Design of Digital Circuits
Reading: Binary Numbers

Required Reading for Week 1
23-24 February 2017
Spring 2017
Binary Numbers

Design of Digital Circuits 2016
Srdjan Capkun
Frank K. Gürkaynak

http://www.syssec.ethz.ch/education/Digitaltechnik_16
In This Lecture

- How to express numbers using only 1s and 0s
- Using hexadecimal numbers to express binary numbers
- Different systems to express negative numbers
- Adding and subtracting with binary numbers
Number Systems

- Decimal Numbers
 - 5374\textsubscript{10} =

- Binary Numbers
 - 1101\textsubscript{2} =
Number Systems

- **Decimal Numbers**

\[
5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0
\]

- **Binary Numbers**

\[
1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13_{10}
\]
Powers of two

<table>
<thead>
<tr>
<th>2^0</th>
<th>=</th>
<th>2^8</th>
<th>=</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^1</td>
<td>=</td>
<td>2^9</td>
<td>=</td>
</tr>
<tr>
<td>2^2</td>
<td>=</td>
<td>2^{10}</td>
<td>=</td>
</tr>
<tr>
<td>2^3</td>
<td>=</td>
<td>2^{11}</td>
<td>=</td>
</tr>
<tr>
<td>2^4</td>
<td>=</td>
<td>2^{12}</td>
<td>=</td>
</tr>
<tr>
<td>2^5</td>
<td>=</td>
<td>2^{13}</td>
<td>=</td>
</tr>
<tr>
<td>2^6</td>
<td>=</td>
<td>2^{14}</td>
<td>=</td>
</tr>
<tr>
<td>2^7</td>
<td>=</td>
<td>2^{15}</td>
<td>=</td>
</tr>
</tbody>
</table>
Powers of two

<table>
<thead>
<tr>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 512</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^10</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^11</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 2048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^12</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 4096</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^13</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 8192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^14</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 16384</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^15</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 32768</td>
</tr>
</tbody>
</table>

Handy to memorize up to 2^{15}
Binary to Decimal Conversion

- Convert 10011_2 to decimal
Binary to Decimal Conversion

Convert 10011_2 to decimal

$$2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 =$$
Binary to Decimal Conversion

- Convert 10011_2 to decimal

\[
2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 = \\
16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = \\
16 + 0 + 0 + 2 + 1 = 19_{10}
\]
Decimal to Binary Conversion

- Convert 47_{10} to binary
Decimal to Binary Conversion

- Convert 47_{10} to binary
 - Start with $2^6 = 64$ is $64 \leq 47$?
 - no do nothing
 - Now $2^5 = 32$
Decimal to Binary Conversion

Convert 47_{10} to binary

- Start with $2^6 = 64$ is $64 \leq 47$? no do nothing
- Now $2^5 = 32$ is $32 \leq 47$? yes subtract $47 - 32 = 15$
- Now $2^4 = 16$ is $16 \leq 15$? no do nothing
- Now $2^3 = 8$ is $8 \leq 15$? yes subtract $15 - 8 = 7$
- Now $2^2 = 4$ is $4 \leq 7$? yes subtract $7 - 4 = 3$
- Now $2^1 = 2$ is $2 \leq 3$? yes subtract $3 - 2 = 1$
- Now $2^0 = 1$ is $1 \leq 1$? yes we are done
Decimal to binary conversion

Convert \(47_{10}\) to binary

- Start with \(2^6 = 64\) is \(64 \leq 47\) ? no 0 do nothing
- Now \(2^5 = 32\) is \(32 \leq 47\) ? yes 1 subtract \(47 - 32 = 15\)
- Now \(2^4 = 16\) is \(16 \leq 15\) ? no 0 do nothing
- Now \(2^3 = 8\) is \(8 \leq 15\) ? yes 1 subtract \(15 - 8 = 7\)
- Now \(2^2 = 4\) is \(4 \leq 7\) ? yes 1 subtract \(7 - 4 = 3\)
- Now \(2^1 = 2\) is \(2 \leq 3\) ? yes 1 subtract \(3 - 2 = 1\)
- Now \(2^0 = 1\) is \(1 \leq 1\) ? yes 1 we are done

Result is \(0101111_2\)
Binary Values and Range

- **N-digit decimal number**
 - How many values? \(10^N\)
 - Range? \([0, 10^N - 1]\)
 - Example: 3-digit decimal number
 - \(10^3 = 1000\) possible values
 - Range: \([0, 999]\)

- **N-bit binary number**
 - How many values? \(2^N\)
 - Range: \([0, 2^N - 1]\)
 - Example: 3-digit binary number
 - \(2^3 = 8\) possible values
 - Range: \([0, 7] = [000_2\text{ to } 111_2]\)
Hexadecimal (Base-16) Numbers

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal (Base-16) Numbers

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal Numbers

- Binary numbers can be pretty long.

- A neat trick is to use base 16

- How many binary digits represent a hexadecimal digit?
 4 (since $2^4 = 16$)

- Example 32 bit number:
 0101 1101 0111 0001 1001 1111 1010 0110
Hexadecimal Numbers

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?
 4 (since $2^4 = 16$)
- Example 32 bit number:

 | 0101 | 1101 | 0111 | 0001 | 1001 | 1111 | 1010 | 0110 |
 | 5 | D | 7 | 1 | 9 | F | A | 6 |
Hexadecimal Numbers

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?
 - 4 (since $2^4 = 16$)

- Example 32 bit number:
 - $0101\ 1101\ 0111\ 0001\ 1001\ 1111\ 1010\ 0110$
 - 5 D 7 1 9 F A 6

- The other way is just as simple
 - C E 2 8 3 5 4 B
Hexadecimal Numbers

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?
 4 (since $2^4 = 16$)

- Example 32 bit number:

<table>
<thead>
<tr>
<th>0101</th>
<th>1101</th>
<th>0111</th>
<th>0001</th>
<th>1001</th>
<th>1111</th>
<th>1010</th>
<th>0110</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>D</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>F</td>
<td>A</td>
<td>6</td>
</tr>
</tbody>
</table>

- The other way is just as simple

<table>
<thead>
<tr>
<th>C</th>
<th>E</th>
<th>2</th>
<th>8</th>
<th>3</th>
<th>5</th>
<th>4</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1110</td>
<td>0010</td>
<td>1000</td>
<td>0011</td>
<td>0101</td>
<td>0100</td>
<td>1011</td>
</tr>
</tbody>
</table>
Hexadecimal to Decimal Conversion

- Convert \(4AF_{16}\) (or 0x4AF) to decimal
Hexadecimal to decimal conversion

- Convert $4AF_{16}$ (or 0x4AF) to decimal

\[
16^2 \times 4 + 16^1 \times A + 16^0 \times F = 1024 \times 4 + 16 \times 10 + 1 \times 15 = 1024 + 160 + 15 = 1199_{10}
\]
Bits, Bytes, Nibbles...

10010110

most significant bit

least significant bit

byte

10010110

nibble

CEBF9AD7

most significant byte

least significant byte
Powers of Two

- $2^{10} = 1 \text{ kilo} \approx 1000$ (1024)
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million}$ (1,048,576)
- $2^{30} = 1 \text{ giga} \approx 1 \text{ billion}$ (1,073,741,824)
Powers of Two (SI Compatible)

- $2^{10} = 1 \text{ kibi} \approx 1000$ (1024)
- $2^{20} = 1 \text{ mebi} \approx 1 \text{ million}$ (1,048,576)
- $2^{30} = 1 \text{ gibi} \approx 1 \text{ billion}$ (1,073,741,824)
Estimating Powers of Two

- What is the value of 2^{24}?

- How many values can a 32-bit variable represent?
Estimating Powers of Two

- What is the value of 2^{24}?

 \[2^4 \times 2^{20} \approx 16 \text{ million} \]

- How many values can a 32-bit variable represent?

 \[2^2 \times 2^{30} \approx 4 \text{ billion} \]
Addition

Decimal

\[
\begin{array}{c}
3734 \\
+ 5168 \\
\hline
8902 \\
\end{array}
\]

11 \rightarrow carries

Binary

\[
\begin{array}{c}
1011 \\
+ 0011 \\
\hline
1110 \\
\end{array}
\]

11 \rightarrow carries
Add the Following Numbers

1001
+ 0101

1011
+ 0110
Add the Following Numbers

\[
\begin{array}{c}
1 \\
1001 \\
+ 0101 \\
\hline \\
1110 \\
\end{array}
\]

\[
\begin{array}{c}
111 \\
1011 \\
+ 0110 \\
\hline \\
10001 \\
\end{array}
\]

OVERFLOW!
Overflow

- Digital systems operate on a fixed number of bits
- Addition overflows when the result is too big to fit in the available number of bits
- See previous example of $11 + 6$
Overflow (Is It a Problem?)

- Possible faults
- Security issues

The $7 billion Ariane 5 rocket, launched on June 4, 1996, veered off course 40 seconds after launch, broke up, and exploded. The failure was caused when the computer controlling the rocket overflowed its 16-bit range and crashed.

The code had been extensively tested on the Ariane 4 rocket. However, the Ariane 5 had a faster engine that produced larger values for the control computer, leading to the overflow.
Binary Values and Range

- **N-digit decimal number**
 - How many values? \(10^N\)
 - Range? \([0, 10^N - 1]\)
 - Example: 3-digit decimal number
 - \(10^3 = 1000\) possible values
 - Range: \([0, 999]\)

- **N-bit binary number**
 - How many values? \(2^N\)
 - Range: \([0, 2^N - 1]\)
 - Example: 3-digit binary number
 - \(2^3 = 8\) possible values
 - Range: \([0, 7] = [000_2 \text{ to } 111_2]\)
Signed Binary Numbers

- Sign/Magnitude Numbers
- One’s Complement Numbers
- Two’s Complement Numbers
Sign/Magnitude Numbers

- **1 sign bit, N-1 magnitude bits**

- **Sign bit is the most significant (left-most) bit**
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

- **Example, 4-bit sign/mag representations of ± 6:**
 +6 =
 - 6 =

- **Range of an N-bit sign/magnitude number:**

\[
A = \left\{ a_{N-1}, a_{N-2}, \ldots, a_2, a_1, a_0 \right\}
\]

\[
A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i
\]
Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits

- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

- Example, 4-bit sign/mag representations of ±6:

 +6 = 0110

 -6 = 1110

- Range of an N-bit sign/magnitude number:

 [-\(2^{N-1}-1\), \(2^{N-1}-1\)]
Problems of Sign/Magnitude Numbers

- Addition doesn’t work, for example -6 + 6:

 1110

 + 0110

 10100 \textit{wrong!}

- Two representations of 0 (± 0):
 1000
 0000

- Introduces complexity in the processor design (Was still used by some early IBM computers)
One’s Complement

A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer):

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>One’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>…</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>
One’s Complement

- A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer):

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>One’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>=</td>
<td>+0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>=</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>=</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>=</td>
<td>127</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>=</td>
<td>-127</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>=</td>
<td>-126</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>=</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>=</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>=</td>
<td>-0</td>
</tr>
</tbody>
</table>
One’s Complement

- The range of n-bit one’s complement numbers is:
 \([-2^{n-1}-1, 2^{n-1}-1]\)
 8 bits: [-127,127]

- Addition:
 Addition of signed numbers in one's complement is performed using binary addition with end-around carry. If there is a carry out of the most significant bit of the sum, this bit must be added to the least significant bit of the sum:

- Example: 17 + (-8) in 8-bit one’s complement

\[
\begin{array}{c}
0001 \ 0001 \ (17) \\
+ \ 1111 \ 0111 \ (-8) \\
\hline
1 \ 0000 \ 1000 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\uparrow \ 1 \\
\hline
0000 \ 1001 \ = \ (9)
\end{array}
\]
Two’s Complement Numbers

- Don’t have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Has advantages over one’s complement:
 - Has a single zero representation
 - Eliminates the end-around carry operation required in one's complement addition
Two’s Complement Numbers

- A negative number is formed by **reversing the bits** of the positive number (MSB still indicates the sign of the integer) **and adding 1**:

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>Two’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>…</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>
Two’s Complement Numbers

- A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer) and adding 1:

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>Two’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-128</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-127</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>253</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>254</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>255</td>
</tr>
</tbody>
</table>
Two’s Complement Numbers

- Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}
 \[I = \sum_{i=0}^{n-2} b_i 2^i - b_{n-1} 2^{n-1} \]
 - Most positive 4-bit number:
 - Most negative 4-bit number:

- The most significant bit still indicates the sign (1 = negative, 0 = positive)

- Range of an N-bit two’s comp number:
Two’s Complement Numbers

- Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$I = \sum_{i=0}^{i=n-2} b_i 2^i - b_{n-1} 2^{n-1}$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000

- The most significant bit still indicates the sign (1 = negative, 0 = positive)

- Range of an N-bit two’s comp number:

 $$[-2^{N-1}, 2^{N-1}-1]$$

 8 bits: [-128,127]
“Taking the Two’s Complement”

- How to flip the sign of a two’s complement number:
 - Invert the bits
 - Add one

- Example: Flip the sign of $3_{10} = 0011_2$
“Taking the Two’s Complement”

How to flip the sign of a two’s complement number:

- Invert the bits
- Add one

Example: Flip the sign of $3_{10} = 0011_{2}$

- Invert the bits 1100_{2}
“Taking the Two’s Complement”

- How to flip the sign of a two’s complement number:
 - Invert the bits
 - Add one

- Example: Flip the sign of $3_{10} = 0011_2$
 - Invert the bits 1100_2
 - Add one 1101_2
“Taking the Two’s Complement”

How to flip the sign of a two’s complement number:

- Invert the bits
- Add one

Example: Flip the sign of \(3_{10} = 0011_2\)

- Invert the bits \(1100_2\)
- Add one \(1101_2\)

Example: Flip the sign of \(-8_{10} = 11000_2\)
“Taking the Two’s Complement”

How to flip the sign of a two’s complement number:

- Invert the bits
- Add one

Example: Flip the sign of \(3_{10}\) = \(0011_2\)

- Invert the bits
- Add one

\[1100_2\]
\[1101_2\]

Example: Flip the sign of \(-8_{10}\) = \(11000_2\)

- Invert the bits
- Add one

\[00111_2\]
\[01000_2\]
Two’s Complement Addition

- Add 6 + (-6) using two’s complement numbers

\[
\begin{array}{c}
0110 \\
+ 1010 \\
\hline
10010
\end{array}
\]

- Add -2 + 3 using two’s complement numbers

\[
\begin{array}{c}
1110 \\
+ 0011 \\
\hline
00011
\end{array}
\]
Two’s Complement Addition

- Add 6 + (-6) using two’s complement numbers
 \[
 \begin{array}{c}
 111 \\
 0110 \\
 + 1010 \\
 \hline
 10000
 \end{array}
 \]

- Add -2 + 3 using two’s complement numbers
 \[
 \begin{array}{c}
 111 \\
 1110 \\
 + 0011 \\
 \hline
 10001
 \end{array}
 \]

- Correct results if overflow bit is ignored
Increasing Bit Width

- A value can be extended from N bits to M bits (where M > N) by using:
 - Sign-extension
 - Zero-extension
Sign-Extension

- Sign bit is copied into most significant bits
- Number value remains the same
- Give correct result for two’s complement numbers

Example 1:
- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:
- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011
Zero-Extension

- Zeros are copied into most significant bits
- Value will change for negative numbers

Example 1:
- 4-bit value = \(0011_2 \) = \(3_{10} \)
- 8-bit zero-extended value: \(00000011_2 \) = \(3_{10} \)

Example 2:
- 4-bit value = \(1011_2 \) = \(-5_{10} \)
- 8-bit zero-extended value: \(00001011_2 \) = \(11_{10} \)
Number System Comparison

<table>
<thead>
<tr>
<th>Number System</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>[0, 2^{N-1}]</td>
</tr>
<tr>
<td>Sign/Magnitude</td>
<td>[-(2^{N-1}-1), 2^{N-1}-1]</td>
</tr>
<tr>
<td>Two’s Complement</td>
<td>[-2^{N-1}, 2^{N-1}-1]</td>
</tr>
</tbody>
</table>

For example, 4-bit representation:

- **Unsigned**
 - Range: [0, 15]
 - Representations: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

- **Sign/Magnitude**
 - Range: [-8, 7]
 - Representations: 1000, 1001, 1100, 1101, 1110, 1111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111

- **Two’s Complement**
 - Range: [-8, 7]
 - Representations: 1000, 1001, 1100, 1101, 1110, 1111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111

Lessons Learned

- How to express decimal numbers using only 1s and 0s
- How to simplify writing binary numbers in hexadecimal
- Adding binary numbers
- Methods to express negative numbers
 - Sign Magnitude
 - One’s complement
 - Two’s complement (the one commonly used)