De Novo Peptide Sequencing

Tomas Hruz, Simon Rösch, Thomas Tschager, and Peter Widmayer
Institute of Theoretical Computer Science, ETH Zürich

1 Tandem Mass Spectrometry

Tandem Mass Spectrometry

m/z
m/z
h
m/z
m/z
MS1
MS2
Tandem Mass Spectrometry
ADSFDGF
ADS|FDGF
A|DSFDGF
DAS|DGDF
ADSFDGF
DASDGDF
1
2
3
1
2
3
h
h
h
DASDGDF
DASDG|DF

2 Problem Definition

For a sequence \(s \) over an alphabet \(\Sigma \), the theoretical spectrum \(TS(s) \) of \(s \) is the set of all prefix and suffix masses of \(s \).

Single Peptide De Novo Sequencing

Input: peptide mass \(M \) (measured in MS1), set of fragment masses \(X \) (measured in MS2),
Maximum Intersection: find a sequence \(s \) with mass \(M \) that maximizes \(|X \cap TS(s)| \).
Symmetric Difference: find a sequence \(s \) with mass \(M \) that minimizes \(|X \setminus TS(s)| + |TS(s) \setminus X| \).

Multiple Peptides De Novo Sequencing

Input: \(k \) peptide masses \(M_1, \ldots, M_k \) (MS1), set of fragment masses \(X \) (MS2)
find sequences \(s_1, \ldots, s_k \), such that
(i) sequence \(s_i \) has mass \(M_i \) for \(i = 1, \ldots, k \)
(ii) \(|X \cap \bigcup_{i=1}^{k} TS(s_i)| \) is maximized.

3 Single Peptide De Novo Sequencing

Spectrum graph \(SG = (V, E) \) (directed acyclic graph)
\(V = \{m, M - m \mid m \in X \cup \{0, M\}\} \)
\(E = \{(v, w) \mid v, w \in V, \exists s : s \text{ has mass } w - v\} \)
Maximum Intersection: \(O(|V|\cdot|E|) \)-algorithm (Chen et al., 2001)
Symmetric Difference: \(O(max(|V|, |E|, p \cdot |E|^2)) \)-algorithm, where \(p \) is maximal edge label length (Master Thesis of Simon Rösch)

4 Multiple Peptides De Novo Sequencing

Assumption: \(\Gamma = \max_{i,j} |M_i - M_j| < \min \text{ mass}(s) \)
Outline (for \(k = 2 \)): Compute directed acyclic graph \(G = (V, E) \):
- Vertices \((a, b, c, d)\) with \(a, b \in V(SG_1) \) and \(c, d \in V(SG_2) \)
- Edge from \((a, b, c, d)\) to \((a, b, e, d)\) if \((c, e) \in E(SG_2) \) and \(c = \min(a, M_1 - b, c, M_2 - d) \)
- \(k \) longest paths in \(O(|V| + |E| + k) \) (Eppstein, 1998).

Partners: Dr. Ludovic Gillet and Prof. Ruedi Aebersold, Institute of Molecular Systems Biology, ETH Zurich, Hannes Roest, Department of Genetics, Stanford University.