Optimization under Uncertainty
Katerina Bohmovova, Barbara Geissmann, Sandro Montanari, Tobias Pröger, and Peter Widmayer
Institute of Theoretical Computer Science, ETH Zürich

1 A Similarity-Based Approach (Buhmann et al., 2013)

Classical optimization: Select a solution \(s^* \) from a set of possible solutions \(S \) (e.g., st-paths, matchings, ...) that minimizes an objective function \(f : S \rightarrow \mathbb{Q}_0^+ \)

Situation here: Problem generator \(\mathcal{P}\mathcal{S} \) generates instances \(I : S \rightarrow \mathbb{Q}_0^+ \) that differ due to noise; no knowledge about \(\mathcal{P}\mathcal{S} \) or the type of the noise

Goal: Given \(I_1, I_2 \) generated by \(\mathcal{P}\mathcal{S} \), find a solution that is likely to be good for other instances from \(\mathcal{P}\mathcal{S} \)

Approach: For each instance \(I \), consider its \(\rho \)-approximation set

\[
A_\rho(I) = \{ s \in S | I(s) \leq \rho \cdot \min_{s \in S} I(s) \}
\]

- For a well-tuned parameter \(\rho^* \), select a solution from \(A_\rho(I_1) \cap A_\rho(I_2) \) uniformly at random

- Finding the “right” \(\rho^* \) is nontrivial \(\sim \) Use \(\rho^* \) that maximizes the Similarity of \(I_1 \) and \(I_2 \),

\[
\frac{|A_\rho(I_1) \cap A_\rho(I_2)|}{|A_\rho(I_1)||A_\rho(I_2)|}
\]

2 Robust Routing in Urban Public Transportation

Given: Public transportation network with a planned timetable, “observed timetables” of past few days, origin \(s \), destination \(t \), latest allowed arrival time \(t_A \)

Goal: Recommend an st-journey that is robust against (observed) “typical” delays, i.e., that likely reaches \(t \) at time \(t_A \) at the latest.

Solution concept: Journeys. Depart from \(s \) at \(t_D \), use the sequence of lines \(l_1(\text{bus}), l_2(\text{bus}), \ldots, l_k(\text{bus}) \), change line at transfer stops \(s_1, s_2, \ldots, s_k-1 \).

Observation: Learning based methods can account for typical delays.

3 Robust Routing in Road Networks

Goal: Computing routes according to robust criteria (e.g., maximum similarity, first intersection)

Setting: Time-dependent FIFO road networks

Issues: Polynomial-time algorithms are not likely to exist

Solution: Heuristic techniques with good practical performance (e.g., bi-directional search, pruning, ...)

4 Geometric Uncertainty

Classical setting: Compute geometric objects (e.g., spanning trees) of a point set

Imprecise points: The location of each point is known to be located in an own occurrence region. Multiple realizations are possible:

Question: For which realization is the object as good/bad as possible?

Objects studied: Minimum weight spanning trees, minimum diameter spanning trees, shortest paths in geometric graphs

5 Comparison Errors – How Well Can We Sort?

Model: Set of elements with a strict linear order. An (unknown) upper bound \(k \) of wrong comparisons. Errors are recurring. Perform each comparison once.

Approach 1: Find a permutation with the least number of contradictions.

Approach 2: Sort the elements by the number of “lost” comparisons.

<table>
<thead>
<tr>
<th>Measures of Unsortedness</th>
<th>APPROACH 1</th>
<th>APPROACH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVERSIONS</td>
<td>(2k)</td>
<td>< (4k)</td>
</tr>
<tr>
<td>TOTAL DISLOCATION</td>
<td>(4k)</td>
<td>(k + 1)</td>
</tr>
<tr>
<td>MAX DISLOCATION</td>
<td>(2k)</td>
<td>(k + 1)</td>
</tr>
</tbody>
</table>

Partners

Prof. Dr. Joachim Buhmann, ETH
Prof. Dr. Matúš Mihalák, Maastricht University
Prof. Dr. Marie-France Sagot, INRIA & Université Lyon 1

Dr. Chih-Hung Liu, Universität Bonn
Dr. Rastislav Šrámek, Google
TomTom Verkehrsbetriebe Zürich