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Outline:
Half-Day 1 Regression Model and the Outlier Problem

Measuring Robustness
Location M-Estimation
Inference
Regression M-Estimation
Example from Molecular Spectroscopy

Half-Day 2 General Regression M-Estimation
Regression MM-Estimation
Example from Finance
Robust Inference
Robust Estimation with GLM

Half-Day 3 Robust Estimation of the Covariance Matrix
Principal Component Analysis
Linear Discriminant Analysis
Baseline Removal: An application of robust fitting
beyond theory
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3.1 Robust Estimation of the Covariance Matrix

The multivariate Gaussian distribution
plays a key role in multivariate statistical analysis
is given by the mean (expectation) µ and the covariance matrix |Σ.

The optimal estimates for the parameters are
the (arithmetic) mean X̄ and

the sample covariance matrix |̂Σ
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Example Carapaces:
Jolicoeur and Mosimann stu-
dies the relationship of size and
shape for painted turtles. They
measured the carapaces of 24
female and 24 male turtles.

The figure shows the estimated
covariance matrix for the
slightly modified data set: The
covariance matrix is repre-
sented by the ellipsoid which
contains 95% of the mass.

The standard estimations are
based on the data including
(solid, +) or excluding (dotted,
x) observation P1.
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Mahalanobis Distances to Detect Outliers
In a classical setting, Mahalanobis distances ui = (x i − µ)T |Σ−1 (x i − µ) are
used to detect outliers: Ui is χ2

m distributed; m: number of variables

Q-Q plot of the Mahalanobis distances versus χ2
2 distribution for modified

Carapaces data.
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Robust Estimation of the Covariance Matrix |Σ
Estimators based on a robust scale:
Split |Σ into a scale parameter σ and a shape matrix |Σ∗ with | |Σ∗| = 1:

|Σ = σ2 · |Σ∗

Calculate a scaled version of the Mahalanobis distance,

d
〈

x i , µ, |Σ∗
〉

:= (x i − µ)T
(
|Σ∗
)−1 (x i − µ) , i = 1, . . . , n,

and collect these elements in a vector d
〈

X, µ, |Σ∗
〉

. Then Var
〈

d
〈

x i , µ, |Σ∗
〉〉

= σ2 ·m

The estimates µ̂ and |̂Σ∗ are defined by minimizing a scale estimator S 〈〉, i.e.,

S
〈

d
〈

X , µ̂, |̂Σ∗
〉〉

= min .

To obtain robust estimation of µ and |Σ∗, use a robust scale estimator S 〈〉
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The simplest approach is to take the median of di (di > 0)
comparable to the MAV in regression

This results in the Minimum-Volume-Ellipsoid (MVE) estimator.
Its the covariance matrix defined by the ellipsoid with minimum volume containing 50%
of the data

It has high breakdown point of 0.5 but is very inefficient.

Use a trimmed scale estimator of the squared distances as
S 〈di〉 =

∑h
i=1 d(i) with h = n+m

2 (m = # variables).
+ Minimum-Covariance-Determinant estimator (MCD estimator):
Minimizes the determinant of the ellipsoid containing at least h data points.

MCD estimator also has breakdown point of 0.5 and is more
efficient than the MVE estimator.

The computation of both estimators is, however, quite intensive as they are based on
stochastic resampling algorithms.
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Estimated covariance matrices
for modified Carapaces data:

The estimated covariance matri-
ces are represented by the ellipse
containing 95% of the mass:
Classical estimates including
(dashed, +) or excluding (dot-
ted, x) observation P1.
The solid line (*) represents the
robust MCD estimation.

There seems to be a second out-
lier (see l.h.s.)
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Mahalanobis Distances
To visualize the Mahalanobis distance, its square-root transformed value is
plotted versus the observation number.
Observations which are above the 97.5%-χ2

2 quantile (=q0.975) line can be
identified as outliers.

Plot for the modified Carapaces data: There is a second outlier!
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Other Approaches
There are other approaches like, e.g.,

The S-estimator is also based on a robust scale estimator.
The scale estimator S 〈di 〉 satisfies

1
n −m

n∑
i=1

ρ

〈 di
S 〈di 〉

〉
=

1
2

where ρ 〈u〉 is the adequately adjusted bisquare function.

the Stahel-Donoho estimator.
Idea: A multivariate outlier should also be an outliers in some univariate projection

+ scan all univariate projections for outliers and weight them down.
+ apply a classical estimator using these weights
+ No exact algorithm is known; only for approximate solutions

Orthogonalized Gnanadesikan-Kettenring (OGK) Estimation
For really high dimensional data, the above approaches are far too slow.
In such chase, an approach based on pairwise covariances may still help:
Robust Estimates of pairwise covariances: c(x,y) = 1

4

((
S 〈x + y〉

)2
−
(

S 〈x − y〉
)2),

where S 〈.〉 is a robust estimation of σ.
A correction is needed to obtain a semi-definite matrix.
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R functions

In practise, use
CovRobust(..., control="auto") from R package rrcov
Using "auto" selects an appropriate method according to the size of the
dataset:
I Stahel-Donoho estimator if dataset < n = 1′000× p = 10 or < 5′000× 5
I S-estimator if dataset < 50′000× 20
I Orthogonalized Quadrant Correlation if n > 50′000 and/or p > 20

covMcd(...) and covOGK(...) from R package robustbase

cov.rob(..., method="mcd") from R package MASS
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Example Focused Directional FoHF

Monthly returns of 17 funds of hedge funds (FoHF), which according to a
self-declaration run a “focused directional” strategy. The Mahalanobis
distances of data covering 61 month are analysed.
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3.2 Principal Component Analysis (PCA)

The goals of a principal component analysis (PCA) may be manifold;

for example
reduction of dimensionality by elimination of directions (= linear combination
of original variables) of low variability (= information).

Finding structures like subgroups or outliers

transformation of exploratory variables to avoid collinearity
+ principal regression analysis.
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The principal components specify uncorrelated directions (linear
combinations of the measured characteristics) that account for most of
the variability in the sample
As a descriptive tool, there is no need for an underlying statistical model.
However, since the analysis is based just on the first two moments, the
multivariate Gaussian model is somehow nearby.

To robustify a procedure we rely on a underlying statistical model.
As there is no underlying model for PCA, we cannot robustify PCA.

But we can construct yet another explorative tool by computing the principal
components from a robustly estimated covariance matrix.

When using robust methods, we explore a multivariate data set by
investigating both

the scatterplot of the main principal components
(for finding interesting structures)
and the QQ-plot of the Mahalanobis distances for finding outliers.
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Example Carapaces:

Classical PCA
Importance of components:

Comp.1 Comp.2
Standard deviation 0.1219237 0.06720862
Proportion of Variance 0.7669535 0.23304647
Cumulative Proportion 0.7669535 1.00000000

PCA based on a robustly estimated covariance matrix
Importance of components:

Comp.1 Comp.2
Standard deviation 0.1029720 0.01708216
Proportion of Variance 0.9732171 0.02678286
Cumulative Proportion 0.9732171 1.00000000
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3.3 Linear Discriminant Analysis

Linear Discriminant Analysis is an explorative multivariate data analysis
technique describing the difference between several groups. These differences
can be visualized by a scatterplot on the canonical variates.

Based on the result from a linear discriminant analysis, we can subdivide the
space spanned by the observations into as many subspaces as there are
groups. The partition can then be used to assign new observations to one of
the groups + classification.
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Fisher’s Linear Discriminant Analysis

Find the linear combinations of the variables which lead to a maximum
separation between the centres of the groups measured with respect to the
variability within the groups.

Let W be the covariance matrix within a group and B the covariance matrix of the group
centres. The optimal linear combination a1 is given by

a1 = arg max
a

aT B a
aT W a

;

i.e., the solution is a1 = W−1/2 e1, where e1 is the largest eigenvalue of the matrix

W−1/2 B W−1/2 .

The values z (k)
i = aT

k x i , i = 1, 2, . . . form the k-th discriminant variable.
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Example Flea

Lubischew (1962) collected data on the genus of flea beetle Chaetocnema, which
contains three species: concinna, heikertingeri, and heptapotamica. Measurements
were made on the width (in microns) and angle (in units of 7.5◦) of the aedeagus
of each beetle. The goal of the original study was to form a classification rule to
distinguish the three species.
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Example Flea
Plot of the “slightly” modified data in the first two discriminant variates:
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The covariance matrix W obviously represents the Gaussian
distribution of the data within each class
There is just a faint idea of a model how the (usually few) groups centres
should scatter + exploration of their geometric constellation

Thus,
Approach A: Estimate the covariance matrix W robustly and treat the

matrix B as in the standard procedure
+ lda(..., method="mve") of R package MASS

Approach B: Estimate both the covarianz matrix W and the locations
of the groups robustly. The matrix B is treated as in
Approach A:
+ rlda(...) (own contribution).
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Example Flea
Scatterplot of the data in the canonical variates using the classical method (upper
left), Approach A (upper right), and Approach B (lower left).
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Example Flea

Plot of the original variables overlaid by the group borders which are based on the
classical method (upper left), Approach A (upper right), and Approach B (lower
left).
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2.4 Baseline Removal Using Robust Local Regression

Example From Mass Spectroscopy:
The spectrum was taken from a sample of sheep blood. The instrument used
was a so called SELDI TOF (Surface Enhanced Laser Desorption Ionisation,
Time Of Flight) Mass Spectrometer.

The spectrum on the left
consists of sharp features
superimposed upon a
continuous, slowly varying
baseline.

Goal: Remove baseline by
robust local regression.
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A Simpler Problem to Start With
Example Chlorine:
The investigation involved a product A, which must have a fraction of 0.50 of
available chlorine at the time of manufacture. The fraction of available
chlorine in the product decreases with time. Since theoretical calculations are
not feasible, a study was run to get some insight into the decrease.
In regression analysis we study

Yi = h〈xi ; β〉 + Ei

The unstructured deviations from the function h are modelled
by random errors Ei which are normally distributed with
mean 0 and constant variance.

In linear regression:

h〈xi ; β〉 = β0 + β1 x̃ i .

What can be done, if the function h is nonlinear w.r.t. the
parameter β?
+ Nonlinear regression (cf. next block course)
+ relationship h is determined from the data by a smoother
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Local Regression – Basic Idea
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Select a window around a point z1 at which h(z1) is to be estimated
Select window width so that h is approximated well by a straight line

Fit the straight line to the data within the window and and predict at z1: + ĥ(z1).
These steps are applied to a grid of points z1, . . . , zN which covers the range of the
exploratory variable: + ĥ(z1), . . . , ĥ(zN ).

To visualize the estimated function ĥ, the points (zk , ĥk ) are connected by line
segments to each other.
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Local regression – a weighted least-square problem
The estimated function value at z1 is ĥ(z1) = β̂0,
where β̂0 is the first component of

β̂(z1) = arg min
β

n∑
i=1

wr 〈xi〉 K
〈

xi − z1
bw

〉
(yi − (β0 + β1 (xi − z1)))2

bw is called the bandwidth and K 〈((xi − z1)/bw 〉 kernel weights.

To be specified:
Choice of bandwidth bw

Choice of kernel weight K 〈(xi − z1)/bw 〉

e.g., Tukey’s tricube kernel K
〈 xi − z1

bw

〉
=
[

max
{

1−
∣∣∣ xi − z1

bw

∣∣∣3 , 0}]3

K is zero outside z1 ± bw .
wr 〈xi 〉 are implicit weights with which robustness can be achieved.
e.g., Tukey’s biweight robustness weights

wr 〈xi 〉 =
(

max
〈

1− (r̃ i/b)2, 0
〉)2 with r̃ i = (yi − ĥ 〈xi 〉)/σ̂MAV and b = 4.05

(For more details on the LOWESS procedure see my notes)

WBL Statistik 2016 — Robust Fitting



Half-Day 3: Multivariate Analysis Based on Robust Fitting 27 / 32
Robust Estimation of the Covariance Matrix Principal Component Analysis Linear Discriminant Analysis Baseline Removal Take Home Messages

Example Chlorine:
Non-robust (magenta) and robust (green)
clr < − loess(YY ∼ x, data=Chlor, span=0.35, degree=1, family="gaussian")
lines(xnew, predict(clr, xnew), col="magenta")
rlr < − loess(YY ∼ x, data=Chlor, span=0.35, degree=1, family="symmetric")
lines(xnew, predict(rlr, xnew), col="green")
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Apply LOWESS/LOESS to the Mass
Spectroscopy Data
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This is of no use - My approach is too naive.
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Modify LOWESS/LOESS
New View: The baseline is contaminated by the target signal.

The contamination is one-sided.
+ Use an asymmetric robustness weight function in

β̂(z1) = arg min
β

n∑
i=1

wr (ti ) K
( ti − z1

bw

)
· [yi − {β0 + β1 (ti − z1)}]2

as, e.g.,

wr (xi ) =
{

1 if ri < 0[
max

{
1− (ri/b)2, 0

}]2 otherwise,

good choice for b is 3.5 (or any value between 3 and 4).
Bandwidth bw : at least 2 × the longest period in which the baseline is
contaminated by the target signal.
σ is estimated from the negative residuals.

+ Robust fitting of baseline with rfbaseline() in the R package IDPmisc
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Example from Mass Spectroscopy: rfbaseline()

4.2 4.4 4.6 4.8 5.0

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

log(mass/charge)

lo
g(

in
te

ns
ity

)

A. Ruckstuhl et Al. (2012), Robust extraction of baseline signal of atmospheric trace
species using local regression, J. Atmospheric Measurement Techniques.
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Take Home Message Half-Day 3
Multivariate statistical analysis are often based on the covariance
matrix,
because the multivariate Gaussian distribution is such a convenient model.

Robust Estimators of the covariance matrix with breakdown point of 1/2
are able to detect outlieres fast and reliably.
The clearer a procedure is based on a model the better the procedure can
be robustified
Principal component analysis (PCA), which is based on a robustly
estimated covariance matrix, may yield additional insight.
If there are outliers, the robustified linear discriminant analysis (LDA)
shows the difference between the groups clearer and estimates the class
borders more reliable.

There are useful “misuses” of robust methods . . .
+ Baseline Removal
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Take Home Message from “Robust Fitting”
Suitable robust methods are implemented in R for

linear regression models lmrob(...) in the package robustbase

GLM glmrob(...) in the package robustbase

Model Comparision anova(lmrob - or glmrob object ) in the
package robustbase

covariance matrices CovRobust(...) in the package rrcov

linear discriminant analysis rlda(...) (own contribution)

Baseline removal rfbaseline(...) in the package IDPmisc

. . .

Robust methods are essential
in the daily business of statistical data analysis
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