beantworten. Man unterscheidet die folgenden drei Grundfragestellungen:

3. Grundfragestellung: Welche Parameterwerte sind mit den Beobachtungen kompatibel (statistisch vereinbar)? Die Antwort auf diese 3. Grundfrage heisst Konfidenzintervall oder Ver-
trauensintervall. Das Konfidenzintervall ist allgemeiner und informativer als ein statistischer Test.

Beispiel (Forts.): Sei \(x = 11 \) die effektive Anzahl weiblicher gezüchteter Kuhkälber beim Spermassexing (vgl. Kapitel 2.6). Wir fassen \(x = 11 \) als Realisierung einer Zufallsvariablen \(X \) auf, und nehmen an, dass \(X \) Binom(12, \(\pi \))-verteilt ist. Wir möchten jetzt von der Beobachtung \(x = 11 \) auf den unbekannten Parameter \(\pi \) Schlüsse ziehen. Die Grundfragen lauten hier:

1. Welches ist der plausibelste Wert \(\pi \) (zu der Beobachtung \(x = 11 \))?
2. Ist die Beobachtung \(x = 11 \) kompatibel mit \(\pi = 0.5 \) (reiner Zufall) oder mit \(\pi = 0.7 \) (ökonomisch zu wenig interessant)?
3. Welcher Bereich (Intervall) für den Parameter \(\pi \) ist mit der Beobachtung \(x = 11 \) kompatibel?

3.2 Schätzung, statistischer Test und Vertrauensintervall bei Binomial-Verteilung (Stahel Kap. 7.2, 8.2, 9.1, 9.2)

Wir betrachten folgende Situation: Gegeben ist eine Beobachtung \(x \), welche als Realisierung von \(X \sim \text{Binomial}(n, \pi) \) aufgefasst wird. Wir möchten Schlüsse ziehen über den unbekannten Parameter \(\pi \).

3.2.1 (Punkt-)Schätzung

Konvention: Um einen Schätzwert eines Wertes zu kennzeichnen, wir ein Hut (\(\hat{\;} \)) auf die Variable gesetzt. Z.B. ist \(\hat{\pi} \) ein Schätzwert des Parameters \(\pi \); \(\hat{\mathcal{E}}(X) \) ist ein Schätzwert des wahren Erwartungswertes \(\mathcal{E}(X) \); \(\hat{y} \) ist ein Schätzwert der Variable \(y \).

Es gibt zwei verbreitete Methoden um Parameter einer Wahrscheinlichkeitsverteilung zu schätzen.

Momentenmethode

Eine Schätzung für \(\pi \) kann pragmatisch hergeleitet werden. Da \(\mathcal{E}(X) = n\pi \) (siehe Kapitel 2.7) gilt: \(\hat{\pi} = \mathcal{E}(X)/n \). Der Wert \(n \) (Anzahl unabhängiger Versuche) ist als bekannt vorausgesetzt: die einzige Unbekannte ist dann \(\mathcal{E}(X) \). Eine pragmatisch motivierte Schätzung ist dann: \(\hat{\mathcal{E}}(X) = x (= \text{beobachtete Anzahl Gewinne}) \), d.h. man ersetzt den Erwartungswert durch die Beobachtung. Somit ergibt sich die relative Häufigkeit

\[\hat{\pi} = x/n \]

als Schätzung der Erfolgswahrscheinlichkeit.

Beispiel (Münzwurf) Wir haben eine Münze, bei der wir uns fragen, ob sie fair ist oder systematisch eher Kopf ergibt. Um dies zu beantworten, wird die Münze 100-mal geworfen, und wir erhalten 58 mal Kopf.

Betrachte \(X = \text{Anzahl Kopf (K)} \) bei 100 Würfen. Es ist vernünftig, das Modell \(X \sim \text{Binomial}(100, \pi) \) zu benutzen. Beobachtet (realisiert) wurde \(x = 58 \). Die Wahrscheinlichkeit, dass die Münze bei einem Wurf Kopf zeigt, ist gemäß der Momentenmethode also \(P[\text{Kopf}] = \frac{58}{100} = 0.58 \).

Beispiel (Forts. Spermassexing) Im Beispiel ist also die geschätzte Erfolgswahrscheinlichkeit für das Verfahren gleich \(\frac{11}{12} = 0.917 \). Es leuchtet unmittelbar ein, dass bei regelmäßiger Anwendung
des Verfahrens langfristig nicht genau 11 von 12 Kälbern das gewünschte Geschlecht haben werden. Mit andern Worten: Die wahre Erfolgswahrscheinlichkeit π ist nicht das Gleiche wie die geschätzte Erfolgswahrscheinlichkeit $\hat{\pi}$. Idealerweise gibt man einen Bereich an, in dem die wahre Erfolgswahrscheinlichkeit mit grosser Sicherheit liegt (ein Vertrauensintervall). Dazu später mehr.

Maximum-Likelihood

Am einfachsten lässt sich diese Methode an einem Beispiel erklären:

Beispiel (Forts. Münzwurf) Wir haben angenommen, dass die Anzahl “Kopf” bei n Münzwürfen folgendermassen verteilt ist: $X \sim \text{Binomial}(n, \pi)$. In unserem Beispiel ist $n = 100$ und die Zufallsvariable X hat den Wert 58 angenommen. Die Aufgabe besteht nun darin, einen Wert für π zu finden, der möglichst gut zu unserer Beobachtung passt. Welches Kriterium könnte man verwenden um zu zeigen, dass ein Wert π_1 besser zu der Beobachtung passt als π_2? Eine Möglichkeit ist die Folgende: Wir berechnen die Wahrscheinlichkeit, genau 58 mal Kopf bei 100 Münzwürfen zu erzielen. Einmal verwenden wir dabei π_1 und das andere mal π_2. Anschliessend wählen wir das π, dass zu der grösseren Wahrscheinlichkeit für 58 mal Kopf führt. In der Praxis möchte man natürlich nicht nur zwei Werte von π vergleichen, sondern am besten alle, die denkbar sind. Wir wollen also den Ausdruck $P[X = x] = \binom{n}{x} \pi^x (1-\pi)^{n-x}$ (wobei $n = 100$ und $x = 58$) bzgl. π maximieren. Dieses Problem lässt sich leicht mit der Mathematik, die Sie im Basisjahr gelernt haben (Ableitung gleich null setzen und nach π auflösen), lösen. Oft ist der Ausdruck, den man ableiten muss aber recht kompliziert (wie auch in unserem Beispiel). In vielen Fällen kann man dann einen Trick anwenden: Jedes Extremum der Funktion $f(x)$ ist auch ein Extremum der Funktion $\log(f(x))$ und umgekehrt. D.h., anstatt $P[X = x]$ bzgl. π zu maximieren, können wir auch $\log(P[X = x])$ bzgl. π maximieren, falls das leichter geht. Das Ergebnis ist völlig identisch. In unserem Fall ist die zweite Variante tatsächlich etwas einfacher:

\[
\log(P[X = x]) = \log\left(\binom{n}{x} \pi^x (1-\pi)^{n-x}\right) = \log\left(\binom{n}{x}\right) + x \log(\pi) + (n-x) \log(1-\pi)
\]

Durch Ableiten nach π und Nullsetzen erhalten wir\(^1\):

\[
\frac{d}{d\pi} \left(\log\left(\binom{n}{x}\right) + x \log(\pi) + (n-x) \log(1-\pi) \right) = 0
\]

\[
\frac{x}{\pi} + (n-x) \cdot \frac{1}{1-\pi} \cdot (-1) = 0
\]

Wenn wir diese Gleichung nach π auflösen, erhalten wir:

\[
\frac{x}{\pi} - (n-x) \cdot \frac{1}{1-\pi} = 0
\]

\[
\frac{x}{\pi} = \frac{n-x}{1-\pi}
\]

\[
\frac{1}{\pi} = \frac{x}{n}
\]

\[
\pi = \frac{x}{n}
\]

\(^1\)Beachte dabei, dass $\log\left(\binom{n}{x}\right)$ nicht von π abhängt und deshalb beim Ableiten verschwindet. Ausserdem gilt:

\[
\frac{d}{dx} \log(x) = \frac{1}{x}
\]
Mit den Zahlen in unserem Beispiel erhalten wir $\pi = \frac{58}{100} = 0.58$. In diesem Beispiel ist das Ergebnis identisch mit dem Ergebnis aus der Momentenmethode. Im Allgemeinen ist das aber nicht der Fall.

Mit obiger Methode wählen wir also das π, mit dem die Beobachtung am wahrscheinlichsten ist. Daher nennt man diese Methode auf englisch “Maximum-Likelihood-Methode”. Sie ist die mit Abstand gebräuchlichste Methode, um Parameter zu schätzen und oft der Momentenmethode überlegen.

3.2.2 Statistischer Test

Die Grundidee eines statistischen Tests ist bestechend einfach. Wenn Sie sie nicht mehr im Kopf haben, lesen Sie nochmal das Beispiel in Kapitel 1.1 nach.

Beispiel (Forts. Münzwurf): Ist es plausibel bei einer fairen Münze 58 mal oder öfter Kopf zu werfen? Die zentrale Frage ist, ob $\pi = 1/2$ oder $\pi > 1/2$.

Motivation

Im obigen Beispiel stellen wir die folgende Überlegung an. Wir nehmen einmal an, dass die Münze fair ist, d.h. dass $\pi = 1/2$, und berechnen die Wahrscheinlichkeiten für Ereignisse von der Form $\{X \geq c\}$ für “grosse” Werte c, weil grosse Werte eher für $\pi > 1/2$ sprechen. Wir wollen damit herausfinden, wie plausibel die beobachtete Anzahl $x = 58$ bei einer fairen Münze ist. Die folgende Tabelle liefert die Zahlen für $X \sim \text{Binomial}(100, 1/2)$.

<table>
<thead>
<tr>
<th>c</th>
<th>$P(X \geq c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>0.309</td>
</tr>
<tr>
<td>54</td>
<td>0.242</td>
</tr>
<tr>
<td>55</td>
<td>0.184</td>
</tr>
<tr>
<td>56</td>
<td>0.136</td>
</tr>
<tr>
<td>57</td>
<td>0.097</td>
</tr>
<tr>
<td>58</td>
<td>0.067</td>
</tr>
<tr>
<td>59</td>
<td>0.044</td>
</tr>
<tr>
<td>60</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Wenn die Münze fair wäre, würde man das Ereignis “58 mal oder öfter Kopf” mit einer Wahrscheinlichkeit von nur ca. 6.7% beobachten. D.h., wenn Sie und weitere 999 Studenten jeweils 100 mal diese Münze werfen, würden etwa 67 Studenten das Ereignis “58 mal oder öfter Kopf” erleben. Diese Zahl (6.7%) wird in der Literatur auch *P-Wert* genannt (später noch mehr dazu). In diesem Fall ist der P-Wert also 6.7%. In der Wissenschaft hat es sich so ergeben, dass man einer Hypothese nicht mehr glaubt, wenn der P-Wert kleiner als 5% ist.

Formales Vorgehen

Ein statistischer Test für den Parameter π im Modell $X \sim \text{Binomial}(n, \pi)$ ist wie folgt aufgebaut.

1. **Modell:** X: Anzahl Treffer bei n Versuchen; $X \sim \text{Binomial}(n, \pi)$
2. Spezifiziere die sogenannte *Nullhypothese* H_0:

 \[H_0 : \pi = \pi_0, \]

 und (anhand der Problemstellung) eine sogenannte *Alternative* H_A:

 \[H_A : \begin{align*}
 \pi &\neq \pi_0 \text{ (zwei-seitig)} \\
 \pi &> \pi_0 \text{ (ein-seitig nach oben)} \\
 \pi &< \pi_0 \text{ (ein-seitig nach unten)}
 \end{align*} \]

2 Diese Grenze ist natürlich völlig willkürlich. Sie könnte genauso gut 4.7%, 7% oder irgendeine andere kleine Prozentzahl sein. Wichtig ist nur, dass man einer Hypothese keinen glauben schenkt, wenn der P-Wert “klein” ist.
Am häufigsten ist die Nullhypothese \(H_0 : \pi = 1/2 \) (d.h. \(\pi_0 = 1/2 \)), also “reiner Zufall” oder “kein Effekt”. Meist führt man einen Test durch, weil man glaubt, dass die Alternative richtig ist und man auch Skeptiker davon überzeugen möchte.

3. **Teststatistik**: T: Anzahl Treffer bei \(n \) Versuchen.

Verteilung der Teststatistik unter \(H_0 \): \(T \sim Bin(n, \pi_0) \)

4. Lege das sogenannte **Signifikanzniveau** \(\alpha \) fest. Typischerweise wählt man \(\alpha = 0.05 \) (5%) oder auch \(\alpha = 0.01 \) (1%).

5. Bestimme den sogenannten **Verwerfungsbereich** \(K \) für die Teststatistik\(^4\). Qualitativ zeigt \(K \) in Richtung der Alternative:

\[
K = [0, c_u] \cup [c_o, n] \quad \text{falls } H_A : \pi \neq \pi_0,
K = [c, n] \quad \text{falls } H_A : \pi > \pi_0,
K = [0, c] \quad \text{falls } H_A : \pi < \pi_0.
\]

Quantitativ wird \(K \) so berechnet, dass

\[
P_{H_0}(X \in K) = \sum_{x=c}^{n} P_{\pi_0}(X = x) \approx \leq \alpha.
\]

von Binomial\((n, \pi_0)\)

Dabei bedeutet \(\approx \leq \), dass die linke Seite kleiner oder gleich der rechten Seite sein soll, aber so nahe wie möglich.

6. **Testentscheid**: Erst jetzt betrachte, ob der beobachtete Wert der Teststatistik in den Verwerfungsbereich \(K \) fällt:

Falls ja: so verwerfe \(H_0 \) (\(H_0 \) ist dann statistisch widerlegt, die Abweichung von der Nullhypothese ist “signifikant”)

Falls nein: belasse \(H_0 \) (was nicht heisst, dass deswegen \(H_0 \) statistisch bewiesen ist).

Diese Art der Test-Entscheidung beruht auf dem Widerspruchs-Prinzip: Hypothesen können nur falsifiziert und nicht verifiziert werden.

Beispiel (Forts.): Für das Beispiel mit den Münzwürfen heisst das konkret:

1. **Modell**: \(X \): Anzahl Würfe, die Kopf zeigen, wenn man 100 mal wirft.
\(X \sim Bin(100, \pi) \).

2. **Nullhypothese**: \(H_0 : \pi = 0.5 \)
Alternative: \(H_A : \pi > 0.5 \)

3. **Teststatistik**: \(T \): Anzahl Würfe, die Kopf zeigen, wenn man 100 mal wirft.

Verteilung der Teststatistik unter \(H_0 \): \(T \sim Bin(100, 0.5) \)

4. **Signifikanzniveau**: \(\alpha = 0.05 \)

5. **Verwerfungsbereich**: \(K = [59; 100] \)

\(^3\)Es mag verwirrend sein, dass die Teststatistik \(T \) und \(X \) genau gleich sind. Das ist nur in diesem einfachen Beispiel der Fall und im Allgemeinen nicht so. Später werden wir Beispiele kennenlernen, in denen die Teststatistik \(T \) eine Funktion von \(X \) ist.

\(^4\)Der Verwerfungsbereich hängt vom Signifikanzniveau \(\alpha \) ab. Wir er grösser oder kleiner, wenn \(\alpha \) kleiner wird?

\(^5\)Aus obiger Tabelle kann man ablesen, dass \(c = 59 \) die kleinste Zahl ist, bei der \(P[X \geq c] \) kleiner als 5% ist.
6. **Testentscheid**: Der beobachtete Wert der Teststatistik \(t = 58 \)^6 liegt nicht im Verwerfungsbereich \((K = [59; 100]) \). Daher kann die Nullhypothese auf dem Signifikanzniveau 5% nicht verworfen werden. Das heisst, es gibt nicht genügend statistische Evidenz (auf dem Signifikanzniveau \(\alpha = 0.05 \)) dafür, dass die Münze zu Gunsten von Kopf (K) gefälscht ist.

Beispiel (Forts.): Beim Spermasexing (vgl. Kapitel 2.6) wurden \(x = 11 \) Kuhkälber geboren von insgesamt 12 Kälbern. Es scheint ziemlich klar zu sein, dass dies nicht reiner Zufall sein kann. Wir wollen trotzdem noch sehen, was der Test sagt:

1. **Modell**: \(X \): Anzahl weiblicher Kälber;
 \(X \sim \text{Binomial}(12, \pi) \)
2. **Nullhypothese**: \(H_0 : \pi = \pi_0 = 0.5 \),
 Alternative: \(H_A : \pi > \pi_0 = 0.5 \).
3. **Teststatistik**: \(T \): Anzahl weiblicher Kälber;
 Verteilung der Teststatistik unter \(H_0 \): \(T \sim \text{Bin}(12, 0.5) \)
4. **Signifikanzniveau**: \(\alpha = 0.05 \)
5. **Verwerfungsbereich**: Mit dem Computer oder Taschenrechner kann man folgende Tabelle leicht berechnen:

 \[
 \begin{array}{cccccc}
 c & 8 & 9 & 10 & 11 & 12 \\
 P(X \geq c) & 0.194 & 0.073 & 0.019 & 0.003 & 0.0002 \\
 \end{array}
 \]

 Daher ist der Verwerfungsbereich für die Teststatistik: \(K = [10, 11, 12] \).

Für das Signifikanzniveau \(\alpha = 0.05 \) ist also der Verwerfungsbereich \(K = \{10, 11, 12\} \). Für das Niveau \(\alpha = 0.01 \) ist \(K = \{11, 12\} \). Für beide Niveaus wird die Nullhypothese also verworfen, d.h. der Effekt der Methode “Spermasexing” ist statistisch signifikant, sowohl auf dem 5%- als auch auf dem 1%-Niveau.

Wenn jemand nur an einer Methode interessiert ist, deren Erfolgswahrscheinlichkeit grösser als 70% ist (weil die Methode z.B. erst dann ökonomisch interessant wird), dann wird sie in Punkt 2 des Tests folgende Änderung machen:

\[
\begin{align*}
H_0 : \pi &= \pi_0 = 0.7 \\
H_A : \pi &> \pi_0 = 0.7 \\
\end{align*}
\]

Mit Hilfe einer Tabelle erhält man aus \(P_{\pi=0.7}(X \in K) \leq 0.05 \) den Verwerfungsbereich \(K = \{12\} \). Der beobachtete Wert der Teststatistik liegt nun nicht mehr im Verwerfungsbereich. Daher wird \(H_0 \) belassen, d.h. eine Erfolgswahrscheinlichkeit von über 70% ist nicht signifikant nachgewiesen.

Bisher haben wir den Verwerfungsbereich \(K \) immer exakt berechnet mit Hilfe einer Tabelle der kumulativen Verteilungsfunktion der Binomialverteilung (statistische Software liefert solche Tabellen). Für Überschlagsrechnungen kann man auch die sogenannte **Normalapproximation** benutzen: Für \(\alpha = 0.05 \) und die Alternative \(\pi > \pi_0 \) gilt

\[
c \approx n\pi_0 + 1.64\sqrt{n\pi_0(1-\pi_0)}
\]

aufgerundet auf die nächstgrössere ganze Zahl

^6Beachten Sie, dass ich hier ein kleines \(t \) und nicht \(T \) verwendet habe, weil ich eine konkrete Realisierung der Zufallsvariable \(T \) mit dem Buchstaben \(t \) bezeichnen will.
3.2 Schätzung, statistischer Test und Vertrauensintervall bei Binomial-Verteilung
(Stahel Kap. 7.2, 8.2, 9.1, 9.2)

Für $\alpha = 0.05$ und die Alternative $\pi < \pi_0$ gilt

$$c \approx n\pi_0 - 1.64\sqrt{n\pi_0(1-\pi_0)}$$

abgerundet auf die nächstkleinere ganze Zahl.

Für $\alpha = 0.05$ und die Alternative $\pi \neq \pi_0$ schliesslich erhält man c_o, bzw. c_u, indem man in den obigen Formeln 1.64 durch 1.96 ersetzt.

Beispiel: Wir betrachten wie in obigem Beispiel den Test mit den $n = 100$ Münzwürfen und testen $H_0 : \pi = 0.5$ gegen $H_A : \pi > 0.5$ auf dem $\alpha = 0.05$ Signifikanzniveau. Diesmal berechnen wir den Verwerfungsbereich mit Hilfe der Normalapproximation:

$$c \approx 100 \cdot 0.5 + 1.64 \cdot \sqrt{100 \cdot 0.5 \cdot (1-0.5)} = 58.2$$

Aufgerundet zur nächstgrösseren Zahl ist also $c \approx 59$. Daher ist der Verwerfungsbereich mit der Normalapproximation [59; 100]. Das Ergebnis entspricht dem Ergebnis in obigem Beispiel, bei dem wir die exakte Binomialverteilung verwendet haben.

Beispiel: Wir berechnen nun noch den Verwerfungsbereich für obiges Beispiel zum Spermasexing. Es gilt:

$$c \approx 12 \cdot 0.5 + 1.64 \cdot \sqrt{12 \cdot 0.5 \cdot (1-0.5)} = 8.83$$

Aufgerundet ergibt das $c \approx 9$. Der Verwerfungsbereich mit der Normalapproximation ist also [9, 10, 11, 12]. Beachten Sie, dass wir hier nicht das gleiche Ergebnis wie mit der Binomialverteilung erhalten (dort hatten wir als Verwerfungsbereich [10, 11, 12]). Die Normalapproximation macht also einen kleinen Fehler.

Allgemein kann man sagen, dass die Normalapproximation umso besser funktioniert, je grösser die Anzahl Versuche n ist. Sie funktioniert nicht so gut, wenn π nahe bei 0 oder 1 ist. Als Faustregel kann man sich merken, dass die Normalapproximation gut ist, falls $n\pi > 5$ und $n(1-\pi) > 5$.

Fehler 1. und 2. Art

Bei einem statistischen Test treten 2 Arten von Fehlern auf.

Fehler 1. Art: Fälschliches Verwerfen von H_0, obwohl H_0 richtig ist.

Fehler 2. Art: Fälschliches Beibehalten von H_0, obwohl die Alternative zutrifft.

Per Definition des Fehlers 1. Art gilt

$$P(\text{Fehler 1. Art}) = P_{H_0}(X \in K) \leq \alpha.$$

Die beiden Fehlerarten konkurrenzieren sich gegenseitig:

$$P(\text{Fehler 2. Art}) \text{ wird grösser falls } \alpha \text{ kleiner gewählt wird.}$$

Die Wahl von α steuert also einen Kompromiss zwischen Fehler 1. und 2. Art. Weil man aber primär einen Fehler 1. Art vermeiden will, wählt man α klein, z.B. $\alpha = 0.05$.

\footnote{Wissenschaftler arbeiten genau und haben Angst, einen Humbug zu publizieren, der sich dann als falsch herausstellt. Wenn man einen Effekt beobachtet, möchte man sicher sein, dass es sich nicht bloss um Zufall handelt (Fehler 1. Art soll vermieden werden). Dabei nimmt man in Kauf, dass man manchmal einen wichtigen Effekt verpasst (Fehler 2. Art ist zweitrangig).}
Beispiel (Forts. Spermasexing): Beim Spermasexing nehmen wir einmal an, dass in Tat und Wahrheit der Parameter $\pi = 0.8 \in H_A$ ist (die Spezifikationen des Tests sind wie oben: $H_0 : \pi = 0.7$, $H_A : \pi > 0.7$ und $\alpha = 0.05$). Wie gross ist die Wahrscheinlichkeit, dass unser Test die Richtigkeit der Alternativhypothese $H_A : \pi > 0.7$ nicht entdeckt? Da der Verwerfungsbereich $K = \{12\}$ ist (siehe oben), gilt:

$$P(\text{Test behält } H_0 \text{ bei, obschon } \pi = 0.8) = P_{\pi=0.8}(X \leq 11) = 1 - P_{\pi=0.8}(X = 12) = 0.93.$$

Das heisst, dass ein Fehler 2. Art (unter der Annahme dass $\pi = 0.8$) mit grosser Wahrscheinlichkeit auftritt. Das ist natürlich enttäuschend, wenn $\pi = 0.8$ ökonomisch interessant wäre. Bei der kleinen Anzahl von 12 Versuchen, kann man einfach nur sehr schlecht zwischen $\pi = 0.7$ und $\pi = 0.8$ entscheiden. Beachte, dass die Wahrscheinlichkeit für einen Fehler 1. Art höchstens 0.05, also klein ist.

Statt der Wahrscheinlichkeit eines Fehlers 2. Art gibt man oft die sogenannte Macht an. Diese ist definiert als

$$\text{Macht} = 1 - P(\text{Fehler 2. Art}) = P(\text{Verwerfen von } H_0 \text{ falls } H_A \text{ stimmt}) = P_{H_A}(X \in K).$$

Die Macht gibt also die Wahrscheinlichkeit an, H_A zu entdecken, falls H_A richtig ist.

Beispiel (Forts. Spermasexing) Im Beispiel ist die Macht $1 - 0.93 = 0.07$.

Wenn man mehrere Alternativen hat, hängen die Macht und die Wahrscheinlichkeit eines Fehlers 2. Art davon ab, welche Alternative man betrachtet.

Einseitige und zweiseitige Tests

Im Beispiel mit dem Münzwurf wollten wir testen, ob es sich um eine faire Münze handelt. Wir hatten die Vermutung, dass Kopf zu oft oben liegt und haben deshalb einen einseitigen Test ($H_A : \pi > \pi_0$ oder $H_A : \pi < \pi_0$) gemacht. Die Münze wäre aber auch unfair, wenn Kopf zu häufig oder zu selten oben liegt. In diesem Fall ist ein zweiseitiger Test angebracht ($H_A : \pi \neq \pi_0$). Oft stellt sich die Frage, ob ein einseitiger oder ein zweiseitiger Test für eine Fragestellung besser geeignet wäre. Im Folgenden zeigen wir, dass beide Tests Vor- und Nachteile haben.

Zweiseitige Tests detektieren sowohl zu viele Erfolge als auch zu wenige Erfolge. Wenn der Test einseitig mit $H_A : \pi > \pi_0$ ist, dann detektiert er nur zu viele Erfolge. Wenn der Test einseitig mit $H_A : \pi < \pi_0$ ist, dann detektiert er nur zu wenige Erfolge. Damit scheint der zweiseitige Test überlegen zu sein. Für die “Sehschärfe” in beide Richtungen zahlt man allerdings einen Preis:

- Der zweiseitige Test detektiert zwar Abweichungen in beide Richtungen von H_0, aber die Abweichung muss sehr deutlich sein, damit er sie erkennt. D.h., die Macht des zweiseitigen Tests ist klein.
- Der einseitige Test detektiert nur Abweichungen in eine Richtung von H_0, aber die Abweichungen müssen nicht so gross sein, damit er sie erkennt. D.h., die Macht des einseitigen Tests ist gross.

Es ist gängige Praxis, die Entscheidung bzgl. der Form von H_A zu fällen, bevor die Beobachtungen gemacht werden.

Beispiel: Wir haben wieder eine Münze und wollen prüfen, ob sie fair ist (Kopf und Zahl mit Wahrscheinlichkeit 50%). Wir werfen 10 Münzen. Zunächst machen wir einen einseitigen Test:

1. **Modell:** X: Anzahl Würfe, die Kopf zeigen, wenn man 10 mal wirft.
 $X \sim Bin(10, \pi)$.

2. **Nullhypothese**: $H_0: \pi = 0.5$
 Alternative: $H_A: \pi > 0.5^8$

3. **Teststatistik**: T: Anzahl Würfe, die Kopf zeigen, wenn man 10 mal wirft.
 Verteilung der Teststatistik unter H_0: $T \sim Bin(10, 0.5)$

4. **Signifikanzniveau**: $\alpha = 0.05$

5. **Verwerfungsbereich**: $K_1 = \{8, 9, 10\}$

Im zweiseitigen Test erhalten wir einen anderen Verwerfungsbereich:

1. **Modell**: X: Anzahl Würfe, die Kopf zeigen, wenn man 10 mal wirft.
 $X \sim Bin(10, \pi)$.

2. **Nullhypothese**: $H_0: \pi = 0.5$
 Alternative: $H_A: \pi \neq 0.5$

3. **Teststatistik**: T: Anzahl Würfe, die Kopf zeigen, wenn man 10 mal wirft.
 Verteilung der Teststatistik unter H_0: $T \sim Bin(10, 0.5)$

4. **Signifikanzniveau**: $\alpha = 0.05$

5. **Verwerfungsbereich**: Den zweiseitigen Verwerfungsbereich kann man leicht berechnen:
 Zunächst bestimmt man die Verwerfungsbereiche ($K_>$ und $K<$) für die einseitigen Alternativen $H_A: \pi > 0.5$ und $H_A: \pi < 0.5$ mit dem halben Signifikanzniveau $\frac{\alpha}{2}$, also hier 0.025. Anschließend nimmt man die Vereinigung der beiden Verwerfungsbereiche. Mit folgender Tabelle9 ergibt sich $K_> = \{9, 10\}$. Für die andere Alternativhypothese ergibt sich $K_< = \{0, 1\}$.

 \[
 \begin{array}{cccccc}
 P(X \geq c) & 0 & 1 & 2 & 8 & 9 & 10 \\
 P(X \leq c) & 0.001 & 0.011 & 0.055 & 0.011 & 0.001 \\
 \end{array}
 \]

 Für den Verwerfungsbereich des zweiseitigen Tests erhalten wir also:

 $K_2 = K_< \cup K_> = \{0, 1\} \cup \{9, 10\}$

Angenommen, in Wahrheit ist die Wahrscheinlichkeit für Kopf $\pi = 0.8$. Die Macht entspricht der Wahrscheinlichkeit, dass das wahre Modell ($\pi = 0.8$) eine Beobachtung erzeugt, die in den Verwerfungsbereich fällt. Diese Wahrscheinlichkeiten können wir leicht ausrechnen. Zunächst berechnen wir die Macht M_1 des einseitigen Tests (wir nehmen an, dass $X \sim Bin(10, 0.8)$):

 \[
 M_1 = P(X \in K_1) = P(X \in \{8, 9, 10\}) = \\
 = P(X = 8) + P(X = 9) + P(X = 10) = \\
 = \binom{10}{8} 0.8^8 0.2^2 + \binom{10}{9} 0.8^9 0.2^1 + \binom{10}{10} 0.8^{10} = 0.68
 \]

8So detektieren wir nur, wenn Kopf “zu häufig” vorkommt. Um zu testen, ob Kopf “zu selten” vorkommt, hätten wir $H_A: \pi < 0.5$ wählen müssen. Ich habe mich in diesem Beispiel willkürlich für die erste Variante entschieden.

9Ich habe in der Tabelle nur die relevanten Zahlen eingetragen. Können Sie sich erklären, warum die Zahlen in der Tabelle in beiden Zeilen gleich sind? Wäre das auch so, wenn wir $H_0: \pi = 0.7$ testen würden?
Nun berechnen wir die Macht M_2 des zweiseitigen Tests (wir nehmen wieder an, dass $X \sim \text{Bin}(10, 0.8)$):

\begin{align*}
M_2 &= P(X \in K_2) = P(X \in \{0, 1\} \cup \{9, 10\}) = \\
&= P(X = 0) + P(X = 1) + P(X = 9) + P(X = 10) = \\
&= \binom{10}{0} 0.2^{10} + \binom{10}{1} 0.8^9 0.2^1 + \binom{10}{9} 0.8^{10} 0.2^1 + \binom{10}{10} 0.8^{10} = 0.38
\end{align*}

Die Macht des einseitigen Tests ist also viel grösser als die des zweiseitigen Tests. Wenn man sich also sicher ist, dass nur die Abweichung in die eine Richtung von der Nullhypothese relevant ist, ist der einseitige Test wegen der grösseren Macht vorzuziehen.

Der P-Wert

Der P-Wert ist ein Wert zwischen 0 und 1, der angibt, wie gut Nullhypothese und Daten zusammenpassen (0: passt gar nicht; 1: passt sehr gut). Genauer gesagt ist der P-Wert die Wahrscheinlichkeit, unter Gültigkeit der Nullhypothese das erhaltene Ergebnis oder ein extremeres zu erhalten (vgl. Abb. 3.1). Mit dem P-Wert wird also angedeutet, wie extrem das Ergebnis ist: je kleiner der P-Wert, desto mehr spricht das Ergebnis gegen die Nullhypothese. Werte kleiner als eine im voraus festgesetzte Grenze, wie 5%, 1% oder 0.1% sind Anlass, die Nullhypothese abzulehnen.

Es gibt noch eine andere, äquivalente Definition des P-Wertes:\footnote{"extrem" bezieht sich auf die Alternativhypothese. Wenn $H_A : \pi > \pi_0$, dann sind sehr grosse Anzahlen von Treffern extrem. Wenn $H_A : \pi < \pi_0$, dann sind sehr kleine Anzahlen von Treffern extrem. Wenn $H_A : \pi \neq \pi_0$, dann sind sowohl sehr grosse als auch sehr kleine Anzahlen von Treffern extrem.} Die Entscheidung eines Tests mit “Verwerfen” oder “Beibehalten” der Nullhypothese H_0 ist abhängig von der etwas willkürlichen Wahl des Signifikanzniveaus α. Mathematisch bedeutet dies, dass der Verwerfungsbereich $K = K(\alpha)$ abhängig von der Wahl von α ist.

Man kann sich einfach überlegen, dass qualitativ Folgendes gilt:

\[\text{Verwerfungsbereich } K = K(\alpha) \text{ wird kleiner mit kleiner werdendem } \alpha,\]

denn α ist ja die Wahrscheinlichkeit für einen Fehler 1. Art, und diese wird natürlich dann klein, wenn wir weniger oft die Nullhypothese H_0 verwerfen. Umgekehrt gilt natürlich auch, dass $K = K(\alpha)$ grösser wird mit wachsendem α. Dies impliziert: es gibt ein Signifikanzniveau, bei dem die Nullhypothese H_0 “gerade noch” verworfen wird.

Der P-Wert ist definiert als das kleinste Signifikanzniveau, bei dem die Nullhypothese H_0 (gerade noch) verworfen wird.

Zusammenfassend haben wir also zwei äquivalente Definitionen des P-Wertes:

1. Der P-Wert ist die Wahrscheinlichkeit, unter Gültigkeit der Nullhypothese das beobachtete Ergebnis oder ein extremeres zu erhalten.

2. Der P-Wert ist das kleinste Signifikanzniveau, bei dem die Nullhypothese H_0 (gerade noch) verworfen wird.

\footnote{Auf den ersten Blick erscheint diese zweite Definition wohl viel komplizierter. Sie sollten sie aber trotzdem durchdenken, weil Sie damit die Begriffe Signifikanzniveau und Vertrauensintervall besser verinnerlichen. In der Praxis ist die erste Version allerdings besser zu behalten.}
3.2 Schätzung, statistischer Test und Vertrauensintervall bei Binomial-Verteilung
(Stahel Kap. 7.2, 8.2, 9.1, 9.2)

Der P-Wert liefert mehr Information als bloss die Test-Entscheidung bei einem vorbestimmten Signifikanzniveau \(\alpha \) (z.B. \(\alpha = 0.05 \)). Insbesondere gilt aufgrund der Definition des P-Werts:

- verwerfe \(H_0 \) falls \(\text{P-Wert} \leq \alpha \)
- belasse \(H_0 \) falls \(\text{P-Wert} > \alpha \).

Zusätzlich zu dieser Entscheidungsregel quantifiziert der P-Wert wie signifikant eine Alternative ist (d.h. wie gross die Evidenz ist für das Verwerfen von \(H_0 \)). Manchmal werden sprachliche Formeln oder Symbole anstelle der P-Werte angegeben:

- P-Wert \(\approx 0.05 \) : schwach signifikant, “.”
- P-Wert \(\approx 0.01 \) : signifikant, “∗”
- P-Wert \(\approx 0.001 \) : stark signifikant, “∗∗”
- P-Wert \(\leq 10^{-4} \) : äusserst signifikant, “∗∗∗”

Beispiel (Forts.): Beim Spermasexing betrachten wir die Null-Hypothese \(\pi = 0.7 \) und die Alternative \(\pi > 0.7 \). Beobachtet wurde \(x = 11 \), aufgefasst als Realisierung von \(X \sim \text{Binomial}(12, \pi) \). Der P-Wert ist dann:

\[
P_{\pi=0.7}(X \geq 11) = P_{\pi=0.7}(X = 11) + P_{\pi=0.7}(X = 12) = 0.085.
\]

Wie wir bereits früher gesehen haben, liefert dies kein Verwerfen von \(H_0 \) auf dem Signifikanzniveau \(\alpha = 0.05 \) (weil der P-Wert grösser als 0.05 ist). Auf dem Signifikanzniveau \(\alpha = 0.1 \) könnte man \(H_0 \) allerdings verwerfen, weil der P-Wert kleiner als 0.1 ist.

3.2.3 Vertrauensintervall

Informativer als ein statistischer Test ist ein sogenanntes Vertrauensintervall (auch Konfidenzintervall genannt). Es liefert eine Antwort auf die 3. Grundfragestellung von Kapitel 3.1: Welche Werte von \(\pi \) sind mit der Beobachtung \(x \) kompatibel (statistisch vereinbar).

Ein Vertrauensintervall \(I \) zum Niveau \(1 - \alpha \) besteht aus allen Parameterwerten, die im Sinne des statistischen Tests zum Signifikanzniveau \(\alpha \) mit der Beobachtung verträglich sind (üblicherweise nimmt man den zweiseitigen Test). Mathematisch heisst dies:

\[
I = \{ \pi_0; \ \text{Nullhypothese} \ H_0 : \ \pi = \pi_0 \ \text{wird belassen} \}.
\]
(3.1)

Diese Beziehung stellt eine Dualität zwischen Tests und Vertrauensintervallen dar.

Die Berechnung erfolgt in der Praxis meist mit dem Computer. Falls \(n \) “gross” ist, so kann die sogenannte Normalapproximation (siehe Kap. 4.6) benützt werden. Letztere ergibt folgendes approximatives Konfidenzintervall \(I \) zum Niveau \(1 - \alpha = 0.95 \) für den unbekannten Parameter \(\pi \):

\[
I \approx \frac{x}{n} \pm 1.96 \sqrt{\frac{x}{n} \left(1 - \frac{x}{n}\right) \frac{1}{n}}
\]
(3.2)

Das Vertrauensintervall \(I = I(x) \) hängt von der Beobachtung ab. Wenn man anstelle der Beobachtung die zugehörige Zufallsvariable \(X \) einsetzt, so ist \(I(X) \) zufällig und hat die Eigenschaft:

\[
P_\pi(\pi \in I(X)) \gtrsim 1 - \alpha \quad \text{für jedes} \ \pi.
\]
Dies kann so interpretiert werden, dass das Konfidenzintervall I den wahren Parameter π mit Wahrscheinlichkeit $1 - \alpha$ mit einschließt.

Beispiel: Um das zu veranschaulichen, haben wir mit dem Computer folgende Situation simuliert: Hundert Personen gehen auf den Jahrmarkt. Alle kommen an einer Losbude vorbei, bei der die wahre Gewinnwahrscheinlichkeit $\pi = 0.1$ ist. Allerdings ist die Gewinnwahrscheinlichkeit nirgends angeschrieben, sodass die Personen sie nicht kennen. Jede Person beschließt nun 50 Lose zu kaufen und ein 95%-Vertrauensintervall für die Gewinnwahrscheinlichkeit zu bestimmen. Da ein 95%-Vertrauensintervall den wahren Parameter mit 95% Wahrscheinlichkeit enthält, sollten rund 95 Personen von den 100 den wahren Parameter in ihrem Vertrauensintervall haben\(^{12}\). In Abb. 3.2 ist das Ergebnis dieser Simulation dargestellt.

Beispiel (Forts.): Beim Spermasexing erhält man für ein zweiseitiges Konfidenzintervall zum Niveau $1 - \alpha = 0.95$ mittels einer Tabelle oder dem Computer für die Berechnung von (3.1):

$$I = (0.615, 0.998)$$

Das heisst, dass der wahre “Zucht”-Parameter π mit einer Wahrscheinlichkeit von 95% in I liegt. Es besteht also auf Grund der kleinen Stichprobe grosse Unsicherheit, wie erfolgreich die Methode bei langfristigem Einsatz tatsächlich sein wird. Die Näherungsformel in (3.2) ist für dieses Beispiel nicht besonders gut, weil $n = 12$ eher klein ist. Man erhält mit (3.2):

$$I \approx (0.760, 1.073)$$

Der rechte Endpunkt ist natürlich zu gross, denn der Parameter π ist ja kleiner oder gleich 1.

3.3 Software

In der Statistik-Software R ist die Funktion `binom.test` zum Durchführen eines Binomialtests schon vorprogrammiert. Um das Vertrauensintervall zu berechnen wird dort eine genauere (aber auch kompliziertere) Methode als die Normalapproximation verwendet. Sehen Sie sich die Hilfeseite mit `?binom.test` an.

Beispiel: Wir haben eine Münze hundertmal geworfen und 58 mal Kopf gesehen. Wir wollen einen Test mit den Hypothesen $H_0 : \pi = 0.5$ und $H_A : \pi \neq 0.5$ durchführen. Mit R erledigt das der Befehl

```
binom.test(x=58, n=100, p=0.5, alternative= "two.sided", conf.level=0.95)
```

Als Computeroutput erhalten wir Folgendes:

```
Exact binomial test

data: 58 and 100
number of successes = 58, number of trials = 100, p-value = 0.1332
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
  0.4771192 0.6780145
sample estimates:
  probability of success
        0.58
```

\(^{12}\)Wer es ganz genau wissen will: Es werden wahrscheinlich nicht genau 95 Personen sein. Die Anzahl Personen P, die den wahren Parameter in ihrem Vertrauensintervall haben ist binomialverteilt: $P \sim Bin(100, 0.95)$.
3.3 Software

In der ersten Zeile (data) werden die Inputdaten erneut aufgelistet. In der zweiten Zeile steht die Interpretation der Inputdaten für den Binomialtest: Wir hatten 58 Erfolge bei 100 Versuchen. Bei der von uns festgelegten Nullhypothese und Alternative entspricht das einem P-Wert von 0.1332. In der dritten Zeile wird die Alternativhypothese in Worten ausformuliert. In der vierten und fünften Zeile steht das 95%-Vertrauensintervall für die Gewinnwahrscheinlichkeit: Mit 95% Wahrscheinlichkeit liegt die Gewinnwahrscheinlichkeit im Bereich [0.477, 0.678]. In den letzten drei Zeilen erscheint noch der Punktschätzer für die Gewinnwahrscheinlichkeit. Wie wir schon vorher gesehen hatten, ist er sowohl für die Momentenmethode also auch für die Maximum-Likelihood-Methode 0.58.

Beispiel (Forts. Spermasexing) Wir berechnen den P-Wert aus obigem Beispiel nun mit dem Computer: Beim Spermasexing betrachten wir die Null-Hypothese $\pi = 0.7$ und die Alternative $\pi > 0.7$. Beobachtet wurde $x = 11$, aufgefasst als Realisierung von $X \sim \text{Binomial}(12, \pi)$. Mit R lässt sich der Test so durchführen:

```r
binom.test(x=11, n=12, p=0.7, alternative= "greater", conf.level=0.95)
```

Das Ergebnis ist:

```
Exact binomial test

data: 11 and 12
number of successes = 11, number of trials = 12, p-value = 0.08503
alternative hypothesis: true probability of success is greater than 0.7
95 percent confidence interval:
  0.6613193 1.0000000
sample estimates:
  probability of success
  0.9166667
```

Der Computer liefert den gleichen P-Wert wie in obigem Beispiel.
Einseitiger Test mit Alternative $H_A: \pi > \pi_0$

Verteilung von X unter $H_0: \pi = \pi_0$

Summe der Werte = P-Wert

Abbildung 3.1: Schematische Darstellung des P-Werts bei einer einseitigen Alternative $H_A : \pi > \pi_0$.
Abbildung 3.2: Vergleich von 100 95%-Vertrauensintervallen. Auf der x-Achse ist die Gewinnwahrscheinlichkeit aufgetragen. Der wahre Wert ist 0.1. Darüber sind 100 horizontale Striche gezeichnet. Jeder Strich repräsentiert das 95%-Vertrauensintervall für die Gewinnwahrscheinlichkeit von einer der 100 Personen. Der vertikale Strich zeigt die Position der wahren Gewinnwahrscheinlichkeit. Man sieht, dass 4 Vertrauensintervall die wahre Gewinnwahrscheinlichkeit nicht enthalten (sie sind rot markiert). Die übrigen 96 Vertrauensintervalle enthalten die wahre Gewinnwahrscheinlichkeit. Die Abbildung zeigt also, dass ein 95%-Vertrauensintervall mit ca. 95% Wahrscheinlichkeit den wahren Parameter enthält.
Kapitel 4

Modelle und Statistik für Messdaten

4.1 Lernziele

- Sie kennen Methoden der deskriptiven Statistik, können sie interpretieren und folgende Größen ausrechnen: arithmetisches Mittel, Standardabweichung, Varianz, Quantil, Median, Korrelation; Histogramm, Boxplot, empirische kumulative Verteilungsfunktion, Normal-Plot, Streudiagramm.

- Sie kennen das Konzept der Wahrscheinlichkeitsdichte und der kumulativen Verteilungsfunktion; Sie kennen die uniforme Verteilung, die Exponentialverteilung und die Normalverteilung. Sie können die Normalverteilung standardisieren und mit der Tabelle für beliebige Normalverteilungen Wahrscheinlichkeiten ausrechnen.

- Sie kennen das Gesetz der großen Zahlen und das \sqrt{n}-Gesetz. Sie kennen den Zentralen Grenzwertsatz und können ihn auf einfache Sachverhalte anwenden.

- Sie kennen den Unterschied zwischen Standardabweichung einer Einzelbeobachtung X_i und dem Standardfehler.

- Sie können den t-Test für zwei Stichproben auf Papier und Computer durchführen (eins seitig, zweiseitig; gepaart, ungepaart). Sie können entscheiden, ob ein einseitiger/zweiseitiger und gepaarter/ungepaarter Test angebracht ist. Sie können Computeroutputs eines t-Tests interpretieren (bei der Software R).

- Sie wissen, dass es den Vorzeichen-Test (evtl. auch den Wilcoxon-Test) als Alternative zum t-Test gibt.
4.2 Einleitung

In vielen Anwendungen hat man es nicht mit Zähl-, sondern mit Messdaten zu tun, bei denen die Werte im Prinzip kontinuierlich sind. Zur Illustration betrachten wir zwei Datensätze. Beim ersten werden zwei Methoden zur Bestimmung der latenten Schmelzwärme von Eis verglichen. Wiederholte Messungen der freigesetzten Wärme beim Übergang von Eis bei \(-0.72^\circ\) C zu Wasser bei \(0^\circ\) C ergaben die folgenden Werte (in cal/g):

<table>
<thead>
<tr>
<th>Methode A</th>
<th>79.98</th>
<th>80.04</th>
<th>80.02</th>
<th>80.04</th>
<th>80.03</th>
<th>80.04</th>
<th>79.97</th>
<th>80.05</th>
<th>80.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methode A</td>
<td>80.02</td>
<td>80.00</td>
<td>80.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methode B</td>
<td>80.02</td>
<td>79.94</td>
<td>79.98</td>
<td>79.97</td>
<td>79.97</td>
<td>79.03</td>
<td>79.95</td>
<td>79.97</td>
<td></td>
</tr>
</tbody>
</table>

Obwohl die Messungen mit der grösstmöglichen Sorgfalt durchgeführt und alle Störeinflüsse ausgeschaltet wurden, varieren die Messungen von Fall zu Fall. Wir werden diese Variationen innerhalb der Messreihen als zufällig modellieren, das heisst wir interpretieren diese Werte als Realisierungen von Zufallsvariablen. Wir werden dann die Frage beantworten, ob die Unterschiede zwischen den Methoden ebenfalls als zufällig angesehen werden können, oder ob ein systematischer Unterschied plausibler ist, der auch in der ganzen Population, d.h. in weiteren Messungen, bestehen bleibt. Im letzteren Fall werden wir dann noch zusätzlich angeben, wie gross der systematische Unterschied etwa ist.

<table>
<thead>
<tr>
<th>Individuum</th>
<th>Vorher</th>
<th>Nachher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>67</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>43</td>
</tr>
</tbody>
</table>

Wieder variieren die Werte in einer nicht vorhersehbaren Art. Diesmal handelt es sich jedoch weniger um Messfehler, sondern um Variation zwischen Individuen (vermutlich gäbe es auch noch eine gewisse Variation beim gleichen Individuum, wenn der Test wiederholt würde). Die Aggregation bei diesen 11 Individuen ist meistens, aber nicht immer nach dem Rauchen höher, und die Fragestellung lautet, ob es sich hier um einen zufälligen Effekt handelt, der auf die spezifische Stichprobe beschränkt ist, oder ob man dieses Resultat auf eine grössere Population verallgemeinern kann. Im letzteren Fall möchte man wieder angeben, wie gross die mittlere Zunahme etwa ist.

4.3 Deskriptive Statistik (Stahel, Kap. 2 und 3.1, 3.2)

Bei einer statistischen Analyse ist es wichtig, nicht einfach blind ein Modell anzupassen oder ein statistisches Verfahren anzuwenden. Die Daten sollten immer mit Hilfe von geeigneten grafischen Mitteln dargestellt werden, da man nur auf diese Weise unerwartete Strukturen und Besonderheiten entdecken kann. Kennzahlen können einen Datensatz grob charakterisieren. Im Folgenden werden die Daten mit \(x_1, \ldots, x_n\) bezeichnet.

4.3.1 Kennzahlen

Häufig will man die Verteilung der Daten numerisch zusammenfassen. Dazu braucht man mindestens zwei Kenngrössen, eine für die Lage und eine für die Streuung. Die bekanntesten solchen
Größen sind das arithmetische Mittel für die Lage,
\[
\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]
und die empirische Standardabweichung für die Streuung,
\[
s_x = \sqrt{\text{var}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}.
\]
(der Nenner \(n-1\), anstelle von \(n\), ist mathematisch begründet und hat die Eigenschaft, dass kein "systematischer" Fehler auftritt).

Alternative Kenngrößen sind der Median als Lagemass und die Quartilsdifferenz als Streuungsmaß. Diese werden mit Hilfe von sogenannten Quantilen definiert.

Quantile

Das empirische \(\alpha\)-Quantil ist anschaulich gesprochen der Wert, bei dem \(\alpha \times 100\%\) der Datendpunkte kleiner und \((1 - \alpha) \times 100\%\) der Punkte größer sind.

Zur formalen Definition führen wir die geordneten Werte ein:
\[
x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}.
\]

Das empirische \(\alpha\)-Quantil ist dann gleich
\[
\frac{1}{2}(x_{(\alpha n)} + x_{(\alpha n + 1)}) \quad \text{falls } \alpha \cdot n \text{ eine ganze Zahl ist},
\]
\[
x_{(k)} \quad \text{wobei } k = \alpha n + \frac{1}{2} \text{ gerundet auf eine ganze Zahl}; \quad \text{falls } \alpha \cdot n \text{ keine ganze Zahl ist}.
\]

Der (empirische) Median ist das empirische 50\%-Quantil: d.h., es markiert die "mittlere" Beobachtung, wenn die Daten sortiert wurden. Es ist also ein Mass für die Lage der Daten.

Die Quartilsdifferenz ist gleich
\[
\text{empirisches 75\%-Quantil} - \text{empirisches 25\%-Quantil}
\]
und ist ein Streuungsmaß für die Daten.

Median und Quartilsdifferenz haben den Vorteil, dass sie robust sind: das heisst, dass sie viel weniger stark durch extreme Beobachtungen beeinflusst werden können als arithmetisches Mittel und Standardabweichung.

Beispiel: Messung der Schmelzwärme von Eis mit Methode A

Das arithmetische Mittel der \(n = 13\) Messungen ist \(\overline{x} = 80.02\) und die Standardabweichung ist \(s_x = 0.024\). Ferner ist für \(n = 13\) 0.25\(n = 3.25\), 0.5\(n = 6.5\) und 0.75\(n = 9.75\). Damit ist das 25\%-Quantil gleich \(x_{(4)} = 80.02\), der Median gleich \(x_{(7)} = 80.03\) und das 75\%-Quantil gleich \(x_{(10)} = 80.04\). Wenn bei der grössten Beobachtung \(x_9 = 80.05\) ein Tippfehler passiert wäre und \(x_9 = 800.5\) eingefügt worden wäre, dann wäre \(\overline{x} = 135.44\) und der Median nach wie vor \(X_{(7)} = 80.03\). Das arithmetische Mittel wird also durch Veränderung einer Beobachtung sehr stark beeinflusst, während der Median gleich bleibt - er ist "robust".
Korrelation und empirische Korrelation

Die gemeinsame Verteilung von abhängigen Zufallsvariablen X und Y ist i.A. kompliziert, und man begnügt man sich oft mit einer vereinfachenden Kennzahl zur Beschreibung der Abhängigkeit. Die Kovarianz und Korrelation zwischen X und Y sind wie folgt definiert:

$$\text{Cov}(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] \quad \text{(Kovarianz)}$$

$$\text{Corr}(X,Y) = \rho_{XY} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} \quad \text{(Korrelation)},$$

wobei $\sigma_X = \sqrt{\text{Var}(X)}$, und analog für σ_Y.

Die Korrelation ρ_{XY} ist eine dimensionslose, normierte Zahl mit Werten $\rho_{XY} \in [-1,1]$.

Die Korrelation misst Stärke und Richtung der linearen Abhängigkeit zwischen X und Y. Es gilt

$$\text{Corr}(X,Y) = +1 \text{ genau dann wenn } Y = a + bX \text{ für ein } a \in \mathbb{R} \text{ und ein } b > 0,$$

$$\text{Corr}(X,Y) = -1 \text{ genau dann wenn } Y = a + bX \text{ für ein } a \in \mathbb{R} \text{ und ein } b < 0.$$

Überdies gilt:

$$X \text{ und } Y \text{ unabhängig } \implies \text{Corr}(X,Y) = 0. \quad (4.1)$$

Die Umkehrung gilt i.A. nicht.

Für die numerische Zusammenfassung der Abhängigkeit ist die empirische Korrelation r (oder auch mit $\hat{\rho}$ bezeichnet) am gebräuchlichsten:

$$r = \frac{s_{xy}}{s_xs_y}, \quad s_{xy} = \frac{\sum_{i=1}^{n}(x_i - \overline{x})(y_i - \overline{y})}{n - 1}.$$

Standardisierung

Durch Verschiebung und Skalierung der Werte kann man erreichen, dass zwei oder mehrere Datensätze die gleiche Lage und Streuung haben. Insbesondere kann man einen Datensatz so standardisieren, dass das arithmetische Mittel gleich Null und die Standardabweichung gleich 1 ist. Dies erreicht man mittels der linear transformierten Variablen

$$z_i = \frac{x_i - \overline{x}}{s_x} \quad (i = 1, \ldots, n).$$

Alle Aspekte einer Verteilung, die bei einer Verschiebung oder Skalierung unverändert bleiben, machen die Form der Verteilung aus. Dazu gehört insbesondere die Schiefe (Asymmetrie) der Verteilung, für die es auch Kennzahlen gibt.
4.3 Deskriptive Statistik (Stahel, Kap. 2 und 3.1, 3.2)

Abbildung 4.1: Es sind 21 verschiedene Datensätze dargestellt, die je aus vielen Beobachtungs-

paaren \((x, y)\) bestehen. Für jedes Paar wurde ein Punkt gezeichnet. Über jedem Datensatz steht

jeweils die zugehörige empirische Korrelation. Bei perfektem linearen Zusammenhang, ist die

empirische Korrelation +1, -1 oder 0 (je nachdem ob die Steigung positiv, negativ oder null ist;
siehe zweite Zeile). Je mehr die Punkte um den linearen Zusammenhang streuen, desto kleiner

wird der Betrag der empirischen Korrelation (siehe erste Zeile). Da die empirische Korrelation nur

den linearen Zusammenhang misst, kann es einen Zusammenhang zwischen den beiden Variablen

\(x\) und \(y\) geben, auch wenn die empirische Korrelation null ist (siehe unterste Zeile).

4.3.2 Grafische Methoden

Einen Überblick über die auftretenden Werte ergibt das Histogramm. Es gibt verschiedene Ar-

ten von Histogrammen; wir behandeln nur die gebräuchlichste. Um ein Histogramm zu zeichnen,
bildet man Klassen konstanter Breite und zählt, wie viele Beobachtungen in jede Klasse fallen.

Dann zeichnet man für jede Klasse einen Balken, dessen Höhe proportional zur Anzahl Beob-

achtungen in dieser Klasse ist.\(^1\)

Beim Boxplot hat man ein Rechteck, das vom empirischen 25%- und vom 75%-Quantil begrenzt

ist, und Linien, die von diesem Rechteck bis zum kleinsten- bzw. größten “normalen” Wert
gehen (per Definition ist ein normaler Wert höchstens 1.5 mal die Quartilsdifferenz von einem

der beiden Quartile entfernt). Zusätzlich gibt man noch Ausreisser durch Sterne und den Median
durch einen Strich an. Der Boxplot ist vor allem dann geeignet, wenn man die Verteilungen einer

Variablen in verschiedenen Gruppen (die im allgemeinen verschiedenen Versuchsbedingungen

entsprechen) vergleichen will; siehe Abbildung 4.3.

Die empirische kumulative Verteilungsfunktion \(F_n(\cdot)\) ist eine Treppenfunktion, die links von

\(x_{(1)}\) gleich null ist und bei jedem \(x_{(i)}\) einen Sprung der Höhe \(\frac{1}{n}\) hat (falls ein Wert mehrmals

vorkommt, ist der Sprung ein Vielfaches von \(\frac{1}{n}\)). In andern Worten:

\[
F_n(x) = \frac{1}{n} \text{Anzahl}\{i \mid x_i \leq x\}.
\]

Abbildung 4.4 zeigt die empirische kumulative Verteilungsfunktion für die Messungen der Schmelzwärme

von Eis mit Methode A.

\(^1\)Eine andere, weit verbreitete Art des Histogramms erlaubt Klassen unterschiedlicher Breite. Hier wird die

vertikale Achse so gewählt, dass die Fläche des Histogramms eins ist. Die Fläche jedes Balkens ist proportional

der Anzahl Beobachtungen in der zugehörigen Klasse. Auf diese Art kann man eine Wahrscheinlichkeitsdichte

(siehe unten) schätzen.
Verteilung der Punkte in einem IQ-Test

Abbildung 4.3: Boxplots für die zwei Methoden zur Bestimmung der Schmelzwärme von Eis.

Mehrere Variablen

Wenn wir bei jeder Versuchseinheit zwei verschiedene Grössen messen, d.h. wenn die Daten von der Form \((x_1, y_1), \ldots, (x_n, y_n)\) sind, interessiert man sich in erster Linie für die Zusammenhänge und Abhängigkeiten zwischen den Variablen. Diese kann man aus dem Streudiagramm ersehen, welches die Daten als Punkte in der Ebene darstellt: Die \(i\)-te Beobachtung entspricht dem Punkt mit Koordinaten \((x_i, y_i)\). Die Abbildung 4.5 zeigt das Streudiagramm für die Werte “vorher” und “nachher” bei der Blutplättchen-Aggregation. Man sieht einen klaren monotonen Zusammenhang, Individuen haben also eine Tendenz zu stärker, bzw. schwacher Aggregation,
4.3 Deskriptive Statistik (Stahel, Kap. 2 und 3.1, 3.2)

4.3.3 Analogien zwischen Modellen und Daten

Zufallsvariablen und Verteilungen beschreiben die Population. Daten \(x_1, \ldots, x_n \) interpretieren wir als Realisierungen von Zufallsvariablen \(X_1, \ldots, X_n \) (man könnte auch die \(n \) Daten als \(n \) Realisierungen von einer Zufallsvariable \(X \) interpretieren; die Schreibweise mit mehreren Zufallsvariablen hat jedoch Vorteile, siehe Abschnitt 4.6).

Abbildung 4.4: Empirische kumulative Verteilungsfunktion der Messungen der Schmelzwärme von Eis mit Methode A.

unabhängig vom Rauchen.

Abbildung 4.5: Streudiagramm der Blutplättchen-Aggregation vor und nach dem Rauchen einer Zigarette.
4.4 Stetige Zufallsvariablen und Wahrscheinlichkeitsverteilungen (Stahel, Kap. 6.1 – 6.4, 11.2)

Eine Zufallsvariable X heisst stetig, wenn deren Wertebereich W_X kontinuierlich ist; z.B. $W_X = \mathbb{R}$, \mathbb{R}^+ oder $[0, 1]$.

Konvention: Um bei einem Intervall zu notieren, ob die Grenzen innerhalb oder ausserhalb des Intervalls sein sollen, verwenden wir eckige und runde Klammern. Bei einer runden Klammer ist der Wert ausserhalb des Intervalls, bei einer eckigen Klammer ist der Wert innerhalb des Intervalls. Das Intervall $(a, b]$ beschreibt also alle Punkte x mit $x > a$ und $x \leq b$.

In Kapitel 2.5 hatten wir gesehen, dass die Wahrscheinlichkeitsverteilung einer diskreten Zufallsvariablen beschrieben werden kann, indem man die “Punkt”-Wahrscheinlichkeiten $P(X = x)$ für alle möglichen x im Wertebereich angibt. Für eine stetige Zufallsvariable X gilt jedoch:

$$P(X = x) = 0 \text{ für alle } x \in W_X.$$

Dies impliziert, dass wir die Wahrscheinlichkeitsverteilung von X nicht mittels der Angaben von “Punkt”-Wahrscheinlichkeiten beschreiben können.

Beispiel: Diesen Sachverhalt kann man intuitiv einfach an einem Beispiel verstehen. Angenommen, wir haben eine Zufallsvariable X_0, die jeden Wert aus der diskreten Menge $W_0 = \{0, 1, 2, ..., 8, 9\}$ mit gleicher Wahrscheinlichkeit annimmt. Die Wahrscheinlichkeit, dass die Zufallsvariable X_0 einen konkreten Wert x (denken Sie z.B. an $x = 3$) aus dem Bereich W_0 annimmt, ist also $P[X_0 = x] = \frac{1}{10}$, weil W_0 aus zehn Elementen besteht. Jetzt vergrössern wir die diskrete Menge, indem wir jede Zahl auf eine Nachkommastelle genau angeben: $W_1 = \{0.0, 0.1, 0.2, ..., 9.8, 9.9\}$. Die Zufallsvariable X_1 nimmt jeden Wert aus W_1 mit gleicher Wahrscheinlichkeit an; also ist $P[X_1 = x] = \frac{1}{100}$, weil W_1 aus hundert Elementen besteht. Konkret ist also auch $P[X_1 = 3.0] = \frac{1}{100}$. Wenn man noch eine Nachkommastelle hinzufügt, erhält man eine Menge aus tausend Elementen und die Wahrscheinlichkeit ein bestimmtes Element zufällig zu ziehen (z.B. die Zahl 3.00) ist nur noch $\frac{1}{1000}$. Wenn wir diese Entwicklung fortsetzen, kommen wir zu folgender Regel: Wenn jede der Zahlen zwischen 0 und kleiner als 10 mit i Nachkommastellen mit gleicher Wahrscheinlichkeit gezogen wird, ist die Wahrscheinlichkeit eine bestimmte Zahl zu ziehen nur $\frac{1}{10^i}$. Wenn wir unendlich viele Nachkommastellen zulassen, wird aus der diskreten Menge die kontinuierliche Menge $W_\infty = [0, 10]$. Entsprechend ist die Wahrscheinlichkeit ein bestimmtes Element aus dieser Menge, das auf unendlich viele Nachkommastellen genau bestimmt ist, zu ziehen gleich $P[X_\infty = x] = \frac{1}{\infty} = 0$.

Die Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariablen X kann jedoch beschrieben werden, indem man die Wahrscheinlichkeiten für alle Intervalle $(a, b]$ ($a < b$) angibt:

$$P(X \in (a, b]) = P(a < X \leq b).$$
Dazu genügt es, die kumulative Verteilungsfunktion \(F(x) = P(X \leq x) \) anzugeben, denn es gilt
\[
P(a < X \leq b) = F(b) - F(a).
\]
Zusammenfassend heißt dies, dass die Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariablen \(X \) durch die kumulative Verteilungsfunktion beschrieben werden kann.

Weil für stetige Zufallsvariablen \(P(X = a) = P(X = b) = 0 \), spielt es keine Rolle, ob wir \(<\) oder \(\leq\) schreiben. Obige Formeln sind jedoch auch richtig für diskrete Zufallsvariable.

4.4.1 (Wahrscheinlichkeits-)Dichte

Für stetige Zufallsvariablen können wir einen analogen Begriff zur “Punkt”-Wahrscheinlichkeit \(P(X = x) \) für diskrete Variablen mit Hilfe der Ableitung gewinnen.

Die (Wahrscheinlichkeits-)Dichte \(f(\cdot) \) ist definiert als Ableitung der kumulativen Verteilungsfunktion:
\[
f(x) = F'(x).
\]

Damit erhalten wir folgende Interpretation:
\[
P(x < X \leq x + h) \approx hf(x) \text{ falls } h \text{ klein ist.}
\]

Die Begründung dafür ist:
\[
\frac{P(x < X \leq x + h)}{h} = \frac{F(x + h) - F(x)}{h} \approx f(x)
\]
wobei die letzte Approximation aus der Definition einer Ableitung folgt.

Aus der Dichte kann man die kumulative Verteilungsfunktion zurückgewinnen:
\[
F(x) = \int_{-\infty}^{x} f(y) dy
\]
(weil \(F \) eine Stammfunktion von \(f \) ist und \(F(-\infty) = 0 \)). Ausserdem gelten die folgenden Eigenschaften:

1. \(f(x) \geq 0 \) für alle \(x \) (da \(F(\cdot) \) monoton wachsend ist)
2. \(P(a < X \leq b) = F(b) - F(a) = \int_{a}^{b} f(x) dx \) (Fläche zwischen \(a \) und \(b \) unter \(f(x) \))
3. \(\int_{-\infty}^{\infty} f(x) dx = 1 \) (wegen 2.)

4.4.2 Kennzahlen von stetigen Verteilungen

Der **Erwartungswert** \(\mathcal{E}(X) \) und die **Standardabweichung** \(\sigma_X \) einer stetigen Zufallsvariable \(X \) haben dieselbe Bedeutung wie im diskreten Fall in Kapitel 2.7: Der Erwartungswert beschreibt die mittlere Lage der Verteilung und die Standardabweichung deren Streuung. Die Formeln ergeben sich, indem wir beim diskreten Fall \(P(X = x) \) durch \(f(x) dx \) und die Summe durch ein Integral ersetzen:
\[
\mathcal{E}(X) = \int_{-\infty}^{\infty} x f(x) dx,
\]
\[
\text{Var}(X) = \mathcal{E}((X - \mathcal{E}(X))^2) = \int_{-\infty}^{\infty} (x - \mathcal{E}(X))^2 f(x) dx, \quad \sigma_X = \sqrt{\text{Var}(X)}.
\]
Die **Quantile** \(q(\alpha) \) \((0 < \alpha < 1)\) einer Zufallsvariablen \(X \), bzw. deren Verteilung, sind wie folgt definiert:

\[
P(X \leq q(\alpha)) = \alpha.
\]

Das heisst:

\[
F(q(\alpha)) = \alpha \iff q(\alpha) = F^{-1}(\alpha).
\]

Dies kann auch so interpretiert werden, dass \(q(\alpha) \) der Punkt ist, so dass die Fläche von \(-\infty \) bis \(q(\alpha) \) unter der Dichte \(f(\cdot) \) gleich \(\alpha \) ist. Siehe auch Abbildung 4.6. Das 50%-Quantil heisst der **Median**.

Abbildung 4.6: Illustration des 70%-Quantils \(q(0.7) \). Links ist die Dichte gezeichnet (Es handelt sich um eine Exponentialverteilung) (links von \(x = 0 \) ist die Dichte gleich null). Die vertikale Linie wurde so gewählt, dass links von ihr die Fläche unter der Kurve gleich 0.7 ist. Dort, wo die vertikale Linie die x-Achse trifft, ist per Definition das 70%-Quantil. In diesem Fall ist das 70%-Quantil also etwa 1.2. Auf der rechten Seite ist die kumulative Verteilungsfunktion gezeigt. Auch mit dieser Abbildung kann man sehr leicht das 70%-Quantil bestimmen: Wir suchen den Wert von \(x \), bei dem die kumulative Verteilungsfunktion gleich 0.7 ist. Das Ergebnis ist wie vorhin etwa 1.2.

4.5 Wichtige stetige Verteilungen (Stahel, Kap. 6.2, 6.4, 6.5, 11.2)

Im diskreten Fall haben wir die Binomial- und Poissonverteilung als diskrete Verteilungen kennengelernt. In diesem Kapitel werden wir die wichtigsten stetigen Verteilungen kennenlernen.

Wir haben in Kapitel 4.4 gesehen, dass wir die Wahrscheinlichkeitsverteilung einer stetigen Zufallsvariablen mit der kumulativen Verteilungsfunktion \(F(\cdot) \) oder der Dichte \(f(\cdot) \) charakterisieren können.

4.5.1 Uniforme Verteilung

Die Uniforme Verteilung tritt als Formalisierung der völligen “Ignoranz” auf.
Eine Zufallsvariable \(X \) mit Wertebereich \(W_X = [a, b] \) heisst Uniform\((a, b)\) verteilt, falls
\[
f(x) = \begin{cases} \frac{1}{b-a} & \text{falls } a \leq x \leq b \\ 0 & \text{sonst} \end{cases}
\]
Die Dichte ist also konstant auf dem Intervall \([a, b]\). Das heisst, dass die gleiche Wahrscheinlichkeit vorliegt auf dem ganzen Wertebereich \(W_X = [a, b] \), deshalb der Name “uniform”.

Die zugehörige kumulative Verteilungsfunktion ist
\[
F(x) = \begin{cases} 0 & \text{falls } x < a \\ \frac{x-a}{b-a} & \text{falls } a \leq x \leq b \\ 1 & \text{falls } x > b
\end{cases}
\]
Für \(X \sim \text{Uniform}\((a, b)\) sind die Kennzahlen wie folgt:
\[
\mathcal{E}(X) = \frac{a+b}{2}, \quad \text{Var}(X) = \frac{(b-a)^2}{12}, \quad \sigma_X = \frac{b-a}{\sqrt{12}}.
\]

4.5.2 Exponential-Verteilung

Die Exponential-Verteilung ist das einfachste Modell für Wartezeiten auf Ausfälle.

Beispiel: Ionenkanäle
In Membranen von Muskel- und Nerven-Zellen gibt es viele Kanäle durch die Ionen fließen können, falls der Kanal offen ist. Simple kinetische Modelle motivieren, dass die Offenzeit eines Kanals mit der Exponential-Verteilung modelliert werden kann.

Eine Zufallsvariable \(X \) mit Wertebereich \(W_X = \mathbb{R}^+ = [0, \infty) \) heisst Exponential-verteilt mit Parameter \(\lambda \in \mathbb{R}^+ \) (\(X \sim \text{Exp} (\lambda) \)) falls
\[
f(x) = \begin{cases} \lambda \exp(-\lambda x), & \text{falls } x \geq 0 \\ 0 & \text{sonst} \end{cases}
\]
Die zugehörige kumulative Verteilungsfunktion ist
\[
F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{falls } x \geq 0 \\ 0 & \text{falls } x < 0 \end{cases}
\]
Die Dichte und kumulative Verteilungsfunktion für \(\lambda = 1 \) sind in Abbildung 4.6 zu sehen.
Für \(X \sim \text{Exp} (\lambda) \) sind die Kennzahlen wie folgt:
\[
\mathcal{E}(X) = \frac{1}{\lambda}, \quad \text{Var}(X) = \frac{1}{\lambda^2}, \quad \sigma_X = \frac{1}{\lambda}.
\]
Es besteht folgender Zusammenhang zwischen der Exponential- und Poisson-Verteilung: Wenn die Zeiten zwischen den Ausfällen eines Systems Exponential(\(\lambda \))-verteilt sind, dann ist die Anzahl Ausfälle in einem Intervall der Länge \(t \) Poisson(\(\lambda t \))-verteilt.
4.5.3 Normal-Verteilung (Gauss-Verteilung)

Die Normal-Verteilung (manchmal auch Gauss-Verteilung genannt) ist die häufigste Verteilung für Messwerte.

Beispiel: Zufällige Messfehler; Summe von unabhängigen, gleichverteilten Zufallsvariablen (wegen des Zentralen Grenzwertsatzes, siehe Kap. 4.6.2)

Eine Zufallsvariable X mit Wertebereich $W_X = \mathbb{R}$ heisst Normal-verteilt mit Parametern $\mu \in \mathbb{R}$ und $\sigma^2 \in \mathbb{R}^+$ (in Formeln $X \sim \mathcal{N}(\mu, \sigma^2)$) falls

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Die zugehörige kumulative Verteilungsfunktion $F(x) = \int_{-\infty}^{x} f(y)dy$ ist nicht explizit darstellbar mit Standardfunktionen wie $\exp(x)$, $\log(x)$ etc. Deshalb werden die Werte tabelliert. Auf den ersten Blick könnte man meinen, dass man für jede Kombination von (μ, σ^2) eine eigene Tabelle benötigt. Im nächsten Abschnitt werden wir aber sehen, dass es genügt nur eine einzige Tabelle (nämlich die für die Standardnormalverteilung) anzufertigen.

Für $X \sim \mathcal{N}(\mu, \sigma^2)$ sind die Kennzahlen wie folgt:

$$\mathcal{E}(X) = \mu, \quad \text{Var}(X) = \sigma^2, \quad \sigma_X = \sigma.$$

Das heisst, dass die Parameter μ und σ^2 eine natürliche Interpretation als Erwartungswert und Varianz der Verteilung haben. Drei Normalverteilungen mit verschiedenen Werten von μ und σ sind in Abbildung 4.7 dargestellt.

Abbildung 4.7: Dichten (links) und kumulative Verteilungsfunktionen (rechts) der Normalverteilungen mit $\mu = 0, \sigma = 0.5$ (ausgezogen), $\mu = 0, \sigma = 2$ (gestrichelt) und $\mu = 3, \sigma = 1$ (Strich-Punkte).
4.5 Wichtige stetige Verteilungen (Stahel, Kap. 6.2, 6.4, 6.5, 11.2) 53

Die Standard-Normalverteilung

Die Normal-Verteilung mit \(\mu = 0 \) und \(\sigma^2 = 1 \) heisst Standard-Normalverteilung. Deren Dichte und kumulative Verteilungsfunktion werden wie folgt bezeichnet:

\[
\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \\
\Phi(x) = \int_{-\infty}^{x} \varphi(y)dy.
\]

Die Werte von \(\Phi(\cdot) \) erhält man mit Hilfe der R-Funktion \texttt{pnorm}.

\textit{Beispiel:} Sei \(Z \sim \mathcal{N}(0,1) \).

- Was ist \(P[Z \leq 1.13] \)? Wir finden den Wert mit Hilfe des Aufrufs
 \[
 > \text{pnorm}(1.13)
 \]
 (Ausgabe: 0.8707619).

- Für welchen Wert von \(z \) ist \(\Phi(z) = 0.79 \)? Anders gefragt: Was ist \(\Phi^{-1}(0.79) \)? \textit{Quantile} der Standard-Normalverteilung liefert die Funktion \texttt{qnorm}:

 \[
 > \text{qnorm}(0.79)
 \]
 (Ausgabe: 0.8064212)

Wir werden unten sehen, dass eine Normal-Verteilung \(\mathcal{N}(\mu, \sigma^2) \) immer in eine Standard-Normalverteilung transformiert werden kann. Deshalb genügen die Werte von \(\Phi(\cdot) \), um Wahrscheinlichkeiten und Quantile einer allgemeinen \(\mathcal{N}(\mu, \sigma^2) \)-Verteilung zu berechnen und man muss nicht für jede Kombination von \((\mu, \sigma^2) \) eine eigene Tabelle anfertigen.

4.5.4 Funktionen einer Zufallsvariable

Wenn \(g : \mathbb{R} \rightarrow \mathbb{R} \) eine Funktion von \(\mathbb{R} \) nach \(\mathbb{R} \) und \(X \) eine Zufallsvariable ist, dann ist die Zusammensetzung

\[
Y = g(X),
\]

eine neue Zufallsvariable. Die Zusammensetzung bedeutet einfach, dass zu jeder Realisierung \(x \) von \(X \) die Realisierung \(y = g(x) \) von \(Y \) gehört. Solche Transformationen treten häufig auf.

Die kumulative Verteilungsfunktion und die Dichte von \(Y \) sind im Prinzip durch die Verteilungsfunktion und die Dichte von \(X \) bestimmt. Die Berechnung kann aber je nach Eigenschaften von \(g \) kompliziert sein. Für den Erwartungswert gilt jedoch stets die folgende Formel

\[
\mathbb{E}(Y) = \mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x)f_X(x)dx.
\]

Im Folgenden werden wir einige wichtige Spezialfälle diskutieren.

\textbf{Lineare Transformationen}

Wir betrachten hier zuerst den Fall einer linearen Transformation

\[
g(x) = a + bx \quad (a, b \in \mathbb{R}).
\]
Für \(Y = a + bX \) gilt dann

\[
\begin{align*}
\mathcal{E}(Y) &= \mathcal{E}(a + bX) = a + b\mathcal{E}(X), \\
\text{Var}(Y) &= \text{Var}(a + bX) = b^2 \text{Var}(X), \quad \sigma_Y = |b|\sigma_X. \tag{4.2}
\end{align*}
\]

Die erste Gleichung folgt aus

\[
\mathcal{E}(Y) = \mathcal{E}(a + bX) = \int_{-\infty}^{\infty} (a + bx) f_X(x) dx = a \int_{-\infty}^{\infty} f_X(x) dx + b \int_{-\infty}^{\infty} xf_X(x) dx = a \cdot 1 + b \cdot \mathcal{E}(X) = a + b\mathcal{E}(X).
\]

Die zweite Gleichung folgt aus der Definition der Varianz und aus der ersten Gleichung:

\[
\begin{align*}
\text{Var}(Y) &= \text{Var}(a + bX) = \mathcal{E}((a + bX - (a + b\mathcal{E}(X)))^2) = \\
&= \mathcal{E}((a + bX - a - b\mathcal{E}(X))^2) = \mathcal{E}(b^2(X - \mathcal{E}(X))^2) = b^2 \text{Var}(X).
\end{align*}
\]

Durch Ziehen der Wurzel erhält man für die Standardabweichung \(\sigma_Y = b \cdot \sigma_X \). Überdies gelten für \(b > 0 \):

\[
\alpha - \text{Quantil von } Y = q_Y(\alpha) = a + bq_X(\alpha), \\
\text{mit } \alpha \quad \text{werden nicht in Grad Celsius,}
\]

\[
h_Y(y) = \frac{1}{b} f_X \left(\frac{y-a}{b} \right). \tag{4.3}
\]

Beispiel: Wir haben eine Temperatur in Grad Celsius gemessen und kennen die Standardabweichung des Messfehlers auf dieser Skala: \(\sigma_C = \frac{1}{3} \) Grad Celsius. Für einen Bericht, der im englischsprachigen Raum gelesen werden soll, wollen wir die Temperatur aber nicht in Grad Celsius, sondern in Grad Fahrenheit angeben. Wie gross ist die Standardabweichung \(\sigma_F \) des Messfehlers, wenn wir die Temperatur in Grad Fahrenheit angeben? Die Temperatur \(T_C \) in Grad Celsius kann man folgendermassen in die Temperatur \(T_F \) in Grad Fahrenheit umrechnen: \(T_F = \frac{9}{5} \cdot T_C + 32 \). Daher ist die Standardabweichung in Grad Fahrenheit \(\sigma_F = \frac{9}{5} \sigma_C = \frac{9}{5} \cdot \frac{1}{3} = \frac{3}{5} \).

Beispiel: Wenn \(X \sim N(\mu, \sigma) \), dann ist \(Y = g(X) \sim N(a + b\mu, b^2\sigma^2) \), denn nach der Regel (4.3) gilt

\[
h_Y(y) = \frac{1}{\sqrt{2\pi}\sigma b} \exp \left(-\frac{(y-a-b\mu)^2}{2\sigma^2 b^2} \right).
\]

Eine linear transformierte Normalverteilung ist also weder eine Normalverteilung. Diese Eigenschaft, dass man mit linearen Transformationen innerhalb der Verteilungs-Klasse bleibt ist eine spezielle Eigenschaft der Normalverteilung und im Allgemeinen nicht richtig.

Standardisieren einer Zufallsvariablen

Wir können \(X \) immer linear transformieren, so dass die transformierte Zufallsvariable Erwartungswert = 0 und Varianz = 1 hat. Dies geschieht wie folgt: betrachte die lineare Transformation

\[
g(x) = \frac{x - \mathcal{E}(X)}{\sigma_X} = -\frac{\mathcal{E}(X)}{\sigma_X} + \frac{1}{\sigma_X} x = a + bx
\]

mit \(a = -\frac{\mathcal{E}(X)}{\sigma_X} \) und \(b = \frac{1}{\sigma_X} \). Damit bilden wir die transformierte Zufallsvariable

\[
Z = g(X) = \frac{X - \mathcal{E}(X)}{\sigma_X}.
\]
Mit Hilfe der Regeln in (4.2) gilt dann: $E(Z) = 0$, $\text{Var}(Z) = 1$.

Falls $X \sim \mathcal{N}(\mu, \sigma^2)$, so ist die standardisierte Zufallsvariable wieder normalverteilt, wie wir im obigen Beispiel gesehen haben, hat nun aber Erwartungswert null und Varianz eins. Man erhält also die Standard-Normalverteilung:

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Beispiel 1: Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu = 2$ und $\sigma^2 = 4$. Berechne $P(X \leq 5)$!

$$P(X \leq 5) = P\left(\frac{X - \mu}{\sigma} \leq \frac{5 - \mu}{\sigma} \right) = P(Z \leq \frac{5 - 2}{2}) = P(Z \leq 1.5) = \Phi(1.5) = 0.93$$

Beispiel 2: Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu = 2$ und $\sigma^2 = 4$. Berechne $P(X > 5)$!

$$P(X > 5) = 1 - P(X \leq 5) = 1 - \Phi(1.5) = 1 - 0.93 = 0.07$$

Beispiel 3: Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu = 2$ und $\sigma^2 = 4$. Wie gross ist das 90% Quantil γ von X?

$$P(X \leq \gamma) = 0.9$$

$$\Rightarrow P\left(Z \leq \frac{\gamma - \mu}{\sigma} \right) = 0.9$$

$$\Rightarrow \Phi\left(\frac{\gamma - \mu}{\sigma} \right) = 0.9$$

Aus der Tabelle entnehmen wir, dass $\frac{\gamma - \mu}{\sigma} = 1.28$. Auflösen nach γ ergibt: $\gamma = \mu + 1.28\sigma = 2 + 1.28 \cdot 2 = 4.56$

Beispiel 4: Sei $X \sim \mathcal{N}(\mu, \sigma^2)$ mit $\mu = 2$ und $\sigma^2 = 4$. Berechne $P(|X| \leq 2)$!

$$P(|X| \leq 2) = P(-2 \leq X \leq 2) = P(X \leq 2) - P(X \leq -2) =$$

$$= P\left(Z \leq \frac{2 - 2}{2} \right) - P\left(Z \leq \frac{-2 - 2}{2} \right) = P(Z \leq 0) - P(Z \leq -2) =$$

$$= \Phi(0) - \Phi(-2) = \Phi(0) - (1 - \Phi(2)) = 0.5 - (1 - 0.97) =$$

$$= 0.5 - 0.03 = 0.47.$$

Die Lognormal-Verteilung

Für positive Zufallsvariablen X wird oft die Logarithmus-Transformation verwendet. Führt diese Transformation auf eine Normalverteilung, dann heisst X Lognormal-verteilte. In anderen Worten, wenn $Y \sim \mathcal{N}(\mu, \sigma^2)$, dann heisst $X = \exp(Y)$ Lognormal-verteilte mit Parametern $\mu \in \mathbb{R}$ und $\sigma^2 \in \mathbb{R}^+$. Die Lognormal-Verteilung ist nicht mehr symmetrisch und es gilt: $E(X) = \exp(\mu + \sigma^2/2) > \exp(E(Y))$.
4.5.5 Überprüfen der Normalverteilungs-Annahme

Oft wollen wir überprüfen ob eine Verteilung ein brauchbares Modell für einen Datensatz darstellt. Das heisst, wir wollen überprüfen, ob ein Datensatz x_1, \ldots, x_n als Realisierungen von einer Zufallsvariablen X mit einer Modell-Verteilung (z.B. mit einer kumulativen Verteilungsfunktion $F(\cdot)$) aufgefasst werden kann.

Im Prinzip kann man das Histogramm der empirischen Daten mit der Dichte der Modell-Verteilung vergleichen. Oft sieht man aber die Abweichungen oder Übereinstimmungen besser, wenn man stattdessen die Quantile benutzt.

Q-Q Plot

Die Idee des Q-Q-Plot (Quantil-Quantil Plot) ist die empirischen Quantile gegen die theoretischen Quantile der Modell-Verteilung zu plotten. Konkret: plotte für $\alpha = 0.5/n, 1.5/n, \ldots, (n - 0.5)/n$ die theoretischen Quantile der Modell-Verteilung $q(\alpha)$ auf der x-Achse gegen die empirischen Quantile, welche den geordneten Beobachtungen $x_{[1]} < x_{[2]} < \ldots < x_{[n]}$ entsprechen, auf der y-Achse. Wenn die Beobachtungen gemäss der Modell-Verteilung erzeugt wurden, sollten diese Punkte ungefähr auf der Winkelhalbierenden $y = x$ liegen.

Normal-Plot

Meist will man nicht eine spezifische Verteilung, sondern eine ganze Klasse von Verteilungen prüfen, also zum Beispiel die Klasse der Normalverteilungen mit beliebigem μ und σ.

Ein Q-Q Plot, bei dem die Modell-Verteilung gleich der Standard-Normalverteilung $\mathcal{N}(0, 1)$ ist heisst Normal-Plot.

Falls die Daten Realisierungen von $X \sim \mathcal{N}(\mu, \sigma^2)$ sind, so gilt für die Quantile von X:

$$q(\alpha) = \mu + \sigma \Phi^{-1}(\alpha),$$

siehe (4.3). Wenn man also einen Normal-Plot macht, so sollten die Punkte im Normal-Plot ungefähr auf der Geraden mit Achsenabschnitt μ und Steigung σ liegen.

Naturlich liegen die Punkte in einem Normal-Plot nicht perfekt auf einer Geraden. Damit Sie ein Gefühl dafür bekommen, was eine akzeptable Abweichung von der Geraden ist, sind in Abb. 4.9 die Normal-Plots von neun Datensätzen (je 50 Beobachtungen) gezeigt, die alle von einer Standard-Normalverteilung simuliert wurden. Abweichungen in dem Mass wie sie dort zu sehen sind, kann man also erwarten, wenn die Daten tatsächlich von einer Normalverteilung stammen.

4.6 Funktionen von mehreren Zufallsvariablen

(Stahel, Kap. 6.8 – 6.11)

In Kapitel 4.5.4 haben wir untersucht, wie die Funktion einer Zufallsvariable verteilt ist. In den meisten Anwendungen hat man es nicht mit einer, sondern mit mehreren Zufallsvariablen zu tun. Üblicherweise misst man die gleiche Grösse mehrmals (man hat mehrere Individuen, oder
4.6 Funktionen von mehreren Zufallsvariablen
(Stahel, Kap. 6.8 – 6.11)

man wiederholt die Messungen). In diesem Kapitel untersuchen wir, wie eine Funktion mehrerer Zufallsvariablen verteilt ist.

Die Messungen x_1, x_2, \ldots, x_n fassen wir als Realisierungen der Zufallsvariablen X_1, \ldots, X_n auf. Diese Auffassung ist oft bequemer als die Interpretation, dass die Messungen n unabhängige Realisierungen einer Zufallsvariablen X sind. Oft sind wir an Funktionen der Messwerte x_1, x_2, \ldots, x_n interessiert: $y = g(x_1, \ldots, x_n)$ wobei $g : \mathbb{R}^n \rightarrow \mathbb{R}$. Wenn x_1, x_2, \ldots, x_n Realisierungen der Zufallsvariablen X_1, \ldots, X_n sind, dann ist y eine Realisierung der Zufallsvariable $Y = g(X_1, \ldots, X_n)$.

Wir betrachten hier vor allem die Funktion "arithmetisches Mittel"

$$g(x_1, \ldots, x_n) = \overline{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Das arithmetische Mittel der Daten \overline{x}_n ist also eine Realisierung der Zufallsvariablen \overline{X}_n.

Wir sind an der Verteilung der Zufallsvariablen \overline{X}_n interessiert: Die Kenntnis dieser Verteilung wird uns erlauben, Statistik aufgrund von arithmetischen Mitteln von Daten zu machen.

4.6.1 Unabhängigkeit und i.i.d. Annahme

Oft treffen wir die Annahme, dass die Zufallsvariablen X_1, \ldots, X_n unabhängig voneinander sind. Anschaulich heisst das, es gibt keine gemeinsamen Faktoren, die den Ausgang der verschiedenen Messungen beeinflussen, und keine "carry over" Phänomene von einer Messung zur nächsten. Die mathematische Definition lautet: X_1, \ldots, X_n sind unabhängig, falls die Ereignisse $\{X_1 \leq b_1\}, \ldots, \{X_n \leq b_n\}$ unabhängig sind für beliebige $b_1, \ldots, b_n \in \mathbb{R}$.

Wenn die Zufallsvariablen X_1, \ldots, X_n unabhängig sind und alle dieselbe Verteilung haben, dann schreiben wir das kurz als

$$X_1, \ldots, X_n \text{ i.i.d.}$$

Die Abkürzung i.i.d. steht für: independent, identically distributed. Wir werden meistens mit dieser i.i.d. Annahme arbeiten. Welche Verteilung die X_i’s haben, lassen wir offen. Es kann, aber muss nicht eine Normalverteilung sein.

Die Unabhängigkeit spielt eine Rolle bei den Regeln für Erwartungswerte und Varianzen von Summen.

$$\mathcal{E}(X_1 + X_2) = \mathcal{E}(X_1) + \mathcal{E}(X_2)$$

gilt immer,

$$\text{Var}(X_1 + X_2) = \text{Var}(X_1) + \text{Var}(X_2)$$

jedoch nur, wenn X_1 und X_2 unabhängig sind.

4.6.2 Kennzahlen und Verteilung von \overline{X}_n.

Wir nehmen in diesem Abschnitt an, dass

$$X_1, \ldots, X_n \text{ i.i.d. } \sim \text{ kumulative Verteilungsfkt. } F.$$

Wegen dem zweiten “i” i.i.d. hat jedes X_i dieselbe Verteilung und dieselben Kennzahlen: $\mathcal{E}(X_i) = \mu, \text{ Var}(X_i) = \sigma^2_X$.
Die Kennzahlen von \(\overline{X}_n \) folgen dann aus den allgemeinen Regeln für Erwartungswert und Varianz von Summen:

\[
\mathcal{E}(\overline{X}_n) = \mu, \\
\text{Var}(\overline{X}_n) = \frac{\sigma^2_X}{n}, \\
\sigma(\overline{X}_n) = \frac{\sigma_X}{\sqrt{n}}.
\]

Die Standardabweichung von \(\overline{X}_n \) heisst auch der **Standard-Fehler** des arithmetischen Mittels.

Der Erwartungswert von \(\overline{X}_n \) ist also gleich demjenigen einer einzelnen Zufallsvariable \(X_i \), die Streuung nimmt jedoch ab mit wachsendem \(n \). Für \(n \to \infty \) geht die Streuung gegen null. Es gilt das Gesetz der grossen Zahlen: Falls \(X_1, \ldots, X_n \) i.i.d., dann

\[
\overline{X}_n \to \mu \ (n \to \infty).
\]

Die Streuung des arithmetischen Mittels ist jedoch nicht proportional zu \(1/n \), sondern nur zu \(1/\sqrt{n} \). Das bedeutet, dass man für eine doppelte Genauigkeit nicht doppelt so viele, sondern vier Mal so viele Messungen braucht. Diesen Sachverhalt nennt man auch \(\sqrt{n}\)-Gesetz.

Die Verteilung von \(\overline{X}_n \) ist im allgemeinen schwierig anzugeben. Ein Spezialfall ist der folgende:

\[
\overline{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2_X}{n}) \text{ falls } X_1, \ldots, X_n \text{ i.i.d. } \sim \mathcal{N}(\mu, \sigma^2_X).
\]

Falls die einzelnen \(X_i \)'s nicht normal-verteilt sind, so gilt erstaunlicherweise die obige Verteilungs-Formel immer noch approximativ. Dies liefert der folgende berühmte Satz. (Manchmal ist man an der Summe vieler Zufallsvariablen \(S_n = \sum_{i=1}^n X_i \) interessiert, deshalb erwähne ich die Formel für \(S_n \) auch.)

Zentraler Grenzwertsatz: falls \(X_1, \ldots, X_n \) i.i.d., dann

\[
\overline{X}_n \approx \mathcal{N}(\mu, \frac{\sigma^2_X}{n}), \quad S_n \approx \mathcal{N}(n\mu, n\sigma^2_X).
\]

wobei die Approximation im Allgemeinen besser wird mit grösserem \(n \). Überdies ist auch die Approximation besser, je näher die Verteilung von \(X_i \) bei der Normal-Verteilung \(\mathcal{N}(\mu, \sigma^2_X) \) ist.

Beispiel: Wir ziehen \(n = 10 \) Zufallszahlen \(X_i \). Die zehn Zufallsvariablen sind unabhängig und es gilt \(X_i \sim \text{Uniform([0,1])} \) für jedes \(i \). Wie gross ist die Wahrscheinlichkeit, dass die Summe der Zufallszahlen \(S_{10} = \sum_{i=1}^{10} X_i \) grösser als Sechs ist? D.h., wir suchen \(P[S_{10} > 6] \). Aus Kapitel 4.5.1 wissen wir, wie man Erwartungswert und Varianz von jedem \(X_i \) berechnet: \(\mathcal{E}(X_i) = 0.5 \) und \(\text{Var}(X_i) = \frac{1}{12} \). Aus dem Zentralen Grenzwertsatz folgt:

\[
S_n \approx \mathcal{N}(n\mathcal{E}(X_i), n\text{Var}(X_i)) = \mathcal{N}(5, \frac{10}{12}) = \mathcal{N}(5, 0.83)
\]

Damit kommen wir zu folgender Lösung:

\[
P(S_n > 6) = 1 - P(S_n \leq 6) = 1 - P\left(\frac{S_n - 5}{\sqrt{0.83}} \leq \frac{6 - 5}{\sqrt{0.83}}\right) = 1 - P(Z \leq 1.1) = 1 - \Phi(1.1) = 1 - 0.86 = 0.14
\]

Für eine exakte Formulierung des Zentralen Grenzwertsatzes betrachtet man die standardisierte Zufallsvariable

\[
Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma_X}.
\]
Diese ist ungefähr \(N(0, 1) \) verteilt, was bedeutet, dass für alle \(x \) gilt
\[
\lim_{n \to \infty} P(Z_n \leq x) = \Phi(x).
\]

Der Zentrale Grenzwertsatz gilt auch für diskrete Zufallsvariablen \(X_i \). Im Folgenden leiten wir die Normalapproximation für den Binomialtest her, die wir in Kapitel 3.2 schon mehrfach verwendet haben. Im Fall von \(n \) unabhängigen Wiederholungen eines binären Experiments mit den beiden möglichen Ergebnissen “Erfolg”, bzw. “Misserfolg”, setzen wir \(X_i = 1 \), falls die \(i \)-te Wiederholung ein Erfolg ist, und \(X_i = 0 \) falls die \(i \)-te Wiederholung ein Misserfolg ist. Diese \(X_i \) sind i.i.d. Bernoulli(\(\pi \))-verteilte, wobei \(\pi \) die Wahrscheinlichkeit für einen Erfolg bei einer Durchführung ist (siehe Abschnitt 2.6). Erwartungswert und Varianz von \(X_i \) lassen sich somit leicht berechnen:
\[
E(X_i) = \pi, \quad \text{Var}(X_i) = \pi(1 - \pi).
\]
Das arithmetische Mittel \(X_n \) ist dann nichts anderes als die relative Häufigkeit der Erfolge. Gemäß dem Zentralen Grenzwertsatz gilt
\[
X_n \approx N(\mu, \sigma^2_{X}/n)
\]
mit \(\mu = \pi \) und \(\sigma^2_{X} = \pi(1 - \pi) \). Damit können wir die Wahrscheinlichkeit berechnen, dass der Schätzer \(X_n \) in der Nähe des wahren Parameters \(\pi \) liegt (die Rechnung ist sehr ähnlich wie Beispiel 4 in Kapitel 4.5.4; versuchen Sie es nachzurechnen! Eine Auflösung ist in Kap. 6.1):
\[
P(|X_n - \pi_0| > \varepsilon) \approx 2 - 2\Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma_X}\right) \tag{4.4}
\]
Somit können wir die Normalapproximation des Binomialtests durchführen:

1. **Modell:** \(X \): Anzahl Erfolge bei \(n \) Versuchen.
 \(X \sim Bin(n, \pi) \).
2. **Nullhypothese:** \(H_0 : \pi = \pi_0 \)
 Alternative: \(H_A : \pi \neq \pi_0 \)
3. **Teststatistik:** \(X_n \): Anzahl Erfolge geteilt durch Anzahl Versuche.
 Verteilung der Teststatistik unter \(H_0 \): \(X_n \approx N(\mu, \sigma^2_{X}/n) \) mit \(\mu = \pi_0 \) und \(\sigma^2_{X} = \pi_0(1 - \pi_0) \)
4. **Signifikanzniveau:** \(\alpha \)
5. **Verwerfungsbereich:** Wir müssen einen Wert für \(\varepsilon \) finden, sodass \(P(|X_n - \pi_0| > \varepsilon) = \alpha \) ist. Mit Gleichung (4.4) erhalten wir:
 \[
P(|X_n - \pi_0| > \varepsilon) = \alpha
 \quad \Leftrightarrow \quad 2 - 2\Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma_X}\right) = \alpha
 \quad \Leftrightarrow \quad \Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma_X}\right) = 1 - \frac{\alpha}{2}
 \quad \Leftrightarrow \quad \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = \frac{\varepsilon\sqrt{n}}{\sigma_X}
 \quad \Rightarrow \quad \varepsilon = \frac{\pi_0(1 - \pi_0)}{\sqrt{n}}\Phi^{-1}\left(1 - \frac{\alpha}{2}\right)
\]
Der Verwerfungsbereich sind dann alle Werte \(\pi_n \) der Teststatistik \(X_n \), die in den Bereich
\[
|\pi_n - \pi_0| > \frac{\pi_0(1 - \pi_0)}{\sqrt{n}}\Phi^{-1}\left(1 - \frac{\alpha}{2}\right)
\]
fallen.
4.6 Funktionen von mehreren Zufallsvariablen
(Stahel, Kap. 6.8 – 6.11)

6. Testentscheid: Prüfe, ob der beobachtete Wert \(\pi_n \) der Teststatistik \(\overline{X}_n \) in den Verwerfungsbereich fällt.

Beispiel: Wir haben eine Münze \(n = 100 \) mal geworfen und 58 mal Kopf beobachtet. Ist es plausibel, dass es sich um eine faire Münze handelt oder ist eine von beiden Seiten bevorzugt? Wir könnten nun einen Binomialtest durchführen; zur Übung, werden wir aber die Normalapproximation des Binomialtests anwenden:

1. Modell: \(X \): Anzahl Erfolge bei \(n = 100 \) Versuchen.
 \(X \sim \text{Bin}(n, \pi) \).
2. Nullhypothese: \(H_0 : \pi = \pi_0 = 0.5 \)
 Alternative: \(H_A : \pi \neq \pi_0 \)
3. Teststatistik: \(\overline{X}_n \): Anzahl Erfolge geteilt durch Anzahl Versuche.
 Verteilung der Teststatistik unter \(H_0 \): \(\overline{X}_n \approx \mathcal{N}(\mu, \sigma^2_{\overline{X}}/n) \) mit \(\mu = \pi_0 = 0.5 \) und \(\sigma^2_{\overline{X}} = \pi_0(1 - \pi_0) = 0.5 \cdot 0.5 = 0.25 \)
4. Signifikanzniveau: \(\alpha = 0.05 \)
5. Verwerfungsbereich: Aus der Tabelle sehen wir, dass \(\Phi^{-1}(1 - \frac{\alpha}{2}) = \Phi^{-1}(0.975) = 1.96 \).
 Damit ergibt sich mit \(\pi_0 = 0.5 \):
 \[
 |\pi_n - \pi_0| > \frac{\pi_0(1 - \pi_0)}{\sqrt{n}} \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) = 0.05 \cdot 1.96 \approx 0.098
 \]
 Der Verwerfungsbereich ist also:
 \[
 K = (-\infty, \pi_0 - 0.098] \cup [\pi_0 + 0.098, \infty) = (-\infty, 0.402] \cup [0.598, \infty)
 \]
6. Testentscheid: Der beobachtete Wert der Teststatistik ist \(\pi_n = \frac{58}{100} = 0.58 \). Da dieser Wert nicht im Verwerfungsbereich der Teststatistik \(K = (-\infty, 0.402] \cup [0.598, \infty) \) liegt, kann die Nullhypothese auf dem 5% Signifikanzniveau nicht verworfen werden.\(^2\)

Sie fragen sich nun vermutlich, warum man eine Normalapproximation des Binomialtests braucht, wenn man doch schon den eigentlichen Binomialtest hat. Ist die Normalapproximation nicht überflüssig? Auf diese Frage gibt es zwei Antworten. Erstens ist die Normalapproximation des Binomialtests nur ein Anwendungsbeispiel des Zentralen Grenzwertsatzes. Man kann die Normalapproximation auf sehr viele andere Tests/Sachverhalte anwenden, bei denen ein Mittelwert oder eine Summe von Zufallszahlen vorkommen. Ich habe den Binomialtest als Beispiel gewählt, weil Sie schon die exakte Version des Tests aus Kapitel 3.2 kennen und somit überprüfen können, dass beide Tests wirklich etwa das gleiche Ergebnis liefern.\(^3\) Es gibt aber noch einen zweiten Grund. Bei dem exakten Binomialtest muss man Wahrscheinlichkeiten der Form \(P(X \leq k) \) (das ist die kumulative Verteilungsfunktion) ausrechnen, wobei \(X \sim \text{Bin}(n, \pi) \). Leider gibt es für die kumulative Verteilungsfunktion keine einfache Formel, sodass man \(P(X \leq k) = \sum_{i=1}^{k} P(X = i) \) verwendet. Für grosse \(n \) kann das schnell zu sehr vielen Summanden führen und die Berechnung wird sehr aufwändig (Versuchen Sie mal von Hand \(P(X \leq 250) \) mit \(X \sim \text{Bin}(500, 0.02) \) auszurechnen; da sind Sie schnell mal einen Tag lang beschäftigt.). Jetzt können Sie sagen, dass in der Praxis der Computer diese Berechnung ja ausführen kann. Da haben Sie natürlich recht, aber bei grossen \(n \) bekommt selbst der Computer Probleme: Erinnern wir uns, dass \(P(X = k) = \binom{n}{k} \pi^k (1 - \pi)^{n-k} \). Wenn \(n \) gross und \(\pi \) klein ist, wird der erste Faktor riesig und der zweite Faktor winzig. Das Produkt ergibt wieder eine Zahl zwischen 0 und 1. Weil

\(^2\)Wir erhalten das gleiche Ergebnis wie mit dem Binomialtest in Kapitel 3.2
\(^3\)Ganz genau gleich wird das Ergebnis natürlich nicht sein, denn schliesslich verwenden wir die Normalverteilung ja nur als Approximation der wahren Verteilung der Teststatistik.
Computer Zahlen nur bis zu einer gewissen Grösse (etwa \(10^{18}\)) abspeichern können, führt eine naive Berechnung von \(P(X = k)\) auch mit dem Computer zu Problemen. Hier wird die Normalapproximation (oder auch die Poissonapproximation) zur guten Lösung. Wer bis hierher gelesen hat, soll auch belohnt werden: In der Prüfung haben wir natürlich keine Zeit, Sie einen exakten Binomialtest mit grossen Zahlen durchführen zu lassen. Entweder, die Zahlen sind klein oder die Zahlen sind gross und wir wollen eine “geeignete Approximation” sehen, was dann die Normalapproximation wäre.

4.6.3 Verletzung der Unabhängigkeit

Was ändert sich, wenn die Zufallsvariablen \(X_1, \ldots, X_n\) nicht mehr unabhängig sind? Die Annahme der identischen Verteilung behalten wir bei, weil diese Zufallsvariablen die Wiederholung von Messungen unter identischen Bedingungen modellieren sollen. Dann gilt

\[
\mathcal{E}(\overline{X}_n) = \mu, \\
\text{Var}(\overline{X}_n) = \frac{\sigma_X^2}{n} \left(1 + \frac{2}{n} \sum_{1 \leq i < j \leq n} \rho(X_i, X_j)\right).
\]

Dabei ist \(\rho(X_i, X_j)\) die Korrelation zwischen den Zufallsvariablen \(X_i\) und \(X_j\), das theoretische Gegenstück zur empirischen Korrelation in Abschnitt 4.3.2, siehe auch Abschnitt 4.3.1:

\[
\rho(X_i, X_j) = \frac{\text{Cov}(X_i, X_j)}{\sigma_X \sigma_{X_j}}, \quad \text{Cov}(X_i, X_j) = \mathcal{E}((X_i - \mathcal{E}(X_i))(X_j - \mathcal{E}(X_j))).
\]

Dies bedeutet, dass Abhängigkeit zwischen den Messungen die Genauigkeit des arithmetischen Mittels beeinflusst. Bei positiver Korrelation nimmt die Genauigkeit ab, bei negativer Korrelation kann sie auch zunehmen. Es ist daher wichtig, die Messungen so anzulegen, dass sie als unabhängig angenommen werden können, wenn man die in den folgenden Kapiteln beschriebenen statistischen Methoden anwenden will.

4.7 Statistik für eine Stichprobe (Stahel, Kap. 8.3 – 8.5, 9.3)

Wir betrachten Daten \(x_1, \ldots, x_n\) welche als Realisierungen von \(X_1, \ldots, X_n\) i.i.d. aufgefasst werden. Zwei Kennzahlen der Zufallsvariablen \(X_i\) sind: \(\mathcal{E}(X_i) = \mu\) und \(\text{Var}(X_i) = \sigma_X^2\). Typischerweise sind diese (und andere) Kennzahlen unbekannt, und man möchte Rückschlüsse aus den Daten darüber machen.

Beispiel: Blutplättchen-Aggregation (siehe Abschnitt 4.2)
Die Blutplättchen-Aggregation ist ein Beispiel eines sogenannten gepaarten Vergleichs, wo man bei jeder Versuchseinheit eine Grösse unter zwei verschiedenen Bedingungen misst. Von Interesse ist, ob ein systematischer Unterschied bezüglich der Aggregation vor und nach dem Rauchen einer Zigarette besteht. Um dies zu untersuchen bilden wir die Differenzen: \(x_i = \text{Aggregation "nachher" - Aggregation "vorher" (} (i = 1, \ldots, 11)\), und wir haben somit eine (uns interessierende) Stichprobe.
4.7 Statistik für eine Stichprobe (Stahel, Kap. 8.3 – 8.5, 9.3)

4.7.1 (Punkt-) Schätzungen

Die (Punkt-) Schätzungen für den Erwartungswert und die Varianz sind:

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i, \]
\[\hat{\sigma}_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2. \]

Beachte, dass die Schätzer hier als Funktionen der Zufallsvariablen \(X_1, \ldots, X_n \) geschrieben sind; insbesondere sind \(\hat{\mu} \) und \(\hat{\sigma}_X^2 \) selbst wieder Zufallsvariablen (die Verteilungs-Eigenschaften von \(\hat{\mu} \) wurden in Abschnitt 4.6 diskutiert). Mit der Interpretation, dass die Daten \(x_i \) Realisierungen der Zufallsvariablen \(X_i \) sind, sind die realisierten Schätzer gleich dem arithmetischen Mittel und der empirischen Varianz der Daten.

4.7.2 Tests für \(\mu \)

Beispiel: Blutplättchen-Aggregation (Forts.)
Wir wollen testen, ob ein systematischer Unterschied zwischen Aggregation “nachher” und Aggregation “vorher” besteht. Da \(x_i \) gerade die Differenz der Aggregationen zwischen “nachher” und “vorher” ist, betrachten wir das folgende Test-Problem:

\[H_0 : \mu = 0, \quad H_A : \mu > 0. \]

Wir verwenden einen einseitigen Test, weil es bei der Planung der Studie bereits klar war, dass man nur an einer Erhöhung der Aggregation durch Nikotin interessiert ist.

Um auf den Parameter \(\mu \) zu testen, machen wir vorerst einmal die Annahme, dass

\[X_1, \ldots, X_n \text{ i.i.d. } \mathcal{N}(\mu, \sigma_X^2), \sigma_X \text{ bekannt} \quad (4.5) \]

Eine Abschwächung dieser Annahme wir später diskutiert.

Der z-Test: \(\sigma_X \) bekannt

Wir nehmen an, dass die Daten \(x_1, \ldots, x_n \) Realisierungen von (4.5) sind. Überdies machen wir die Annahme, dass \(\sigma_X^2 \) bekannt ist.

Der z-Test für den Parameter \(\mu \) ist dann wie folgt.

1. Modell: \(X_i \) ist eine kontinuierliche Messgröße;
 \(X_1, \ldots, X_n \text{ i.i.d. } \mathcal{N}(\mu, \sigma_X^2), \sigma_X \text{ bekannt} \)

2. Nullhypothese: \(H_0 : \mu = \mu_0 \),
 Alternative: \(H_A : \mu \neq \mu_0 \) (oder “<” oder “>”)

3. Teststatistik:

\[Z = \frac{(\bar{X}_n - \mu_0)}{\sigma_{\bar{X}_n}} = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma_X} = \frac{\text{beobachtet} - \text{erwartet}}{\text{Standardfehler}}. \]

Verteilung der Teststatistik unter \(H_0 \): \(Z \sim \mathcal{N}(0, 1) \)

4. Signifikanzniveau: \(\alpha \)
5. Verwerfungsbereich für die Teststatistik:

\[K = (-\infty, -\Phi^{-1}(1 - \frac{\alpha}{2})] \cup [\Phi^{-1}(1 - \frac{\alpha}{2}), \infty) \text{ bei } H_A : \mu \neq \mu_0, \]
\[K = (-\infty, -\Phi^{-1}(1 - \alpha)] \text{ bei } H_A : \mu < \mu_0, \]
\[K = [\Phi^{-1}(1 - \alpha), \infty) \text{ bei } H_A : \mu > \mu_0. \]

6. **Testentscheid:** Überprüfe, ob der beobachtete Wert der Teststatistik im Verwerfungsbereich liegt.

Im Unterschied zu den Tests in Kapitel 3.2.2 basiert der z-Test auf mehreren Beobachtungen. Diese werden aber mittels einer realisierten Teststatistik zusammengefasst (eine Funktion der Daten). Ansonsten sind die Konzepte genau gleich wie in Kapitel 3.2.2.

Beispiel (Forts. Schmelzwärme): Bei Methode A (vgl. Kapitel 4.2) scheint die Schmelzwärme größer als 80.00 zu sein. Angenommen, wir wissen aus vorhergehenden Studien, dass die Standardabweichung unseres Messinstruments \(\sigma_X = 0.01 \) ist. Ist es plausibel, dass die Schmelzwärme genau 80.00 \(\text{cal g}^{-1} \) ist? Wir machen einen z-Test:

1. **Modell:** \(X_i \) ist eine kontinuierliche Messgröße; \(X_1, \ldots, X_n \) i.i.d. \(\mathcal{N}(\mu, \sigma_X^2) \), \(\sigma_X = 0.01 \) bekannt, \(n = 13 \)
2. **Nullhypothese:** \(H_0 : \mu = \mu_0 = 80.00 \),
 Alternative: \(H_A : \mu \neq \mu_0 \)
3. **Teststatistik:**

\[Z = \frac{\sqrt{n}(X_n - \mu_0)}{\sigma_X} \]

Verteilung der Teststatistik unter \(H_0 \): \(Z \sim \mathcal{N}(0,1) \)
4. **Signifikanzniveau:** \(\alpha = 0.05 \)
5. **Verwerfungsbereich für die Teststatistik:**

\[K = (-\infty, -\Phi^{-1}(1 - \frac{\alpha}{2})] \cup [\Phi^{-1}(1 - \frac{\alpha}{2}), \infty) \text{ bei } H_A : \mu \neq \mu_0, \]

Aus der Tabelle entnehmen wir mit \(\alpha = 0.05 \): \(\Phi^{-1}(1 - \frac{\alpha}{2}) = \Phi^{-1}(0.975) = 1.96 \). Damit ergibt sich für den Verwerfungsbereich der Teststatistik \(K = (-\infty, -1.96] \cup [1.96, \infty) \).

6. **Testentscheid:** Aus den \(n = 13 \) Daten errechnen wir \(X_n = 80.02 \). Damit ergibt sich als Wert für die Teststatistik \(z = \frac{\sqrt{13}(80.02 - 80.00)}{0.01} = 7.21 \). Der beobachtete Wert liegt im Verwerfungsbereich der Teststatistik. Daher wird die Nullhypothese auf dem 5% Signifikanzniveau verworfen.

Die Begriffe Fehler 1. Art, Fehler 2. Art und Macht, die wir in Kapitel 3.2.2 beim Binomialtest kennengelernt haben, werden auch für alle anderen Tests verwendet. Wir wiederholen hier nochmals die Definitionen:

Fehler 1. Art = fälschliches Verwerfen von \(H_0 \), obschon \(H_0 \) richtig ist,

und

Fehler 2. Art(\(\mu \)) = (fälschliches) Beibehalten von \(H_0 \) falls \(\mu (\in H_A) \) richtig ist.
4.7 Statistik für eine Stichprobe (Stahel, Kap. 8.3 – 8.5, 9.3)

Die Wahrscheinlichkeit für einen Fehler 1. Art ist gerade gleich α; beim Fehler 2. Art (μ) betrachtet man oft die Macht:

$$\text{Macht}(\mu) = 1 - P(\text{Fehler 2. Art (}\mu)) = P(\text{Verwerfen von } H_0 \text{ falls } \mu \in H_A \text{ stimmt}).$$

Für $\mu \in H_A$ kann man die Macht(μ) als die Chance interpretieren, dass man richtigerweise H_A entdeckt falls $\mu \in H_A$ stimmt. Für eine Teststatistik T und einen dazugehörenden Verwerfungsbereich K gilt dann:

$$P_{\mu_0}(T \in K) = \alpha, \quad P_{\mu}(T \in K) = \text{Macht}(\mu).$$

Der t-Test: σ_X unbekannt

Wie vorhin nehmen wir an, dass die Daten Realisierungen von (4.5) sind. In der Praxis ist die Annahme, dass σ_X bekannt ist, oftmals unrealistisch. In solchen Fällen kann die Teststatistik z nicht berechnet werden, weil sie auf σ_X basiert. Allerdings können wir stattdessen die Schätzung

$$\hat{\sigma}_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

benutzen. Dies führt aber zu einer zusätzlichen Unsicherheit, was zur Folge hat, dass sich die Verteilung der Teststatistik ändert.

Die Teststatistik beim t-Test ist

$$T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\hat{\sigma}_X} = \text{beobachtet - erwartet} \quad \text{geschätzter Standardfehler}.$$

Deren Verteilung unter der Nullhypothese $H_0: \mu = \mu_0$ ist eine sogenannte t-Verteilung mit $n-1$ Freiheitsgraden, die wir mit t_{n-1} bezeichnen.

Die t_n-Verteilung ist eine symmetrische Verteilung um 0, welche langschwänziger ist als die Standard-Normalverteilung $N(0,1)$. Für $T \sim t_n$ gilt:

$$\mathcal{E}(T) = 0 \quad \text{Var}(T) = \frac{n}{n-2}.$$

Für große n ist t_n ähnlich zu $N(0,1)$: insbesondere strebt die t_n-Verteilung gegen die Standard-Normalverteilung $N(0,1)$ falls $n \to \infty$.

Den Verwerfungsbereich beim Test erhalten wir, indem wir einen Bereich der Wahrscheinlichkeit α bei der t_{n-1}-Verteilung abschneiden (je nach Alternative auf einer Seite, oder je die Hälfte auf beiden Seiten). Dazu brauchen wir die Quantile $t_{n,\alpha}$, welche mit Hilfe der R-Funktion qt berechnet (oder in Tabellenwerken nachgeschlagen) werden können.

Beispiele:

- Sei $T \sim t_{13}$. Für welches t gilt $P[T \leq t] = 0.95$? R liefert uns die Antwort durch den Funktionsaufruf
 > qt(0.95, 13)

 (Ausgabe: 0.1770933). Das erste Argument von qt ist also das Niveau des Quantils, das zweite Argument die Anzahl Freiheitsgrade.
• Sei \(T \sim t_7 \). Was ist \(P[T \leq 2.998] \)? Wir suchen diesmal den Wert der Verteilungsfunktion der \(t \)-Verteilung mit 7 Freiheitsgraden an der Stelle 2.998; diese liefert uns \(R \) mit
\[
pt(2.998, 7)
\]
(Ausgabe: 0.9900007).

Zusammenfassend ist der \(t \)-Test wie folgt:
1. **Modell:** \(X_i \) ist eine kontinuierliche Messgröße;
 \(X_1, \ldots, X_n \) i.i.d. \(N(\mu, \sigma_X^2) \), \(\sigma_X \) wird durch \(\hat{\sigma}_X \) geschätzt
2. **Nullhypothese:** \(H_0: \mu = \mu_0 \),
 Alternative: \(H_A: \mu \neq \mu_0 \) (oder “<” oder “>”)
3. **Teststatistik:**
 \[
 T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\hat{\sigma}_X} = \frac{\text{beobachtet} - \text{erwartet}}{\text{geschätzter Standardfehler}}.
 \]
 Verteilung der Teststatistik unter \(H_0 \): \(T \sim t_{n-1} \)
4. **Signifikanzniveau:** \(\alpha \)
5. **Verwerfungsbereich für die Teststatistik:**
 \[
 K = (-\infty, -t_{n-1;1-\alpha/2}] \cup [t_{n-1;1-\alpha/2}, \infty) \text{ bei } H_A : \mu \neq \mu_0,
 \]
 \[
 K = (-\infty, -t_{n-1;1-\alpha}] \text{ bei } H_A : \mu < \mu_0,
 \]
 \[
 K = [t_{n-1;1-\alpha}, \infty) \text{ bei } H_A : \mu > \mu_0.
 \]
6. **Testentscheid:** Überprüfe, ob der beobachtete Wert der Teststatistik im Verwerfungsbereich liegt.

Da das Quantil der \(t \)-Verteilung grösser ist als das Quantil der Normalverteilung, erhält man einen etwas kleineren Verwerfungsbereich als beim \(z \)-Test. Für grosse \(n \) ist der Unterschied allerdings minim (da \(t_{n-1} \approx N(0,1) \) falls \(n \) gross).

Beispiel (Forts. Schmelzwärme): Wir berechnen nochmals das Beispiel aus dem \(z \)-Test. Diesmal schätzen wir allerdings die Standardabweichung \(\sigma_X \) aus den Daten. Wir machen also einen \(t \)-Test auf dem 5% Signifikanzniveau:

1. **Modell:** \(X_i \) ist eine kontinuierliche Messgröße;
 \(X_1, \ldots, X_n \) i.i.d. \(N(\mu, \sigma_X^2) \), \(\sigma_X \) wird geschätzt \(\hat{\sigma}_X = 0.024 \)
2. **Nullhypothese:** \(H_0: \mu = \mu_0 = 80.00 \),
 Alternative: \(H_A: \mu \neq \mu_0 \)
3. **Teststatistik:**
 \[
 T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\hat{\sigma}_X}
 \]
 Verteilung der Teststatistik unter \(H_0 \): \(T \sim t_{n-1} \)
4. **Signifikanzniveau:** \(\alpha = 0.05 \)
5. **Verwerfungsbereich für die Teststatistik:**
 \[
 K = (-\infty, -t_{n-1;1-\alpha/2}] \cup [t_{n-1;1-\alpha/2}, \infty) \text{ bei } H_A : \mu \neq \mu_0,
 \]
4.7 Statistik für eine Stichprobe (Stahel, Kap. 8.3 – 8.5, 9.3)

Aus der Tabelle entnehmen wir mit α = 0.05 und n = 13: \(t_{n-1;1-\frac{\alpha}{2}} = t_{12;0.975} = 2.179 \).
Der Verwerfungsbereich der Teststatistik ist also:

\[
K = (-\infty, -2.179] \cup [2.179, \infty)
\]

6. **Testentscheid**: Aus den n = 13 Daten haben wir \(\bar{x} = 80.02 \) und \(\hat{\sigma}_X = 0.024 \) errechnet.
Damit ergibt sich für die Teststatistik der Wert \(t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{\hat{\sigma}_X} = \frac{\sqrt{13}(80.02 - 80.00)}{0.024} = 3.00 \).
Der beobachtete Wert der Teststatistik liegt im Verwerfungsbereich. Daher wird die Nullhypothese auf dem 5% Niveau verworfen.

Der P-Wert bei 2-seitiger Alternative \(H_A : \mu \neq \mu_0 \) kann wie folgt berechnet werden (der beobachtete Wert der Teststatistik ist \(t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{\hat{\sigma}_X} \)):

\[
P - \text{Wert} = P(|T| > |t|) = P(T < -|t|) + P(T > |t|) = 2 \cdot P(T > |t|) = 2 \cdot (1 - P(T \leq |t|)) = 2 \cdot (1 - F_{t,n-1}(|t|)) = 2 \cdot \left(1 - F_{t,n-1}\left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\hat{\sigma}_X}\right)\right),
\]

wobei \(F_{t,n-1} \) die kumulative Verteilungsfunktion der \(t \)-Verteilung mit \(n - 1 \) Freiheitsgraden bezeichnet; also \(F_{t,n-1}(t) = P(T \leq t) \) wobei \(T \sim t_{n-1} \). Die Funktion \(F_{t,n-1} \) für die \(t \)-Verteilung ist das Analogon zur Funktion \(\Phi(z) \) bei der Standardnormalverteilung.

Bildung (Forts.) Blutplättchen-Aggregation (siehe Abschnitt 4.2)
Wir betrachten die Differenzen \(x_i = \text{Aggregation “nachher” - Aggregation “vorher”} \ (i = 1, \ldots, 11) \) und wollen testen, ob der Unterschied größer als null sein könnte. Da wir die Standardabweichung der Messmethode nicht kennen, machen wir einen t-Test:

1. **Modell**: \(X_i \) ist eine kontinuierliche Messgröße;
\(X_1, \ldots, X_n \) i.i.d. \(N(\mu, \sigma_X^2) \); \(\sigma_X \) wird geschätzt
\(\hat{\sigma}_X = 7.98 \)
2. **Nullhypothese**: \(H_0 : \mu = \mu_0 = 0 \),
Alternative: \(H_A : \mu > \mu_0 \)
3. **Teststatistik**:
\[
T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\hat{\sigma}_X}
\]
Verteilung der Teststatistik unter \(H_0 : T \sim t_{n-1} \)
4. **Signifikanzniveau**: \(\alpha = 0.05 \)
5. **Verwerfungsbereich für die Teststatistik**:
\[
K = [t_{n-1;1-\alpha}, \infty) \text{ bei } H_A : \mu > \mu_0,
\]
Aus der Tabelle entnehmen wir mit \(\alpha = 0.05 \) und \(n = 11 \):
\(t_{n-1;1-\alpha} = t_{10;0.95} = 1.81 \). Der Verwerfungsbereich der Teststatistik ist also:
\[
K = [1.81, \infty)
\]
6. **Testentscheid**: Aus den n = 11 Daten haben wir \(\bar{x} = 10.27 \) und \(\hat{\sigma}_X = 7.98 \) errechnet.
Damit ergibt sich für die Teststatistik der Wert \(t = \frac{\sqrt{n}(\bar{x} - \mu_0)}{\hat{\sigma}_X} = \frac{\sqrt{11}(10.27 - 0)}{7.98} = 4.27 \). Der beobachtete Wert der Teststatistik liegt im Verwerfungsbereich. Daher wird die Nullhypothese auf dem 5% Niveau verworfen.
Der P-Wert ist

\[P_{H_0}[T > 4.27] = 1 - F_{t_{10}}(4.27) = 0.00082. \]

Berechnen lässt sich dieser Wert in R wie folgt: \(pt(q = 4.27, \ df = 10) \) liefert \(F_{t_{10}} = 0.99918 \) und somit ist der p-Wert \(1 - 0.99918 = 0.00082 \). Dies bedeutet, dass der Einfluss von dem Rauchen einer Zigarette bezüglich der Blutplättchen-Aggregation hoch signifikant ist.

Wenn man anstelle der einseitigen die zweiseitige Alternative \(H_A : \mu \neq \mu_0 = 0 \) spezifiziert, so sind die Resultate wie folgt: das relevante Quantil für \(\alpha = 0.05 \) ist \(t_{10;0.975} = 2.23 \). Die Test-Entscheidung bleibt dieselbe: verwirfe \(H_0 \) auf dem 5% Signifikanz-Niveau. Der P-Wert ist doppelt so groß: \(P_{H_0}[|T| > 4.27] = 2P_{H_0}[T > 4.27] = 0.0016 \).

4.7.3 Vertrauensintervall für \(\mu \)

Analog wie bei Zähldaten in Kapitel 3.2.3 besteht das Vertrauensintervall aus denjenigen Werten \(\mu \), bei denen der entsprechende Test nicht verwirft. Das sind also alle Parameterwerte des Zufallmodells, bei denen die Daten recht wahrscheinlich oder plausibel sind.

Wir nehmen wiederum an, dass die Daten Realisierungen von (4.5) sind. Bei einem zweiseitigen t-Test hat der Verwerfungsbereich die Form \(K = (-\infty, -t_{n-1;1-\frac{\alpha}{2}}] \cup [t_{n-1;1-\frac{\alpha}{2}}, \infty) \). Der t-Test verwirft \(H_0 \) nicht, wenn der Wert der Teststatistik nicht im Verwerfungsbereich der Teststatistik ist. Wenn \(H_0 \) nicht verworfen wird, muss also gelten:

\[
-t_{n-1;1-\frac{\alpha}{2}} \leq \frac{\sqrt{n}(x_n - \mu_0)}{\hat{\sigma}_X} \quad \text{und} \quad t_{n-1;1-\frac{\alpha}{2}} \geq \frac{\sqrt{n}(x_n - \mu_0)}{\hat{\sigma}_X}
\]

Um das zweiseitige Vertrauensintervall von \(\mu \) zu finden, müssen wir alle Werte von \(\mu_0 \) finden, die obige Gleichungen erfüllen. Am einfachsten geht das, wenn wir beide Gleichungen nach \(\mu_0 \) auflösen:

\[
\begin{align*}
\mu_0 &\leq \bar{x}_n + \frac{\hat{\sigma}_X \cdot t_{n-1;1-\frac{\alpha}{2}}}{\sqrt{n}} \\
\mu_0 &\geq \bar{x}_n - \frac{\hat{\sigma}_X \cdot t_{n-1;1-\frac{\alpha}{2}}}{\sqrt{n}}
\end{align*}
\]

Dies führt dann auf die folgenden zweiseitigen Vertrauensintervalle (die dazugehörigen Tests sind zweiseitig mit Alternative \(H_A : \mu \neq \mu_0 \) zum Niveau \(1 - \alpha \):

\[
[\bar{x}_n - t_{n-1,1-\alpha/2} \frac{\hat{\sigma}_X}{\sqrt{n}}, \bar{x}_n + t_{n-1,1-\alpha/2} \frac{\hat{\sigma}_X}{\sqrt{n}}]
\]

Analog kann man auch einseitige Vertrauensintervalle konstruieren. Sie enthalten alle Parameter, bei denen ein einseitiger Test nicht verwirfen würde. Beim t-Test sehen die einseitigen (1-\(\alpha \))-Vertrauensintervalle so aus:

\[
\begin{align*}
\text{Falls } H_A : \mu < \mu_0: &\; (-\infty; \bar{x}_n + t_{n-1,1-\alpha} \cdot \frac{\hat{\sigma}_X}{\sqrt{n}}] \\
\text{Falls } H_A : \mu > \mu_0: &\; [\bar{x}_n - t_{n-1,1-\alpha} \cdot \frac{\hat{\sigma}_X}{\sqrt{n}}, \infty)
\end{align*}
\]
4.7 Statistik für eine Stichprobe (Stahel, Kap. 8.3 – 8.5, 9.3)

Beispiel (Forts.): Aggregation von Blutplättchen
Wir haben 10 Freiheitsgrade und $t_{10, 0.975} = 2.23$. Das zweiseitige Konfidenzintervall für die Erhöhung der Blutplättchen-Aggregation nach dem Rauchen einer Zigarette ist somit (%-ige Zunahme)

$$I = 10.27 \pm 2.23 \cdot 7.9761/\sqrt{11} = [4.91, 15.63].$$

Insbesondere ist die Null nicht im Intervall I: das heisst, der Wert $\mu = 0$ ist nicht mit den Daten kompatibel (was wir bereits vom t-Test (siehe oben) wissen).

4.7.4 Tests für μ bei nicht-normalverteilten Daten

Der z- und t-Test sind optimal falls die Daten Realisierungen von normalverteilten Zufallsvariablen sind wie in (4.5). Optimalität bedeutet hier, dass dies die Tests sind, welche die beste Macht haben.

Wir betrachten hier die allgemeinere Situation, in der die Daten Realisierungen sind von

$$X_1, \ldots, X_n \text{ i.i.d.} ,$$

wobei X_i eine beliebige Verteilung hat. Wir bezeichnen mit μ einen Lageparameter der Verteilung (z.B. $\mu = \text{Median der Verteilung von } X_i$). Die Nullhypothese ist von der Form $H_0: \mu = \mu_0$.

Der Vorzeichen-Test

Wir betrachten die Situation, wo die Daten Realisierungen von (4.6) sind, wobei die einzelnen X_i nicht normalverteilt sein müssen. Der Vorzeichentest testet Hypothesen über den Median der Verteilung von X_i, den wir hier mit μ bezeichnen; im Falle einer symmetrischen Verteilung ist $\mu = \mathcal{E}(X_i)$. Wenn μ der Median der Verteilung von X ist, dann ist die Wahrscheinlichkeit, dass eine Realisierung von X grösser als μ ist genauso gross wie die Wahrscheinlichkeit, dass eine Realisierung von X kleiner als μ ist. In anderen Worten: $P(X > \mu) = 0.5$. Der Vorzeichen-Test verwendet das folgendermassen:

1. Modell:

$$X_1, \ldots, X_n \text{ i.i.d.} ,$$

wobei X_i eine beliebige Verteilung hat.

2. Nullhypothese: $H_0: \mu = \mu_0$, (μ ist der Median)
 Alternative: $H_A: \mu \neq \mu_0$ (oder einseitige Variante)

3. Teststatistik: V: Anzahl X_is mit $(X_i > \mu_0)$
 Verteilung der Teststatistik unter H_0: $V \sim \text{Bin}(n, \pi_0)$ mit $\pi_0 = 0.5$

4. Signifikanzniveau: α

5. Verwerfungsbereich für die Teststatistik: $K = [0, c_u] \cup [c_o, n]$ falls $H_A: \mu \neq \mu_0$.
 Die Grenzen c_u und c_o müssen mit der Binomialverteilung oder der Normalapproximation berechnet werden.

Vielleicht ist es Ihnen schon aufgefallen: Der Vorzeichen-Test ist nichts anderes als ein Binomialtest. Wenn wir $\mu_0 = 0$ wählen, entspricht die Teststatistik gerade der Anzahl “+” im Datensatz, daher der Name “Vorzeichen-Test”. Wenn Sie den Binomialtest verstanden haben, müssen Sie für den Vorzeichen-Test also gar nichts neues lernen.

Beispiel (Forts.): Blutplättchen-Aggregation
Die Nullhypothese ist $H_0 : \mu = \mu_0 = 0$. Die realisierte Teststatistik ist dann $v = 10$ und der P-Wert bei einseitiger Alternative $H_A : \mu > \mu_0 = 0$ ist 0.005 (beim t-Test war der P-Wert = 0.00082).

Der Vorzeichentest stimmt immer, falls die Daten Realisierungen von (4.6) sind: das heisst, die Wahrscheinlichkeit für einen Fehler 1. Art ist kontrolliert durch α bei beliebiger Verteilung der X_i’s.

Vom Standpunkt der Macht gibt es keine eindeutige Antwort, ob der Vorzeichen- oder der t-Test besser ist. Wenn die Verteilung der X_i langschwänzig ist, kann der Vorzeichentest grössere Macht haben. Weil der Vorzeichentest die Information nicht ausnutzt, um wieviel die X_i von dem Wert μ_0 abweichen (siehe die Definition der Teststatistik V oben), kann die Macht aber auch wesentlich schlechter sein als beim t-Test.

Der Wilcoxon-Test

Der Wilcoxon-Test ist ein Kompromiss, der keine Normalverteilung voraussetzt wie der t-Test und die Information der Daten besser ausnutzt als der Vorzeichen-Test.

Die Voraussetzung für den Wilcoxon-Test ist: Die Daten sind Realisierungen von (4.6) wobei die Verteilung der X_i’s stetig und symmetrisch ist bezüglich $\mu = E(X_i)$. Wir verzichten auf die Formel für die Teststatistik und die Berechnung der Verteilung der Teststatistik unter der Nullhypothese $\mu = \mu_0$, da der P-Wert mit statistischer Software berechnet werden kann.

Beispiel (Forts.): Blutplättchen-Aggregation
Die Nullhypothese ist $H_0 : \mu = \mu_0 = 0$. Der P-Wert bei einseitiger Alternative $H_A : \mu > \mu_0 = 0$ ist 0.002528.

Der Wilcoxon-Test ist in den allermeisten Fällen vorzuziehen: er hat in vielen Situationen oftmals wesentlich grössere Macht als der t- und als der Vorzeichen-Test, und selbst in den ungünstigsten Fällen ist er nie viel schlechter.

Wenn man trotzdem den t-Test verwendet, dann sollte man die Daten auch grafisch ansehen, damit wenigstens grobe Abweichungen von der Normalverteilung entdeckt werden. Insbesondere sollte der Normal-Plot (siehe Kap. 4.5.5) angeschaut werden.

4.8 Tests bei zwei Stichproben (Stahel, Kap. 8.8)

Wir besprechen hier Methoden, um einen Vergleich zweier Methoden (Gruppen, Versuchsbedingungen, Behandlungen) hinsichtlich der Lage der Verteilung machen.
4.8 Tests bei zwei Stichproben (Stahel, Kap. 8.8)

4.8.1 Gepaarte Stichprobe

Struktur der Daten

Wenn möglich sollte man eine Versuchseinheit beiden Versuchbedingungen unterwerfen: Es liegt eine gepaarte Stichprobe vor, wenn

- beide Versuchbedingungen an derselben Versuchseinheit eingesetzt werden
- oder jeder Versuchseinheit aus der einen Gruppe genau eine Versuchseinheit aus der anderen Gruppe zugeordnet werden kann.

Die Daten sind dann von der folgenden Struktur:

\[
x_1, \ldots, x_n \text{ unter Versuchsbedingung 1},
\]
\[
y_1, \ldots, y_n \text{ unter Versuchsbedingung 2}.
\]

Notwendigerweise ist dann die Stichprobengröße \(n \) für beide Versuchsbedingungen dieselbe. Zudem sind \(x_i \) und \(y_i \) abhängig, weil die Werte von der gleichen Versuchseinheit kommen.

Beispiel:

Beispiel:

Beispiel:

Beispiel:

Test

Bei der Analyse von gepaarten Vergleichen arbeitet man mit den Differenzen innerhalb der Paare,

\[
u_i = x_i - y_i \quad (i = 1, \ldots, n),
\]
welche wir als Realisierungen von i.i.d. Zufallsvariablen U_1, \ldots, U_n auffassen. Kein Unterschied zwischen den beiden Versuchsbedingungen heisst dann einfach $E[U_i] = 0$ (oder auch Median(U_i) = 0, je nach Test). Tests dafür sind in Kapitel 4.7 beschrieben: Falls die Daten normalverteilt sind, eignet sich ein t-Test. Sonst kommt ein Vorzeichentest oder ein Wilcoxon-Test in Frage. Dabei ist zu beachten, dass die vorausgesetzte Symmetrie für die Verteilung von U_i beim Wilcoxon-Test immer gilt unter der Nullhypothese, dass X_i und Y_i dieselbe Verteilung haben.

4.8.2 Ungepaarte Stichproben

Struktur der Daten

Bei ungepaarten Stichproben hat man Daten x_1, \ldots, x_n und y_1, \ldots, y_m (siehe Kapitel 4.8.2), welche wir als Realisierungen der folgenden Zufallsvariablen auffassen:

$$X_1, \ldots, X_n \text{ i.i.d.},$$
$$Y_1, \ldots, Y_m \text{ i.i.d.},$$

wobei auch alle X_i‘s von allen Y_j‘s unabhängig sind.

Bei einer solchen zufälligen Zuordnung von Versuchseinheiten zu einer von zwei verschiedenen Versuchsbedingungen spricht man von einer ungepaarten Stichprobe. Im Allgemeinen ist in einer ungepaarten Stichprobe $m \neq n$, aber nicht notwendigerweise. Entscheidend ist, dass x_i und y_i zu verschiedenen Versuchseinheiten gehören und als unabhängig angenommen werden können.

Beispiel:
Datensatz zu latenter Schmelzwärme von Eis in Kapitel 4.2. Wir haben die Schmelzwärme mit zwei verschiedenen Methoden hintereinander gemessen. Jede Messung ist entweder mit Methode A oder mit Methode B, aber nicht mit beiden gleichzeitig gemacht worden. Es gibt also keinen eindeutigen Zusammenhang zwischen den Messungen der Methode A und den Messungen der Methode B. Daher sind die beiden Stichproben ungepaart.

Beispiel:

Test: Zwei-Stichproben t-Test bei gleichen Varianzen

Die beiden Stichproben können gleiche oder unterschiedliche Varianz haben. Wir behandeln nur den Fall mit gleicher Varianz im Detail und erwähnen den Fall mit ungleicher Varianz nur kurz.

Im Detail sieht der Zwei-Stichproben t-Test folgendermassen aus:
4.8 Tests bei zwei Stichproben (Stahel, Kap. 8.8) 73

1. Modell:

\[X_1, \ldots, X_n, \text{i.i.d. } \sim \mathcal{N}(\mu_X, \sigma^2), \]
\[Y_1, \ldots, Y_m, \text{i.i.d. } \sim \mathcal{N}(\mu_Y, \sigma^2). \]

(4.9)

2. Nullhypothese:

\[H_0 : \mu_X = \mu_Y. \]

Alternative:

\[H_A : \mu_X \neq \mu_Y \text{ (zweiseitig)} \]
oder \(H_A : \mu_X > \mu_Y \text{ (einsichtig)} \)
oder \(H_A : \mu_X < \mu_Y \text{ (einsichtig)} \)

3. Teststatistik:

\[T = \frac{\overline{X}_n - \overline{Y}_m}{S_{\text{pool}} \sqrt{1/n + 1/m}} \]

wobei

\[S^2_{\text{pool}} = \frac{1}{n + m - 2} \left(\sum_{i=1}^{n} (X_i - \overline{X}_n)^2 + \sum_{i=1}^{m} (Y_i - \overline{Y}_m)^2 \right) = \]
\[= \frac{1}{n + m - 2} \left((n-1)\hat{\sigma}_x^2 + (m-1)\hat{\sigma}_y^2 \right). \]

Verteilung der Teststatistik unter \(H_0 \): \(T \sim t_{n+m-2} \).

4. Signifikanzniveau: \(\alpha \)

5. Verwerfungsbereich für die Teststatistik:

\[(-\infty, -t_{n+m-2,1-\alpha/2}] \cup [t_{n+m-2,1-\alpha/2}, \infty) \]
bei Alternative \(H_A : \mu_X \neq \mu_Y \),
\[[t_{n+m-2,1-\alpha}, \infty) \]
bei Alternative \(H_A : \mu_X > \mu_Y \),
\[(-\infty, -t_{n+m-2,1-\alpha}] \]
bei Alternative \(H_A : \mu_X < \mu_Y \).

Die Idee des Zwei-Stichproben t-Tests ist wie folgt. Man ersetzt die unbekannte Differenz \(\mu_X - \mu_Y \) durch die Schätzung \(\overline{X}_n - \overline{Y}_m \) und beurteilt, ob diese Schätzung “nahe bei” 0 liegt (“weit weg von” 0 würde Evidenz für \(H_A \) bedeuten). Dies wird so quantifiziert, dass man durch den geschätzten Standardfehler von \(\overline{X}_n - \overline{Y}_m \) dividiert und dies als Teststatistik benutzt:

\[T = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\text{Var}(\overline{X}_n - \overline{Y}_m)}} \]
\[= \frac{\overline{X}_n - \overline{Y}_m}{S_{\text{pool}} \sqrt{1/n + 1/m}}. \]
Unter der Annahme (4.9) und der Null-Hypothese $\mu_X = \mu_Y$ gilt dann:

$$T \sim t_{n+m-2}.$$

Die Wahl des Nenners in der Teststatistik T ergibt sich aus

$$\text{Var}(X_n - Y_m) = \sigma^2 \left(\frac{1}{n} + \frac{1}{m} \right). \quad (4.10)$$

Beweis von (4.10):
1. X_n und Y_m sind unabhängig, weil alle X_i's von allen Y_j's unabhängig sind.
2. Wegen der Unabhängigkeit von X_n und Y_m gilt:
 $$\text{Var}(X_n - Y_m) = \text{Var}(X_n) + \text{Var}(-Y_m) = \text{Var}(X_n) + \text{Var}(Y_m).$$
3. $\text{Var}(X_n) = \sigma^2/n$ und $\text{Var}(Y_m) = \sigma^2/m$.
 Somit ist mit Schritt 2: $\text{Var}(X_n - Y_m) = \sigma^2(1/n + 1/m). \quad \square$

Beispiel: Schmelzwärme von Eis, siehe Kapitel 4.2.

1. **Modell:** X: Mit Methode A gemessene Schmelzwärme in cal/g.
 Y: Mit Methode B gemessene Schmelzwärme in cal/g.

 $$X_1, \ldots, X_n \text{ i.i.d. } \sim \mathcal{N}(\mu_X, \sigma^2), \ n = 13$$
 $$Y_1, \ldots, Y_m \text{ i.i.d. } \sim \mathcal{N}(\mu_Y, \sigma^2), \ m = 8.$$

2. **Nullhypothese:**

 $$H_0 : \mu_X = \mu_Y.$$

 Alternative:

 $$H_A : \mu_X \neq \mu_Y \text{ (zweiseitig)}$$

3. **Teststatistik:**

 $$T = \frac{X_n - Y_m}{S_{\text{pool}} \sqrt{1/n + 1/m}}$$

 wobei

 $$S_{\text{pool}}^2 = \frac{1}{n + m - 2} \left(\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + \sum_{i=1}^{m} (Y_i - \bar{Y}_m)^2 \right).$$

 Verteilung der Teststatistik unter H_0: $T \sim t_{n+m-2}.$

4. **Signifikanzniveau:** $\alpha = 0.05$

5. **Verwerfungsbereich für die Teststatistik:**

 $$(-\infty, -t_{n+m-2,1-\alpha/2}] \cup [t_{n+m-2,1-\alpha/2}, \infty) \text{ bei Alternative } H_A : \mu_X \neq \mu_Y,$$
6. **Testentscheid:** Zunächst berechnen wir den beobachteten Wert der Teststatistik. Für die Mittelwerte ergibt sich \(\bar{x} = 80.021, \bar{y} = 79.979. \) Für die Schätzung der Varianz ergibt sich:
\[
s_{pool}^2 = 7.253 \cdot 10^{-4} \cdot \frac{1}{7} + 1/8.
\]
Damit ist der beobachtete Wert der Teststatistik:
\[
t = \frac{\bar{x} - \bar{y}}{s_{pool} \sqrt{1/n + 1/m}} = \frac{80.021 - 79.979}{\sqrt{7.253 \cdot 10^{-4} \cdot \sqrt{1/13 + 1/8}}} = 3.47.
\]
Nun berechnen wir den konkreten Wert des Verwerfungsbereichs der Teststatistik. Aus der Tabelle entnehmen wir
\[
t_{n+m-2, 1-\alpha/2} = t_{19, 0.975} = 2.093.
\]
Daher ist der Verwerfungsbereich der Teststatistik:
\[
(-\infty, -2.093] \cup [2.093, \infty)
\]
Der beobachtete Wert der Teststatistik liegt also im Verwerfungsbereich der Teststatistik. Daher wird die Nullhypothese auf dem 5% Niveau verworfen.

4.8.3 Weitere Zwei-Stichproben-Tests bei ungepaarten Stichproben

Zwei-Stichproben t-Test bei ungleichen Varianzen

Anstelle der Annahme in (4.9) gelte:
\[
X_1, \ldots, X_n \text{ i.i.d. } \sim \mathcal{N}(\mu_X, \sigma_X^2), \quad Y_1, \ldots, Y_m \text{ i.i.d. } \sim \mathcal{N}(\mu_Y, \sigma_Y^2).
\]

Die Verallgemeinerung des Zwei-Stichproben t-Tests für ungleiche Varianzen \(\sigma_X^2 \neq \sigma_Y^2 \) ist in der Literatur zu finden und in vielen statistischen Programmen implementiert. In den meisten Fällen erhält man ähnliche P-Werte wie unter der Annahme von gleichen Varianzen.

Zwei-Stichproben Wilcoxon-Test (Mann-Whitney Test)

Die Voraussetzungen für den Zwei-Stichproben Wilcoxon-Test, manchmal auch Mann-Whitney Test genannt, bezüglich (4.8) sind wie folgt:
\[
X_1, \ldots, X_n \text{ i.i.d. } \sim F_X, \quad Y_1, \ldots, Y_m \text{ i.i.d. } \sim F_Y,
\]

\(F_X \) beliebige stetige Verteilungsfunktion, \(F_Y(x) = F_X(x - \delta). \)

Dies bedeutet, dass die Verteilung von \(Y_j \) die um \(\delta \) verschobene Verteilung von \(X_i \) ist, denn:
\[
P(Y_j \leq x + \delta) = F_Y(x + \delta) = F_X(x + \delta - \delta) = F_X(x) = P(X_i \leq x).
\]

Die Berechnung des P-Werts eines Zwei-Stichproben Wilcoxon-Tests kann mittels Computer erfolgen. Aus den gleichen Gründen wie im Fall einer Stichprobe (siehe Kapitel 4.7.4) ist der Wilcoxon-Test im Allgemeinen dem t-Test vorzuziehen.

4.9 Versuchsplanung (Stahel, Kap. 14.1 - 14.2)

Genauso wichtig wie die Auswertung der Daten sind Überlegungen, wie man die Daten gewinnen soll. Bisher haben wir Vergleiche zwischen zwei “Behandlungen” besprochen (gepaart oder ungepaart). Allgemeiner geht es bei statistischen Studien meist darum, wie sich eine oder mehrere
Einflussgrössen auf eine Zielgröße auswirken. Die statistischen Methoden dafür werden wir im nächsten Kapitel noch kurz behandeln.

Will man den Effekt einer Behandlung untersuchen, so braucht es eine Kontrollgruppe in der gleichen Studie, die sich zu Beginn der Studie möglichst wenig von der Gruppe mit der neuen Behandlung unterscheidet. Man darf also nicht Versuchseinheiten aus früheren Studien nehmen und sie als die eine Gruppe in einem Zwei-Stichproben-Vergleich verwenden. Es gibt auch oft effizientere Methoden als der Vergleich von zwei unabhängigen Stichproben für den Nachweis eines Behandlungseffekts. So ist meistens eine Versuchsanordnung, bei der sowohl die Kontrollbehandlung und die neue Behandlung auf gleiche Versuchseinheit angewendet wird (gepaarter Vergleich) effizienter. Weitere solche Möglichkeiten sind in der Literatur unter Versuchsplanung (design of experiments) beschrieben.

Nicht immer ist ein randomisiertes, doppelblindes Experiment möglich (aus ethischen oder praktischen Gründen), und man muss auf Beobachtungsstudien zurückgreifen. Dies erschwert die Auswertung und Interpretation unter Umständen gewaltig, weil man Störeffekte praktisch nicht ausschliessen kann. Ein bekanntes Beispiel ist der Zusammenhang zwischen Rauchen und Lungenkrebs, der lange umstritten war, weil die genetische Veranlagung und der Effekt des Lebensstils nicht auszuschliessen waren.

Mehr Wiederholungen reduzieren die Unsicherheit. Aus Kosten- und Zeitgründen will man jedoch möglichst wenige Wiederholungen machen. Die Statistik kann berechnen, wie viele Wiederholungen nötig sind, um einen Behandlungseffekt von vorgegebener Größe mit einer vorgegebenen Wahrscheinlichkeit zu entdecken, sofern auch die Streuung bei gleicher Behandlung bekannt ist oder wenigstens abgeschätzt werden kann.

im Wasser auf Fische, dann sind mehrere Fische im gleichen Aquarium Scheinwiederholungen, denn man kann bei Fischen im gleichen Aquarium die Exposition nicht individuell verändern. Ein allfälliger signifikanter Unterschied zwischen den Fischen in zwei verschieden behandelten Aquarien könnte auch durch irgendwelche unbeabsichtigte andere Unterschiede zwischen ihnen oder durch eine gegenseitige Beeinflussung der Fische im gleichen Aquarium verursacht sein. Man muss also pro Behandlung einige Aquarien haben, oder den Versuch auf geeignete Weise mehrmals wiederholen, damit man statistisch korrekt Unterschiede zwischen Behandlungen nachweisen kann. Scheinwiederholungen gibt es natürlich auch bei Beobachtungsstudien. Auch dort muss man sich fragen, was die Beobachtungseinheit ist, z.B. ein Individuum oder eine Gruppe.

4.10 Software

Praktisch alle Methoden, die in diesem Kapitel vorgestellt wurden, stehen in der Statistik-Software R (und auch in den meisten anderen üblichen Softwarepaketen) zur Verfügung. Sehen Sie sich mal die Hilfefiles der folgenden Funktionen an (wenn die Funktion z.B. mean heisst, dann können Sie mit ?mean das zugehörige Hilfefile aufrufen).

4.10.1 Verschiedenes

Empirischer Mittelwert, empirische Varianz und empirische Standardabweichung lassen sich mit den Befehlen mean, var und sd berechnen. Quantile lassen sich mit der Funktion quantile berechnen. Für Histogramme, Boxplots, die empirische kumulative Verteilungsfunktion und Normal-Plots verwenden Sie die Funktionen hist, boxplot, ecdf und qqnorm.

Die Uniforme Verteilung, Exponentialverteilung, t-Verteilung und die Normalverteilung stehen unter den Kürzeln (siehe Kapitel 2.9) unif, exp, t und norm zur Verfügung.

4.10.2 Zwei-Stichproben t-Test für ungepaarte Stichproben

Sowohl der Ein-Stichproben t-Test als auch der Zwei-Stichproben t-Test (sowohl mit gleicher als auch mit ungleicher Varianz) sind unter t.test implementiert. Der Ein-Stichproben und Zwei-Stichproben Wilcoxon-Test ist unter wilcox.test verfügbar.

Beispiel Forts. Schmelzwärme: Wir berechnen den Zwei-Stichproben t-Test für ungepaarte Stichproben. Zunächst lesen wir die Daten ein:

```r
> x <- c(79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97, 80.05,
       80.03, 80.02, 80.00, 80.02)
> y <- c(80.02, 79.94, 79.98, 79.97, 80.03, 79.95, 79.97)
```

Nun führen wir den t-Test mit durch. Wir nehmen zunächst an, dass die Streuung bei beiden Messmethoden gleich ist:

```r
t.test(x, y, alternative = "two.sided", mu = 0, paired = FALSE,
       var.equal = TRUE, conf.level = 0.95)
```

Die ersten beiden Argumente enthalten die Daten der beiden Stichproben. Das Argument alternative gibt an, ob die Alternative einseitig (und wenn ja in welche Richtung mit alternative = "greater" und alternative = "less") oder zweiseitig (mit alternative = "two.sided") ist. Das Argument mu gibt an, welcher Unterschied in den Mittelwerten der beiden Gruppen
in der Nullhypothese getestet werden soll. Wenn man testen will, ob die beiden Gruppenmittelwerte gleich sind, ist $\mu = 0$ die richtige Wahl. `paired = FALSE` gibt an, dass es sich um zwei ungepaarte Stichproben handelt. `var.equal = TRUE` gibt an, dass die Streuungen in den beiden Stichproben gleich gross sind. Mit `conf.level = 0.95` wird ein 95%-Vertrauensintervall des Unterschieds zwischen den beiden Gruppenmittelwerten ausgegeben.

Dieses Beispiel haben wir in Kapitel 4.8.2 besprochen. Am besten überzeugen Sie sich selbst davon, dass die Software tatsächlich das gleiche Resultat wie die Rechnung von Hand liefert. Die Ausgabe des Computers sieht folgendermassen aus:

```
Two Sample t-test
data: x and y
t = 3.4722, df = 19, p-value = 0.002551
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  0.0166906  0.0673479
sample estimates:
mean of x    mean of y
 80.02077   79.97875
```

In der Zeile $t = \ldots$ steht zunächst der beobachtete Wert der Teststatistik: $t = 3.47$. Unter der Nullhypothese folgt die Teststatistik einer t-Verteilung mit $df = 19$ Freiheitsgraden. Das ergibt bei einer zweiseitigen Alternative (siehe Zeile `alternative hypothesis: \ldots`) einen P-Wert von 0.002551. Der Unterschied ist also auf dem auf dem 5% Signifikanzniveau signifikant, weil der P-Wert kleiner als 5% ist. Der Computer berechnet auch das 95%-Vertrauensintervall des Unterschieds in den Gruppenmittelwerten: Mit 95% Wahrscheinlichkeit ist der Gruppenmittelwert von x um eine Zahl im Bereich $[0.01667, 0.0673]$ grösser als der Gruppenmittelwert von y\footnote{Die null ist nicht enthalten, also ist der Unterschied der Mittelwerte signifikant.}. In der letzten Zeile werden schliesslich noch die Mittelwerte der beiden Gruppen angegeben. Beachten Sie, dass kein Verwerfungsbereich ausgegeben wird.

4.10.3 Zwei-Stichproben t-Test für gepaarte Stichproben

Einen t-Test für gepaarte Stichproben kann man leicht durchführen, indem man das Argument `paired = TRUE` verwendet.

Beispiel Fortsetzung Blutplättchen Vergleichen Sie die Ergebnisse des Computers mit den Berechnungen, die wir in 4.7.2 von Hand durchgeführt haben. Sie sollten identisch sein. Zunächst lesen wir wieder die Daten ein:

```r
> vorher <- c(25,25,27,44,30,67,53,53,52,60,28)
> nachher <- c(27,29,37,56,46,82,57,80,61,59,43)
```

Dann führen wir den t-Test für gepaarte Stichproben durch:

```
t.test(nachher, vorher, alternative = "two.sided", mu = 0, paired = TRUE, conf.level = 0.95)
```

Die Interpretation der Argumente ist wie im vorhergehenden Beispiel. Der Output ist (Interpretation ist ähnlich wie im vorhergehenden Beispiel):

```
Paired t-test
data: nachher and vorher
```

```r
Paired t-test
data: nachher and vorher
```
4.10 Software

t = 4.2716, df = 10, p-value = 0.001633
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 4.91431 15.63114
sample estimates:
mean of the differences
 10.27273

Der Unterschied der Gruppenmittelwerte hat bei einer zweiseitigen Alternative (siehe Zeile alternative hypothesis: ...) einen P-Wert von 0.0016 und ist somit auf dem 5% Signifikanzniveau signifikant. Der Wert der Teststatistik ist 4.27 und folgt unter der Nullhypothese einer t-Verteilung mit df = 10 Freiheitsgraden. Der Unterschied nachher-vorher ist 10.27. Ein 95%-Vertrauensintervall für diese Differenz ist: [4.91, 15.63].

4.10.4 t-Test für eine Stichprobe

Der t-Test für nur eine Stichprobe lässt sich leicht berechnen, indem man das zweite Argument im Funktionsaufruf einfach weglässt.

Beispiel (Forts. Schmelzwärme) Wir testen wie in Kapitel 4.7.2, ob die Beobachtungen in Gruppe A mit der Nullhypothese $H_0 : \mu = 80.00$ verträglich ist. Zunächst wieder die Dateneingabe:

```r
> x <- c(79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97, 80.05,
    80.03, 80.02, 80.00, 80.02)
```

Und nun der t-Test für eine Stichprobe:

```r
t.test(x, alternative = "two.sided", mu = 80.00, conf.level = 0.95)
```

Der Computer liefert:

```none
One Sample t-test

data: x
t = 3.1246, df = 12, p-value = 0.008779
alternative hypothesis: true mean is not equal to 80
95 percent confidence interval:
  80.00629 80.03525
sample estimates:
mean of x
  80.02077
```

Der beobachtete Wert der Teststatistik ist 3.12 und folgt unter der Nullhypothese einer t-Verteilung mit df = 12 Freiheitsgraden. Der P-Wert mit einer zweiseitigen Alternative ist 0.008779 und ist somit auf dem 5% Signifikanzniveau signifikant. Der beobachtete Mittelwert der Daten ist 80.02. Ein 95%-Vertrauensintervall für den wahren Mittelwert der Messungen ist [80.006, 80.035].
Modelle und Statistik für Messdaten
Kapitel 5

Regression

5.1 Lernziele

- Sie verstehen die Konzepte der einfachen und multiplen linearen Regression (wie ist die Form des Modells; wie kommen die zufälligen Fehler ins Modell; wie interpretiert man die Koeffizienten; wie schätzt man die Koeffizienten; wie testet man, ob ein Koeffizient signifikant ist)

- Sie können eine lineare Regression mit der Software R durchführen.

- Sie können prüfen, ob die Modellannahmen erfüllt sind.

- Sie verstehen jede Zeile im R-Output einer linearen Regression und können mit dem Output die konkrete Form des geschätzten Modells aufschreiben.

5.2 Einfache lineare Regression

Wir erklären das Modell der einfachen linearen Regression zunächst mit einem fiktiven Beispiel. Je dicker ein Roman (Hardcover) ist, desto teurer ist er in der Regel. Es gibt also einen Zusammenhang zwischen Seitenzahl x und Buchpreis y. Wir gehen in einen Buchladen und suchen zehn Romane verschiedener Dicke aus. Wir nehmen dabei je ein Buch mit der Seitenzahl 50, 100, 150, ..., 450, 500. Von jedem Buch notieren wir die Seitenzahl und den Buchpreis. Damit erhalten wir Tabelle 5.1:

<table>
<thead>
<tr>
<th>Buch</th>
<th>Seitenzahl</th>
<th>Buchpreis (SFr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buch 1</td>
<td>50</td>
<td>6.4</td>
</tr>
<tr>
<td>Buch 2</td>
<td>100</td>
<td>9.5</td>
</tr>
<tr>
<td>Buch 3</td>
<td>150</td>
<td>15.6</td>
</tr>
<tr>
<td>Buch 4</td>
<td>200</td>
<td>15.1</td>
</tr>
<tr>
<td>Buch 5</td>
<td>250</td>
<td>17.8</td>
</tr>
<tr>
<td>Buch 6</td>
<td>300</td>
<td>23.4</td>
</tr>
<tr>
<td>Buch 7</td>
<td>350</td>
<td>23.4</td>
</tr>
<tr>
<td>Buch 8</td>
<td>400</td>
<td>22.5</td>
</tr>
<tr>
<td>Buch 9</td>
<td>450</td>
<td>26.1</td>
</tr>
<tr>
<td>Buch 10</td>
<td>500</td>
<td>29.1</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Zusammenhang zwischen Buchpreis und Seitenzahl (fiktiv).
Aus der Tabelle sehen wir tatsächlich, dass dickere Bücher tendenziell mehr kosten. Abbildung 5.1(a) zeigt diesen Zusammenhang graphisch. Wenn wir einen formelmäßigen Zusammenhang zwischen Buchpreis und Seitenzahl hätten, könnten wir Vorhersagen für Bücher mit Seitenzahlen, die wir nicht beobachtet haben, machen. Oder wir könnten herausfinden, wie teuer ein Buch mit “null” Seiten wäre (das wären die Grundkosten des Verlags, die unabhängig von der Seitenzahl sind: Einband, administrativer Aufwand für jedes Buch, etc.). Wie könnten wir diesen Zusammenhang mit einer Formel beschreiben? Auf den ersten Blick scheint eine Gerade recht gut zu den Daten zu passen. Diese Gerade hätte die Form: \(y = \beta_0 + \beta_1 x \), wobei \(y \) der Buchpreis und \(x \) die Seitenzahl sind. \(\beta_0 \) wären dann die Grundkosten des Verlags und \(\beta_1 \) wären die Kosten pro Seite. Versuchen Sie mit einem Lineal eine Gerade durch alle Punkte in Abb. 5.1(a) zu legen. Sie werden feststellen, dass das nicht möglich ist. Die Punkte folgen also nur ungefähr einer Geraden. Wie könnten wir eine Gerade finden, die möglichst gut zu allen Punkten passt? Hier gibt es verschiedene Möglichkeiten. Wir könnten die vertikalen Abstände zwischen Beobachtung und Gerade (siehe Abb. 5.1(b)) zusammenzählen und davon ausgehen, dass eine kleine Summe der Abstände eine gute Anpassung bedeutet. Diese Methode hat aber eine gravierende Schwäche: Wenn die Hälfte der Punkte weit über der Geraden, die andere Hälfte weit unter der Geraden liegen, ist die Summe der Abstände etwa null. Dabei passt die Gerade gar nicht gut zu den Datenpunkten. Die positiven Abweichungen haben sich nur mit den negativen Abweichungen ausgelöscht. Wir müssen also das Vorzeichen der Abweichungen eliminieren, bevor wir zusammenzählen. Eine Möglichkeit besteht darin, den Absolutbetrag der Abweichungen aufzusummieren. Eine andere Möglichkeit besteht darin, die Quadrate der Abweichungen aufzu-
summiert. Letztere Methode hat sich durchgesetzt, weil man mit ihr viel leichter rechnen kann, als mit den Absolutbeträgen. Eine Gerade passt (nach unserem Gütekriterium) also dann am besten zu Punkten, wenn die Quadratsumme der vertikalen Abweichungen minimal ist. Dieses Vorgehen ist unter dem Namen **Methode der kleinsten Quadrate** bekannt. In unserem Fall errechnet der Computer die Werte $\beta_0 = 6.04$ und $\beta_1 = 0.047$. Die Grundkosten des Verlags sind also rund 6 SFr. Pro Seite verlangt der Verlag rund 5 Rappen.

Man könnte die Abweichungen von der Geraden auch auf eine andere Art erklären. Das Modell: $y = \beta_0 + \beta_1 x + E_i$, wobei $E \sim N(0, \sigma^2)$ i.i.d. beschreibt auch eine Gerade zwischen x und y. Allerdings kann jeder Wert von y noch um den Wert E um die Gerade streuen. In diesem Modell nehmen wir an, dass die Streuung um die wahre Gerade für jedes Buch einer Normalverteilung mit Mittelwert null und Varianz σ^2 folgt. Nun könnten wir mit der Maximum-Likelihood Methode die optimalen Werte für β_0, β_1 und σ finden. Verblüffenderweise stellt sich heraus, dass die Werte von β_0 und β_1 genau gleich sind wie die Werte, die wir mit der Methode der kleinsten Quadrate erhalten haben. Beide Methoden liefern also die gleichen Ergebnisse.

5.2.1 Das Modell der einfachen linearen Regression

In diesem Kapitel geben wir eine detaillierte Beschreibung vom Modell der einfachen linearen Regression:

$$Y_i = \beta_0 + \beta_1 x_i + E_i \quad (i = 1, \ldots, n),$$
$$E_1, \ldots, E_n \text{ i.i.d.}, \quad \mathbb{E}(E_i) = 0, \quad \text{Var}(E_i) = \sigma^2.$$

Die Y-Variable ist die **Zielvariable** (engl: response variable) und die x-Variable ist die **erklärende Variable** oder **Co-Variable** (engl: explanatory variable; predictor variable; covariate).

Wir nehmen an, dass für die erklärende Variable x gewisse Werte x_1, \ldots, x_n vorgegeben sind. In der Regel ist die erklärende Variable nicht zufällig, sondern wird von den Experimentatoren bestimmt. Deshalb notieren wir sie mit einem Kleinbuchstaben. Anschliessend messen wir die Zielgrösse zu jedem Wert der erklärenden Variable. Diese hängt von x, aber auch von einem zufälligen Fehler E_i ab. Im Folgenden werden wir immer davon ausgehen, dass $E_i \sim N(0, \sigma^2)$. Die Zufallsvariablen E_i werden öfters als Fehler-Variablen oder Rausch-Terme bezeichnet. Sie besagen, dass der Zusammenhang zwischen der erklärenden und der Ziel-Variablen nicht exakt ist. Während die erklärenden Variablen $x_i (i = 1, \ldots, n)$ deterministisch sind, sind die Ziel-Varablen Y_i Zufallsvariablen, weil sie von der Zufallsvariable E_i abhängen. Deshalb notieren wir Y_i mit einem Grossbuchstaben.

Das Modell ist in Abbildung 5.2 illustriert, wo für die Fehler-Variable eine $N(0, 0.1^2)$-Verteilung spezifiziert wurde.

Beispiel: Bei den folgenden Modellen handelt es sich um lineare Modelle $(E_i \sim N(0, \sigma^2))$:

- $y_i = \beta_0 + \beta_1 x_i + E_i$
- $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + E_i$
Abbildung 5.2: Veranschaulichung des Regressionsmodells $Y_i = 4 - 2x_i + E_i$ mit $E_i \sim \mathcal{N}(0, 0.1^2)$ für drei Beobachtungen.

- $\log(y_i) = \beta_0 + \beta_1 x_i + E_i$
- $\log(y_i) = \beta_0 + \beta_1 \log(x_i) + \beta_2 \sin(x_i^2) + E_i$

- $y_i = \beta_0 \exp(\beta_1 x_i) + E_i$ (β_1 verschwindet beim Ableiten nicht)
- $y_i = \log(\beta_0 + \beta_1 x_i + E_i)$ (weder β_0 noch β_1 verschwinden beim Ableiten)

Manchmal kann man ein nichtlineares Modell durch geschickte Transformation linearisieren.

Beispiel: Wie oben gesehen, ist das Modell $y_i = \log(\beta_0 + \beta_1 x_i + E_i)$ nichlinear, weil weder β_0 noch β_1 beim Ableiten verschwinden. Allerdings können wir auf beide Seiten der Gleichung die Funktion exp anwenden. Wir erhalten dann $\exp(y_i) = \beta_0 + \beta_1 x_i + E_i$. Nun ist das Modell linear. Manche Modelle sind allerdings nicht linearisierbar. $y_i = \beta_0 \exp(\beta_1 x_i) + E_i$ ist z.B. nicht linearisierbar.

Beachten Sie, dass alle besprochenen Modelle einen additiven Fehler (“$+ E_i$”) hatten.

5.2.2 Parameterschätzungen

Die unbekannten Modell-Parameter in der einfachen linearen Regression sind β_0, β_1 und auch die Fehlervarianz σ^2. Die Methode der Kleinsten-Quadrate liefert die folgenden Schätzungen:

$$\hat{\beta}_0, \hat{\beta}_1 \text{ sind Minimierer von } \sum_{i=1}^{n} (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2.$$

Die Lösung dieses Optimierungsproblem ergibt:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y}_n)(x_i - \bar{x}_n)}{\sum_{i=1}^{n} (x_i - \bar{x}_n)^2}$$

$$\hat{\beta}_0 = \bar{y}_n - \hat{\beta}_1 \bar{x}_n.$$

Das Prinzip der Kleinsten-Quadrate liefert sogenannt erwartungstreue Schätzungen:

$$\mathcal{E}(\hat{\beta}_0) = \beta_0, \quad \mathcal{E}(\hat{\beta}_1) = \beta_1.$$
Das heisst, dass die Schätzungen keinen systematischen Fehler haben, sondern um die wahren Parameter herum streuen (wäre z.B. $E(\hat{\beta}_1) > \beta_1$, dann wäre $\hat{\beta}_1$ systematisch zu gross). Man kann auch die Standardabweichungen der Schätzungen, die sogenannten Standardfehler berechnen. Von Interesse ist insbesondere das Resultat für $\hat{\beta}_1$:

$$s.e.(\hat{\beta}_1) = \frac{\sigma}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}}.$$

Für die Schätzung von σ^2 benützen wir das Konzept der Residuen. Falls wir Realisationen der Fehler-Terme E_i beobachten könnten, so könnten wir die empirische Varianzschätzung für σ^2 verwenden. Hier approximieren wir zuerst die unbeobachteten Fehler-Variablen E_i durch die Residuen:

$$R_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \ (i = 1, \ldots, n).$$

Da $E_i = Y_i - (\beta_0 + \beta_1 x_i)$ scheint die Approximation $R_i \approx E_i$ vernünftig. Als Varianzschätzung benutzt man dann:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} R_i^2.$$

(5.1)

Dabei ist zu beachten, dass (bei einfacher linearer Regression mit einem Achsenabschnitt β_0) gilt: $\sum_{i=1}^{n} R_i = 0$. Das heisst, die Varianzschätzung in (5.1) ist wie die empirische Varianz bei einer Stichprobe (siehe Kapitel 4.7.1), ausser dass wir den Faktor $1/(n-2)$ anstelle von $1/(n-1)$ nehmen. Dieser Faktor entspricht der folgenden Faustregel: $1/(n-\text{Anzahl Parameter})$, wobei die Anzahl Parameter ohne den zu schätzenden Varianz-Parameter zu zählen ist (in unserem Falle sind dies die Parameter β_0, β_1).

Bei einem Datensatz mit realisierten $y_i \ (i = 1, \ldots, n)$ werden die Schätzungen mit den Werten y_i anstelle von Y_i gerechnet. Zum Beispiel sind dann die realisierten Residuen von der Form $r_i = y_i - (\hat{\beta}_0 - \hat{\beta}_1 x_i)$.

5.2.3 Tests und Konfidenzintervalle

Der t-Test in der Regression

Wir betrachten hier als Beispiel den folgenden Datensatz. Es wurden $n = 111$ Messungen gemacht von mittlerer täglicher Temperatur (x-Variable) und mittlerem täglichen Ozongehalt (Y-Variable). Die Daten und die Regressionsgerade $\hat{\beta}_0 + \hat{\beta}_1 x$ sind in Abbildung 5.3 ersichtlich.

Die interessierende Frage in der Praxis lautet: Hat die Temperatur einen Einfluss auf den Ozongehalt? Für diese Fragestellung hat man einen statistischen Test entwickelt. Es stellt sich heraus, dass dieser Test mit dem t-Test in Kapitel 4.7.2 fast völlig identisch ist. Er wird daher auch t-Test genannt.

1. Modell:

$$Y_i = \beta_0 + \beta_1 x_i + E_i, \ E_1, \ldots, E_n \ i.i.d. \mathcal{N}(0, \sigma^2).$$

(5.2)
2. **Nullhypothese:** $H_0 : \beta_1 = 0$

 Alternative: $H_A : \beta_1 \neq 0$ (Es wird hier üblicherweise ein zwei-seitiger Test durchgeführt)

3. **Teststatistik:**

 \[T = \frac{\text{beobachtet} - \text{erwartet}}{\text{geschätzter Standardfehler}} = \frac{\hat{\beta}_1 - 0}{\hat{s.e.}(\hat{\beta}_1)}. \]

 Dabei ist der geschätzte Standardfehler

 \[\hat{s.e.}(\hat{\beta}_1) = \sqrt{\text{Var}(\hat{\beta}_1)} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}}. \]

 Verteilung der Teststatistik unter H_0: $T \sim t_{n-2}$

4. **Signifikanzniveau:** α

5. **Verwerfungsbereich für die Teststatistik:**

 \[K = (-\infty, -t_{n-2;1-\frac{\alpha}{2}}] \cup [t_{n-2;1-\frac{\alpha}{2}}, \infty) \]

6. **Testentscheid:** Überprüfe, ob der beobachtete Wert der Teststatistik im Verwerfungsbereich liegt.

Völlig analog erhält man auch einen Test für $H_0 : \beta_0 = 0$ bei zweiseitiger Alternative $H_A : \beta_0 \neq 0$.

P-Werte

Der P-Wert dieses zweiseitigen t-Test kann dann analog wie in Kapitel 4.7.2 berechnet werden (mit $n - 2$ anstelle von $n - 1$ Freiheitsgraden). Er wird auch von statistischer Software geliefert, sodass man ihn in der Praxis nicht von Hand ausrechnen muss.
Konfidenzintervalle

Basierend auf der Normalverteilungsannahme erhält man die folgenden zwei-seitigen Konfidenzintervalle für \(\beta_i \) (i = 0, 1) zum Niveau 1 − \(\alpha \):

\[
[\hat{\beta}_i - s.e.(\hat{\beta}_i)t_{n-2;1-\alpha/2}; \hat{\beta}_i + s.e.(\hat{\beta}_i)t_{n-2;1-\alpha/2}]
\]

Für grosse Werte von \(n \) ist die Normalverteilung eine ausgezeichnete Approximation der t-Verteilung. Daher kann man \(t_{n-2;1-\alpha/2} \) mit \(\Phi^{-1}(1-\alpha/2) \) approximieren. Sie sollten sich merken, dass \(\Phi^{-1}(0.975) \approx 2 \). D.h., eine gute Faustregel für ein 95%-Vertrauensintervall ist (analog für \(\beta_1 \)):

\[
[\hat{\beta}_0 - 2 \cdot s.e.(\hat{\beta}_0); \hat{\beta}_0 + 2 \cdot s.e.(\hat{\beta}_0)]
\]

Beispiel: Der Computer hat \(\beta_0 \) und \(\beta_1 \) geschätzt und liefert \(\hat{\beta}_1 = 1.2 \) und \(s.e.(\hat{\beta}_1) = 0.3 \). Diese Parameter wurden mit einem Datensatz berechnet, der \(n = 10 \) Daten hatte. Was ist ein 95%-Vertrauensintervall für den wahren Wert von \(\beta_1 \)? Die Normalapproximation liefert das approximative Vertrauensintervall: [1.2 − 2 · 0.3; 1.2 + 2 · 0.3] = [0.6; 1.8]. Das genaue Vertrauensintervall erhält man unter Verwendung der t-Verteilung (\(t_{8;0.975} = 2.31 \)): [1.2 − 2.31 · 0.3; 1.2 + 2.31 · 0.3] = [0.51; 1.89]. Wir sehen, dass das exakte Vertrauensintervall etwas grösser als das approximative Vertrauensintervall ist. Dieses Verhalten tritt in diesem Zusammenhang immer auf und ist umso deutlicher, je kleiner \(n \) ist.

5.2.4 Das Bestimmtheitsmass \(R^2 \)

Die Güte eines Regressionsmodells kann mit dem sogenannten Bestimmtheitsmass \(R^2 \) quantifiziert werden. Dazu betrachten wir eine Beziehungen zwischen verschiedenen Variations-Quellen. Wenn wir mit \(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \) den Wert der angepassten Geraden beim Wert \(x_i \) bezeichnen, dann gilt

\[
\sum_{i=1}^{n}(y_i - \bar{y})^2 = \sum_{i=1}^{n}(y_i - \hat{y}_i)^2 + \sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2. \tag{5.3}
\]

(Das Besondere an dieser Gleichung ist, dass das Doppelprodukt \(2 \sum_{i}(y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) \) gleich Null ist.) Dabei beschreibt \(SS_Y \) die totale Variation der Zielvariablen (ohne Einfluss der erklärenden Variablen \(x \)), \(SS_E \) die Variation des Fehlers (Residuen-Quadratsumme), und \(SS_R \) die Variation, welche durch die Regression erklärt wird (Einfluss der erklärenden Variablen \(x \)). Das Bestimmtheitsmass ist dann wie folgt definiert:

\[
R^2 = \frac{SS_R}{SS_Y}, \tag{5.4}
\]

und beschreibt den Anteil der totalen Variation, welche durch die Regression erklärt wird. Wegen (5.3) gilt, dass \(0 \leq R^2 \leq 1 \): falls \(R^2 \) nahe bei 1 ist, so erklärt das Regressionsmodell viel der totalen Variation und ist somit gut; falls \(R^2 \approx 0 \) taugt das Regressionsmodell nicht besonders viel.

Das Bestimmtheitsmass entspricht der quadrierten Korrelation zwischen den beobachteten Werten der Zielgrösse und den geschätzten Werten der Zielgrösse:

\[
R^2 = \hat{\rho}_{YY}^2.
\]
5.2.5 Allgemeines Vorgehen bei einfacher linearer Regression

Grob zusammengefasst kann bei einfacher linearer Regression folgendemassen vorgegangen werden.

1. Anpassen der Regressionsgeraden; d.h. Berechnung der Punktschätzer $\hat{\beta}_0$, $\hat{\beta}_1$.

2. Testen ob erklärende Variable x einen Einfluss auf die Zielvariable Y hat mittels t-Test für $H_0 : \beta_1 = 0$ und $H_A : \beta_1 \neq 0$. Falls dieser Test nicht-signifikantes Ergebnis liefert, so hat die erklärende Variable keinen signifikanten Einfluss auf die Zielvariable.

3. Testen ob Regression durch Nullpunkt geht mittels t-Test für $H_0 : \beta_0 = 0$ und $H_A : \beta_0 \neq 0$. Falls dieser Test nicht-signifikantes Ergebnis liefert, so benutzt man das kleinere Modell mit Regression durch Nullpunkt.

4. Bei Interesse Angabe von Konfidenzintervallen für β_0 und β_1.

5. Angabe des Bestimmtheitsmass R^2. Dies ist in gewissem Sinne eine informellere (und zusätzliche) Quantifizierung als der statistische Test in Punkt 2.

6. Überprüfen der Modell-Voraussetzungen mittels Residuenanalyse. Dieser wichtige Schritt wird ausführlicher in Kapitel 5.2.6 beschrieben.

5.2.6 Residuenanalyse

Wir werden hier graphische Methoden beschreiben, basierend auf realisierten Residuen $r_i (i = 1, \ldots, n)$, welche zur Überprüfung der Modell-Voraussetzungen für die einfache lineare Regression eingesetzt werden können. Die Modell-Voraussetzungen sind die folgenden; in Klammern stehen die Methoden, mit denen man die Annahmen prüfen kann:

1. $E(E_i) = 0$.
 Somit gilt $E(Y_i) = \beta_0 + \beta_1 x_i$, das heisst: es gibt keinen systematischen Fehler im Modell. Abweichungen von dieser Annahme könnten zum Beispiel durch einen komplizierteren Zusammenhang zwischen x und Y (z.B. $y_i = \beta_1 x_i^2 + E_i$) verursacht sein. (Prüfe im Tukey-Anscombe Plot)

2. E_1, \ldots, E_n i.i.d.
 i.i.d. steht für “independent and identically distributed”.
 Da die Fehler voneinander unabhängig sein müssen, dürfen sie z.B. keine “serielle Korrelationen” aufweisen; d.h., $\text{Corr}(E_i, E_j) = 0$ für $i \neq j$. Am einfachsten sieht man serielle Korrelationen, wenn man die Beobachtungen in ihrer Messreihenfolge aufzeichnet. (Prüfe in einem Plot, in dem die Beobachtungen in der Messreihenfolge aufgezeichnet werden.) Da die Fehler gleich verteilt sein müssen, muss insbesondere auch die Varianz der Fehler gleich sein. (Prüfe im Tukey-Anscombe Plot)

3. E_1, \ldots, E_n i.i.d. $\mathcal{N}(0, \sigma^2)$.
 Die Fehler sind normalverteilt. Abweichungen könnte durch eine lang-schwänzige Fehler-Verteilung verursacht sein. (Prüfe in einem Normalplot.)

5.2 Einfache lineare Regression

Der Tukey-Anscombe Plot

Der wichtigste Plot in der Residuenanalyse ist der Plot der Residuen r_i gegen die angepassten Werte \hat{y}_i, der sogenannte Tukey-Anscombe Plot.

Abbildung 5.4: Streudiagramm von Tiefe und Fliessgeschwindigkeit (oben links), Tukey-Anscombe Plots für einfache lineare Regression (oben rechts), für lineare Regression mit Fliessgeschwindigkeit und Quadrat der Fliessgeschwindigkeit als erklärende Variable (unten links) und für einfache lineare Regression mit logarithmierten Variablen $\log(Y)$ und $\log(x)$ (unten rechts).

Im Idealfall: gleichmäßige Streuung der Punkte um Null.
Abweichungen:
- kegelförmiges Anwachsen der Streuung mit \hat{y}_i
evtl. kann man die Zielvariable logarithmieren (falls Y_i‘s positiv sind), d.h. man benutzt das neue Modell
 \[
 \log(Y_i) = \beta_0 + \beta_1 x_i + \epsilon_i.
 \]
- Ausreisserpunkte
evtl. können robuste Regressions-Verfahren verwendet werden (siehe Literatur)
- unregelmäßige Struktur
 Indikation für nichtlinearen Zusammenhang
evtl. Ziel und/oder erklärende Variablen transformieren

Für den Ozon-Datensatz ist der Tukey-Anscombe Plot in Abbildung 5.6 gezeigt.

Nichtlineare Zusammenhänge können in der Praxis natürlich vorkommen: sie zeigen an, dass die Regressionsfunktion nicht korrekt ist. Abhilfe schaffen die Aufnahme zusätzlicher erklärender Variablen (z.B. quadratische Terme, siehe Kapitel 5.3.1) oder - wie bereits oben angedeutet - Transformationen der erklärenden und/oder der Ziel-Variablen. Ein einfaches Beispiel ist in Abbildung 5.4 gezeigt, bei dem es um den Zusammenhang zwischen Tiefe und Fließgeschwindigkeit von Bächen geht. Bei einfacher Regression zeigt der Tukey-Anscombe Plot eine klare nichtlineare Struktur, die verschwindet, wenn man entweder einen quadratischen Term dazunimmt (siehe
Kapitel 5.3.1) oder wenn man beide Variablen logarithmiert (d.h. einen Potenzzusammenhang anpasst mit dem Modell

\[\log(Y_i) = \beta_0 + \beta_1 \log(x_i) + \varepsilon_i \ (i = 1, \ldots, n). \]

Mit so wenigen Daten kann man zwischen diesen beiden Modellen nicht unterscheiden. Die Nichtlinearität des Zusammenhangs ist natürlich auch im ursprünglichen Streudiagramm ersichtlich, wenn man genau hinschaut. Häufig sind aber Abweichungen von der Linearität im Tukey-Anscombe Plot besser zu sehen.

Damit Sie ein Gefühl für den Tukey-Anscombe Plot entwickeln können, sind in Abb. 5.5 neu Tukey-Anscombe Plots dargestellt. In der Bildunterschrift wird erklärt, wie sie zu interpretieren sind.

Abbildung 5.5: Tukey-Anscombe Plots. (a) Der Plot zeigt einen Trichter, der nach rechts grösser wird. D.h., die Fehlervarianz nimmt zu, wenn die beobachteten Werte der Zielgröße gross sind. Damit ist die Annahme der gleichen Fehlervarianzen verletzt und die lineare Regression liefert keine zuverlässigen Werte. Evtl. kann man das Problem lösen, indem man die Zielgröße transformiert. (b) Der Plot zeigt einen Trichter, der nach rechts kleiner wird. Wie in Fall (a) sind die Annahmen verletzt und die Regression liefert keine zuverlässigen Schätzwerte. (c) Die Punkte folgen einer U-förmigen Kurve. Das wahre Modell scheint komplizierter zu sein als das von uns angepasste. Evtl. kann man das Problem lösen, indem man einen quadratischen Term als erklärende Variable hinzufügt. (d-i) In diesen Plots ist kein Muster zu erkennen. Sie stellen einwandfreie Tukey-Anscombe Plots dar.
5.2 Einfache lineare Regression

Plot bezüglich serieller Korrelation

Um die Unabhängigkeitsannahme der E_1, \ldots, E_n zu überprüfen, kann der folgende Plot gemacht werden: plotte r_i gegen die Beobachtungsnummer i.

Im Idealfall: gleichmäßige Streuung der Punkte um Null.
Abweichungen:
- langfristige Zonen mit durchwegs positiven oder negativen Residuen;
 die Punktschätzungen sind immer noch OK, aber die Tests und Konfidenzintervalle stimmen
 nicht mehr; evtl. Regression mit korrelierten Fehlern verwenden (siehe Literatur)

Für den Ozon-Datensatz ist der serielle Korrelations-Plot in Abbildung 5.6 gezeigt.

Der Normalplot

Mit dem Normalplot (siehe Kapitel 4.5.5) können wir die Normalverteilungsannahme in (5.2) überprüfen.

Im Idealfall: approximativ eine Gerade
Abweichungen:
- Abweichung von einer Geraden evtl. robuste Regression benutzt (siehe Literatur)

Für den Ozon-Datensatz ist der Normalplot in Abbildung 5.6 gezeigt.

Abbildung 5.6: Ozon-Datensatz: Streudiagramm mit angepasster Regressiongerade (oben links); Tukey-Anscombe Plot (oben rechts); Normalplot (unten links); serieller Korrelations-Plot (unten rechts).
Das Auffinden eines guten Modells

5.3 Multiple lineare Regression

Oftmals hat man mehrere erklärende Variablen \(x_{i,1}, \ldots, x_{i,p-1} \) \((p > 2)\).

5.3.1 Das Modell der multiplen linearen Regression

Das Modell ist wie folgt:

\[
Y_i = \beta_0 + \sum_{j=1}^{p-1} \beta_j x_{i,j} + E_i, \\
E_1, \ldots, E_n \text{ i.i.d. }, \mathcal{E}(E_i) = 0, \text{ Var}(E_i) = \sigma^2.
\]

Wie bei der einfachen linearen Regression nehmen wir an, dass die erklärenden Variablen deterministisch sind. Es ist oftmals nützlich, das obige Modell in Matrix-Schreibweise darzustellen:

\[
Y = X \times \beta + E,
\]

wobei \(X\) eine \((n \times p)\)-Matrix ist mit Spaltenvektoren \((1, 1, \ldots, 1)^T\), \((x_{1,1}, x_{2,1}, \ldots, x_{n,1})^T\) und letztendlich \((x_{1,p-1}, x_{2,p-1}, \ldots, x_{n,p-1})^T\).

Beispiele von multipler linearer Regression sind unter anderen:

- **Einfache lineare Regression**: \(Y_i = \beta_0 + \beta_1 x_i + E_i \) \((i = 1, \ldots n)\).

\[
p = 2, \quad X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}.
\]

- **Lineare Regression mit mehreren erklärenden Variablen**: \(Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + E_i \) \((i = 1, \ldots n)\).

\[
p = 3, \quad X = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} \\ 1 & x_{1,2} & x_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & x_{1,n} & x_{2,n} \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}.
\]
5.3 Multiple lineare Regression

- Lineare Regression mit quadratischen erklärenden Variablen: \(Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + E_i \) (\(i = 1, \ldots n \)).

\[
p = 3, \quad X = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}.
\]

- Regression mit transformierten erklärenden Variablen:

\[
Y_i = \beta_0 + \beta_1 \log(x_{i2}) + \beta_2 \sin(\pi x_{i3}) + E_i \quad (i = 1, \ldots n).
\]

\[
p = 3, \quad X = \begin{pmatrix} 1 & \log(x_{12}) & \sin(\pi x_{13}) \\ 1 & \log(x_{22}) & \sin(\pi x_{23}) \\ \vdots & \vdots & \vdots \\ 1 & \log(x_{n2}) & \sin(\pi x_{n3}) \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}.
\]

Wiederum ist das Modell linear in den Koeffizienten \(\beta_j \) und wird daher lineares Modell genannt (obwohl es in den \(x_{ij} \)'s nichtlinear ist).

Es gibt einen wichtigen Unterschied bei der Interpretation der Parameter bei der einfachen und der multiplen linearen Regression.

Einfache lineare Regression: \(\beta_1 \) ist die erwartete Zunahme der Zielgröße, wenn \(x_1 \) um eine Einheit erhöht wird.

Multiple lineare Regression: \(\beta_i \) ist die erwartete Zunahme der Zielgröße, wenn \(x_i \) um eine Einheit erhöht wird und die übrigen Variablen fixiert werden.

5.3.2 Parameterschätzungen und t-Tests

Analog zur einfachen linearen Regression wird meist die Methode der Kleinsten Quadrate benutzt:

\[
\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_{p-1} \text{ sind Minimierer von } \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{p-1} x_{i,p-1}))^2.
\]

Die eindeutige Lösung dieser Optimierung ist explizit darstellbar falls \(p < n \) (d.h., es gibt weniger Variablen als Beobachtungen):

\[
\hat{\beta} = (X^T X)^{-1} X^T Y,
\]

wobei \(\hat{\beta} \) den \(p \times 1 \) Vektor \((\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_{p-1})^T\) bezeichnet, und \(X, Y \) wie in (5.5).

\[1\] Es gibt Spezialfälle, bei denen man von den Koeffizienten der multiplen linearen Regression auf die der einfachen linearen Regression und umgekehrt schliessen kann. In der Versuchsplanung nennt man eine solche Versuchsanordnung “orthogonales Design”. In dieser Vorlesung werden wir das aber nicht behandeln.
Die Schätzung der Fehlervarianz ist

\[\hat{\sigma} = \frac{1}{n-p} \sum_{i=1}^{n} R_i^2, \quad R_i = Y_i - (\hat{\beta}_0 + \sum_{j=1}^{p-1} \hat{\beta}_j x_{i,j}). \]

Unter der Annahme, dass die Fehler normalverteilt sind wie in (5.2), können auch ähnlich zur einfachen Regression t-Tests für die folgenden Hypothesen gemacht werden:

\[H_{0,j} : \beta_j = 0; \quad H_{A,j} : \beta_j \neq 0 \quad (j = 0, \ldots, p-1). \]

Der wesentliche Unterschied besteht aber in der Interpretation der Parameter:

\[\beta_j \text{ misst den linearen Effekt} \]

\[\text{nach Elimination der linearen Effekte aller anderen Variablen auf } Y \]

\[(j = 1, \ldots, p-1) \]

Insbesondere impliziert dies, dass man die Koeffizienten \(\beta_j \) nicht einfach durch einzelne, individuelle simple lineare Regressionen von \(Y \) auf die \(j \)-te erklärende erhalten kann.

5.3.3 Der F-Test

Der (globale) F-Test quantifiziert die Frage, ob es mindestens eine erklärende Variable gibt, welche einen relevanten Effekt auf die Zielvariable (im Sinne der linear Regression) hat. Die folgende Nullhypothese wird beim (globalen) F-Test betrachtet:

\[H_0 : \beta_1 = \ldots = \beta_{p-1} = 0 \]
\[H_A : \text{mindestens ein } \beta_j \neq 0 \quad (j = 1, \ldots, p-1). \]

Der P-Wert des (globalen) F-Tests wird in der Regel mit dem Computer berechnet.

Manchmal kann es sein, dass der F-Test einen sehr kleinen P-Wert (signifikant) liefert, die P-Werte der t-Tests aller Parameter aber sehr gross sind (nicht signifikant). Das kann auftreten, wenn zwei Variablen (oder mehr) stark korreliert sind. Am besten prüft man also die Korrelation zwischen allen erklärenden Variablen. Falls zwei Variablen stark korreliert sind, lässt man einfach eine von beiden weg (die andere bringt nämlich keine zusätzliche Information).

5.3.4 Das Bestimmtheitsmass \(R^2 \)

Das Bestimmtheitsmass \(R^2 \) ist in der multiplen linearen Regression über die Formel (5.4) definiert (mit Hilfe der Zerlegung in (5.3)). Wie bei der einfachen linearen Regression, entspricht das Bestimmtheitsmass der quadrierten Korrelation zwischen den beobachteten Werten der Zielgröße und den geschätzten Werten der Zielgröße.

\[R^2 = \hat{\rho}_{YY}^2, \]

5.3.5 Residuenanalyse

Die Residuenanalyse geht völlig analog zu Kapitel 5.2.6. Das allgemeine Vorgehen bei multipler linearer Regression ist wie in Kapitel 5.2.5, unter Einbezug des F-Tests nach dem Schritt 1.
5.4 Software

5.4.1 Einfache lineare Regression

Wir behandeln das fiktive Beispiel mit den Buchpreisen. Zunächst laden wir die Daten:

```r
x <- c(50,100,150,200,250,300,350,400,450,500)
y <- c(9.9,10.7,13.3,15.2,16.4,23.6,23.5,21.1,28.9,29.1)
```

Anschließend wird die Funktion `lm` verwendet um ein lineares Modell zu schätzen. Das erste Argument ist dabei eine Formel, die angibt, welche Variable die erklärende und welche Variable die Zielgröße ist: \(y \sim x \) gibt an, dass \(y \) die Zielgröße und \(x \) die erklärende Variable ist. Wir speichern das Resultat unter der Variablen `fm` ab:

```r
fm <- lm(y ~ x)
```

Mit der Funktion `summary` kann man das Ergebnis übersichtlich darstellen. `summary(fm)` liefert:

```
Call:
lm(formula = y ~ x)

Residuals:
   Min     1Q   Median     3Q    Max
-3.6958 -0.5944 -0.2203  0.9300  3.3048

Coefficients:  
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  6.79333    1.39106   4.884 0.00122 **
x           0.04500    0.00448  10.037 8.25e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.036 on 8 degrees of freedom
Multiple R-squared: 0.9264, Adjusted R-squared: 0.9172
F-statistic: 100.8 on 1 and 8 DF,  p-value: 8.254e-06
```

In den ersten beiden Zeilen wird der Funktionsaufruf reproduziert. In dem nächsten Abschnitt erhält man einen Überblick über die Residuen. Hier sollte man sich fragen, ob das Maximum oder Minimum aussergewöhnlich grosse Werte annimmt (das könnte z.B. auftreten, wenn man bei dem Eintippen der Daten den Dezimalpunkt bei einer Beobachtung um eine oder ein paar Positionen verschoben hat; also z.B. 103.0 statt 1.030). In dem Abschnitt Coefficients steht eine Tabelle mit allen wichtigen Informationen zu den geschätzten Parametern. In der ersten Spalte steht \(\beta_0 \). In der zweiten Spalte steht \(x \). Diese Zeile behandelt den Parameter \(\beta_0 \). Falls es noch mehr erklärende Variablen geben würde, würden sie in den nächsten Zeilen folgen. Die zweite Spalte mit dem Titel Estimate beinhaltet die geschätzten Parameterwerte. In diesem Beispiel ist also \(\beta_0 = 6.793 \) und \(\beta_1 = 0.045 \). Die dritte Spalte mit dem Titel Std. Error zeigt den geschätzten Standardfehler des Parameters an. In diesem Beispiel ist also \(\text{s.e.}(\beta_0) = 1.391 \) und \(\text{s.e.}(\beta_1) = 0.0044 \). Wenn wir nun testen wollen, ob die Daten plausibel sind, wenn ein Parameter gleich null ist, müssen wir den t-Test aus Kapitel
5.2.3 machen. Die Teststatistik wurde von dem Computer schon berechnet. Sie ist gerade der Quotient aus geschätztem Wert und geschätzter Standardfehler. Für den Parameter β_0 ergibt sich: $t_0 = \frac{\hat{\beta}_0}{\text{s.e.}(\hat{\beta}_0)} = \frac{6.793}{1.391} = 4.884$ und $t_1 = \frac{\hat{\beta}_1}{\text{s.e.}(\hat{\beta}_1)} = \frac{0.045}{0.00484} = 10.397$. In der letzten Spalte werden die daraus berechneten P-Werte dargestellt. Der P-Wert für die Hypothese $H_0 : \beta_0 = 0$ (mit zweiseitiger Alternative) ist 0.00122. Der P-Wert für die Hypothese $H_0 : \beta_1 = 0$ (mit zweiseitiger Alternative) ist 8.25×10^{-6} ($= 8.25 \cdot 10^{-6}$). Direkt nach dem P-Wert wird mit Sternchen dargestellt, auf welchem Signifikanzniveau der Parameter unterschiedlich von null ist (z.B. bedeutet ‘*’, dass der Parameter auf dem 5% Signifikanzniveau von null verschieden ist; siehe die Zeile mit Signif. codes). Man sieht, dass beide Parameter hochsignifikant von null verschieden sind.

Ein approximatives 95%-Vertrauensintervall für β_0 ist $[6.79 - 2 \cdot 1.39; 6.79 + 2 \cdot 1.39]$. Füre das exakte 95%-Vertrauensintervall muss man $t_{10-2;0.975} = 2.31$ in der Tabelle nachschlagen. Man erhält dann als exaktes 95%-Vertrauensintervall $[6.79 - 2.31 \cdot 1.39; 6.79 + 2.31 \cdot 1.39]$. Man kann auf drei Arten erkennen, dass β_0 auf dem 5%-Niveau (allgemein: α) von Null verschieden ist:

1. Der P-Wert ist kleiner als 5% (α)
2. Der t-Wert ist größer als $t_{10-2;1-\alpha/2} \approx 2$
3. Das 95%-Vertrauensintervall (1 - α Vertrauensintervall) enthält die null nicht.

In dem letzten Abschnitt wird zunächst die Fehlervarianz σ^2 geschätzt. In diesem Beispiel ist $\hat{\sigma} = 2.036$. Nun haben wir genug Informationen, um das ganze Modell aufzuschreiben:

$$Y_i = 6.79 + 0.045 x_i + E_i \ (i = 1, \ldots, n),$$
$$E_1, \ldots, E_n \sim N(0, 2.036^2)$$

Nach der Fehlervarianz steht noch die Information on 8 degrees of freedom. Sie sind wichtig für den t-Test. Die “degrees of freedom” entsprechen $n - p$, wobei n die Anzahl Beobachtungen und p die Anzahl βs ist, die man geschätzt hat. In unserem Fall ist $n = 10$ und $p = 2$. Daher sind die “degrees of freedom” gleich 8 (Sie könnten also aus dem Output alleine sehen, wie viele Daten man zur Verfügung hatte: degrees of freedom + Anzahl geschätzter βs).

Unter Multiple R-squared ist der Wert von R^2 angegeben. In dieser Vorlesung haben wir die Größe Adjusted R-squared nicht besprochen. In der letzten Zeile kommt schliesslich noch der F-Test, den wir in Kapitel 5.3.3 behandelt haben. Die Nullhypothese $H_0 : \beta_0 = \beta_1 = 0$ kann also wegen des kleinen P-Wertes von $8.25 \cdot 10^{-6}$ verworfen werden.

5.4.2 Multiple Lineare Regression

Der Computeroutput für die multiple lineare Regression ist praktisch identisch mit dem Output der einfachen linearen Regression. Der einzige Unterschied besteht darin, dass für jede Variable eine eigene Zeile in der Tabelle Coefficients erscheint.

Wir betrachten ein Beispiel wo die Asphalt-Qualität als Funktion von 6 erklärenden Variablen analysiert wird.

2Ich nehme an, dass der erste Eintrag in x und y zuerst gemacht wurde. Dann wurde der zweite Eintrag beobachtet usw.
5.4 Software

\[
y = \text{RUT} \quad \text{"rate of rutting" = change of rut depth in inches per million wheel passes}
\quad \text{["rut" = 'Wagenspur', ausgefahrenes Geleise]}
\]

\[
x_1 = \text{VISC} \quad \text{viscosity of asphalt}
\]

\[
x_2 = \text{ASPH} \quad \text{percentage of asphalt in surface course}
\]

\[
x_3 = \text{BASE} \quad \text{percentage of asphalt in base course}
\]

\[
x_4 = \text{RUN} \quad \text{'0/1' indicator for two sets of runs.}
\]

\[
x_5 = \text{FINES: 10\% percentage of fines in surface course}
\]

\[
x_6 = \text{VOIDS: percentage of voids in surface course}
\]

Die Daten sind in Abbildung 5.7 dargestellt. Die Zusammenhänge werden linearer, wenn man

\[
y = \text{LOGRUT} \quad \text{log("rate of rutting") = log(change of rut depth in inches per million wheel passes)}
\quad \text{["rut" = 'Wagenspur', ausgefahrenes Geleise]}
\]

\[
x_1 = \text{LOGVISC} \quad \text{log(viscosity of asphalt)}
\]

\[
x_2 = \text{ASPH} \quad \text{percentage of asphalt in surface course}
\]

\[
x_3 = \text{BASE} \quad \text{percentage of asphalt in base course}
\]

\[
x_4 = \text{RUN} \quad \text{'0/1' indicator for two sets of runs.}
\]

\[
x_5 = \text{FINES: 10\% percentage of fines in surface course}
\]

\[
x_6 = \text{VOIDS: percentage of voids in surface course}
\]

Die transformierten Daten sind in Abbildung 5.8 dargestellt.

Abbildung 5.7: Paarweise Streudiagramme für den Asphalt-Datensatz. Die Zielvariable ist "RUT".

die Zielvariable “RUT” logarithmiert und ebenfalls die erklärende Variable “VISC”.

\[
y = \text{LOGRUT} \quad \text{log("rate of rutting") = log(change of rut depth in inches per million wheel passes)}
\quad \text{["rut" = 'Wagenspur', ausgefahrenes Geleise]}
\]

\[
x_1 = \text{LOGVISC} \quad \text{log(viscosity of asphalt)}
\]

\[
x_2 = \text{ASPH} \quad \text{percentage of asphalt in surface course}
\]

\[
x_3 = \text{BASE} \quad \text{percentage of asphalt in base course}
\]

\[
x_4 = \text{RUN} \quad \text{'0/1' indicator for two sets of runs.}
\]

\[
x_5 = \text{FINES: 10\% percentage of fines in surface course}
\]

\[
x_6 = \text{VOIDS: percentage of voids in surface course}
\]

Die transformierten Daten sind in Abbildung 5.8 dargestellt.

Mittels R wird ein multiples lineares Modell angepasst. Der Output sieht wie folgt aus:

Call:
\[
lm(formula = \text{LOGRUT} \sim ., \text{data} = \text{asphalt1})
\]
Abbildung 5.8: Paarweise Streudiagramme für den transformierten Asphalt-Datensatz. Die Zielvariable ist "LOGRUT", die log-transformierte ursprüngliche Variable "RUT". Die erklärende Variable "LOGVISC" ist ebenfalls die log-transformierte ursprüngliche Variable "VISC".

Residuals:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.48348</td>
<td>-0.14374</td>
<td>-0.01198</td>
<td>0.15523</td>
<td>0.39652</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|-----------|------------|---------|----------|
| (Intercept) | -5.781239 | 2.459179 | -2.351 | 0.027280 * |
| LOGVISC | -0.513325 | 0.073056 | -7.027 | 2.90e-07 *** |
| ASPH | 1.146898 | 0.265572 | 4.319 | 0.000235 *** |
| BASE | 0.232809 | 0.326528 | 0.713 | 0.482731 |
| RUN | -0.618893 | 0.294384 | -2.102 | 0.046199 * |
| FINES | 0.004343 | 0.007881 | 0.551 | 0.586700 |
| VOID | 0.316648 | 0.110329 | 2.870 | 0.008433 ** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2604 on 24 degrees of freedom
Multiple R-Squared: 0.9722, Adjusted R-squared: 0.9653
F-statistic: 140.1 on 6 and 24 DF, p-value: < 2.2e-16

Wir sehen, dass die Variablen "LOGVISC", "ASPH" und "VOID" signifikant oder sogar hochsignifikant sind; die Variable "RUN" ist bloss schwach signifikant. Der F-Test ist hoch-signifikant, das Bestimmtheitsmass R^2 sehr nahe bei 1. Die degrees of freedom sind hier $n - p = 24$ mit $p = 7$, d.h. $n = 31$. Die Residuenanalyse ist mittels Tukey-Anscombe und Normalplot in Abbildung 5.9 zusammengefasst: die Normalverteilungsannahme für die Fehler ist eine vernünftige
Abbildung 5.9: Tukey-Anscombe Plot (oben) und Normalplot (unten) beim Asphalt-Datensatz mit den transformierten Variablen “LOGRUT” und “LOGVISC”.

Approximation. Der Tukey-Anscombe Plot zeigt keine systematische Variation; das R^2 ist sehr nahe bei 1. Die multiple lineare Regression erklärt also sehr viel der totalen Variation.

Ohne log-Transformationen, d.h. das untransformierte Modell wie in Abbildung 5.7, ist das Bestimmtheitsmass $R^2 = 0.7278$, also wesentlich schlechter als im transformierten Modell.
Kapitel 6

Anhang

6.1 Normalapproximation des Binomialtests: Zwischenrechnung

Gemäß dem Zentralen Grenzwertsatz gilt: \(X_n \approx N(\mu, \sigma_X^2/n) \) mit \(\mu = \pi \) und \(\sigma_X^2 = \pi(1-\pi) \).

Zu zeigen ist Gleichung (4.4):

\[
P(\left| X_n - \pi \right| > \varepsilon) \approx 2 - 2\Phi \left(\frac{\varepsilon \sqrt{n}}{\sigma_X} \right)
\]

Im Folgenden verwenden wir folgende Notationen und Rechentricks:

1. Notation: \(Z \sim N(0,1) \) und somit \(P(Z \leq z) = \Phi(z) \)
2. \(P(|X| > c) = P((X < -c) \cup (X > c)) = P(X < -c) + P(X > c) \)
3. \(\frac{X_n - \pi}{\sigma_X / \sqrt{n}} \sim N(0,1) \)
4. \(P(Z < z) = P(Z \leq z) \), weil \(P(Z = z) = 0 \)
5. \(P(Z < -z) = P(Z > z) = 1 - P(Z \leq z) \)

Nun zeigen wir Gleichung (4.4). Zunächst werden wir standardisieren, sodass wir die Zufallsvariable \(Z \) erhalten. Anschließend formen wir mit Rechentricks um, bis wir das gewünschte Ergebnis erhalten:

\[
P(\left| X_n - \pi \right| > \varepsilon) \overset{(2)}{=} P(X_n - \pi < -\varepsilon) + P(X_n - \pi > \varepsilon) =
\]

\[
= P \left(\frac{X_n - \pi}{\sigma_X / \sqrt{n}} < -\frac{\varepsilon}{\sigma_X / \sqrt{n}} \right) + P \left(\frac{X_n - \pi}{\sigma_X / \sqrt{n}} > \frac{\varepsilon}{\sigma_X / \sqrt{n}} \right) =
\]

\[
= P \left(\frac{X_n - \pi}{\sigma_X / \sqrt{n}} < -\sqrt{n} \varepsilon \sigma_X \right) + P \left(\frac{X_n - \pi}{\sigma_X / \sqrt{n}} > \sqrt{n} \varepsilon \sigma_X \right) =
\]

\[
\overset{(1,3)}{=} P(Z < -\sqrt{n} \varepsilon \sigma_X) + P(Z > \sqrt{n} \varepsilon \sigma_X) =
\]

\[
\overset{(5)}{=} 2 \times P(Z > \sqrt{n} \varepsilon \sigma_X) =
\]

\[
\overset{(5)}{=} 2 \times (1 - P(Z \leq \sqrt{n} \varepsilon \sigma_X)) =
\]

\[
\overset{(1)}{=} 2 \times (1 - \Phi(\frac{\sqrt{n} \varepsilon \sigma_X}{\sigma_X})) =
\]

\[
= 2 - 2\Phi \left(\frac{\sqrt{n} \varepsilon \sigma_X}{\sigma_X} \right)
\]