Distance Enlargement and Reduction
Attacks on Ultrasound Ranging

Sahar Sedighpour (NESL-UCLA), Srdjan Capkun (IMM, Technical University of Denmark), Saurabh Ganeriwal, Mani Srivastava (NESL-UCLA)

Introduction:

Motivation
Localization is a critical middleware service in sensor networks:
- Tracking of targets,
- Sensor Deployment, …

- Most positioning techniques are currently studied in non-adversarial settings.

Problem Description: **Distance Reduction And Enlargement**

Wormhole Attacks
Exploits the fact that light travels faster than light

- Distance between A and B can be arbitrarily reduced.
- Attackers can pass the signal between them through a fast radio link, so that the signal would be to the listener much faster.

- This would only work if:

\[
\frac{X_1}{c} + \frac{X_2}{c} + P_{\text{US receive}} + P_{\text{RF send}} + P_{\text{RF propagate}} + P_{\text{RF receive}} + P_{\text{US send}} + \frac{X_2}{V_{\text{us}}}
\]

Pulse-Delay Attacks

- Distance between A and B can be arbitrarily increased.
- Attacker can make the distance seem longer by jamming the ultrasound signal from the beacon, and replay it at a later time.

Prototype Implementation:

We used Crickets from MIT with V2 Software:

Two Cricket nodes (A and B) are placed at distance \(d \). This distance is then measured using ultrasonic ranging: an ultrasonic signal and a radio signal are sent at the same time from node A to node B; node B then measures the difference between the reception time of the ultrasonic signal and the reception time of the radio signal; based on this difference, B estimates its distance to A. Case Study: M1 and M2 placed in 90° wrt Beacon and Listener.

Distance Reduction:
Average distance measured with Attackers vs. Distance of Attackers to beacon and listener

Distance Enlargement:

When A1 also wait for US from B to send RF to A2

When original distance b/w L and B is 25 cm