Solid State Transformer Concepts in Traction and Smart Grid Applications

J.W. Kolar, G.I. Ortiz
Swiss Federal Institute of Technology (ETH) Zurich
Power Electronic Systems Laboratory
www.pes.ee.ethz.ch
Schedule / Outline

8:00 — ▶ Introduction
 ▶ Basic SST Concepts
 ▶ DAB and ZVS/ZCS of IGBTs

9:30 — ▶ 3ph. AC/AC SST Concepts for Distribution Applications
 ▶ 1ph. AC/DC SST Traction Applications
 ▶ SST Design Remarks

10:00 — ▶ Conclusions / Questions / Discussion
Introduction

Transformer Basics
Future Traction Vehicles
Future Smart Grid
SST Concept
Classical Transformer - Basics

- Magnetic Core Material * Silicon Steel / Nanocrystalline / Amorphous / Ferrite
- Winding Material * Copper or Aluminium
- Insulation/Cooling * Mineral Oil or Dry-Type

- Operating Frequency* 50/60Hz (El. Grid, Traction) or $16^2/3$ Hz (Traction)
- Operating Voltage* 10kV or 20 kV (6...35kV) - Distribution Grid MV Level ($u_{SC} = 4...6\%$ typ.)
* 15kV or 25kV - Traction (1ph., $u_{SC} = 20...25\%$ typ.)
* 400V - Public LV Grid

- Voltage Transf. Ratio * Fixed
- Current Transf. Ratio * Fixed
- Active Power Transf. * Fixed ($P_1 = P_2$)
- React. Power Transf. * Fixed ($Q_1 = Q_2$)
- Frequency Ratio * Fixed ($f_1 = f_2$)

- Magnetic Core Cross Section

\[
A_{core} = \frac{1}{\sqrt{2\pi}} \frac{U_1}{B_{max}} \frac{1}{f N_1}
\]

- Winding Window

\[
A_{wad} = \frac{2I_1}{k_{WJ}_{rms}} N_1
\]
Classical Transformer - Basics

- Advantages
 - Relatively Inexpensive
 - Highly Robust / Reliable
 - Highly Efficient (98.5%...99.5% Dep. on Power Rating)

- Weaknesses
 - Voltage Drop Under Load
 - Losses at No Load
 - Sensitivity to Harmonics
 - Sensitivity to DC Offset Load Imbalances
 - Provides No Overload Protection
 - Possible Fire Hazard
 - Environmental Concerns

→ Construction Volume

\[A_{\text{Core}} A_{\text{Wdg}} = \frac{\sqrt{2}}{\pi} \frac{P_t}{k_w J_{\text{rms}} B_{\text{max}} f} \]

- \(P_t \) Rated Power
- \(k_w \) Window Utilization Factor (Insulation)
- \(B_{\text{max}} \) • Flux Density Amplitude
- \(J_{\text{rms}} \) • Winding Current Density (Cooling)
- \(f \) Frequency

- No Controllability
- Low Mains Frequency Results in Large Weight / Volume
► Classical Transformer - Basics

- Scaling of Core Losses

\[P_{\text{Core}} \propto f_p \left(\frac{\Phi}{A} \right)^2 V \]
\[P_{\text{Core}} \propto \left(\frac{1}{l^2} \right)^2 l^3 \propto \frac{1}{l} \]

- Scaling of Winding Losses

\[P_{\text{Wdg}} \propto I^2 R \propto I^2 \frac{l_{\text{Wdg}}}{\kappa A_{\text{Wdg}}} \]
\[P_{\text{Wdg}} \propto \frac{1}{l} \]

● Higher Relative Volumes (Lower kVA/m³) Allow to Achieve Higher Efficiencies
Classical / Next Generation Locomotives
Classical Locomotives

- Catenary Voltage: 15kV or 25kV
- Frequency: $16\frac{2}{3}$ Hz or 50Hz
- Power Level: 1...10MW typ.

Transformer:

- Efficiency: 90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.)
- Current Density: 6 A/mm² (2A/mm² typ. Distribution Transformer)
- Power Density: 2...4 kg/kVA
Next Generation Locomotives

- **Trends**
 - Distributed Propulsion System – Weight Reduction (pot. Decreases Eff.)
 - Energy Efficient Rail Vehicles – Loss Reduction (would Req. Higher Vol.)
 - Red. of Mech. Stress on Track – Mass Reduction (pot. Decreases Eff.)

- Replace Low Frequency Transformer by *Medium Freq.* (MF) Power Electronics Transformer (PET)
- Medium Freq. Provides Degree of Freedom → Allows Loss Reduction AND Volume Reduction
- El. Syst. of Next Gen. Locom. (1ph. AC/3ph. AC) represents Part of a 3ph. AC/3ph. AC SST for Grid Appl.
Future Smart
EE Distribution
Advanced (High Power Quality) Grid Concept
- Heinemann (2001)

- MV AC Distribution with DC Subsystems (LV and MV) and Large Number of Distributed Resources
- MF AC/AC Conv. with DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers
Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.

- Huang et al. (2008)

- SST as Enabling Technology for the “Energy Internet”
 - Integr. of DER (Distr. Energy Res.)
 - Integr. of DES (Distr. E-Storage) + Intellig. Loads
 - Enables Distrib. Intellig. through COMM

Bidirectional Flow of Power & Information / High Bandw. Comm. → Distributed Control

IFM = Intellig. Fault Management
Smart Grid Concept

- Borjevic (2010)

- Hierarchically Interconnected Hybrid Mix of AC and DC Sub-Grids
 - Distr. Syst. of Contr. Conv. Interfaces
 - Source / Load / Power Distrib. Conv.
 - Picogrid-Nanogrid-Microgrid-Grid Structure
 - Subgrid Seen as Single Electr. Load/Source
 - ECCs provide Dyn. Decoupling
 - Subgrid Dispatchable by Grid Utility Operator
 - Integr. of Ren. Energy Sources

- ECC = Energy Control Center
 - Energy Routers
 - Continuous Bidir. Power Flow Control
 - Enable Hierarchical Distr. Grid Control
 - Load / Source / Data Aggregation
 - Up- and Downstream Communic.
 - Intentional / Unintentional Islanding for Up- or Downstream Protection
 - etc.
SST Functionalities

- Protects Load from Power System Disturbance
 - Voltage Harmonics / Sag Compensation
 - Outage Compensation

- Protects Power System from Load Disturbance
 - Load Voltage Regulation (Load Transients, Harmonics)
 - Unity Inp. Power Factor Under Reactive Load
 - Symmetrizes Load to the Mains
 - Protection against Overload & Output Short Circ.

- Further Characteristics
 - Operates on Distribution Voltage Level (MV-LV)
 - Integrates Energy Storage (Energy Buffer)
 - DC Port for DER Connection
 - Medium Frequency Isolation → Low Weight / Volume
 - Definable Output Frequency
 - High Efficiency
 - No Fire Hazard / Contamination
Terminology

McMurray
Brooks
EPRI
ABB
Borojevic
Wang
etc.

Electronic Transformer (1968)
Solid-State Transformer (SST, 1980)
Intelligent Universal Transformer (IUT™)
Power Electronics Transformer (PET)
Energy Control Center (ECC)
Energy Router
Basic SST Structures

- **Power Conversion**
 - Three-Stage Power Conversion with MV and LV DC Link
 - Two-Stage Concept with LV DC Link (Connection of Energy Storage)
 - Two-Stage Concept with MV DC Link (Connection to HVDC System)
 - Direct or Indirect Matrix-Type Topologies (No Energy Storage)

- **Realization of 3ph. Conversion**
 - Direct 3ph. Converter Systems
 - Three-Phase Conn. of 1ph. Systems
 - Hybrid Combinations

- **Handling of Voltage & Power Levels**
 - Multi-Level Converters / Single Transf.
 - Cascading / Parallel Connection of Modules
 - Series / Parallel Connection of Semicond.
 - Hybrid Combinations

- **Medium Freq. Required for Achieving Low Weight (Low Realiz. Effort) AND High Control Dynamics**
Challenges of Semiconductor Control of Distribution-Class Devices

- Heydt (2010)

- Losses / Efficiency
- Reliability
- Insulation Coordination
- Cost

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Basic problem</th>
<th>Mitigation possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic impulse level – insulation coordination</td>
<td>Voltage breakdown of typical semiconductor components may be problematic (below distribution class voltages)</td>
<td>Use of voltage limiting devices, use lower distribution voltages, development of more suitable semiconductor materials</td>
</tr>
<tr>
<td>Switching losses</td>
<td>High power loss, proportional to switching frequency</td>
<td>Low loss switching strategies (e.g., zero voltage or zero current switching)</td>
</tr>
<tr>
<td>Bulk resistive losses in semiconductors</td>
<td>PR loss in semiconductors</td>
<td>Development of more suitable semiconductor materials, use of low current configurations</td>
</tr>
<tr>
<td>Cost of components</td>
<td>High cost of high power switches</td>
<td>Mass production, development of better manufacturing techniques</td>
</tr>
<tr>
<td>Cooling semiconductor components</td>
<td>Losses in semiconductor switches</td>
<td>Oil and air cooled technologies, reduce losses in semiconductor switches</td>
</tr>
<tr>
<td>Isolation and safety</td>
<td>No ohmic isolation afforded by semiconductor switches</td>
<td>Principle of “insulation by isolation,” judicious use of circuit breakers to isolate circuits, use a magnetic transformer for isolation</td>
</tr>
<tr>
<td>Component lifetime</td>
<td>Loss of life due to heat</td>
<td>Better cooling, reduce losses</td>
</tr>
</tbody>
</table>

- Hybrid Approach of SST+Magnetic Transf. as Alternative to Pure SST Energy Flow Contr.
Remark

Volume / Weight Reduction & Efficiency Increase by Application of HT Superconductors
High Temp. Superconducting (HTS) LF Transformer for Rail Vehicles

- Specifications 1MVA, 25kV/ 2x1389V, 50Hz, $u_{sc}=25\%$
- Current Density 21A/mm2
- Cooling 66K (Liquid Nitrogen)

- SIEMENS / TU Darmstadt (2001)

- Power Flow of Conv. Locomotives is Fully Controlled by 4QC → No SST Required for Control
- 99% Efficiency (Significant Loss Red. vs. Conv. Transf.) → Substantial Energy Saving
- 50% Smaller than Conv. Transformer
- No Fire Hazard / Contamination and Thermal Aging
High Temp. Superconducting (HTS) LF Transformer for Grid Applications

- Oak Ridge Nat. Lab. (ORNL) & Waukesha Electr. Systems & SuperPower (Manufacturer)
- Target 28MVA, 69kV/12.47kV-Class

- Low Losses
- Self Fault Current Limitation (SFCL) Function (No Active Control)
- To be Installed in South. Calif. Edison Utility Substation 2013
Basic SST Concepts

Matrix-Type AC/AC Converters
DC Link Based Converter Topologies
Electronic Transformer - McMurray 1968

- Matrix-Type $f_1 = f_2$

- Electronic Transformer = HF Transf. Link & Input and Output Sold State Switching Circuits
- AC or DC Voltage Regulation / Current Regulation/Limitation/Interruption
Electronic Transformer - McMurray 1968

- Matrix-Type $f_1 = f_2$

- 50% Duty Cycle Operation @ Primary and Secondary
- Output Voltage Control via Phase Shift Angle
Electronic Transformer

- Matrix-Type $f_1 = f_2$

- Inverse-Paralleled Pairs of Turn-off Switches
Electronic Transformer

- Matrix-Type $f_1 = f_2$

- Fully Bidirectional / 4Q-Operation
- Direct and Seamless Transition between the Quadrants
Electronic Transformer

- **Matrix-Type** \(f_1 = f_2 \)

\[
\begin{align*}
\theta &= 0^\circ \\
\theta &= 45^\circ
\end{align*}
\]

- Harada (1996) Based on McMurray Patent
Electronic Transformer

- Experimental Verification (200V/3kVA) of Basic Operation and Control Characteristic
Direct Matrix-Type 1ph. AC/DC Converter

- Mennicken (1978, $f = 200\text{Hz}$)
 I-Input, V-Output (McMurray)

- Targeting Traction Application
- Combination of Forced Commutated VSC & Thyristor Cycloconverter
- VSC Defines Transformer Voltage & Generates Thyristor Converter Commutation Voltage
- Energy Flow Defined by Control Angle of Thyristor Converter!
Direct Matrix-Type 1ph. AC/DC Converter

- Mennicken (1978, \(f = 200\text{Hz} \))
 I-Input, V-Output (McMurray)

- Thyristor Converter
 Control Angle \(\alpha = \pi/3 \)
Direct Matrix-Type 1ph. AC/DC Converter

- Mennicken (1978, $f = 200$Hz)
 I-Input, V-Output (McMurray)

- Thyristor Converter
 Control Angle $\alpha = \frac{2\pi}{3}$
Direct Matrix-Type 1ph. AC/DC Converter

- Experimental Verification (Switching Frequency $f = 200\text{Hz}$, $f_N = 16^2/3 \text{ Hz}$)
Direct Matrix-Type 1ph. AC/DC Converter

- Östlund (1993)
 I-Input, V-Output (McMurray, Mennicken)

Targeting Traction Applications
Novel AC Current Control Concept for Mennicken Syst.
Several Switchings of the VSC within Cycloconv. Cycle
Lower Transformer Flux Level (Size) / Requires Transformer Flux Balancing Control
Direct Matrix-Type 1ph. AC/DC Converter

- Östlund (1993)
 I-Input, V-Output (McMurray, Mennicken)

- Cascading of Primary Converters
- Reduction of Thyristor Blocking Voltage Stress
- Primary Winding Division for Sinusoidally Varying Staircase Voltage
Direct Matrix-Type 1ph. AC/DC Converter

- Mennicken

- Kjaer et al. (2001)
- Norrga (2002)

- Extension of the Topology of Mennicken - VSC Capacitive Snubbers & Turn-off Cycloconv. Switches
- New Control Scheme Ensuring ZVS for the VSC and ZCS for the Cycloconverter (Matrix Conv.)
Direct Matrix-Type 1ph. AC/DC Converter

1. Commutation Cycle of the ZVS/ZCS Control Scheme Proposed by Norrga
2. Alternate Commutation of VSC and CSC

Diagram showing the commutation cycle with illustrations of the direct matrix-type 1-ph AC/DC converter.
Direct Matrix-Type 1ph. AC/DC Converter

- Norrga (2002)
 I-Input, V-Output (McMurray, Mennicken)

- Voltage and Current Waveforms for $i_{ac}>0$
- Commutation of Cycloconverter Immediately after VSC Commutation
- Three-Level AC Output Voltage & Very Limited Power Flow Reversal
Direct Matrix-Type 1ph. AC/DC Converter

- *Norrga (2002)*
 I-Input, V-Output

- VSC Quasi-Resonant Commutation Ensuring ZVS for Low Load (Current Insufficient for ZVS)
- Transformer Primary Winding Short Circuits by Cycloconverter During VSC Commutation
Direct Matrix-Type 1ph. AC/DC Converter

- Norrga (2002)
 I-Input, V-Output

● Simulation Results and Extension to MV Input (Norrga, 2002)
Direct Matrix-Type 1ph. AC/DC Converter

- Ladoux (1998)
 I-Input, V-Output (McMurray, Mennicken)

- Targeting Traction Applications
- Dual Structure Association (VSC & CSC) & Phase Control & Dual Thyristor Control (ZVS)
- Soft Commutation of All Switches
Direct Matrix-Type 1ph. AC/DC Converter

- Ladoux (1998)
 I-Input, V-Output (McMurray, Mennicken)

- Alternate Commutation of VSC and CSC \rightarrow Natural Switching of CSI Dual Thyristors / Soft-Commut.
- Transformer Magnetizing Current for Supporting ZVS at Light Load or
- Quasi-Resonant Commutation (Short Circuit of CSI during VSC Commutation)
- Simplified Control Scheme – Two Level Voltage V_0 vs. Three-Level Contr. (Norrga)
Direct Matrix-Type 1ph. AC/AC Converter

- Enjeti (V-Input, V-Output, $\theta = 0$, 1997)
- Kimball (V-Input, V-Output, 2009)

- $f_1 = f_2$
- Input Power = Output Power (and No Reactive Power Control)
- Same Switching Frequency of Primary and Secondary Side Converter
- Power Transfer / Outp. Volt. Contr. by Phase Shift θ of Primary & Sec. Side Conv. (McMurray)
- $\theta = 0$ (shown) Allows to Omit Output Filter Ind. (V-Output), But does Not Allow Output Control
Direct Matrix-Type 1ph. AC/AC Converter

- Enjeti (V-Input, V-Output, $\theta = 0$, 1997)

- Realization of Matrix Stages with Conventional IGBT Modules
- Cascaded Converter Input Stages for High Input Voltage Requirement
- Single Transformer / Split Winding Guarantees Equal Voltage Sharing
Direct Matrix-Type 1ph. AC/AC Converter

- Kimball (V-Input, V-Output, 2009)

- \(f_1 = f_2 \)
- Input Power = Output Power (and No Reactive Power Control)
- 1ph. AC/AC ZVS Dual Active Bridge (DAB) Converter (Voltage Impressed @ Inp. & Output)
- Power Transfer / Output Voltage Contr. by Phase Shift \(\phi \) of Primary & Sec. Bridge Operation
Direct Matrix-Type 1ph. AC/AC Converter

- Kimball (V-Input, V-Output, 2009)

- ZVS Strategy
- ZVS Range Dependent on Load Condition & Voltage Transfer Ratio (Stray Ind. as Design Parameter)
Direct Matrix-Type 1ph. AC/AC Converter

- Yang (V-Input, I-Output, 2009)

- Topological Variation of the Basic 1ph. AC/AC DAB Topology
- Three-Level Input Stage, Center-Tap Secondary Winding Rectifier Stage
➤ Direct Matrix-Type 1ph. AC/AC Converter

- Yang (V-Input, I-Output, 2009)

● Six Conduction States within a Pulse Period
Direct Matrix-Type 1ph. AC/DC Converter

- Drabek et al. (2011)
 V-Input, V-Output

- Traction Application
- MF Transformer with Splitted/Cascaded Primary Windings & Single Secondary Winding
- DAB Topology but Higher Secondary Side Switching Frequency for Current Control
- Natural Balancing of the Input Filter Capacitor Voltages
- 400Hz Multi-Step Commutation of Primary Side Matrix Conv.
- Conceptual Relation of Control Concept to Östlund (Prim.: 400Hz, Sek.: 2.5kHz)
Direct Matrix-Type 1ph. AC/DC Converter

- Drabek et al. (V-Input, V-Output, 2011)

- Output Voltage Control via Current Amplitude / Phase Shift Controller Def. Inp. Current Phase Angle
- Hysteresis Contr. of VSR impresses 400Hz Ampl. Mod. Square Wave Current (def. Ampl. & Phase)
- Synchr. Switching (400Hz) Primary Matrix Stage Demodulates Transf. Current into Cont. Sinewave
Direct Matrix-Type 1ph. AC/DC Converter

- Drabek et al. (V-Input, V-Output, 2011)

Experimental Analysis
- AC/DC (Rectifier Bridge, No Output Capacitor) and Subsequent MF AC Voltage Generation
- Secondary Side Rectifier and DC/DC Boost Converter for Sinusoidal Current Shaping
- Switching Frequency $f = 400$Hz
Indirect Matrix-Type 1ph. AC/AC Converter

- Lipo (V-Input, I-Output, 2010)

- AC/DC Input Stage (Bidir. Full-Wave Fundamental Freq. GTO Rect. Bridge, No Output Capacitor)
- Subsequent DC/DC Conversion & DC/AC Conversion (Demodulation, $f_1 = f_2$)
- Output Voltage Control by Phase Shift of Primary and Secondary Side Switches (McMurray)
- Lower Number of HF HV Switches Comp. to Matrix Approach
Indirect Matrix-Type 1ph. AC/AC Converter

- Lipo (V-Input, I-Output, 2010)

- Multi-Step Commutation of GTO Input Stage (at Mains Voltage Zero Crossings)
- Commutation Considers DC Link Current Direction and Input Voltage Polarity
- Same Gate Signals for Diagonal Thyristors \(G_{1,3}, (G_{2,4}), (G_{5,7}), (G_{6,8})\)
DC-Link Type (Indirect) 1ph. AC/AC Converter

- AC/DC – DC/DC – DC/AC Topologies
- Dual Act. Bridge-Based DC/DC Conv. (Phase Shift Contr. Relates Back to Thyr. Inv. / McMurray)

Alternatives: AC/DC – DC/AC Topologies
AC/DC – DC/AC/AC Topologies

(Ayyanar, 2010)
High-Power DC-DC Conversion
► Dual-Active-Bridge (DAB)
- De Doncker (1991)

- Two Voltage Sources Linked by an Inductor
- Operated at Medium/High Frequencies

Fundamental model of the dual bridge dc/dc converter.
DAB – Common Bridge Configurations

- **Half-Bridge Configuration**
 - Two Voltage Levels from Each Side

- **Full-Bridge Configuration**
 - Three Voltage Levels from Each Side
 (Additional Freewheeling State)
DAB – Common Bridge Configurations

- Neutral-Point-Clamped (NPC) Configuration
 - Three-Voltage Levels from Each Side
 - Voltage-Doubler Behavior

- NPC / Full-Bridge Configuration
 - Suitable for Higher MV/LV Ratios
DAB – Phase-Shift Modulation

- Power Transfer Controlled through Phase-Shift between Bridges

![Graph showing phase-shift modulated power transfer](image)

Fundamental Model suitable for Calculation of Power Transfer

\[
P_o (pu) = \frac{V_{fi}^2}{\omega L} d \sin (\phi)
\]

Comparison of the output power versus ϕ, at $d = 1$, from the fundamental model and actual model.
DAB – Phase-Shift Modulation

- In a Certain Range, All Switching Transitions done in ZVS Conditions

- Soft Switching Range
DAB – Phase-Shift / Duty-Cycle Modulation

- Additional Degrees of Freedom can be Utilized to Optimize Targeted Criteria

- E.g. Minimize RMS Currents for Minimum Conduction Losses (Krismer, 2012)

- Not Possible in Half-Bridge Configuration
DAB – Triangular-Current Mode

Duty-Cycles and Phase-Shift Utilized to perform ZCS Switching

- Inductor Voltage
Three-Phase DAB

- ZVS of All Devices within Certain Power Range
- ZCS Only Possible at One Operating Point

● De Doncker (1991)

- **Power Supplies for Robots - Esser (1991)**

- **Energy Transfer Through the Robot’s Arm Joints**

- **Switching Frequency ≈ Resonant Frequency**

- **At Resonant Frequency, the Input/Output Voltage Ratio is Unity (Steigerwald, 1988)**
Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)

Equivalent Circuit for Transient Analysis (Esser, 1991)

Output Voltage is $\approx V_{MV} \cdot n$ for Any Output Power
Half-Cycle Discont.-Cond.-Mode Series-Res.-Conv. (HC-DCM-SRC)

- LCL Structure to Reduce Switching Losses
- ZCS of All Devices
Three-Phase HC-DCM-SRC

- Jacobs (2005)
- Possible Power Density/Efficiency Improvement + Red. DC Filtering
► AC/DC Converter with DAB

- Everts (2012)
- Direct MV-AC to LV-DC Conversion (no MV-DC Stage)
ZCS/ZVS of IGBTs
ZCS and ZVS of IGBTs

- Analysis of IGBT Losses under ZCS Conditions for the TCM-DAB
- Tested on a NPC-3-Level Structure Based on 1.7kV IGBTs

1.7kV PT IGBT Module-Based Testbench

NPC Bridge Leg Based on 1.7kV PT IGBTs Conn. to MF Transf. and LV Side Bridge
Operation

NPC Bridge Applies Full Positive Voltage

As soon as the Current Reaches Zero, the NPC Bridge is Turned to Freewheeling, achieving ZCS on S_1

NPC Bridge Structure and Experimental Waveforms for 166kW / 20kHz and Power from MV to LV
Operation

- **NPC Bridge Applies Full Positive Voltage**
- **As soon as the Current Reaches Zero, the NPC Bridge is Turned to Freewheeling, achieving ZCS on S_1**

▲ NPC Bridge Structure and Experimental Waveforms for 166kW / 20kHz and Power from MV to LV
Standard ZCS: MV \rightarrow LV

- Large Current Spike Even at Zero Current
- Large Turn-on Losses on Turning-on Device

1.7kV IGBT NPC bridge

NPC Bridge Structure and Experimental Waveforms for 166kW / 20kHz and Power from MV to LV
Measurement of IGBT Stored Charge Behavior

Exp. Measurement of Internal Charge
Dynamic Behavior of Stored Charge

1.7kV IGBT Test Circuit for Charge Behavior Analysis

Experiment used to Study Stored Charge Dynamics (Ortiz, 2012)
Measurement of Stored Charge

Field-Stop 1.7kV IGBT
62mm Package

Charge Control Equation to Estimate Charge Behavior

\[\frac{dQ(t)}{dt} = -\frac{Q(t)}{\tau} + k_s \cdot i_s(t) \]

Experimental Stored Charge Dynamic Analysis on 1.7kV FS IGBT
Measurement of Stored Charge

Non-Punch-Through 1.7kV IGBT
SOT-227B Package

<table>
<thead>
<tr>
<th>Switch</th>
<th>Temperature</th>
<th>T_j</th>
<th>τ (μs)</th>
<th>k_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>25 °C</td>
<td>3.07</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td>120 °C</td>
<td>4.24</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>NPT</td>
<td>25 °C</td>
<td>5.96</td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td>NPT</td>
<td>120 °C</td>
<td>7.43</td>
<td>0.116</td>
<td></td>
</tr>
</tbody>
</table>

Summary of IGBTs’ Parameters

Experimental Stored Charge Dynamic Analysis on 1.7kV NPT IGBT
Quasi ZCS and ZVS: MV → LV

- Low Turn-on Losses due to Low Switched Current
- Virtual Elimination of Turn-on Losses

1.7kV IGBT NPC Bridge

NPC Bridge Exp. Waveforms for QZCS/ZVS @ 166kW / 20kHz / 120°C and Power from MV to LV Side
Quasi ZCS and ZVS: Switched Current Sweep

- Minimum Losses around 40A @120°C and MV → LV
- Minimum Losses around 70A @120°C and LV → MV
- Total Reduction of ≈37% @120°C for MV → LV
- Total Reduction of ≈50% @120°C for LV → MV

ZCS Losses for Both Power Flow Directions and 25°C & 120°C @ 166kW Transferred Power
Three-Phase SST Distribution System Applications

Phase Modular / Direct 3ph. Concepts
Matrix / DC-Link Based Concepts
ISOP Converter Topologies
Example SST Projects
SST Concepts Employing LF Transformers
3ph. SST Concepts

- **Phase-Modular (3ph. Comb. of 1ph. Units)** or
- **Direct 3ph. Topologies**

- **Direct or Indirect Matrix Type Topologies** or
- **DC-Link Based Topologies**

- **Frequently** 1ph. AC/3ph. AC Converter Topologies Analyzed Instead of Full 3ph. Systems
- **Frequently** Unidir. (MV→LV) Topologies Proposed/Ana{}lyzed Instead of Bidir. Systems

- **1ph. AC/3ph. AC Conv. Topologies are Directly Applicable for Traction Applications**
Phase-Modular Direct Matrix-Type 3ph. SST Concepts

- Venkataramanan (2000)

- Only Interesting for Low-Voltage / Low-Power Applications
Partly Phase-Modular Direct Matrix-Type 3ph. SST Concepts

- **Enjeti (1997)**

- **Steimel et al. (2002)**

- **Steimel:**
 - Thyristor Cycloconv. Commut. Voltage Impressed by MV VSI (Mennicken, 1978)
 - Thyristor Recovery Time Limits Switching Frequency to \(f_p \approx 200 \text{Hz} \) (\(\alpha = 150^\circ \))
 - Reactive Power Demand of the Thyristor Cycloconverter
 - Implementation of Cycloconv. with (Turn-Off) RB IGCTs (6.5kV) allows \(f_p \approx 500 \text{Hz} \)

- **Enjeti:**
 - Three-Limb Core could be Employed for Realiz. of MF D-y-Transformer (Enjeti, 1997)
Direct 3ph. Direct Matrix-Type 3ph. SST Concepts

- Venkataramanan (2000)

- No Energy Storage / DC Port
- Large Number of Power Semiconductors (24)
- Limited IGBT Blocking Capability does Not Allow MV Application of Basic Conv. Topology
Direct 3ph. Direct Matrix-Type 3ph. SST Concepts

- Mohan (2009)

- **Reduced HV Switch Count (Only 2 HV Switches @ 50% Duty Cycle / No PWM)**
- **LV Matrix Converter** Demodulates MF Voltage to Desired Ampl. / Frequency
- **Switching CM Voltage Eliminated at Generator Terminals by Proper MC Control**
Direct 3ph. Direct Matrix-Type 3ph. SST Concepts

- Mohan (2009)

- Equivalent Circuit of the Transformer for \(SW_{p-on} \) and \(SW_{p-off} \) and Input Phase \(a \) Voltage of MC
- Clamp Circuit Sinks Energy Stored in the Leakage Inductance
- Clamp Voltage = 2 x Grid Line-to-Line Voltage
Indirect Matrix-Type Direct 3ph. SST Concepts

- Enjeti (2003)

- Formation of Transf. Voltage Involving all Phases \(a, b, c \) and Ensuring Balanced Flux

- Transformer Sec. Voltage Rectified into Fluctuating DC Link Voltage \(V_{dc} \)

- \(V_{dc} \) Converted into \(V_A, V_B, V_C \) by Space Vector PWM for Mains Current Control
DC-Link Based Direct 3ph. SST Topologies

- Lower Number of Switches (20) Comp. to Matrix Approach (24)
- Limited IGBT Blocking Capability does Not Allow MV Application of Basic Conv. Topology
DC-Link Based Direct 3ph. SST Topologies

- M-Level Topology & HV IGBTs for Incr. Input Voltage Capability (Front-End and DC/DC Conv.)
- Current Doubler Rectifier for Increasing Output Current Capability / Low Output Current Ripple
- Bidirectional Extension by Switches Antiparallel to Rectifier Diodes Possible (Snubber)
DC-Link Based Direct 3ph. SST Topologies

- Only Interesting for Low-Voltage / Low-Power Applications
DC-Link Based *Fully Phase Modular SST Topologies*

- Akagi (2005/2007)

Application for MV Motor Drives Replacing the 50/60 Hz Transformer
DC-Link Based *Fully Phase Modular SST* Topologies

- Akagi (2005)

- Back-to-Back Connection of MV Mains by MF Coupling of STATCOMs
- Combination of Clustered Balancing Control with Individual Balancing Control
DC-Link Based *Partly Phase Modular SST* Topologies

- van der Merwe (2009)

- **SST Concept Without Accessible MV DC Bus**
- **Extension to Bidirectional Power Flow by Replacing the Passive Rectifiers with Active Systems**
DC-Link Based *Partly Phase Modular SST* Topologies

- Steimel et al. (2002)

- **Electronic Power Transformer for 110/20kV and 110/10kV Applications**
- **Truck Movable Temporary Replacement of Failed Conventional Transformer**
DC-Link Based *Partly Phase Modular SST* Topologies

- Steimel et al. (2002)

- Configuration of Cells for 10kV and 20kV MV System
- Implementation of Soft-Switching DC/DC Module (Self Balancing of DC Link Voltages, Cable Transf.)
DC-Link Based *Partly Phase Modular SST* Topologies

- Steimel et al. (2002)

- Multi-Loop Control Structure of the Electronic Power Transformer
Multilevel & Input Series Output Parallel (ISOP) SST Topologies

- Multi-Level or Cascaded H-Bridge Interfaces for MV Connection
- Parallel Connection of Modules on the LV Side for Distribution of High Output Current
- Low Total Input Voltage / Output Current Harmonics (Low Ind. Volume / Low Cap. Curr. Stress)
- Cascaded H-Bridges Preferable due to Voltage Balancing Problem and Scaling of ML Converters
Classification System for Multi-Level & Multi-Cell Power Converters

- Clare/Wheeler et al. (2001)

- Classification of Structures with HV (Side A) and MV (Side B) DC Link
- Nomenclature for Topological Arrangement

\[X^M L^N Y \]

- Structure of HF Transformer Defined by L,M,N

\[M_L^N = 1^1 \]

- Transformer Classification Independent of Number of DC Links
Classification System for Multi-Level & Multi-Cell Power Converters

- Structure of HF Transformer Defined by L,M,N

\[M^L_N = \begin{cases} \frac{3}{4^1} & \text{for } M^L_N = 2^1 3^1 \\ \frac{2}{4^1} & \text{for } M^L_N = 1^1 6^1 \end{cases} \]

- Structure of the DC Links

\[X^M_L^N = \begin{cases} \frac{4}{4^1} & \text{for } X^M_L^N = 1^1 4^1 \\ \frac{2}{4^1} & \text{for } X^M_L^N = 2^1 4^1 \\ \frac{1}{4^1} & \text{for } X^M_L^N = 4^1 1^1 \end{cases} \]
Classification System for Multi-Level & Multi-Cell Power Converters

- Complete Converter Structures

\[X^M L^N Y = 6^{31} 3 \]

\[X^M L^N Y = 6^{321} 1 \]
UNIFLEX Project

- EU Project (2009)

- Advanced Power Conv. for Universal and Flexible Power Management (UNIFLEX) in Future Grids
- Cellular 300kVA Demonstrator of 3-Port Topology for 3.3kV Distr. System & 415V LV Grid Connection
UNIFLEX Project

- EU Project (2009)

- AC/DC-DC//DC-DC/AC Module (MF Isolation, 1350V DC Link) and Prototype @ Univ. of Nottingham
SiC-Enabled Solid State Power Substation

- Das (2011)

- Fully Phase Modular System
- Indirect Matrix Converter Modules \(f_1 = f_2 \)
- MV \(\Delta \)-Connection \((13.8kV_{\text{L-L}}, 4 \text{ Modules in Series}) \)
- LV \(Y \)-Connection \((465V/\sqrt{3}, \text{ Modules in Parallel})\)

- SiC Enabled 20kHz/1MVA “Solid State Power Substation”
- 97% Efficiency / 25% Weight / 50% Volume Reduction (Comp. to 60Hz)
The MEGACube @ ETH Zürich

- DC-DC Converter Stage
- Module Power: 166kW
- Frequency: 20kHz
- Triangular Current Mode Modulation

Structure of the 166kW Module and MV Side Waveforms
The MEGACube @ ETH Zürich

- **Total Power**: 1MW
- **Frequency**: 20kHz
- **Efficiency Goal**: 97%

- **MV Level**: 12kV
- **LV Level**: 1.2kV
The MEGALink @ ETH Zürich

- 2-Level VSI on LV Side / HC-DCM-SRC DC-DC Conversion / Multilevel MV Structure
Unidirectional DC-Link Based SST Structures

- Ronan et al. (2000)

- AC Input
 - DC/DC 1000V/±275V
 - AC Output 120V/240V

- ISOP Modular Topology
- Three-Stage (AC/DC-DC/DC-DC/AC) Approach
Unidirectional DC-Link Based SST Structures

- EPRI (2009)

- AC Input 8.6kV (15kV_l-l)
- DC/DC 3.5kV/400V
- AC Output 120V/240V

100kVA 15kV Class Intelligent Universal Transformer (IUT™)

Development of HV Super GTO (S-GTO) as MV Switching Device / SiC Secondary Diodes

20kHz Series Resonant DC/DC Converter Utilizing Transformer Stray Inductance
Unidirectional DC-Link Based SST Structures

- EPRI (2009)

Outline of 100kVA (4x25kVA) IUT (Pole Mount Layout, 35”H 35”W 20”D, 1050 lbs)
- Natural Air Cooling / S-GTO Module (No Wire Bonds, 50kHz Switching Frequency Target)
Unidirectional DC-Link Based SST Structures

- Enjeti (2012)

- SST Application for MV Adjustable Speed Drive (Unidirectional AC/AC Front End / 3L NPC Inverter)
- Avoids Bulky LF Transformer / DC Link and Mains Current Harmonics (Active Filter)
Unidirectional DC-Link Based SST Structures

- Enjeti (2012)

- SST Appl. for MV Adjustable Speed Drive (Unidir. AC/AC Front End / Cascaded 2L 1ph.-Inverters)
- Avoids Bulky LF Transformer / DC Link and Mains Current Harmonics (Active Filter)
Unidirectional DC-Link Based SST Structures

- van der Merwe (2009)

5-Level Series Stacked Unidir. Boost Input Stage
Full Power SST Employing LF Transformers

- Provides AC Voltage Regulation and Low Sensitivity to Harmonics
- Isolation Provided with LF Transformer (Not Shown)

- No 4-Quadrant Switches Required
- Isolation with LF Transformer (Not Shown)
Full Power SST Employing LF Transformers

- Derived from DC Buck Converter

- J. C. Rosas-Caro (2010)
Overall Power SST Employing LF Transformers

- P. Bauer (1997)

- Electronic Tap Changer of LF Transformer
- MV Winding with Power Electronic Switched Tap.
- Two Modes of Operation:
 - Single Tap Position (a)
 - PWM Modulated Tap (b)
Partial Power SST Employing LF Transformers

- Electronic Tap Changer – Complex Control Circuit
- Crowbar for Emergency Ride-Through
- Commutation Sequence of the 4-Quadrant Switches
Partial Power SST Employing LF Transformers

- Enjeti (2003)

- Controlled Output Voltage: $V_o = V_x + V_c$
- LF Isolation Transformer
Partial Power SST Employing LF Transformers

- Barbi (2006)

- Controlled Output Voltage: \(v_o = v_i + \Delta v \)
- Isolation Provided with LF Transformer (Not Shown)
SST Concepts for Traction Applications

Railway Systems Voltage/Freq.

Modern Railway Systems’ Requirements

SST Concepts for Traction
Electric Railway Systems – A Little History

- Siemens Electric Railway – Werner von Siemens (1879)
- Speed: 7km/h - Power: 2.2 kW - Length: 300m
Electric Railway Systems – A Little History

- **Electrification of European Railways – Steimel (2012)**

 - **16 \(\frac{2}{3}\) Hz / 15kV AC - (1912)**
 - **3kV DC and 1.5kV DC - (1920)**
 - **50Hz / 25kV AC - (1936)**

 - Network line lengths and proportion of electrical railway systems (2003)
 - DC 1500 V: 15,320 km, 6.5%
 - DC 3000 V: 72,105 km, 30.3%
 - AC 15 kV/16\(\frac{2}{3}\) Hz: 32,390 km, 13.6%
 - AC 25kV/50 (and 60) Hz: 106,437 km, 44.8%
 - Others: 11,350 km, 4.8%
 - Total: 237,600 km, 100.0%

 ≈ 6 Turns Around the Earth
Electric Railway Systems – Today’s Drive Scheme

- 16.7Hz 1ph.-Transformer Required to Step-Down the Catenary Voltage to the Drive’s Operating Voltage

Low Frequency Transformer
- 15% Weight of Locomotive
- e.g. for 2MW ca. 3000kg
- 90-92% Efficiency
Trends in Modern Railway Systems

- Electric Multiple Units (EMUs) - e.g. Under-Floor Mounted
- Weight Reduction
- Energy Efficient Railways

AC Catenary (15kV, 16¾Hz or 25kV, 50Hz)

MFT

DC

Rail

AC-DC conversion with medium frequency transformer (MFT).

- All Goals Lead to a Medium-Frequency Isolation / Conversion Syst. (Dujic 2011)
VSI Commutated Primary Converter

- Menniken (1978)
- Östlund (1992)

PET topology with source commutated primary converter
Cascaded VSI Commutated Primary Converter

- Hugo (ABB, 2006)
- Pittermann (2008)

PET topology with cascaded source commutated primary converters

Experiment: steady-state; rectifier mode; load 2 kW:
Ch1-\(u_n\), Ch2-\(i_l\): 10A/100mV, Ch3-\(i_SC\) : 10A/100mV, Ch4- \(u_SC\)
Cascaded Source Commutated Primary Converter

- Pittermann (2008)
- Module Power: 2kW (downscaled)
- Frequency: 800Hz
Cascaded Source Commutated Primary Converter

- Hugo (ABB, 2006)
- Total Power: 1.2MVA/15kV
- Module Power: 75kW
- Frequency: 400Hz
Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages

- Steiner (Bombardier, 2007)
- Weigel (SIEMENS, 2009)

PET topology with cascaded H-bridges and resonant/non-resonant DC-DC stages.
Cascaded H-Bridges with Resonant/Non-Resonant DC-DC Stages

- **Weigel (SIEMENS, 2009)**
 - Module power: 450kW
 - Frequency: 5.6kHz

- **Steiner (Bombardier, 2007)**
 - Module power: 350kW
 - Frequency: 8kHz
Cascaded H-Bridges with Multi-Winding MF Transformer

- Engel (ALSTOM, 2003)

PET topology with cascaded H-bridges and multi-winding MFT.
Cascaded H-Bridges with Multi-Winding MF Transformer

- Engel (ALSTOM, 2003)
 - Module Power: 180kW
 - Frequency: 5kHz
Cascaded H-Bridges with Multi-Winding MF Transformer

- Taufiq (ALSTOM, 2007)
 - Module Power: 180kW
 - Frequency: 5kHz
Modular Multilevel Converter

- Marquardt/Glinka (SIEMENS, 2003)

PET topology using M2LC converter.
Modular Multilevel Converter

- Marquardt/Glinka (SIEMENS, 2003)
- Module Power: 270kW
- Module Frequency: 350Hz
Cascaded H-Bridges and Resonant LLC DC-DC Stages

- Zhao et al. (ABB, 2011)

PET topology with cascaded H-bridges and resonant (LLC)DC-DC stages.
Cascaded H-Bridges and Resonant LLC DC-DC Stages

- Zhao et al. (ABB, 2011)

Assembled Converter
- Module Power: 170 kW
- Frequency: 2 kHz

MV Module

LV Module
SST Design Remarks

Current Ratings
Cooling Considerations
MF Transformer Design
Flux Balancing
Current Ratings – Overcurrent Requirements

- **MV Transformers must Provide Short-Circuit Currents of up to 40 Times Nominal Current for 1.5 Seconds (EWZ, 2009)**

- **Traction Transformers: 150% Nominal Power for 30 Seconds (Engel 2003)**

- **Power Electronics: Very Short Time Constants!**
Grid Harmonics and EMI Standards

- Medium Voltage Grid Considered Standards (Burkart, 2012)
 - IEEE 519/1547
 - BDEW
 - CISPR

- Requirements on Switching Frequency and EMI Filtering
Semiconductor Cooling and Isolation

- 1.7kV IGBTs → Semiconductor Modules on Coldplates/Heatsinks Connected to Different Potentials (CM Voltage Problems)
- 3.3kV or 6.5kV IGBTs → Isolation Provided by the Modules’ Substrate, No Splitting of the Cooling System Necessary.

Hoffmann (2009)
● Heat Conducted from Inner Parts (Winding/Cores) to Outer Actively Cooled Coldplates

● Pavlovsky (2005)
MF Transformer Design – Water Cooling

- Hollow Aluminum Conductor with Forced Water Cooling
- Isolation: De-Ionized Water or MIDEL

Hoffmann (SIEMENS, 2011)

Heinemann (ABB, 2002)
MF Transformer Design - Isolation

- Specially Designed Isolated Housing for High Isolation to Ground

- Steiner (Bombardier, 2007)
MF Transformer Design - Isolation

- Glass-Fiber Container
 Engel (ALSTOM, 2003)
MF Transformer Design – Acoustic Noise Emissions

- Magnetostriction of Core Materials (Zhao, 2011)
 - Nanocrystalline: ~ 0ppm
 - Amorphous: ~ 27ppm

- Other Influences from Production Processes, Shapes and Assembly Procedures Affect the Emitted Noise

- Acoustic Noise Emitted at $2 \cdot f_s$ (!)
MF Transformer Design – Winding Arrangements

- **Coaxial Cable Winding**
 - Extremely Low Leakage Inductance
 - Reliable Isolation due to Homog. E-Field
 - Low Flexibility on Turns Ratio
 - Complex Terminations

- Heinemann (2002)
MF Transformer Design – Winding Arrangements

● Coaxial Windings

- Tunable Leakage Inductance
- More Complex Isolation
- Total Flexibility on Turns Ratio
- Simple Terminations

● Hoffmann (2011)

● Steiner (2007)
Flux Balancing - DC Magnetization

- Higher Losses
- Overcurrents
- Audible Noise

- Diff. Turn-on/Turn-off Times
- Diff. Switch On-Characteristics
Flux Density Transducer

- Shared Magnetic Path between Main and Auxiliary Core
- Change in Inductance on the Auxiliary Core is Related to the Magnetization State
Magnetic Ear
- ETH Zurich (2010)

Eliminate Problems of DC Magnetization without Compromising the Power Density (Series Capacitor)

Closed Loop Control of the Flux Density in the Main Core
Conclusions

SST Limits / Application Areas
Optimization Potential
Future Research Areas
General Remarks
SST Limitations – Application Areas

- SST Limitations
 - Efficiency (Rel. High Losses 3-6%)
 - High Costs (Cost-Performance Ratio still to be Clarified)
 - Limited Volume Reduction vs. Conv. Transf. (Factor 2-3)
 - Limited Overload Capability
 - (Reliability)

- Potential Application Areas

 Applications for Volume/Weight Limited Systems where 3-4% of Losses Could be Accepted

 - Traction Vehicles
 - UPS Functionality with MV Connection
 - Temporary Replacement of Conv. Distribution Transformer
 - Parallel Connection of LF Transformer and SST (SST Current Limit – SC Power does not Change)
 - Military Applications
SST Limitations – Application Areas

- LF Traction Transf. + 4QC vs. SST
- LF Distribution Trafo. vs. SST
Main SST Optimization Potential

- Cost & Complexity Reduction by Functionality Limitation (e.g. Unidirectional Power Flow)

Future Research Topics

- Insulation Materials under MF Voltage Stress
- Low Loss High Current MF Interconnections
- MF Transformer Construction featuring High Insulation Voltage
- Thermal Management (Air and H₂O Cooling, avoiding Oil)
- “Low” Voltage SiC Devices for Efficiency Improvement
- Multi-Level vs. Two-Level Topologies with SiC Switches → “Optimum” Number of Levels
- Multi-Objective Cost / Volume /Efficiency Optimization (Pareto Surface)
- SST Protection (e.g. Overvoltage)
- SST Reliability

- Hybrid (LF // SST) Solutions
- SST vs. FACTS (Integration vs. Combination of Transformer and Power Electronics)
- System-Oriented Analysis → Clarify Benefits on System Level (Balancing the Low Eff. Drawback)
Future Research Topics

Done!

To be Done...
Overall Summary

- SST is NOT a 1:1 Replacement for Conv. Distribution Transformers
- SST will NOT Replace ALL Conv. Distribution Transformers (even in Mid Term)
- SST Offers High Functionality BUT shows also Several Weaknesses / Limitations

→ SST Requires a Certain Application Environment (until Smart Grid is Fully Realized)
→ SST Preferably Used in LOCAL Fully SMART EEnergy Systems

@ Generation End (e.g. Nacelle of Windmills)
@ Load End - Micro- or Nanogrids (incl. Locomotives, Ships etc.)

→ Environments with Pervasive Power Electronics for Energy Flow Control (No Protection Relays etc.)
→ Environments which Could be Designed for SST Application

- “SST” is NOT AT ALL Clearly Reflecting the Actual Functionality → EEnergy Router (?)
Thank You!
Questions ?
References

References (Cont’d)

► Basic SST Concepts

References (Cont’d)

References (Cont’d)

► Three-Phase SST Distribution System Applications

References (Cont’d)

References (Cont’d)

► SST Concepts for Traction Applications

References (Cont’d)

SST Design Remarks

About the Instructors

Johann W. Kolar (F'10) received his M.Sc. and Ph.D. degree (summa cum laude / promotio sub auspiciis praesidentis rei publicae) from the University of Technology Vienna, Austria. Since 1984 he has been working as an independent international consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics and high performance drives. He has proposed numerous novel converter topologies and modulation/control concepts, e.g., the VIENNA Rectifier, the Swiss Rectifier, and the three-phase AC-AC Sparse Matrix Converter. Dr. Kolar has published over 450 scientific papers in international journals and conference proceedings and has filed more than 85 patents. He was appointed Professor and Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich on Feb. 1, 2001.

The focus of his current research is on AC-AC and AC-DC converter topologies with low effects on the mains, e.g. for data centers, More-Electric-Aircraft and distributed renewable energy systems, and on Solid-State Transformers for Smart Microgrid Systems. Further main research areas are the realization of ultra-compact and ultra-efficient converter modules employing latest power semiconductor technology (SiC and GaN), micro power electronics and/or Power Supplies on Chip, multi-domain/scale modeling/simulation and multi-objective optimization, physical model-based lifetime prediction, pulsed power, and ultra-high speed and bearingless motors. He has been appointed an IEEE Distinguished Lecturer by the IEEE Power Electronics Society in 2011.

He received the Best Transactions Paper Award of the IEEE Industrial Electronics Society in 2005, the Best Paper Award of the ICPE in 2007, the 1st Prize Paper Award of the IEEE IAS IPC in 2008, the IEEE IECON Best Paper Award of the IES PETC in 2009, the IEEE PELS Transaction Prize Paper Award 2009, the Best Paper Award of the IEEE/ASME Transactions on Mechatronics 2010, the IEEE PELS Transactions Prize Paper Award 2010, the Best Paper 1st Prize Award at the IEEE ECCE Asia 2011, and the 1st Place IEEE IAS Society Prize Paper Award 2011 and the IEEE IAS EMC Paper Award 2012. Furthermore, he received the ETH Zurich Golden Owl Award 2011 for Excellence in Teaching. He also received an Erskine Fellowship from the University of Canterbury, New Zealand, in 2003. He initiated and/or is the founder/co-founder of 4 spin-off companies targeting ultra-high speed drives, multi-domain/level simulation, ultra-compact/efficient converter systems and pulsed power/electronic energy processing. In 2006, the European Power Supplies Manufacturers Association (EPSMA) awarded the Power Electronics Systems Laboratory of ETH Zurich as the leading academic research institution in Power Electronics in Europe.

Dr. Kolar is a Fellow of the IEEE and a Member of the IEEJ and of International Steering Committees and Technical Program Committees of numerous international conferences in the field (e.g. Director of the Power Quality Branch of the International Conference on Power Conversion and Intelligent Motion). He is the founding Chairman of the IEEE PELS Austria and Switzerland Chapter and Chairman of the Education Chapter of the EPE Association. From 1997 through 2000 he has been serving as an Associate Editor of the IEEE Transactions on Industrial Electronics and since 2001 as an Associate Editor of the IEEE Transactions on Power Electronics. Since 2002 he also is an Associate Editor of the Journal of Power Electronics of the Korean Institute of Power Electronics and a member of the Editorial Advisory Board of the IEEJ Transactions on Electrical and Electronic Engineering.
Gabriel Ortiz (M’10) studied Electronics Engineering at Universidad Técnica Federico Santa María, Valparaíso, Chile, joining the power electronics group early on 2007. During his Master Thesis he worked with reconfiguration of regenerative and non-regenerative cascaded multilevel converters under fault condition, obtaining maximum qualification on his Thesis Examination. He received his M.Sc. degree in December 2008, and he has been a Ph.D. student at the Power Electronic Systems Laboratory, ETH Zürich, since February 2009.

The focus of his research is in solid state transformers for future smart grid implementations and traction solutions. Specifically, his PhD. research deals with the modeling, optimization and design of high-power DC-DC converters operated in the medium frequency range with focus on modeling of soft-switching processes in IGBTs and medium frequency transformer design, among others.