EWSN 2017
Dependability Competition
Awards and Presentations

Carlo Alberto Boano
Graz University of Technology, Austria
EWSN dependability competition 2016 (Graz, Austria)
EWSN dependability competition 2017 (Uppsala, Sweden)
Competition: Motivation

- Increasing need for dependable networked embedded systems
- A large number of solutions were proposed by academia & industry in the last decade

→ Hard to know which of those perform(s) best in a given application scenario
→ Performance has rarely been benchmarked under the exact same settings
→ Focus has rarely been on end-to-end performance

"Let chaos reign"

Evaluation Scenario

- Sensor network monitoring discrete events
 - Sensing node in proximity of a light source detecting status changes (on/off)
 - Events are immediately reported to a sink node
Evaluation Scenario

- Sensor network monitoring discrete events
 - Sensing node in proximity of a light source detecting status changes (on/off)
 - Events are immediately reported to a sink node
 - Multi-hop wireless network
Evaluation Scenario

- Sensor network monitoring discrete events
 - Crowded RF spectrum
 - RF interference generated using JamLab in the 2.4 GHz band
Location

- Uppsala University campus in Polacksbacken
 - 3rd floor of Lägerhyddsvägen 2, Hus 1

Location quite challenging for low-power wireless communications
Location

- Uppsala University campus in Polacksbacken
 - Old military building, very thick walls (≈ 350-400 m² area)
Solutions have been evaluated according to three criteria:

1. Reliability of transmissions
 - Number of changes in the LED status that were missed (i.e., that were not correctly reported to the sink)

2. End-to-end latency
 - Time necessary to communicate a change in the LED status to the sink node
 - Measured with microseconds precision using GPS timestamps

3. Energy-efficiency
 - Power consumed by all nodes in the network (measured in hardware every 16 μs)

For each criterion, a separate ranking is derived
- The team with the best rankings across all three metrics wins!
Benchmarking Tool: D-Cube

- GitHub: https://github.com/TuGraz-ITI/D-Cube

This year’s prototype (EWSN’17)

Last year’s prototype (EWSN’16)
Benchmarking Tool: D-Cube

- **GitHub**: https://github.com/TuGraz-ITI/D-Cube

This year’s prototype (EWSN’17)

- Raspberry Pi3 with custom made add-on card
 - Latency profiling: GPS module with timestamping support
 - Energy profiling: simultaneous sampling ADC @62.5 kHz
 - Target platform: MTM-CM5000-MSP nodes (TelosB replicas - 10 kB RAM)

More info this afternoon at 15:10!
Execution

- 10 teams answered to the call for competitors
- Step 1: Remote preparation
- Step 2: on-site preparation day (Saturday)
- Step 3: on-site evaluation day (Sunday)
Generated Interference

- Two separate evaluations
 1. 45 minutes under varying interference patterns resembling Wi-Fi video streaming, file transfer, and malicious nodes
 2. 5 minutes "extreme" scenario with very high interference
Fun Times
Comparing Results Live!

- Every team knew how the other teams were performing and had to adjust / parametrize their solutions accordingly!
Comparing Results **Live**!

- Every team knew how the other teams were performing and had to adjust / parametrize their solutions accordingly!

<table>
<thead>
<tr>
<th>Team 07</th>
<th>91.80kB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 06</td>
<td>88.10kB</td>
</tr>
<tr>
<td>Team 08</td>
<td>64.5kB</td>
</tr>
<tr>
<td>Team 03</td>
<td>56.2kB</td>
</tr>
<tr>
<td>Team 05</td>
<td>54.6kB</td>
</tr>
<tr>
<td>Team 09</td>
<td>46.3kB</td>
</tr>
<tr>
<td>Team 04</td>
<td>38.3kB</td>
</tr>
<tr>
<td>Team 10</td>
<td>28.3kB</td>
</tr>
<tr>
<td>Team 11</td>
<td>10.0kB</td>
</tr>
<tr>
<td>Team 01</td>
<td>9.3kB</td>
</tr>
</tbody>
</table>

Size of the submitted *ihex* binary
And the winners are…

(announcing the top five teams)
Official Results – 1st Evaluation

- Top five solutions achieved > 95% reliability!
- Latency was often kept below 100 ms
- Very low energy consumption (0.01 - 0.03 J/s for each node)
Official Results – 1st Evaluation

- **4th place (ex-aequo):**

 Team #03: Using OFPCOIN under Interference

 Xiaoyuan Ma, Weisheng Tang, Wangji He, Fuping Zhang, and Jianming Wei
 (Shanghai Advanced Research Institute, China; Chinese Academy of Sciences, China)
Official Results – 1st Evaluation

- 4th place (ex-aequo):
 Team #10: Energy-Efficient Network Flooding with Channel-Hopping
 Philipp Sommer and Yvonne-Anne Pignolet
 (ABB Corporate Research, Switzerland)
Official Results – 1st Evaluation

- **3rd place:**
 Team #04: Towards Low-Power Wireless Networking that Survives Interference with Minimal Latency
 Beshr Al Nahas and Olaf Landsiedel
 (Chalmers University of Technology, Sweden)
Official Results – 1st Evaluation

2nd place:
Team #01: RedFixHop with Channel Hopping
Antonio Escobar, Javier Garcia, Francisco Cruz, Jirka Klaue, Angel Corona, Divya Tati
(Infineon Technologies AG, Germany; RWTH Aachen University, Germany; Kinexon GmbH, Germany; eesy-innovation GmbH, Germany; Airbus Group Innovations, Germany)
Official Results – 1st Evaluation

1st place:

Team #05: Robust Flooding using Back-to-Back Synchronous Transmissions with Channel-Hopping
Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele
(ETH Zurich, Switzerland)
Official Results – 2nd Evaluation

ENERGY
- Team 05: 117.83 J
- Team 01: 231.86 J (+96.78%)
- Team 04: 228.36 J (+93.80%)

LATENCY
- Team 05: 106.2 ms
- Team 01: 149.1 ms (31.88%)
- Team 04: 163.9 ms (54.26%)

RELIABILITY
- Team 05: 62/62 (100.00%)
- Team 01: 62/62 (100.00%)
- Team 04: 54/62 (87.10%)
Official Results – 2nd Evaluation

Number of Results
- Team 05: 62/62
- Team 01: 62/62
- Team 04: 54/62

Reliability
- Team 05: 100.00%
- Team 01: 100.00%
- Team 04: 87.19%

Energy Consumption
- Team 05: 117.83 J
- Team 01: 231.86 J (+96.78%)
- Team 04: 228.36 J (+93.80%)

Latency
- Team 05: 106.2 ms
- Team 01: 149.1 ms (31.88%)
- Team 04: 163.9 ms (54.26%)
Official Results – 2nd Evaluation

RELIABILITY

- **Team 05**: 62/62 (100.00%)
- **Team 01**: 62/62 (100.00%)
- **Team 04**: 54/62 (87.10%)

ENERGY

- **Team 05**: 117.83 J
- **Team 01**: 231.86 J (+96.78%)
- **Team 04**: 228.36 J (+93.80%)

LATENCY

- **Team 05**: 106.2 ms
- **Team 01**: 149.1 ms (31.88%)
- **Team 04**: 163.9 ms (54.26%)
Congratulations to the Winners!

- 1st place (Team #05)
 - Robust Flooding using Back-to-Back Synchronous Transmissions with Channel-Hopping
 - Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele
 (ETH Zurich, Switzerland)

- 2nd place (Team #01)
 - RedFixHop with Channel Hopping
 - Antonio Escobar, Javier Garcia, Francisco Cruz, Jirka Klaue, Angel Corona, Divya Tati
 (Infineon Technologies AG, Germany; RWTH Aachen University, Germany; Kinexon GmbH, Germany; eesy-innovation GmbH, Germany; Airbus Group Innovations, Germany)

- 3rd place (Team #04)
 - Towards Low-Power Wireless Networking that Survives Interference with Minimal Latency
 - Beshr Al Nahas and Olaf Landsiedel
 (Chalmers University of Technology, Sweden)

- Coming up next: presentations of the three best teams
Thanks to Everyone supporting the Competition

- Thiemo, Christian, Ambuj, Haris, Kasun, Joel, Georgios, TU Graz, …
- But especially one person:

- Coming up next: presentations of the three best teams