
Master Thesis

Formalising Zero-Knowledge Proofs in
the Symbolic Model

Sabina Fischlin

8 September 2021

Supervisors: Dr. Ralf Sasse, Dr. Dennis Jackson
Professor: Prof. Dr. David Basin

Department of Computer Science, ETH Zürich

Abstract

With most of our everyday life taking place online – from private
conversations in messaging applications to financial transactions even be-
ing published on a public ledger – security properties such as anonymity
and privacy are in ever higher demand. These properties typically re-
quire cryptographic schemes beyond encryption and traditional signa-
tures. Zero-knowledge proofs often provide an elegant and powerful way
in which anonymity and privacy can be achieved. Because of this, zero-
knowledge proofs are now ever more frequently employed in security pro-
tocols.

As with all security protocols, one wants a way to prove that the
desired properties are indeed fulfilled, since there are often unexpected
attacks. In the past decades there have been a lot of advances in the au-
tomated analysis of security protocols where their properties are proven
in the symbolic model. Tools have been developed, such as the Tamarin
prover and ProVerif, which support an automated analysis. While ini-
tially these proofs have focused mainly on protocols using hashing, encryp-
tion and signing, recent work has introduced more complex cryptographic
primitives to the symbolic model, such as zero-knowledge proofs. How-
ever, zero-knowledge proof models are still rather rare and differ vastly,
often unexplicably so, and – to our knowledge – no zero-knowledge proofs
have yet been modeled in Tamarin.

We have conducted an in-depth analysis of three existing zero-knowledge
proof models and introduce a model for the Tamarin prover. We have ap-
plied this model to various simple examples and a real-world protocol:
the Direct Anonymous Attestation (DAA) protocol, for which we were
successfully able to prove several security properties.

In addition to our initial model, we present two possible, in some
cases more beneficial, alternatives. We conduct a clear analysis in which
we compare not only our own model and its alternatives, but also the
already existing models. We thus provide a solid basis and pave the way
for the analysis of further zero-knowledge proof protocols in Tamarin.

1

Acknowledgments

I first and foremost would like to thank my supervisors, Ralf Sasse and Dennis
Jackson, for their time, invaluable insights and especially their flexibility. As
my thesis was disrupted by a rather special life event – the birth of my son – I
am very grateful for the support that I received not only from Ralf and Dennis,
but also Denise Spicher and the team of the Registrar’s Office. My thanks go
also to David Basin for the opportunity to write this thesis in his group.

2

Contents

1 Introduction 4

2 Background 7
2.1 Symbolic models . 7

2.1.1 Cryptographic primitives, symbolic models and computa-
tional soundness . 7

2.1.2 Term rewriting and mathematical background 9
2.1.3 The Tamarin prover . 11

2.2 Zero-knowledge proofs . 15
2.3 Related work . 20

3 In-depth analysis of existing models 23
3.1 Overview of the models . 23
3.2 Standardising the equational theories 32
3.3 Additional adversary deduction rules 35
3.4 Concluding remarks . 39

4 Non-interactive zero-knowledge proofs in Tamarin 49
4.1 From the cryptographic definition to a symbolic model 49
4.2 Proving security properties . 55
4.3 Example models . 59

5 Case study: Direct Anonymous Attestation (DAA) 66

6 Alternative models 79
6.1 Restriction-only model . 79
6.2 Alternative lemma definition . 82
6.3 Discussion of alternative models 86

7 Comparing Tamarin to existing models 88

8 Conclusion and future work 90

3

1 Introduction

As we conduct more and more of our everyday, private life online, anonymity
and privacy are becoming ever more important security properties. This has
become prominent for example in blockchain protocols, where the entire ledger
containing all (private) transactions is publicly accessible. It is therefore an
understandable desire that anonymity should at least be guaranteed in face of
such public information. Another example is in messaging applications, where
we likely want our conversations to remain private and anonymous, even to the
server which authenticates the communicating parties.

However, both anonymity and privacy are not the easiest security properties
to achieve and they typically require cryptographic schemes beyond traditional
ones like encryption and signatures. Instead, these kinds of properties can often
be achieved through zero-knowledge proofs. For example, a protocol was pre-
sented in [1] which enables anonymous authentication in the Signal application
through the use of zero-knowledge proofs amongst other cryptographic schemes.

Zero-knowledge proofs were first introduced in 1985 by Goldwasser et al. in
[2]. At a very high level, they provide a mechanism to prove the validity of a
public statement without revealing any additional information except that the
statement is true. In particular, this includes the actual proof why it is true
in the first place. This gives zero-knowledge proofs a rather counter-intuitive
nature but also makes them a very powerful tool: if the proof itself contains
sensitive data, like an identifier or a pseudonym, it can be successfully kept
secret. Because of this, such difficult properties like anonymity can even be
achieved.

We will later provide several simple examples to illustrate this counter-
intuitive property of zero-knowledge proofs before moving on to more complex
ones, such as our case study.

Since zero-knowledge proofs provide such an elegant but powerful way to
achieve these difficult properties, they are being more frequently employed in
real-world protocols. But as we know, there are often unexpected attacks on
protocols which break these desired security properties (see for example [3]).
This means that we need a way to verify whether or not the protocol fulfills
these properties.

Much reasearch has already been done in the field of protocol analysis in
general, typically focusing on protocols using encryption and signing. Since
manual verification has long been known to be error-prone – the distributed
nature of protocols and the strong capabilities of the adversary, mean that vul-
nerabilities are often missed – a lot of work has been put towards automating
the verification process. In order to do this, protocols are typically formalised in
the symbolic model on which properties can be mathematically reasoned about.
Symbolic models provide a layer of abstraction from the real world as they make

4

strong assumptions about the behaviour of cryptographic primitives1, in partic-
ular that they are perfectly secure in a cryptographic sense. This then allows
us to automate this verification process. Various tools exist which facilitate the
automated analysis of security protocols, such as Tamarin [4] and ProVerif [5].

As briefly mentioned above, initial analyses have mainly focused on protocols
using encryption and signing primitives. However, with the growing use of
zero-knowledge proofs in real-world protocols, it becomes important that we
can also conduct an automated analysis on these kinds of protocols. Zero-
knowledge proofs have first been introduced to the symbolic model in [6]. But,
zero-knowledge proof models are still quite rare and also seem to differ vastly
in their design and therefore also their limitations. This is in stark contrast to
other cryptographic primitives, e.g. encryption, for which the models hardly
ever differ.

A natural question is therefore where these differences come from and what
the challenges are. The main crux in the modeling of zero-knowledge proofs
seems to be with regards to what actually constitutes a valid statement. Some-
what unsurprisingly, this is specific to each individual proof. A further question
is therefore whether or not it is possible to provide a generic solution to this
problem.

Existing models have been implemented in ProVerif and have used the CoSP
framework with a strong focus on providing computational soundness of the
model. As far as we know, there exists no model so far for the Tamarin prover.
With Tamarin being a state-of-the-art analysis tool, a model which perhaps
could even exploit the particular functionalities which Tamarin provides would
be useful.

We therefore conduct an in-depth analysis of three such models found in [6],
[7] and [8], before we present our own zero-knowledge proof model for Tamarin.

Outline and contribution

We first provide a thorough basis of the underlying theory in section 2. We
will in particular discuss symbolic models, term rewriting – which enables a
formalisation of security protocols – and zero-knowledge proofs. We will also
provide an overview of related work.

As we mentioned, some work on the symbolic modeling of zero-knowledge
proof has already been done. In section 3, we will give an in-depth analysis on
three existing models introduced in [6], [7] and [8].

We then apply our insights gained from this analysis to the design of our own
model of zero-knowledge proofs in the Tamarin prover, which we will present in
section 4. In section 5 we will apply this model to our case study, the Direct
Anonymous Attestation protocol.

1e.g. encryption, hashing and signature schemes

5

As we have come across some limitations of our initial model, we will then
introduce two possible modifications of this model in sections 6.1 and 6.2 and
discuss potential advantages and disadvantages of each of these modifications
in section 6.3.

We then conclude by comparing our results to previously discussed existing
models in section 7 and give an overview of open questions and future work in
8.

Notation

We generally denote the tuple (x1, ..., xn) as x. Mathematical functions will be
written in typical math notation, i.e. func(t1, ..., tn). When we denote function
symbols which will be used inside a protocol model, we will instead write this
as func(t1, ..., tn). Then as soon as we refer to the actual implementation in the
code, we will use func(t1,...,tn) and the correct syntax in order to highlight
that distinction.

Once we have defined the parameters of a function, we will often abbreviate
the full definition of the function, i.e. func(t1, ..., tn) can be abbreviated to
func(.), and analogously func(t1, ..., tn) can be written as func(.).

An exception to these conventions occurs in section 3.1, where we present an
overview of already existing models from other papers and follow the authors’
notation as closely as possible. In this case, we will give a detailed explanation
of the notational differences.

6

2 Background

In this section we introduce various concepts and definitions regarding symbolic
models, zero-knowledge proofs and review the previous work which has been
done on this topic.

2.1 Symbolic models

The definitions in this section are taken from [9], [10], [11], [12], [13], [14] and
[15], unless stated otherwise.

2.1.1 Cryptographic primitives, symbolic models and computational
soundness

Security protocols typically use cryptographic primitives – i.e. low-level crypto-
graphic algorithms such as secure hashing or encryption functions – in order to
guarantee certain security properties, even in the presence of an attacker. While
cryptographers prove the security of the isolated primitives, using them inside
a protocol oftentimes leads to attacks that are unexpected given the security
properties of the primitives themselves.

In [3], the authors give an example of a security protocol in which a message
is asymmetrically encrypted and exchanged between two parties in such a way
that the message remains secret. However, by simply encrypting the message
twice instead of once, the secrecy property is, rather surprisingly, broken.

It is therefore crucial to not only analyse the security properties of the cyrp-
tographic primitives, but also the protocols themselves. Any formal analysis of
a security protocol needs to specify the claimed properties and the assumptions
under which these claims hold. A commonly used set of properties and assump-
tions is referred to as a model. Two common such models are the computational
and the symbolic model.

Using the computational model we can prove security properties manually
or using semi-automated tools. In this model, the messages exchanged are
represented by bitstrings and the cryptographic primitives by functions from
bitstrings to bitstrings. The adversary is then considered to be any probabilistic
Turing machine.

While we can make strong statements in the computational model since
we only make few assumptions, such proofs requiring vast extent of human-
involvement are error-prone and it can be hard to precisely define the security
properties one wants to prove. We therefore instead may want to perform these
proofs in the symbolic model.

The symbolic model for protocol analysis was first introduced in [3] and is
therefore sometimes referred to as the Dolev-Yao model, named after its authors.
In this model we do not consider computational attacks and instead use a logical
abstraction of cryptographic primitives and protocol interactions, i.e. we use

7

a symbolic representation. In particular, we represent cryptographic primitives
as function symbols and the messages sent in the protocol as terms composed
of these symbols.

This of course means that we have to make somewhat stronger assumptions
than in the computational model. We in particular make the assumption that
we have perfect cryptography, i.e. it is impossible for the adversary or any other
protocol participant to undermine the security definitions of the cryptographic
operations. This is in fact what enables us to reason about protocols symboli-
cally.

We also assume a so-called Dolev-Yao adversary which was first introduced,
as its name suggests, by Dolev and Yao in [3]. This adversary is in complete
control of the network, i.e. he can eavesdrop on messages as well as intercept,
modify and fake messages. We can understand this as every message being sent
to the adversary and he can then decide whether to withhold it, send it out as is
or construct a different message for which he may use anything previously sent
on the network. He is also a legitimate user of the system and can therefore
communicate with any other user. In the context of protocols, we will refer to
any user as agent.

We should also be aware that with all information represented as terms, an
agent can only know a term in its entirety, i.e. it is not possible to know parts of
a term or extract even a single bit. Additionally, we also require an unbounded
number of sessions, which means that the protocol may be executed an arbitrary
number of times and between an arbitrary set of agents.

While the requirement of stronger assumptions can be seen as a downside
to the symbolic model, it also comes with significant advantages. Most impor-
tantly, the symbolic analysis enables us to perform proofs automatically instead
of by hand. This drastically reduces the risk of human-error.

It is natural to ask whether a proof made in the symbolic model also holds
in the computational model. This is referred to as computational soundness.
It is not always clear if a particular symbolic model is computationally sound
and proving this property might even be quite cumbersome. As we will see in
section 2.3, in some cases ensuring computational soundness may even limit the
scope of the model.

However, it is also not always crucial to know whether or not this prop-
erty holds: in the computational model we capture all possible cryptographic
attacks, but they might not be of the biggest interest for the construction of
the protocol. For these reasons it should be considered whether it is beneficial
to forgo the certainty of computational soundness for speed and ease of use.
We do want to mention at this point that for precisely these reasons we do
not consider computational soundness in the scope of this thesis. Naturally,
this means however that there could be some limits with regards to the attacks
our model can find and, more importantly, the strength of the proofs we provide.

As we have mentioned, analysing protocols in the symbolic model means
that we can defer verification of security properties to a tool. One such tool is

8

the Tamarin prover, which we will look at more closely in this chapter.

2.1.2 Term rewriting and mathematical background

As we have discussed in 2.1.1, in the symbolic model, cryptographic primitives,
messages and indeed any information are represented as terms. We will now give
a brief introduction to the mathematical background of terms, term algebras,
equational theories and term rewriting which are used to represent security pro-
tocols, model the adversary’s capabilities and can ultimately achieve automated
protocol verification.

We want to stress that this is a rather large topic and that we only give
a brief summary. For an in-depth treatment on term rewriting, we refer the
reader to [9].

Terms are nested constructs built from function symbols, variables and other
terms. As an example, let us say f is an n-ary function and x1, ..., xn are
variables, then f(x1, ..., xn) as well as x1, ..., xn are terms. We can then also
specify which function symbols are applicable to a certain context, which in our
case is a specific security protocol. This is done by defining a signature.

Definition 2.1 (Signature). A signature Σ is a set of function symbols, where
each f ∈ Σ is associated with an integer n ≥ 0, the arity of f . The set of all
n-ary elements of Σ is also denoted by Σ(n). We call function symbols of arity
0, i.e. elements of Σ(0), constants.

For the following definitions we assume the two disjoint, countably infinite
sets of variables V and names N . Names are sometimes also referred to as
constants, however as we mostly want to keep N distinct from Σ, these are not
to be confused with the 0-ary terms from the previous definition.

Definition 2.2 (Term algebra). Let Σ be a signature and X ⊆ V ∪N a set of
variables and constants, where X and Σ are disjoint. We call the set T (Σ,X) a
term algebra which is inductively defined as:

1. X ⊆ T (Σ,X)

2. ∀n ≥ 0, f ∈ Σ(n). If t1, ..., tn ∈ T (Σ,X), then f(t1, ..., tn) ∈ T (Σ,X)

We have already briefly introduced the informal notion of terms, but we can
now define them formally.

Definition 2.3 (Term and ground term). An element of T (Σ,X) is called a
term. We can also define the set of ground terms as T (Σ,N), i.e. all terms
which have been constructed without variables.

Definition 2.4 (Position and subterm). A position p in a term t is a finite se-
quence of positive integers. The empty sequence is denoted by []. The subterm
t|p of t at position p is defined as:

1. for any term t: t|[] = t

9

2. for any t = f(t1, ..., tn) with f ∈ T (Σ,X) and p = [i] · p′ where i is a
positive integer with 1 ≤ i ≤ n and p′ a sequence: t|p = ti|p

If none of these two cases apply, t|p does not exist.

A position therefore enables us to refer directly to a subterm inside a term.
For example if t = dec(enc(m, k), k), then t|[1,2] = k.

We additionally want to introduce the following notation: we write t[u]p to
denote the term t in which the subterm at position p, i.e. t|p, has been replaced
by the term u.

Definition 2.5 (Substitution). A substitution is a function σ : V → T (Σ,X),
such that σ(x) 6= x for a finite number of variables x ∈ X . We write a substi-
tution of the variable x with the term t as {x 7→ t}. Any substitution σ can be
extended to a mapping σ̂ : T (Σ,X)→ T (Σ,X) where:

1. for variables x ∈ V: σ̂(x) := σ(x)

2. for non-variable terms s = f(s1, ..., sn): σ̂(s) := f(σ̂(s1), ..., σ̂(sn))

Using these definitions we can now move towards the definitions of equational
theories and with that term rewriting. This is of particular interest when it
comes to the formalisation of protocols since what we want to represent is what
knowledge the adversary can gain from the messages which are sent over the
network (or from compromising an agent). As we will see, this capability can
be represented through equational theories and term rewriting. In other words,
by stating which terms are equal to each other, or rather which can be reduced
to another, we can represent the knowledge gain of the adversary.

Definition 2.6 (Equational theory). An equation over a signature Σ is de-
noted by s ≈ t where s, t ∈ T (Σ,V). We call a set of such equations E over
Σ the equational theory (Σ, E). The set E induces a relation ≈E which is
defined as the smallest congruence on Σ and contains all instances of equations
of E. This gives rise to the equivalence class [t]E of a term t modulo E.

In order to determine which terms are equivalent under an equational theory,
we use term rewriting. Informally, term rewriting enables us to reduce a term
to another one according to the equations in the theory. If we can then reduce
two terms to the same one, we consider them to be equal. We will now define
this formally.

Definition 2.7 (Term rewriting). A rewrite rule over a signature Σ is denoted
by l→ r where l, r ∈ T (Σ,V). A set of rewrite rules is referred to as a rewrite
system R. We can define the corresponding rewrite relation →R, such that
s→R t if there is a position p in s, a rewrite rule l→ r ∈ R and a substitution
σ with s|p = σ(l) and s[σ(r)]p = t.

Intuitively, we can understand the rewriting relation to denote that if a part
of s “matches” the term l with σ then we substitute that part with a matching
instantiation of r with σ.

10

Definition 2.8 (Termination, confluence and convergence). A rewrite system
R is called:

• terminating if there is no infinite sequence of terms (t1, t2, ...) with ti →R

ti+1

• confluent if ∀t, s1, s2 ∈ T (Σ,X) with t→∗R s1 and t→∗R s2, there exists
t′ ∈ T (Σ,X), such that s1 →∗R t′ and s2 →∗R t′, where →∗R denotes the
transitive closure of →R.

• convergent if it is both terminating and confluent.

If the rewriting system is convergent, then for each term there is a unique
term on which no further rewrite rule can be applied. This term is defined as
follows:

Definition 2.9 (Unique normal form). Given a convergent rewriting system,
then for all terms t ∈ T (Σ,X) there exists a unique term t′, such that t →∗R t′

and no term t′′ exists with t′ →∗R t′′.

Given an equational theory E, we can easily convert it into a set of rewriting
rules RE by assigning a direction to each equation. If the resulting system is
convergent, we can effectively determine the equality of two terms, namely by
comparing their unique normal forms in RE .

We can now give a simple example of what these definitions mean with
regards to a protocol specification. Let us consider the protocol where Alice
sends Bob a nonce n encrypted with Bob’s public key. Bob then replies with
the hash of n. We can define a suitable signature as follows:

Σ := {h, pk, sk, enc, dec}

The function symbols h, pk and sk have arity 1, enc and dec arity 2. The
message Alice sends Bob would then be enc(n, pk(B)), whereas Bob replies with
h(n). Our equational theory only contains one equation, namely:

dec(enc(m, pk(X)), sk(X)) = m

Intuitively, we can understand the equational theory to represent what the
adversary – and any other protocol agent – can deduce from a message. Since we
assume perfect cryptography, we do not specify any other equation, i.e. given
the hash of a term, we cannot retrieve any information regarding the term and
similarly for the encrypted nonce.

2.1.3 The Tamarin prover

The Tamarin prover is a tool to automatically analyse protocols in the symbolic
model and was first introduced by Schmidt et al. in [11]. At a high-level, cryp-
tographic primitives and their properties are modeled through a term algebra

11

with an equational theory. The execution of the protocol, as well as the adver-
sary’s capabilities, are modeled as a labeled multiset rewriting system, which we
will define further below. Messages sent on the adversary-controlled network
(i.e. all messages are sent through the adversary) are modeled as terms, built
from functions which must satisfy the underlying equational theory. The secu-
rity properties are then specified in first-order logic as so-called lemmas and are
defined over a protocol trace, which we will again define further below. Tamarin
can then check the validity of these lemmas.

We now define some of the most crucial parts of the Tamarin prover, which
are needed to understand the models we present in sections 4, 5 and 6. For
details on the underlying theory, we refer the reader to [11] and [4], for details
on the usage of Tamarin to the official manual [15].

Equational theories in Tamarin

Tamarin already comes with some built-in equational theories for – amongst
others – asymmetric and symmetric encryption, signing, hashing and Diffie-
Hellman exponentiation. In order to employ a built-in equational theory, the
user needs to specify this after the keyword builtins. A full list and specifica-
tion of the existing built-ins can be found in [15].

The user can also define their own equational theory. Function symbols are
declared after the keyword functions. The syntax to declare a function symbol
f is f/n, whereas n denotes the arity of f. Accompanying equations are declared
after the keyword equations. As an example we can consider the following
equational theory declaration for symmetric encryption2:

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

In this thesis we often refer to a user-defined equation as an equational rule
or in case of multiple rules an equational rule set.

The complete equational theory is then the union of the employed built-in
equational theories and the user-defined equational theory.

Tamarin assigns an ordered sort to the terms of its term algebra. The
topmost sort is denoted as msg. It also recognises the two distinct subsorts
fresh and pub, denoting fresh and public names. Fresh names are only known
to one agent, namely the one “creating” it, whereas public names are known
globally.

Labeled multiset rewriting

As mentioned above, the protocol and its environment are modeled using a
labeled multiset rewriting rules. These rules operate on the system’s state,

2As previously stated there exists a built-in equational theory for symmetric encryption,
which means that the user would not have to specify this themselves. This therefore merely
serves as an illustrative example.

12

which is represented by a multiset of facts.

Definition 2.10 (Multiset). A multiset m over a set X is a function m : X →
N, where m(x) denotes the multiplicity of x ∈ X.

Definition 2.11 (Fact). Given a signature Σ of function symbols and an-
other signature Σfact of so-called fact symbols with Σ ∩Σfact = ∅, the symbol
F (t1, ..., tk) ∈ Σfact of arity k is called a fact if t1, ..., tk ∈ T (Σ,X).

Definition 2.12 (Labeled multiset rewriting rule). A labeled multiset rewrit-
ing rule is a triple (l, a, r). l, a and r are multisets of facts where l is referred to
as the premises (or left-hand-side), r as the conclusions (or right-hand-side)
and a as the actions (or labels). A multiset rewriting rule can be written as

l
a−→ r.

In the Tamarin syntax, a rewriting rule is written as:

rule name:
[l]--[a]->[r]

Intuitively, an execution of a protocol can then be considered as a sequence
of applied multiset rewriting rules – also called rule instances. A protocol
trace can be considered as a sequence of action facts which appear at the rule
instances of the protocol execution. An execution of course always starts from
an empty state and then transitions to another state through a rule instance.
A rule can only be applied if an instantiation of its premises is a subset of the
current state. If a rule is applied, naturally the state of the system changes,
making way for further rules to be applied.

We distinguish between different types of rules: rules to generate fresh
names, message deduction rules which model the adversary’s knowledge de-
duction throughout the protocol execution and rules which specify the protocol
and additional adversary capabilities. We will not provide further details on the
first two types of rules and instead refer the reader to [11]. Relevant to the user
is the last rule type, which we can understand to comprise the following kinds
of rules:

• protocol rules which specify the protocol itself

• infrastructure rules which provide auxiliary functionalities to the protocol,
e.g. a public key infrastructure

• adversary rules which model additional adversary capabilities which are
specific to the protocol, such as compromising an agent and thus extracting
long-term private keys or other secrets. We naturally want the adversary
to be as strong as possible. It is therefore crucial to include all appropriate
user-defined adversary rules.

13

Facts

We recall that a state is represented simply by a multiset of facts. However, we
must distinguish between two different types of facts, persistent and linear.
A linear fact can only be used once in a state transition and will therefore be
consumed by the application of an appropriate rule. This is not the case for
persistent facts, which can be used an arbitrary amount of times. In Tamarin,
persistent facts are denoted by a ! in front of their name.

A user can define an arbitrary number of protocol-specific fact symbols,
however Tamarin recognises the following special fact symbols:

• K(m) is a persistent fact which denotes that m is known to the adversary

• Out(m) is a linear fact which denotes that the protocol has sent a message
m which can be received by the adversary

• In(m) is a linear fact which denotes that the advesary has sent a message
m which can be received by the protocol

• Fr(n) is another linear fact denoting that n was freshly generated.

Lemmas

As previously mentioned, we can formulate the security properties of the proto-
col we would like to prove in first-order logic as so-called lemmas over not only
terms of the sort msg, but also timepoints of action facts. As we consider a
protocol trace as a sequence of action facts, an action fact’s timepoint is then its
position inside the trace. We write an action fact A at timepoint t1 as A(.)@t1.

Restrictions

Another interesting feature of Tamarin are so-called restrictions. These enable
us to limit the state space of protocol traces. Just as the security properties, they
are written in first-order logic and basically restrict the set of traces considered
in the protocol analysis to the ones satisfying the restriction. We will make
extensive use of restrictions in our own models presented in sections 4, 5 and in
particular 6.1.

Beyond Tamarin

The Tamarin prover is of course not the only tool which exists for automated
protocol verification. Another commonly used tool is ProVerif. We will not
introduce ProVerif in detail and refer the reader instead to its user manual [5].
For the verification of our own models in sections 4, 5 and 6 we use the Tamarin
prover.

14

2.2 Zero-knowledge proofs

As stated in section 1, zero-knowledge proofs were first introduced in 1985 by
Goldwasser et al. in [2] and have since found wide applications such as in anony-
mous signature schemes and blockchain protocols. Intuitively, zero-knowledge
proofs are used to prove the validity of a statement without revealing any ad-
ditional information besides the fact that the statement is true – including the
reason why the statement is true.

This seems almost like a contradictory statement, which contributes to the
fact that there is a somewhat counter-intuitive nature to zero-knowledge proofs.
But this zero-knowledge property also makes them incredibly powerful and use-
ful in protocols where anonymity and/or privacy are crucial and where infor-
mation is exchanged between mutually distrustful parties.

There exist various different definitions of zero-knowledge proofs, adapted
to the context in which they are presented. The definitions given in this section
summarise the definitions found in [16], unless stated otherwise.

A simple example

Before going any further we want to introduce a simple example of a zero-
knowledge proof3:

Let us imagine a setting where a cipher-text was encrypted using Alice’s
public key. Alice now needs to prove to Bob that she knows the correspond-
ing secret key, obviously without either revealing the secret key nor decrypt-
ing the message. Nor does she want to solve this issue using a certificate as
she wants to keep her identity secret and remain anonymous. In other words
without revealing any further information beyond the fact that the state-
ment that she knows the corresponding secret key is true.

We can phrase this in a more formal way (which we will formalise further in
the following paragraphs):

Alice wants to prove to Bob that she knows the secret key which can deci-
pher c = aenc(m, pk(sk)), where c refers to the ciphertext, m to the plain
message, pk(sk) to the public key corresponding to the secret key sk and
aenc(.) to an asymmetric encryption function.

It is common practice, in symbolic models, to define the public key as
pk(Alice), i.e. bound to a certain agent. We deliberately define here however
the public key only with regards to its corresponding secret key, i.e. pk(sk).
This allows us to reason later on independently of any agents, which is exactly

3We highlight all parts in this section which define our example inside a box

15

what we want in order to achieve anonymity.

This simple example will be used as a running example throughout the
thesis, especially in the following paragraphs as we move further towards a
formal definition of zero-knowledge proofs.

Intuitive definition

A zero-knowledge proof typically requires (at least) two parties: a prover P
who wants to convince one (or multiple) verifier(s) V of the validity of a certain
statement x4. V must decide to either reject or accept the statement.

As mentioned previously, the statement itself is naturally public. There must
however always be a secret part to the proof, otherwise one would not require
a zero-knowledge proof in the first place. This secret part is commonly referred
to as the witness w, as it can be understood as bearing witness to the validity
of the statement without actually revealing itself.

In the simple example introduced above, Alice is obviously the prover P and
Bob is the verifier V . Alice’s secret key sk serves as the witness.

Witness relation

Whether the verifier V rejects or accepts the validity of the statement x is
determined by the witness relation R5:

R := {(x,w) | Predicates over x and w}
where the predicates define what constitutes a valid statement. V then accepts
the statement x as valid (ideally) iff (x,w) ∈ R. The witness relation can be
understood as characterising the behaviour of the chosen zero-knowledge proof
system. It is worth noting that any w which satisfies (x,w) ∈ R is considered
to be a proof that x is a valid statement.

We can therefore define the witness relation of our simple example as:

R := {(x,w) | ∃m. x = aenc(m, pk(w))}

4We will expand on what we mean by “at least two parties” when we introduce the dis-
tinction between interactive and non-interactive zero-knowledge proofs.

5In [16] the witness relation is actually defined as RL, i.e. associated with a language
L. Proving that the statement x is valid, i.e. a true statement, can also be expressed as
proving that x ∈ L. A zero-knowledge proof system is therefore always defined for a specific
language L. L itself is defined as L = {x | ∃w. (x,w) ∈ RL}, i.e. x is considered to be
valid if there exists a w, s.t. (x,w) ∈ RL. This was left out in our definition for simplicity
reasons, as it is mainly relevant when arguing about which statements can indeed be proven
by a zero-knowledge proof. This is outside of the scope of this thesis.

16

Interactive and non-interactive zero-knowledge proofs

Before presenting a formal definition of zero-knowledge proofs we must note
that there is a distinction between an interactive and a non-interactive setting
of such proofs.

When zero-knowledge proofs were first introduced in [2], they were interac-
tive protocols, i.e. the verifier and the prover would send a series of messages
back and forth. Typically, the verifier would toss a coin and ask the prover to
give a response according to its result. This would be repeated multiple times.
In [17] a non-interactive model was first introduced. The authors found that
the randomness achieved through the interactive coin toss could be replaced by
a common random string upon which the prover constructs his proof, i.e. some
pre-agreed upon randomness used both in the construction and in the verifica-
tion of the proof. This is commonly also referred to as a uniformly distributed
common reference string6, or CRS for short [16].

In an interactive zero-knowledge proof the prover naturally can only inter-
act and provide his proof to a single verifier. In the non-interactive setting the
interaction is reduced to a single message which can be received by any or even
multiple verifiers [6]. This is often referred to as a unidirectional interaction,
since there is a single message being sent with regards to the proof from the
prover to the verifier. One big advantage is therefore that it can even be pro-
cessed further by the verifier, e.g. encrypted, or stored for future reference. This
makes non-interactive proofs very powerful and opens up the door to further
applications.

In our example, Alice wants to prove her statement primarily to Bob. But
then Charlie requires a proof as well. In the non-interactive setting she can
simply send the same proof to Charlie.

In this thesis we only consider the non-interactive setting. All definitions
given in this chapter refer to a non-interactive zero-knowledge proof system.

Formal definition

In the following definition we denote V (.) = 1 as the verifier V accepting the
input statement as valid. We additionally define poly(|x|) as polynomial in the
length of x.

Definition 2.13 (Non-interactive zero-knowledge proof system). A non-interactive
zero-knowledge proof system consists of a pair of probabilistic algorithms
(P, V), i.e. the prover and the verifier, where V has to run in polynomial-time
and the following three conditions hold (intuitive definition of each condition is
annotated in brackets):

6A common reference string can have arbitrary distribution, whereas a common random
string is a uniformly distributed common reference string [18],[16].

17

• Soundness (the prover cannot trick the verifier into accepting a false
statement, i.e. a false statement is rejected by the verifier):
For every false statement x and every possible prover B,

Pr[V (x,CRS,B(x,CRS)) = 1] ≤ 2−poly(|x|)

where CRS is a random variable uniformly distributed in {0, 1}poly(|x|).

• Completeness (a true statement will be accepted by the verifier):
For every true statement x,

Pr[V (x,CRS, P (x,CRS)) = 1] ≥ 1− 2−poly(|x|)

where CRS is a random variable uniformly distributed in {0, 1}poly(|x|).

• Zero-knowledge (Whatever the verifier can compute efficiently after in-
teracting with the prover on the input x, they could also have computed ef-
ficiently by themselves without having received the proof. In other words,
the proof yields no knowledge except for the validity of the statement x.):
There exists a probabilistic polynomial-time algorithm M , s.t. the sets
{(x,CRS, P (x,CRS))} and {M(x)}, where CRS is a random variable
uniformly distributed in {0, 1}poly(|x|) and x is a true statement, are com-
putationally indistinguishable.

In the literature, the probabilities on the right-hand side of the inequalities
of the soundness and completeness properties are actually defined as 1

3 and 2
3

respectively. However, these probabilities can be decreased or increased to the
values stated in the above definition by repeating the proving process sufficiently
many times [16], [19]. For simplicity reasons, we assume that P always repeats
this process multiple times and therefore already give the final probabilities in
the definition above.

We will now give some additional information regarding these three proper-
ties and their meaning.

The soundness property has to hold for all potential provers B, while com-
pleteness must only hold for the particular prover P of the system. The zero-
knowledge property may also be regarded as a property of the prover, i.e. its
robustness against attempts to gain knowledge from it through the proof.

While we do not define the notion of knowledge mathematically in this the-
sis, we want to point out that gaining knowledge is related to computational
difficulty. Intuitively, it can be understood that a party gains knowledge from
an interaction iff they receive the result of a computation which is infeasible
to them. In other words, they could not have made the same computation
themselves. This is exactly what is stated in the zero-knowledge property.

The witness w and existential vs. knowledge soundness

It is important to note that in the definition above (2.13) the witness w is not
present. This is linked to what we previously mentioned with regards to the

18

witness relation: any witness w′ which satisfies (x,w′) ∈ R is a proof that x is
a valid statement. The validity of x is therefore not bound to a single w.

However, it can be understood that both P and V may use other sources
of input. In particular, P may obviously make use of w, but also V may make
use of additional (auxiliary) information z, which is only known to V . It is
crucial to ensure that the zero-knowledge property holds even if there exists a
dependency of z and w on x. It should also be noted that since P and V are
probabilistic algorithms, they may also use additional randomness (beyond the
CRS), which is again only known to them.

On a related note, in some literature, e.g. [20], a distinction is made between
existential and knowledge soundness. We will not give a formal definition
here and instead refer the reader to [20]. Intuitively however, existential sound-
ness can be understood to refer to the existence of a w, such that (x,w) ∈ R,
whereas knowledge soundness refers to the prover “knowing” a specific witness
w′ with (x,w′) ∈ R. Naturally, knowledge soundness implies existential sound-
ness, since the prover cannot “know” a witness without the witness existing in
the first place.

The soundness property given in definition 2.13 refers to existential sound-
ness. However, for many protocols which use zero-knowledge proofs the more
interesting property is that of knowledge soundness. In this thesis we will there-
fore mainly focus on the knowledge soundness property. When we refer to
soundness, this is to be understood as knowledge soundness. In the rare case we
make an argument regarding existential soundness, this will be named as such
explicitly.

Multiple statement or witness terms

In our running example we introduced in this section, the statement x and the
witness w are singular terms. However, there are other zero-knowledge proofs
where both x or w consist of multiple terms. We will indeed see many such
examples in section 4.3 and our case study which we present in section 5.

We can therefore expand the definitions given above by considering both the
statement and the witness as tuples x and w. In particular, we can define the
witness relation as:

R := {(x,w) | Predicates over x and w}

While we might often refer to the statement as x and the witness as w, this
can always be understood to also apply in case x and w are tuples.

Common reference string revisited

As we have seen in the formal definition 2.13, both P and V take the same
common reference string as an argument. When we defined the witness relation
and with it what constitutes a valid statement, we have said that the verifier

19

V accepts the statement x as valid iff there exists a w, such that (x,w) ∈ R.
While this obviously also holds in the non-interactive setting, we should add
that the verifier can only accept a statement if it operates on the same common
reference string as was used to create the proof. This is not important for any
mathematical definition of valid statements, but we do want to mention that it
does play a role in the symbolic model in order to argue about certain attacks
regarding the common reference string.

We generally assume the common reference string to have been honestly
generated [18], but apart from this assumption there are not as many require-
ments on this parameter as one might think. In [19], the authors state that
in particular the zero-knowledge property of the proof does not depend on the
secrecy nor even the unpredictability of the common reference string.

As was explored in [18], the requirement on the common reference string to
have been honestly generated is not always a plausible one in the real-world.
And indeed, some attacks are possible if the common reference string is mali-
cious. The three properties specified in definition 2.13 therefore only hold under
the assumption that the common reference string has been honestly generated.
For this purpose, the authors in [18] define stronger security properties, such
as subversion soundness and subversion zero-knowledge, which basically state
that soundness and zero-knowledge respectively still hold in case of a malicious
common reference string. What they have found is that some of these proper-
ties cannot hold simultaneously. In particular, it is not possible that subversion
soundness and zero-knowledge both hold at the same time.

Additional properties

While we have only presented a handful of properties of zero-knowledge proofs
so far, it is important to note that there exist many additional properties, includ-
ing various different notions of zero-knowledge, some stricter and some weaker.
In practice, it might be very interesting to look at other definitions of zero-
knowledge as not many proof systems can fulfill the stronger properties. As
we will see in later sections, our proposed model can be extended or modified
to include the verification of additional properties. However, for this thesis we
do not consider any properties beyond the three main properties soundness,
completeness and zero-knowledge as defined in this section.

For definitions of other properties we refer the reader to [16], [20], [6] and
[8].

2.3 Related work

Previous work has been done by Backes et al. with regards to formalising zero-
knowledge proofs in the symbolic model, namely [6], [7] and [8]. With a similar
group of authors working on all three papers, they build heavily on each other:
[6] and [7] have been written around the same time, with the latter focusing on
the implementation of a zero-knowledge proof model and the former focusing
more on the underlying theory. [8] then weakens some of the assumptions made

20

in [6]. Two of the models have been implemented, namely [7] and [8], the former
in ProVerif and the latter inside the CoSP framework7.

What is interesting to note is that while the papers are strongly connected,
all three of them – rather surprisingly – propose vastly different models. We
will take a closer look at these models and analyse them in-depth in section 3.

Zero-knowledge proofs were first introduced to the symbolic model in [6].
The authors put a lot of emphasis on ensuring computational soundness of their
model. This has required them to define a set of properties that a zero-knowledge
proof needs to fulfill in order to ensure computational soundness.

These properties go beyond the standard security properties defined in 2.2,
i.e. soundness, completeness and zero-knowledge. It is not clear, nor was
it investigated further, how many zero-knowledge proofs in practice actually
fulfill these properties. This could potentially mean that the requirement to
achieve computational soundness may limit the scope of the zero-knowledge
proofs which can be modeled.

The authors themselves mention in [8] that to their knowledge there is only
one zero-knowledge proof which satisfies the extraction zero-knowledge property
(which is the same as a non-malleability property). In the paper following [6], i.e.
[8], they therefore focused on finding a weaker condition especially with regards
to the extraction zero-knowledge property. While all other properties still need
to hold for computational soundness, they managed to reduce the extraction
zero-knowledge to a honest simulation-sound extractability property. It must be
mentioned, that in [8] the authors state that generic constructions exist which
can transform any zero-knowledge proof into one fulfilling their (now weakened)
requirements for computational soundness. This is quite interesting, we however
did not investigate this further, as again, this lies outside the scope of this thesis.

While the authors do define a clear abstract model in [6], they do not men-
tion whether or not they have implemented this. There exists however, an
implementation in ProVerif of a slightly similar model outlined in [7], which
was published around the same time. In this last paper, the authors in partic-
ular used their model to successfully verify the Direct Anonymous Attestation
(DAA) protocol.

An ECC8-based variant of the DAA protocol has previously been modeled
in Tamarin in [22] and [23]. While this is not related to zero-knowledge proofs,
it is relevant for our work as we have also chosen to model the (zero-knowledge
proof variant) DAA protocol as a case study in section 5.

As we will also see in our own design of a zero-knowledge proof model (see
section 4), each zero-knowledge proof requires its own equational theory. The

7CoSP is a general framework which can be used to prove computational soundness of
symbolic models and was introduced in [21].

8elliptic-curve cryptography

21

authors of [7] have therefore chosen to develop a compiler which encodes a zero-
knowledge proof description into ProVerif specifications. This compiler has been
used by Wang et al. to analyse a TTP9-free blacklistable anonymous credential
system [24].

Even though both [6] and [7] were published around the same time and
by the same authors, it is not clear how the conditions laid out in the former
to ensure computational soundness impacted the implementation of the latter.
There was no mention of any additional properties which had to hold in [7].

We want to stress that, as mentioned in section 2.1, achieving or ensuring
computational soundness is not the goal of this work. We therefore are not
concerned about the properties that have been identified neither in [6] nor in
[8].

For completeness reasons, we also want to the mention the paper written
by Backes et al. on malleable zero-knowledge proofs in the symbolic model
[25]. Malleable zero-knowledge proofs are proofs which allow for certain kinds
of transformations. In particular, an agent may re-randomize zero-knowledge
proofs in order to for example logically compose existing zero-knowledge proofs.
The authors were able to again prove computational soundness for their model.
With the extraction zero-knowledge property from [6] and the honest simulation-
sound extractability property from [8] begin closely related to non-malleability,
this paper is particularly interesting as it seems to further weaken the require-
ments for computational soundness initially laid out in [6]. We will however not
look at this paper further as it would unnecessarily expand the scope of this
thesis.

9trusted third party

22

3 In-depth analysis of existing models

As mentioned in section 2.3, there exist mainly three papers which introduce
symbolic models for zero-knowledge proofs: [6], [7] and [8]. While all three of
these models have been introduced by a similar group of authors, they are very
different. In this chapter we will analyse these differences in-depth and present
possible reasons for these different approaches. We additionally try to under-
stand what the advantages and disadvantages might be of each approach.

In order to conduct a thorough analysis, we tried to obtain a copy of the
source code for these models, including the compiler developed in [7]. Unfortu-
nately, we were unable to locate any such copy for any of the models neither
by following links to online resources referenced by the papers nor by direct
searches online. We have therefore made several attempts to contact the au-
thors, but regrettably we did not receive a response. This means, in particular,
that we were not able to replicate any of the verification results from the papers.
The analysis presented here is therefore naturally only based on the content of
the papers and may unfortunately not yield a complete picture, especially since
the papers do not give much information regarding the actual implementation
and how they solved the more tricky parts of the model.

This section is organised as follows: we first present a brief overview of the
three models and their characteristics. We then attempt to standardise the
models, i.e. put them in a form in which we can compare the various function
symbols and equations. In the cases where the adversary’s additional10 deduc-
tion rules are specified, we offer a list of these rules. We then conclude with an
evaluation of the models.

3.1 Overview of the models

For the overview of the three models, we have chosen to keep the original no-
tation used by the authors in the respective papers as closely as possible. This
may therefore deviate from the general notation otherwise used in this thesis.
Whenever necessary we will therefore explain the particular notation used in
the respective paper and give additional definitions if required.

10additional with regards to the already defined term equations

23

Backes et al. 2008 computational soundness paper [6]

In this model a zero-knowledge proof is defined as a function11 ZKRF (r; a; b),
whereas the term t is considered to be the tuple (t1, ..., tn). We will now look
at this function and its parameters in detail.

Central to their model of a zero-knowledge proof is the parameter F . This
is a Boolean formula which – even though this was not specifically mentioned
by the authors – can be understood to encode the predicates of the witness
relation of the proof. The formula F is constructed over terms of the form
ZKTerm = ZKTerm, whereas ZKTerm is defined as follows:

ZKTerm = ek(βi) | αi | βi | 〈ZKTerm,ZKTerm〉 | {ZKTerm}ρiek(βj)

Here, the term ek(A) denotes the public key of an agent A, 〈., .〉 a pair and
{t}Rek(A) the encryption of a term t with the public key of A using randomness
R. The αi, βi and ρi are the variable names which may be used in a ZKTerm.
We will look at the distinction between αi, βi and ρi further down.

This introduction of ZKTerm can be understood as defining the proof lan-
guage and with it establishes the scope of all the zero-knowledge proofs that the
authors consider in their model12.

We do want to point out that with the formula F being defined only over
terms of the form ZKTerm = ZKTerm as stated above, the zero-knowledge proofs
which can be verified by this model are very limited. The only cryptographic
primitive which may appear in the witness relation is an asymmetric encryp-
tion. Not even the corresponding asymmetric decryption is included. Given the
definitions of the zero-knowledge proofs used in our case study protocol, which
we present in section 5, we would not be able to verify that protocol in this,
rather theoretical, model.

It should also be noted that there are no term equations defined in this
model. In fact, the authors explicitly state that “no equational theory is in-
volved”. Instead, the authors define a set of deduction rules for the adversary
only. We will take a closer look at these deduction rules in section 3.3.

The formula F should additionally clearly distinguish between random, se-
cret and publicly known variables. The authors denote the secret variables by

11In the paper, this is referred to as a constructor and not a function. Oftentimes in ProVerif
terminology, a distinction is made between constructor and destructor function symbols. The
latter are ones for which equational rules exist, i.e. ones that can be rewritten. We will not
make this distinction in this thesis and instead refer to both constructors and destructors as
functions (or function symbols).

12We suspect that it represents all the zero-knowledge proofs for which the authors have
proven their statements.

24

αi, the random by ρi
13 and the public ones by βi. Each zero-knowledge proof

then comes with the actual values r, a and b which will be assigned to these
variables, i.e. these refer to the parameters in the zero-knowledge proof func-
tion ZKR

F (r; a; b). The values r, a and b are a bit more expressive as ZKTerm
and may incorporate for example agent names, nonces, decryption keys (how-
ever still without a corresponding decryption function) and so-called “garbage”
messages, which represent ill-formed messages.

After the replacement of ρi, αi and βi with their respective values from
r, a and b, the formula F then either evaluates to true or false depending
on these values. In addition to the set of the adversary’s deduction rules we
briefly mentioned above, this is what enables the authors to forgo the use of an
equational theory in this model: by a simple replacement of the variables with
r, a and b, the terms ZKTerm = ZKTerm will either have the form t = t – in
which case the entire term can be replaced by true – or t = u with t 6= u – in
which case the term is replaced by false. This equality is evaluated in a strictly
syntactical sense. We are therefore left with a simple Boolean formula over
true and false values which are then evaluated logically.

We will briefly illustrate this through the simple example introduced in sec-
tion 2.2. As we recall, in this example, Alice wants to prove to Bob that she
knows the secret key to a ciphertext in which the message was encrypted with
the corresponding public key. The formula F can therefore be defined as:

Fex := (β1 = {α1}ρ1ek(β2)
)

The accompanying zero-knowledge proof would then be ZKRFex
(r;m; c,Alice),

where c := {m}rek(Alice). Replacing these values we then get the term {m}rek(Alice) =

{m}rek(Alice), i.e. a term of the form t = t, which trivially evaluates to true as
stated above. We will look at the particularities of this model for our example
further down.

The authors stress that they have chosen this notation, i.e. the clear separa-
tion of the formula F from the actual assignments r, a and b, deliberately. They
mention that this makes it possible for them to differentiate easily and clearly
between the public (b) and secret values (a and r). This advantage is clearly
seen in their deduction rules, where the adversary may extract the public values
b, but has no ability to extract r or a. We will inspect this further in section
3.3.

The parameter R from ZKRF (.) is still missing from our explanation. This
refers to the abstract randomness that the probabilistic prover uses in his proof.
This should not be confused with either the ρi used inside the formula F , nor
the ri values with which they are substituted. The ρi are used by the terms
inside F , while R is used to construct the proof itself.

In summary, the function ZKRF (.) can be understood as the encoding of the
witness relation inside a Boolean formula accompanied by the actual values with

13Whereas the random variables ρi are also secret, i.e. can be understood as a special kind
of secret variables.

25

which the corresponding variables inside the formula are to be replaced.

Before we conclude our overview however, we briefly want to revisit the
model we gave above for our simple example. We recall the corresponding
witness relation, which we defined in section 2.2:

R := {(x,w) | ∃m. x = aenc(m, pk(w))}

If we compare the formula Fex we defined above for our example to R, we can
see that the formula does not entirely reflect the statement we want to make.
For one, the secret key was supposed to be the witness, whereas in the above
model the message m strangely has become the witness. We are struggling to
represent this correctly because without a decryption function symbol or a way
to somehow include a decryption key in a ZKTerm we simply cannot model Al-
ice’s secret key as the witness. However, even if we could make the secret key
the witness, the message m would still either have to be part of the witness or
the statement of the zero-knowledge proof, since the definition of ZKTerm does
not allow for any variable names which will not be replaced later on. Another
glaring difference between Fex and R is that we had to bind the encryption key
to the agent Alice: since the encryption key is defined as ek(βi) and βi refers to
a public value, we could not use βi to represent the secret key like we originally
defined in the witness relation and instead had to replace βi with the agent’s
identity, i.e. Alice. Including the agent’s identity is precisely what we did not
want to do in order to be able to establish anonymity. This in fact means that it
is not the statement we wanted to prove. Instead, the statement we are proving
is that the ciphertext c is a valid encryption of some message m with random-
ness r using the public key of Alice. In other words, we were actually not able
to encode our simple example in this model!

We also find it worth pointing out that there was no reference made to
the common reference string, which is an integral part of the definition of a
non-interactive zero-knowledge proof (see definition 2.13 for details).

Even though this is the one model which is purely theoretical as it was not
implemented by its authors, we still would have liked some information on how
an implementation of this model could be achieved. A translation of this model
to an (existing) automated tool does not seem straight-forward, especially with
regards to the encoding of the formula F and its evaluation to either true or
false according to a syntactical comparison of terms.

Backes et al. 2008 paper on zero-knowledge proofs in the applied
pi-calculus [7]

The model presented in [7] is very similar to the one in [6]. There are however
some small differences. We first give a brief overview of the model presented
here and then point out the key differences to the model from [6].

26

A zero-knowledge proof is defined as a function ZKi,j(M̃, Ñ , F), whereas M̃

is described as the sequence of terms M1...Mi and Ñ as N1...Nj . M̃ is described

as the private component and Ñ as the public component. Similarly to the
model in [6], F denotes a formula over the terms αk and βl where k ∈ [1, i] and
l ∈ [1, j]. The i and j in ZKi,j therefore refer both to the arity of the function
and the number of variables present in F . In contrast to [6], in this model, the
verification process is modeled by the following equational rule:

Veri,j(F,ZKi,j(M̃, Ñ , F)) = true, iff

1) EZK ` F{M̃/α̃}{Ñ/β̃} = true

2) F is an (i, j)-formula

Without going into too much detail regarding the semantics presented in
the paper, the first condition states that the formula F , when substituting each
αk with Mk and each βl with Nl, must reduce to true. We want to point out
that in contrast to the model in [6], this refers to an equality with regards to
an equational theory and not the value true in a logical sense.

The term (i, j)-formula in the second condition refers to a formula which
only contains other functions defined in the equational theory, constants and
the variables αk and βl. We will not give a full list here of the other func-
tions they do define (instead we refer the reader to Table 4 in [7]), however their
equational theory contains logical operators, a pairing function, asymmetric and
symmetric encryption, signing, blind signing14, hashing as well as the Boolean
constants true and false.

As in the model from [6], F can be understood to encode the witness relation
of the particular zero-knowledge proof, with the other paramters in ZKi,j(.) then
determining the actual values with which the variables inside the formula are to
be replaced. A simple example of such a zero-knowledge proof function is given
in the paper:

ZK(k;m, encsym(m, k);β2 = encsym(β1, α1))

This example models the zero-knowledge proof that encsym is an encryption of
m with k. In fact, this zero-knowledge proof is almost identical to our simple
example introduced in 2.2, the only difference being that here the statement
is regarding a symmetric encryption, instead of an asymmetric one as in our
example. As mentioned above, the defined equational theory supports asym-
metric encryption and decryption. We can therefore define the following zero-
knowledge proof for our example (for details regarding the function symbols, we
refer the reader to [6] or section 3.2):

ZK(sk(A);m, encasym(m, pk(A));β1 = decasym(β2, α1))

14Blind signing is necessary for their case study of the Direct Anonymous Attestation (DAA)
protocol

27

This means that we are indeed able to encode our simple example in this model.
Just as in the model from [6], we did have to make the message m part of either
the secret or the public component of the zero-knowledge proof (in this case it
was added to the public part). However, the witness is Alice’s secret key, just
as we wanted and the agent Alice did not have to be made public. In fact,
the A used inside the zero-knowledge proof function is merely a stand-in which
enables the formula F to reduce to true according to the specified equational
theory.

One thing is however slightly confusing in the example specified in the paper:
the formula F contains the equality “=”. This was never defined. We instead
suspect that they stated their example to make it more human-readable and
that the actual example should read as follows:

ZK(k;m, encsym(m, k); eq(β2, encsym(β1, α1)))

It should also be pointed out that the authors have introduced equational
rules to extract both the public terms Nl as well as the formula F from the
function ZKi,j . The former is necessary to model the extraction of the public
component. In the previous model from [6] this was modeled as a deduction rule
of the adversary. It seems that the latter, i.e. the extraction of the formula F
is necessary to pass it as a parameter to the function Veri,j where it is required
in order to check whether it can be reduced to true.

In many ways we can see that we have a very similar definition as the one
presented in [6]: both separate the formula – which again can be understood
to encode the predicates of the witness relation – from the actual assignments
of Mk to αk and Nl to βl respectively. Both models also clearly separate the
private from the public component.

The two models handle the content of the formula F however very differently
– as we could see when we tried the models on our simple example. While this
model also introduces a limited number of function symbols, they are defined
as part of a base equational theory. As mentioned above, this equational theory
already incorporates many more cryptographic primitives as in [6], but – more
importantly – it is clear that this theory can easily be extended by a potential
user of the model to include whichever function the user defines. Specifically,
the authors only require the formula to consist of the specified function symbols,
constants and the terms αk and βl. As far as we could determine there were no
other restrictions on F .

What is conspicuous in this model compared to the one from [6] is the ab-
sence of randomness; both the randomness to construct the proof as well as any
randomness required by the functions used inside F . The first means that the
prover algorithm P in this case is modeled as a deterministic function. The
second would mean that no functions inside the zero-knowledge proof may be
probabilistic or they at least have to be modeled as a deterministic function.
This can however be circumvented by including randomness as part of the se-

28

cret component. However, this means that the random values are not clearly
separated and this could potentially have its limitations.

The fact that the prover algorithm P however is modeled deterministically
is more problematic: with the prover being defined as a probabilistic algorithm
(see section 2.2), this does not model non-interactive zero-knowledge proofs
correctly. In particular, two proofs of the same statement on the same common
reference string would be identical in the deterministic setting, this could violate
the security properties of certain protocols.

Even more problematic is that, just as in [6], the common reference string
is not part of the model. In the previous model however, the authors at least
include the abstract randomness R as part of the zero-knowledge proof function.
This means that we could potentially encode the common reference string as
the randomness R, however this also does not correctly model non-interactive
zero-knowledge proofs.

There is another very important characteristic of this model: the zero-
knowledge proof function is defined with arbitrary arity. This means that what
they have defined is actually an infite set of equational rules. The reason be-
hind this is that each zero-knowledge proof requires its own equational rules
corresponding to its witness relation. The biggest question that arises is then of
course how was this implemented. The authors claim to have developed a com-
piler which takes as input a zero-knowledge proof description and outputs the
ProVerif specifications for that proof. As we were not able to obtain the com-
piler itself despite multiple attempts to contact the authors, we unfortunately
can make no further statements regarding its use and how the zero-knowledge
proofs have to be encoded.

Backes et al. 2013 computational soundness paper [8]

While the models from [6] and [7] show many similarities, the model from [8]
takes a different approach.

In this model a zero-knowledge proof is defined as the function ZK of arity
4. Its parameters are specified to be of the following form: (crs(N1), x, w,N2),
where x and w can be any terms and N1 and N2 are nonces (which are terms
themselves). The function crs(N) models the common reference string. As is
expected, x denotes the public component, i.e. the statement, and w the secret
component, i.e. the witness. The nonce N2 refers to the randomness used to
construct the proof (i.e. just as in [6], the prover here is again modeled correctly
as a probabilistic algorithm).

There are two major differences to the previously introduced models which
jump right out: first, they do introduce the common reference string into their
model and second, there is no explicit formula F .

The introduction of the common reference string is not surprising, in fact
its absence in the previous two models was far more questionable as this does

29

not correspond to the definition of a non-interactive zero-knowledge proof (see
section 2.2). It is however not clear why they chose to leave out the explicit
definition of the formula F . In the other models F was crucial to the verifi-
cation process as it constituted an encoding of the witness relation. Here, the
verification process is modeled by the following equation:

verifyZK(crs(t1),ZK(crs(t1), t2, t3, t4))

= ZK(crs(t1), t2, t3, t4) , if

(t2, t3) ∈ Rsym
adv

We will not go into detail of the exact definition of Rsym
adv , this relation how-

ever can be understood as a symbolic representation of the witness relation. We
will look at the meaning of the equation reducing to the function ZK(.) further
down, but if we interpret this as denoting that the zero-knowledge proof verifies
if first of all the common reference string is the same and second of all if the
pair (t2, t3), i.e. the statement and the witness, are a member of the witness
relation, then this seems to rather closely represent the mathematical definition
of a zero-knowledge proof.

In a sense, the relation Rsym
adv plays the role of the formula F from the pre-

vious models. The issue in this model however is that the definition of the
equation for verifyZK(.) does not constitute a well-defined equational theory.
The actual verification is deferred to whether or not (t2, t3) ∈ Rsym

adv . But how
Rsym

adv is encoded and how it can be modeled in an equational theory whether or
not (t2, t3) is a member of that relation is not explained. Since we were unable
to obtain a copy of the source code despite multiple attempts to contact the
authors, we could unfortunately also not inspect the code to understand the
implementation of this verification process. This would have been a crucial part
in understanding the advantages of this particular model and the reason why
the formula F was no longer explicitly defined as in the other models.

Just as for the previous models, we would like to give an example of a zero-
knowledge proof in this model using our running example we introduced in
section 2.2. With the statement x and the witness w being direct parameters of
the function ZK(.), using the function symbols defined in [8], the zero-knowledge
proof itself is simply:

ZK(crs(N1), enc(ek(N2),m,N3),dk(N2), N4)

In order to model the verification process, we also need to define the correspond-
ing relation Rsym

adv using the function symbols of this particular model:

Rsym
adv := {(x,w) | ∃N1, N2,m. x = enc(ek(N1),m,N2) ∧ w = dk(N1)}

The reader might wonder why crs(N), ek(N) and dk(N) are functions taking
as input a nonce. While not made explicit in the paper, this refers to the fact
that these are constructed using a random value. This in particular means that

30

while the public key ek(N) and secret key dk(N) can be linked together, they
are not linked by an agent’s name and instead the nonce N (just as in the model
from [7]).

We want to point out that the model presented above is the closest to the
definition of our example we have gotten, i.e. there were no difficulties in trans-
lating our example into this model. Indeed, this is an example given by the
authors themselves in the paper. The only issue we see is – as we have men-
tioned – that it is not clear how this translates to an implementation.

We additionally want to highlight some other particularities to this model.
Looking at the model in its entirety, it is quite large and the reasons behind some
of the authors’ decisions are not always comprehensible from the paper alone.
We have already seen that the function verifyZK(.) reduces to ZK(.) instead of
a symbolic representation of the Boolean constant true, as we would expect.
This is done similarly in other equations which represent Boolean functions,
i.e. they reduce to one of the parameters. There could be advantages to this
approach however. For example the reduced term may again be an input to
another function. An example for this is given by the authors that the result of
verifyZK(.) could be an input to the function getPub(.). The actual reasoning
behind this approach and how big of an advantage it truly is versus the confusion
it introduces is unfortunately guess work without the source code.

The authors have indeed introduced many such “pseudo-Boolean” functions,
such as isenc(.), issig(.) or iszk(.), which model whether or not a term is an
encryption, a signature or a zero-knowledge proof respectively. The authors
describe these functions as follows: “These are useful for testing properties of
terms: The protocol can, e.g., compute isek(t) and then branch depending on
whether the destructor succeeds”. However, they do not give an example where
this is truly useful and necessary. Without an example, this only seems to make
the model unnecessarily complex.

Another reason for the size of the model is that the authors introduce func-
tion symbols for various kinds of ill-formed messages, i.e. ill-formed nonces,
encryptions, signatures and zero-knowledge proofs, which most likely is used to
model incorrect or adversarial protocol use. Just as in [6], these are referred to
as “garbage” terms. There exist many equations which handle the reduction
of these various types of ill-formed messages, which greatly contributes to the
size of the model. It is not clear what the advantage is of this specific handling
of ill-formed messages, especially since nothing of the sort was included in the
model from [7].

There is an additional difference between this model and the other two:
here bitstrings are explicitly modeled through the functions string0 and string1.
These construct a string similarly to how the Peano arithmetic can be used to
represent numbers. If we use ε to represent the empty string then string0(string1(ε))
then represents the bitstring “10”. The function unstring(.) then is used to de-
construct the string. As with the other differences we have pointed out, it is
not clear why this was modeled here and is not present in the other models.

31

As a last remark, we want to note that just like in the other models, the
equational theory which can appear in the model is fixed. Even though this is
not explicitly stated, it is safe to assume that just as for [7] this can be extended
by the user with additional function symbols. Since in the paper the emphasis
was however to prove computational soundness for this model, it is not clear if
their statements still hold for a user-extended model.

3.2 Standardising the equational theories

As discussed in section 3.1, all existing models have employed various different
function symbols, not only to model the zero-knowledge proof itself but all other
protocol parts. In this section we therefore want to provide a clear and direct
comparison between the different models. In other words, we standardised the
various models into a comparable form.

Methodology and organisation

We have collected all constructors and destructors from the papers [6], [7] and
[8] and present them in the tables 1 - 9 using the Tamarin terminology and
semantics of terms, functions (i.e. function symbols) and equations.

All tables are organised in the same way, where the first column holds a brief
description of the function or of what the equation represents. Each following
column holds the corresponding term or equation from one of the papers. As a
convention, we abbreviate the Backes et al. 2008 paper on computational sound-
ness of zero-knowledge proofs [6] as 2008-sound-symb, the Backes et al. 2008
paper on zero-knowledge proofs in the applied pi-calculus [7] as 2008-pi-calc
and the Backes et al. 2013 paper on computational soundness as 2013-sound-
symb. By organising the functions and equations in such a way, we can easily
observe all the differences in the models at a glance.

Before noting the most crucial observations that can be drawn from this
side-by-side comparison, we want to remark on the following convention: In
case a function simply does not exist, i.e. has not been modeled in any way,
we mark the cell with a “–”. We mark a function symbol to be “not specified”
if it most likely exists in some form or another in the model but it wasn’t
explicitly declared. For example, there exists the clear notion of an ill-formed
zero-knowledge proof in [8] (namely garbageZK(t, t,N)), but this is not specified
explicitly in [6]. However, more than likely this exists in one form or another.

Additionally, we have used the symbol “**” in some of the equations tables.
As we have discussed in section 3.1, 2008-sound-symb (i.e. [6]) introduces ad-
versary deduction rules instead of term equations in their model. Whenever a
deduction rule exists which corresponds to the term equations from the other
papers, we have marked this with “**”. It must be noted however, that this
means that these functionalities only exist for the adversary and cannot be
used inside the protocol. The adversary deduction rules and their meaning are
discussed further in section 3.3.

32

We also want to mention that while we have respected the authors’ notations
to a certain degree, we have made some modifications in order to allow for
a better comparison. We also again use our own notational conventions we
presented in section 1 whenever possible. We also want to note the following
additional conventions:

1. If a function’s parameters are explicitly listed, N refers to a nonce param-
eter, A an agent, S a string, R randomness, F a Boolean formula and t
any term.

2. In case the parameters are explicitly specified for a term function, we
list them accordingly. In case no parameters are specified, we instead
provide the arity of the term function according to Tamarin terminology.
For example, if the function term encasym has arity 3, this is denoted as
encasym/3.

Since the arities of the functions used to model zero-knowledge proofs
are particularly interesting, we anotate their arities explicitly even if the
parameters are provided.

3. In case the models make a distinction between values which have been
generated by honest protocol participants and the ones which have been
generated by the adversary, we denote this as N = Nadv ∪ Nhonest, for
some set of names N regardless of the naming conventions used inside the
originating paper.

Results

The resulting tables (tables 1 - 9) can be found towards the end of this section.

Observations

We can now draw some conclusions from this side-by-side comparison. First,
we can see it is glaringly obvious that there are vast differences between how
not only the zero-knowledge proofs, but also how the general and cryptographic
functionalities were modeled. Table 2, which lists the term functions for general
cryptographic primitives, in particular shows glaring holes. It is not surpris-
ing that only 2008-pi-calc (i.e. [7]) models blind signing, as this is a less used
primitive, but which is necessary for the modeling of their case study. However,
the holes regarding symmetric encryption and hashing and in the case of 2008-
sound-symb any form of signing at all, are much more surprising and rather
inexplicable.

As we can see in table 5, logical operations are only modeled by [7]. In this
model, the functions ∧, ∨ and eq, as well as the symbolic representations of the
Boolean constant true, are vital to model the formula F . In particular, true is
essential for the verification process of the zero-knowledge proof. What is not

33

clear is why the constant false was also modeled, as no equational rules were
specified which reduce to false. Additionally, the function symbol for true was
actually specified twice, once in a base signature Σbase and a second time inside
the signature specific to zero-knowledge proofs ΣZK which is defined as the union
of Σbase with some additional symbols, which included true again. While this
is not an issue, as the two signatures do not have to be distinct, it is quite
confusing. If the authors wanted to highlight that true was essential for zero-
knowledge proofs, then this should also have included the Boolean operations
we mentioned above.

With regards to the definition of F from 2008-sound-symb (i.e. [6]) it is clear
why these operators did not have to be modeled. And as we can see, indeed
no Boolean operations are included in the model at all. Interestingly enough
though, the opposite is true for the model 2013-sound-symb (i.e. [8]), where
we strongly suspect that Boolean operations would be necessary to model the
witness relation R. As discussed in the section 3.1 however, we do not know
how this was implemented. This would have been vital to properly compare the
verification process of these three models.

It is also interesting to take a closer look at the general model terms listed
in table 1. 2008-sound-symb (i.e. [6]) is the only model which explicitly models
randomness. In 2013-sound-symb randomness is modeled using nonces, as can
be seen in their definitions of the encryption key ek(N) and their encryption
term function enc(ek(N), t, N) for example (see table 2). Why the 2008-sound-
symb model makes such a clear distinction between randomness and nonces is
not clear. Even more interesting is that 2008-pi-calc actually does not model
randomness in any way, i.e. there is no notion of nonces explicitly mentioned
nor do any of the functions include randomness (see for example the equation
for asymmetric decryption in table 7). We do however believe that nonces have
to be modeled in one way or another since they are mentioned inside their case
study.

Two of the models, namely 2008-sound-symb and 2013-sound-symb (i.e. [6]
and [8] respectively) additionally distinguish between randomness created by the
adversary and those created honestly inside a protocol run. We have highlighted
this distinction in the table 1 by defining for example the set of nonces Nonce into
Nonceadv and Noncehonest. In this definition the sets Nonceadv and Noncehonest
are understood to be distinct.

We also briefly want to discuss the specific modeling of an agent in 2008-
sound-symb (i.e. [6]). On one hand, as we have previously mentioned, this
specific inclusion of an agent rather restricts the model as an encryption key
has to be bound to an agent, which is considered to be a public value (at least
inside zero-knowledge proofs). On the other hand, we suspect that the notion
of an agent had to specifically included in this model, since it was not actually
implemented. Without employing a tool and with it a specific definition of a
protocol and protocol agent, the authors had to provide these definitions them-
selves.

34

While not made explicit, it is clear that the models from [6] and [8] use some
kind of sort for their messages. For example, [6] definitely distinguishes the sort
Rand, Nonce, Garbage and A to denote agents. In [8] there is not as much of a
distinction, mostly because there is no differentiation between randomness and
nonces and “garbage” is not considered to be a sort in itself. Instead, this model
only distinguishes between the type S which denotes strings and N for nonces.
Why there is no mention of any such distinction in the model from [7] is not
clear.

Another point worth mentioning is that only 2013-sound-symb models strings.
Why it was included in that model specifically and none of the others or any at
all for that matter is not clear.

Lastly, we want to take a closer look at the zero-knowledge proof terms
and equations presented in tables 3 and 8 respectively. The function for the
zero-knowledge proof itself is of particular interest. First of all, it is not clear
what arity the function in the model 2008-sound-symb has, which is why we
marked it with a question mark (see table 3). The parameters Rand and F are
introduced rather sneakily as qualifiers to the function, even though they clearly
are parameters to the function itself. This means that the function has at least
arity 5. However, with regards to the three tuple parameters inside the brackets
it is not clear how these tuples of variable length are implemented. The question
is whether each tuple parameter is to be understood as a single parameter or, as
in the model 2008-pi-calc, as multiple parameters. The latter would then also
lead to a variable arity of the ZKRand

F function, just as in 2008-pi-calc.
What is even more interesting however, is the function ZK in the model 2013-

sound-symb. The arity here is fixed and the private and public components
of the zero-knowledge proof are simply modeled as singular terms. With a
recursive use of the pair function however we could easily build a sort of tuple
with variable length which can then be passed to this function. This was not
mentioned explicitly.

What is clear however, is that both the zero-knowledge proof function and
the corresponding verification is not straight-forward. None of the verification
“equations” presented in table 8 are a simple term equation as is the case for
the other cryptographic primitives modeled (see table 7 for details). And while
the models seemed to almost want to hide this fact, the verification functions in
particular are specific to the zero-knowledge proof being modeled and are not
generic. It could be interesting, to investigate further what the advantages of
the verification process in the model 2008-sound-symb could be and whether the
idea of “true zero-knowledge proofs” could lead to a generic implementation.
It is however conspicuous that in the other two models – which were indeed
implemented – this approach was abandoned.

3.3 Additional adversary deduction rules

Both ProVerif and Tamarin come with built-in deduction rules, modeling a
Dolev-Yao adversary. Two of the models however, namely the ones presented

35

in [6] and [8], introduce additional deduction rules for the adversary only. In
case of the former, no term equations were even defined. Instead, the only rules
the adversary may apply are the specifically defined deduction rules.

We do want to point out a clear distinction between equational rules and
adversary’s deduction rules. The former may be used by any (honest or ad-
versarial) party in the protocol. The latter however, may only be used by an
adversary. It is clear that we do want to model the adversary as strong as possi-
ble in order to make meaningful proofs. However, it is rather strange to model
something as simple as a message decryption for the adversary only – which was
indeed done in [6].

We will now present these (additional) adversary deduction rules given in
these two models. Note that we use the notation we have presented in the tables
in section 3.2.

Deduction rules in the Backes et al. 2008 computational soundness
paper [6]

The adversary deduction rules can be found in figure 1 in [6]. Most of them
are quite straight-forward. We nonetheless, want to give a full list here for
completeness purposes.

The authors introduce what they call a deduction relation `, whereas they
denote by ϕ ` t that the adversary can deduce the term t from ϕ. What
exactly ϕ stands for is not explained in the paper, however it most likely refers
to the adversary’s knowledge which includes all messages which have been sent.
ϕ ` t can also be understood as the adversary can construct the term t from his
knowledge. The rules are presented in the style premise

conclusion .
Below we list all the deduction rules and translate their meaning to plain

English:

1. m∈ϕ
ϕ`m : If the term m is known to the adversary, he can deduce m.

2. g,g′∈Garbager∈Randadv

ϕ`g ϕ`ek(g) ϕ`{g′}r
ek(g)

: The adversary can create a ciphertext using any

“garbage” terms and its own randomness.

3. b∈A
ϕ`ek(b) ϕ`b : For any agent b, the adversary knows b and can deduce his

public (encryption) key ek(b).

4. ϕ`m1 ϕ`m2

ϕ`〈m1,m2〉 : If the adversary knows the terms m1 and m2, then he can

construct their pairing 〈m1,m2〉.

5. ϕ`〈m1,m2〉
ϕ`m1 ϕ`m2

: If the adversary knows the pairing of two terms, he can de-
duce each individual term. This corresponds to the “first” and “second”
functions from the other models (see table 6 in section 3.2 for details).

6. ϕ`ek(b) ϕ`m r∈Randadv

ϕ`{m}r
ek(b)

: If the adversary knows a message m, he can encrypt

m with the public key of an agent b using its own randomness.

36

7.
ϕ`{m}rek(b) ϕ`dk(b)

ϕ`m : If the adversary has compromised an agent b, i.e. knows

his private (decryption) key dk(b), the adversary can deduce the plain text
message corresponding to a ciphertext encrypted with b’s public (encryp-
tion) key.

8.
ϕ`ZKr

F (r;a;b)
ϕ`b : If the adversary has received a zero-knowledge proof, he can

extract the public component.

9. If the adversary knows both the statement and the witness which satisfy
the formula F , he can create a valid zero-knowledge proof, wherein he may
use his own randomness to construct the proof and may reuse some ran-
domness extracted from honest ciphertexts for the random values “inside”
the proof.15

There are some important observations to be made regarding the handling
of randomness in the last deduction rule. As mentioned above there are two
“types” of randomness involved in this rule. One is the randomness to construct
the proof itself and the other are random values used inside the formula F . The
authors state that the former has to be a random value created by the adversary,
whereas the other random values can either have been created by the adversary
or extracted from a ciphertext which has been encrypted with an honest agent’s
encryption key, but whose decryption key has been compromised16.

While the latter part makes the rule rather complicated it is necessary to
ensure computational soundness. The authors state that if instead they would
only allow the adversary to use its own randomness, then some protocols appear
to be secure even though they aren’t. As an example they give a zero-knowledge
proof which involves a ciphertext, which was encrypted using a random value
ri. If the adversary is required to use his own randomness rj ∈ Randadv in the
proof, then the proof would not verify, i.e. the protocol would appear secure,
since ri 6= rj . But in the real world, if the adversary knows ri then he could
construct a valid proof. Hence, they allow for this situation.

The authors therefore include the adversary’s capability to extract the ran-
domness used in an encryption through the following premise inside this last
deduction rule: ∀i.ri ∈ Randadv ∨ (∃t, a.ϕ ` {t}riek(a) ∧ϕ ` dk(a)), whereas the ri
denote the values inside the tuple r, which will be used for the construction of
the zero-knowledge proof.

This last deduction rule is particularly interesting, because the authors have
stressed the importance of where the randomness comes from inside the proofs,
however none of the other papers – which chronologically appeared later – even
separately model the random values. Random values may be part of the secret

15Given the length of this rule and the fact that it includes many notations which we have
not introduced in this thesis, we have opted not to re-print the rule itself. For the formal
definition of this rule we refer the reader to figure 1 in the original paper [6].

16As mentioned in [6] even if a cryptosystem is IND-CCA secure, this does not imply that
the randomness cannot be retrieved provided one can decrypt the message (i.e. the decryption
key is compromised).

37

component, i.e. the witness, but they don’t have to be. This seems to be partic-
ularly interesting, since this particular model seems to allow us to model cases
where the adversary indeed reuses randomness. The question arises however
then why this was no longer deemed necessary later on. Perhaps the reason is
that this was not of such significance as the authors first claimed and indeed
the more crucial question arises regarding the randomness used to construct the
proof itself. None of the papers however, delve further into this question.

Deduction rules in the Backes et al. 2013 computational soundness
paper [8]

The adversary’s deduction rules can be found in chapter 2. Similarly to [6],
they introduce the deduction relation `. Instead of ϕ they use a set of terms
S. They say that S ` t means that from the terms S, the adversary can deduce
t. Again, it is assumed that S denotes the adversary’s knowledge, i.e. the set
of terms the adversary knows. The rules are presented, as before, in the style
premise

conclusion :

1. m∈S
S`m : If m is known to the adversary, he can deduce m.

2. N∈Nadv

S`N : We recall that the set Nadv refers to the set of nonces created by
the adversary. This rule therefore states that the adversary can deduce
any adversarial nonces.

3. S`t1,...,tn t1,...,tn∈T F(t1,...,tn)∈T
S`F(t1,...,tn) : T is the set of all terms and F a function

symbol. The rule therefore states that if the adversary can deduce the
terms t1, ..., tn, then he can also deduce F(t1, ..., tn).

These deduction rules are quite straight-forward and represent what one
might expect with regards to the adversary’s capabilities (see for example the
message deduction rules defined for Tamarin in [11]). What is conspicuous
however, is that no additional adversary capability was modeled. In Tamarin for
example it is good practice to model the ability of the adversary to compromise
any agent through additional protocol-specific rules. With a clear definition of
secret decryption and signing keys, it is not clear why the authors decided not
to model this explicitly.

There is another conspicuous absence in these deduction rules. If we look at
the rules given in [11] we can see that any message sent out and any received
is communicated through the adversary (see section 2.1 for the definition of
the Dolev-Yao adversary and its specificiation inside Tamarin). This particular
behaviour is not modeled here. Instead the authors state that this capability
of intercepting and modifying messages has to be modeled explicitly by the
protocol, which explains its absence in the above deduction rules. However, it
is not clear – nor explained in the paper – why it was not simply included.

38

3.4 Concluding remarks

As we have seen, the three models have vastly different approaches with regards
to the modeling of zero-knowledge proofs, and in fact modeling of protocols
in general. Since we have discussed the most significant differences already in
detail in the previous sections, we would like to now focus on any potential
advantages or disadvantages one approach might have over the other.

We first have to point out that the missing common reference string in the
models from [6] and [7] is a clear issue as it in fact violates the definition of a
non-interactive zero-knowledge proof. One could argue that if we assume the
common reference string to have been honestly created that it can be abstracted
away in the symbolic model. However, it is clear that there are real-life attacks
which are possible if the common reference string is not honestly generated (see
section 2.2). Without the inclusion of the common reference string, we cannot
model these attacks. We also want to point out that none of these limitations
on the model were discussed in [6].

Also a clear issue is the fact that the zero-knowledge proof function in [7]
was modeled deterministically instead of as a probabilistic algorithm. While
some provers may of course run deterministically, this does not capture the gen-
eral behaviour and properties of non-interactive zero-knowledge proofs17 and, as
previously mentioned, this is again not in accordance with their mathematical
definition (see section 2.2). This is all the more strange, since the inclusion of
randomness in a function is very simple in the symbolic model.

Unsurprisingly, the analysis of the existing models has shown that the crux
in designing a model for zero-knowledge proofs is the representation of the proof
verification process and with it the encoding of the witness relation. Whether
or not a proof is accepted as valid is highly specific to each zero-knowledge proof
and it therefore is no surprise that a generic verification process is not as simple
as the verification of a signature for example which always has the same criteria.
Unfortunately, the solutions proposed by these models are not satisfying. This
could be because, as already mentioned, we were unable to obtain a copy of the
source code of any of the models despite multiple contact attempts. Perhaps, by
analysing the implementation alongside the papers, the encoding of the witness
relation would have become clearer and we could see the strong points of each
approach. As it is now, we must come to the following conclusions.

With the notion of “true zero-knowledge proofs”, the model from [6] has
a very promising approach. Without an equational theory, they circumvent
the issue of having to deal with an infinite set of equational rules for a generic
model. However, the proposed model is much too restrictive – as has been
exemplified by our attempt to model our very simple running example. As far
as we know there exists no implementation of this model. It would therefore
be interesting to attempt such an implementation and see whether the model

17In certain protocols it could potentially be vital that two zero-knowledge proofs making
the same statement and created with the same common reference string are distinct.

39

could be extended to include other cryptographic primitives. We leave that as
an open question.

The biggest issue for the model of [7] is that their model actually requires
an infinte set of equational rules. We recall that the authors describe a compiler
which translates a zero-knowledge proof specification into a proper ProVerif
model with a finite set of equational rules particular to that zero-knowledge
proof. This seems like a very interesting and elegant way for dealing with this
issue. The problem here lies however in the definition of the formula F . This
formula is constructed using user-defined function symbols to represent Boolean
operators and is in that sense not a “proper” logical formula. The authors state
that ProVerif would no longer terminate in some cases when provided with the
output of their compiler. This was apparently due to the presence of the function
symbols ∧ and ∨ and their corresponding equations. They state a theorem by
which the equational theory output by the compiler can be modified to no
longer contain these function symbols. However, they do not guarantee that it
can always be applied and merely state that this is often the case.

In many ways the model from [8] is the most promising. This is due to
its closeness to the mathematical definition of non-interactive zero-knowledge
proofs (see section 2.2). However, we have no idea how the witness relation is
encoded nor how the check of a membership in the witness relation can be done
in an equational theory. As mentioned above, this missing information relates
exactly to the crux of a zero-knowledge proof model and therefore is the most
interesting part. This makes the fact that we could not obtain the source code
for this particular model even more disappointing.

An advantage which is present – at least in theory – in all three models is that
they explicitly and clearly encode or even directly define the witness relation.
A more expressive model is by its nature more user-friendly and thus reduces
the risk of human-error in the implementation of a protocol. Depending on the
actual implementation of the model, this advantage could be lost again however.

Given the extensiveness of some of these models, e.g. by modeling “pseudo-
Boolean” functions and having various terms to represent ill-formed messages,
the reader might naturally wonder if a zero-knowledge proof model in general
requires large models. As we will see in our own models proposed in sections 4
and 6.1, this is not the case. We were able to keep our user-defined model quite
slim especially by using some – but not many – Tamarin built-in functionalities
and already built-in adversary deduction rules. We suspect that in particular
the model in [8] ended up quite large as they were trying to take advantage
of some inner workings of the CoSP framework. We therefore want to stress
that some of the differences of the model specifications might be due to the
differences in the tools and/or frameworks used in the background.

40

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Agent A (not specified) (not specified)

Nonce Nonce = Noncehonest ∪ Nonceadv (not specified) N = Nhonest ∪Nadv

Randomness Rand = Randhonest ∪ Randadv – –

String – – S

Empty string – – empty

Adding “0” to a bitstring S – – string0(S)

Adding “1” to a bitstring S – – string1(S)

Removing “0” from a bitstring S – – unstring0(S)

Removing “1” from a bitstring S – – unstring1(S)

Pairing of terms 〈t, t〉 pair/2 pair(t, t)

First term of pair – first/1 fst/1

Second term of pair – snd/1 snd/1

Table 1: Standardised form of general model function symbols in existing zero-knowledge proof models

41

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Hash – hash/1 –

Encryption (public) key ek(A) pk/1 ek(N)

Decryption (private) key dk(A) sk/1 dk(N)

Secret (signing) key – sk/1 sk(N)

Verification key – pk/1 vk(N)

Symmetric encryption – encsym/2 –

Symmetric decryption – decsym/2 –

Asymmetric encryption {t}Rek(A) encasym/2 enc(ek(N), t, N)

Asymmetric decryption – decasym/2 dec/2

Key of an encryption – – ekof/1

Verification key of a signature – – vkof/1

Signing – sign/2 sig(sk(N), t, N)

Signature verification – ver/3 –

Message of a signature – msg/1 –

Blinding – blind/2 –

Unblinding – unblind/2 –

Blind signing – blindsign/2 –

Blind signature verification – blindver/3 –

Message of a blinded signature – blindmsg/1 –

Table 2: Standardised form of function symbols for general cryptographic primitives in existing zero-knowledge proof models

42

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Common reference string – – crs(N)

Zero-knowledge proof ZKRF (R; t; t)/? ZKi,j(t, t, F)/(i+ j + 1) ZK(crs(N), t, t, N)/4

Verification of a zero-knowledge
proof

– (instead a definition of “true
zero-knowledge proofs” is given,
see definition 2 in [6])

Veri,j/2 verifyZK/2

Public component of a zero-
knowledge proof

– Publici/1 getPub/1

Zero-knowledge proof formula (not specified) Formula/1 –

Common reference string of a
zero-knowledge proof

– – crsof/1

Table 3: Standardised form of zero-knowledge proof function symbols of existing zero-knowledge proof models. The arity
of the zero-knowledge proof function in column 2008-sound-symb is marked with a question mark, since its arity is not well-
defined.

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Ill-formed nonce Garbage – garbage(N)

Ill-formed encryption key ek(Garbage) – (not specified)

Ill-formed signature – – garbageSig(t,N)

Ill-formed ciphertext enc(ek(Garbage),Garbage, R) – garbageEnc(t,N)

Ill-formed zero-knowledge proof (not specified) – garbageZK(t, t,N)

Table 4: Standardised form of function symbols representing ill-formed messages in existing zero-knowledge proof models

43

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Logical and – ∧/2 –

Logical or – ∨/2 –

Equality of terms – eq/2 equals/2

Boolean value “true” – true/0 –

Boolean value “false” – false/0 –

Type query: encryption key – – isek

Type query: verification key – – isvk

Type query: encryption – – isenc

Type query: signature – – issig

Type query: common reference
string

– – iscrs

Type query: zero-knowledge
proof

– – isZK

Table 5: Standardised form of function symbols for auxiliary Boolean operations and functions in existing zero-knowledge
proof models

44

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Retrieval of first term of pair ** first(pair(t1, t2)) = t1 fst(pair(t1, t2)) = t1

Retrieval of second term of pair ** snd(pair(t1, t2)) = t2 snd(pair(t1, t2)) = t2

Deconstructing a “0”-extended
string

– – unstring0(string0(s)) = s

Deconstructing a “1”-extended
string

– – unstring1(string1(s)) = s

Table 6: Standardised form of general equations in existing zero-knowledge proof models

45

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Signature verification –
ver(sign(x, sk(y)), x, pk(y))

= true
verifysig(vk(t1), sig(sk(t1), t2, t3))

= t2

Symmetric decryption – decsym(encsym(x, y), y) = x –

Asymmetric decryption **
decasym(encasym(x, pk(y)), sk(y))

= x
dec(dk(t1), enc(ek(t1),m, t2))

= m

Retrieval of message part of a
signature

– msg(sign(x, y)) = x –

Blind signature verification –
blindver(unblind(blindsign(blind(
x, z), sk(y)), z), x, pk(y)) = true

–

Retrieval of message part of a
blind signature

–
blindmsg(unblind(blindsign(

blind(x, z), y), z)) = x
–

Retrieval of key of an encryption – – ekof(enc(ek(t1), t2, t3)) = ek(t1)

Retrieval of key of an ill-formed
encryption

– – ekof(garbageEnc(t1, t2)) = t1

Retrieval of verification key of a
signature

– – vkof(sig(sk(t1), t2, t3)) = vk(t1)

Retrieval of verification key of an
ill-formed signature

– – vkof(garbageSig(t1, t2)) = t1

Table 7: Standardised form of equations of general cryptographic primitives in existing zero-knowledge proof models

46

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Zero-knowledge proof verifica-
tion

– (instead a definition of “true
zero-knowledge proofs” is given,
see definition 2 in [6])

Veri,j(F,ZK(M ;N ;F)) = true iff
condition detailed in section 3.1
holds

verifyZK(crs(t1),ZK(
crs(t1), t2, t3, t4))

= ZK(crs(t1), t2, t3, t4),
if (t2, t3) ∈ R

Retrieval of public component ** Publicp(ZK(M ;N ;F)) = Np getPub(ZK(t1, t2, t3, t4)) = t2

Retrieval of public component of
ill-formed zero-knowledge proof

– –
getPub(garbageZK(t1, t2, t3)) =
t2

Retrieval of common reference
string of a zero-knowledge proof

– –
crsof(ZK(crs(t1), t2, t3, t4)) =
crs(t1)

Retrieval of common reference
string of an ill-formed zero-
knowledge proof

– – crsof(garbageZK(t1, t2, t3)) = t1

Table 8: Standardised form of zero-knowledge proof equations in existing zero-knowledge proof models

47

Description 2008-sound-symb [6] 2008-pi-calc [7] 2013-sound-symb [8]

Equality of terms – eq(x, x) = true equals(x, x) = x

Logical and – ∧(true, true) = true –

Logical or (1) – ∨(x, true) = true –

Logical or (2) – ∨(true, x) = true –

Type query: encryption key – – isek(ek(t)) = ek(t)

Type query: verification key – – isvk(vk(t)) = vk(t)

Type query: encryption – –
isenc(enc(ek(t1), t2, t3))

= enc(ek(t1), t2, t3)

Type query: ill-formed encryp-
tion

– –
isenc(garbageEnc(t1, t2))

= garbageEnc(t1, t2)

Type query: signature – –
issig(sig(sk(t1), t2, t3))

= sig(sk(t1), t2, t3)

Type query: ill-formed signature – –
issig(garbageSig(t1, t2))

= garbageSig(t1, t2)

Type query: common reference
string

– – iscrs(crs(t1) = crs(t1)

Type query: zero-knowledge
proof

– –
isZK(ZK(t1, t2, t3, t4))

= ZK(t1, t2, t3, t4)

Type query: ill-formed zero-
knowledge proof

– –
isZK(garbageZK(t1, t2, t3))

= garbageZK(t1, t2, t3)

Table 9: Standardised form of equations representing auxiliary Boolean operations and functions in existing zero-knowledge
proof models

48

4 Non-interactive zero-knowledge proofs in Tamarin

Having analysed the existing ProVerif and CoSP models in section 3, we now
propose a general zero-knowledge proof model for Tamarin. We first outline
what it is we want our model to achieve and any challenges and pitfalls we
expect before introducing the model itself. Just as with the existing models
in section 3, we then apply our model to the simple example we introduced in
the background section 2.2. We will then further test it on some additional
zero-knowledge proofs.

For any questions regarding the Tamarin prover and its syntax, we refer the
reader to the section 2.1.3 or [15], [4].

4.1 From the cryptographic definition to a symbolic model

The main goal of our model is to provide the user with a simple either built-
in or easy to declare cryptographic primitive which can be incorporated into
security protocols containing zero-knowledge proofs. Ideally, this should be as
simple as modeling a hash or an encryption function. We have opted not to add
a built-in zero-knowledge proof functionality to Tamarin. Instead we present
generic explanations and instructions how a user may easily implement a zero-
knowledge proof himself with hardly any overhead.

The reason behind this is similar to the challenges faced by the existing mod-
els we discussed in section 3. A model is dependent on the actual zero-knowledge
proof itself. This means we have to deal with the fact that a statement and/or
witness may consist of multiple terms and have to somehow find a way to model
the verifier’s behaviour according to the definition of the witness relation (see
section 2.2 for details). As the authors of [7] have mentioned, this actually leads
to an infinite number of equational rules, which obviously is not possible to
implement.18.

According to the definition of a zero-knowledge proof we have given in section
2.2, we can identify the following components which need to be modeled:

• The probabilistic algorithms P and V

• The zero-knowledge proof, i.e. the message which will be constructed
by the prover and sent to the verifier19

• The statement, i.e. the public component, of the zero-knowledge proof
and the witness, i.e. the secret component

18In order to avoid this issue, the authors have developed a compiler which encodes a zero-
knowledge proof description into ProVerif specifications (see section 3). As we will see later
on – especially in section 6.1 – we have found an elegant way to model zero-knowledge proofs,
which requires such minimal implementation on the user’s side, that there is no need for such
a compiler.

19As discussed in section 2.2, a zero-knowledge proof in the non-interactive setting can be
considered as a single message.

49

Figure 1: Equational theory for zero-knowledge proofs. The encoding of the
condition “if (x,w) ∈ R” is done by potentially declaring multiple equational
rules for the function symbol verifyZkp.

• Since anyone may extract the public statement from a zero-knowledge
proof, we need a way to model such an “extractor”

• The generation of the common reference string

• A suitable encoding of the witness relation R

• The verification process of a zero-knowledge proof, i.e. the check
whether the statement/witness pair (x,w) ∈ R

• The potential reveal of a witness if an agent is compromised

We model the above components through an equational theory we present
in figure 1 and several user-defined infrastructure as well as adversary rules. We
will now introduce this model in detail.

Modeling the prover and the zero-knowledge proof

In the formal definition of a zero-knowledge proof from section 2.2 we can see
that the prover P is defined as a probabilistic algorithm P (x,CRS). In other
words, the only input parameters to this algorithm are the statement x and the
common reference string.

The prover P itself can easily be modeled as a protocol agent, its function-
ality however can be understood as the zero-knowledge proof itself, since this is
precisely what is then sent to a verifier. The most straight-forward approach is
to model this as the function zkp(crs, x). Just as in the other models we have
looked at in section 3, we also consider it necessary to include the witness w
inside this function even though it is not strictly included in the definition of

50

a zero-knowledge proof. The reason behind this is that the witness has to be
present in order for the verification process to work (see below for details on the
modeling of the verifier)20.

Since the algorithm P is probabilistic, we also need to model the use of
randomness in this function. We do this by introducing the additional random
parameter r. In other words we define a zero-knowledge proof as the 4-arity
function zkp(crs, x, w, r).

As we have mentioned in 2.2 and have seen in some of the examples provided
in 3.1, a statement and/or witness may consist of multiple terms. What does
this mean for our zero-knowledge proof function? Since we did not implement
zero-knowledge proofs in a Tamarin built-in, it is actually not an issue that the
arity may vary between zero-knowledge proofs. For each zero-knowledge proof
used in a model one may simply define the function zkp according to the needed
arity. Another option could be to implement x and w as tuples.

Tamarin even provides the syntactic sugar that tuples can be written as
<t1, ..., tN>. In other words, the zero-knowledge proof function could easily
be declared with fixed arity 4, i.e. zkp/4, but then be considered to look like
zkp(crs, <x1, ..., xN>, <w1, ..., wM>), where N refers to the number of
statement and M the number of witness terms.

We also want to mention a particular way how we handle the witness w.
Typically, the witness would be modeled as a persistent fact, i.e. !Witness(P,

w). This allows us to then use this fact in a rule which models the adversary
compromising an agent and thus revealing all the agent’s secrets, including the
witness (we will look at this in more detail further down). In some protocols
(including our case study which we present in section 5) the witness is created
inside the protocol run. In such a case, we would typically add the witness as a
persistent fact on the right-hand side of the rule in which it was either created
or received. In other cases, the witness might be created by a beacon before the
protocol is even initialised. A good example of this is if the witness is a secret
key. We use this in our examples in section 4.3. While the witness as a persistent
fact does not necessarily reflect the situation in the real-world, it also does not
impact neither the adversary’s nor any other protocol participants’ capabilities,
as long as these persistent facts are not used for any other purposes.

Modeling the verifier and the witness relation

Just as with the prover, we can model the probabilistic algorithm V representing
the verifier as a verification function. In the formal definition given in section 2.2
the verifier is defined as V (x,CRS, P (x,CRS)), whereas V (.) = 1 iff ∃w. (x,w) ∈
R.

We introduce a term function verifyZkp(crs, zkp(crs, x, w, r)), which mirrors

20In sections 6.1 and 6.2 we will propose improvements to this initial model, in which we can
in some cases successfully eliminate the parameter w from the zero-knowledge proof function.

51

the verifier algorithm. We do not add the public statement x as a parameter
by itself, as we will introduce an equation to extract the public component. It
is therefore not necessary to add it separately. In order to model the verifier’s
output, i.e. whether he rejects or accepts the proof, we introduce – potentially
multiple – equational rules. Each rule will evaluate to the 0-ary term trueZkp21

if it holds that (x,w) ∈ R when that particular rule is applied. As a set, all
equational rules must correctly model the behaviour that the function reduces
to trueZkp if and only if (x,w) ∈ R.

As we have mentioned in section 2.2, only arguing regarding the membership
of (x,w) in R is not enough to model the verifier’s behaviour in the symbolic
model. We therefore also require that in each equational rule we specify, the
parameter crs used in verifyZkp(.) matches the one used in the function zkp(.).

While for simple examples it is quite straight-forward what this equational
rule set is supposed to look like (see for example the equational rule for our
running example which we present in section 4.3), it can be very tricky to
determine the correct set for more complex zero-knowledge proofs. We will look
at this more closely through the examples in this section.

We do need something else however, to ensure that only proofs for which the
verifyZkp(.) function reduces to trueZkp are also verified, we employ a technique
outlined in the Tamarin manual [15], where it is used to verify signatures. We
introduce the following restriction:

restriction Equality:
"All x y #i. Eq(x, y)@i ==> x = y"

We can then add the following action to the verifier’s protocol rule:

Eq(verifyZkp(crs, zkp(crs, x, w, r)), trueZkp)

This means that only protocol runs where this equality is indeed fulfilled are
accepted. We can thus correctly model the verifier’s behaviour.

Modeling the common reference string

As we have seen, we have included the common reference string, i.e. crs as
a parameter to the zero-knowledge proof zkp(.) and the verification function
verifyZkp(.). What we have to do however, is model the generation and dis-
tribution of this parameter. We propose to do this similarly to how keys are
typically handled in Tamarin theories (see [15] for examples). This can be
compared to a kind of beacon which generates and distributes a fresh common
reference string whenever necessary.

We therefore introduce the following rule to model this beacon:

21The Tamarin builtins signing and revealing-signing specify the 0-ary term true in
order to model their verification processes. We could use this existing constant. However, we
consider it better programming practice to separate these two terms clearly by specifying a
zero-knowledge specific term with a distinct name in order to avoid any confusion.

52

rule generate_crs:
[Fr(~crs)]

--[HonestCRS(~crs)]->
[Out(~crs)]

We consider any common reference string which has been generated through
this beacon to have been honestly generated. We model this by adding the action
HonestCRS in the rule above. This action helps us to ensure that honest parties
only use honestly generated common reference strings.

Modeling the adversary’s capabilities

Any protocol participant, including the adversary, may retrieve the public com-
ponent from a zero-knowledge proof. We model this with the term function
pubParams(zkp(.)) and the accompanying simple equational rule:

pubParams(zkp(crs, x, w, r)) = x

In case the statement x corresponds to a tuple, we advise to declare an
equational rule pubParams i for each xi, such that it reduces to the term at the
i-th position in the tuple x. We also want to point out that as we consider the
underlying zero-knowledge cryptosystem to be perfectly secure, we do not need
to model whether or not the adversary can extract the witness w. This is a
reasonable abstraction to make in the symbolic model.

This function does not normally have to be included anywhere in the protocol
beyond its declaration, this includes any lemmas. We do however need to model
this capability of the adversary (or any other participant) in order to make valid
statements.

Let us assume for example the (nonsensical) zero-knowledge proof in Tamarin
where the statement x is the tuple <pk(sk), aenc(m, sk)> (with the func-
tion pk(sk) denoting the public key corresponding to the secret key sk and
aenc the asymmetric encryption function provided by the Tamarin built-in
asymmetric-encryption) and m serves as the witness. An adversary could then
derive this tuple and by applying built-in Tamarin equational theories could eas-
ily deduce the witness m. This clearly violates the zero-knowledge property of
the proof, but can only be correctly modeled due to the presence of the above
equational rule.

While in this example it is obvious that this property would be violated, in
a more complex zero-knowledge proof protocol – especially one involving mul-
tiple steps – such a deduction will most likely be less obvious. The function
pubParams is therefore crucial to prove the security of the protocol.

An adversary may also compromise an agent and thus get to know the wit-
ness. As is typically done for secret keys, we introduce a reveal rule:

rule reveal_witness:
[!Witness(P, w)]

53

--[Reveal(P)]->
[Out(w)]

For some protocols, where the user may want to clearly distinguish between
different witness terms, one can use distinct fact names to refer to these different
“types” of witnesses (we have done this in our own model of the case study, which
we present in section 5). In this case, we recommend to introduce a separate rule
for each of these witness facts. The action Reveal may stay the same in each
of the rules, as we consider any such action to be a reveal, i.e. a compromise,
of an agent.

One rule per witness fact is necessary since some witness terms may be con-
structed during a protocol run, while other parts of the witness are already
known at initialisation. This means that there are moments in a protocol ex-
ecution where only parts of the complete witness are known. However, the
adversary may use some initially known parts in an attack before the full wit-
ness has been constructed. Only by declaring one rule for each witness fact do
we ensure that this capability is accurately captured. Naturally, we also recom-
mend to separate these rules from any other additional rules in which an agent’s
secrets are revealed.

For example, let us consider a zero-knowledge proof where the witness con-
sists of a message and two secret keys, i.e. the tuple <m, sk1, sk2>. We
can then produce the corresponding facts !Message(P, m) and !SecretKey(P,

sk1) and !SecretKey(P, sk2) and introduce the following rules:

rule reveal_message:
[!Message(P, m)]

--[Reveal(P)]->
[Out(m)]

rule reveal_secretKey:
[!SecretKey(P, sk)]

--[Reveal(P)]->
[Out(sk)]

Note that the rule reveal secretKey may of course be applied multiple
times by the adversary to retrieve both secret keys sk1 and sk2.

As discussed in section 2.2, there are attacks which are possible if the com-
mon reference string was not honestly generated. We therefore need to consider
how to model the adversary’s capability to generate a malicious common ref-
erence string. As we will see in the next section 4.2, we only prove security
properties where we require the common reference string to have been honestly
generated. We therefore do not provide a clear guideline on how to model a
malicious CRS, as this heavily depends on what kind of attack on the CRS
one would want to include. For example, a malicious common reference string
could make it possible to break the soundness or the zero-knowledge property.
In either case, one would have to include a specific rule enabling the adversary
to break the specific property22.

22We also want to mention that it might be necessary to model the common reference string

54

4.2 Proving security properties

We can imagine many security properties that could be interesting to prove in a
protocol employing zero-knowledge proofs. Which ones exactly – as usual – de-
pends on the security goals of the protocol we are modeling. There are however
some properties with regards to zero-knowledge proofs which are consistently
relevant: the three properties which must be fulfilled by any zero-knowledge
proof, namely soundness, completeness and zero-knowledge (see definiton 2.13
and section 2.2).

We therefore need to construct the lemmas representing these properties in
such a way that they can be verified by Tamarin (see 2.1.3). In order to do this,
we have to lace the protocol rules with appropriate action facts. These action
facts can be understood as predicates to be used inside first-order logic lemmas.
We introduce the following predicates and their meaning:

1. KnowsWitness(P,w): The prover, i.e. agent P , knows the witness w.

2. CreatedZkp(P,w, crs): The prover, i.e. agent P , has created a zero-knowledge
proof for the witness w using the common reference string crs.

3. ReceivedZkp(V, id, w, crs): The verifier, i.e. agent V , with protocol run
identifier id has received a zero-knowledge proof for the witness w using
the common reference string crs.

4. VerifiedZkp(V, id, w, crs): The verifier, i.e. agent V , with protocol run
identifier id has accepted a zero-knowledge proof as valid for the witness
w using the common reference string crs.

5. Finish(A, id): The agent A with protocol run identifer id has completed
its execution inside a protocol run.

As stated in 4.1, in case the witness w is a tuple, Tamarin allows for the
syntactic sugar to write this as <w 1, ..., w n>. This means that the predi-
cates defined above can be directly adapted iton Tamarin syntax without any
necessary changes.

The predicates directly referring to zero-knowledge proofs, namely CreatedZkp(.),
ReceivedZkp(.) and VerifiedZkp(.) are dependent not only on the agent and the
witness, but also the common reference string. This allows us to make state-
ments regarding whether or not the common reference string with which the
proof was created or verified was honestly generated.

We want to point out that we have defined the predicates around the witness
itself. We could of course have chosen to do this differently. However, with the
witness having to be secret, it is the part of a zero-knowledge proof around
which we want to make and prove our claims.

as a persistent fact, i.e. similarly to the handling of a public key (see [15] for an example),
instead of only using the Out fact as we propose here. This however does not alter in anyway
the general functioning of our model.

55

In some of the predicates we have additionally included the agent’s identifier
in a particular protocol run, i.e. id. We will explain the meaning and necessity
of this below as we define our lemmas. It should be noted that we could include
the identifier in all of the above predicates, we have however opted to do this
only where it was absolutely necessary to construct the lemmas.

There are two more predicates we need in order to construct the lemmas: we
have seen these already in section 4.1 when we introduced the rule to generate
the common reference string and to model the adversary’s capability to com-
promise an agent. These predicates are HonestCRS(crs) and Reveal(A). These
state that crs has been honestly generated and that the agent A has been com-
promised respectively.

As previously mentioned, these predicates will be placed inside the protocol
rules as action facts. The rules in each protocol will of course look very different,
since we are in the non-interactive proof scenario. However, there will always
be a rule in which the prover sends the zero-knowledge proof, i.e. where the
function Out(zkp(.)) appears on the right-hand side, and one in which a
verifier receives the proof, with In(zkp(.)) on the left-hand side. Also, at
one point the witness will either be created or retrieved by the prover P and
another point in which the verifier V has all the information required to verify
the proof23.

We therefore can generally put the action KnowsWitness(P, w) right after
the prover P has created or retrieved the witness. CreatedZkp(P, w, crs) can
be placed in the rule in which P sends the zero-knowledge proof. Similarly, the
action ReceivedZkp(V, id, w, crs) is then placed in the verifier’s V protocol
rule, in which he receives the proof. We are much freer regarding the placement
of VerifiedZkp(V, id, w, crs). This can happen at any point after the
verifier has received the proof and is in a position to verify it. It also has to
appear alongside the action which ensures that the verification function reduces
to trueZkp, i.e. Eq(verifyZkp(.), trueZkp) (see section 4.1). The last action
Finish(A, id) can be placed for both the prover and the verifier, but must
definitely exist for the latter for reasons we will explain when we define the
lemmas. Naturally, this action should be placed when an agent completes its
role in the protocol.

For example, following the placement rules above, this could result in the
sequence of action facts we see below. Action facts which appear within the
same rule instance are put inside brackets.

23Depending on the protocol, this does not necessarily have to coincide with the moment at
which V receives the proof. An example for this is our case study which we present in section
5.

56

...→ HonestCRS(crs)→
[
KnowsWitness(P, w)→ CreatedZkp(P, w, crs)

→ Finish(P, id1)
]
→ ReceivedZkp(V, id2, w, crs)

→
[
VerifiedZkp(V, id2, w, crs), Eq(.)

]
→ Finish(V, id2)→ ...

Naturally, the user may add any additional action facts to the protocol rules
as needed. This generally will not impact the proof of the lemmas we provide
here.

We can now define the desired lemmas.

Definition 4.1 ((Knowledge) soundness lemma). The knowledge soundness
lemma is defined as follows:

∀ V id i1 i2 w1...wncrs.VerifiedZkp(V, id, 〈w1, ..., wn〉, crs)@i1 ∧ HonestCRS(crs)@i2

=⇒ (∃ P j. KnowsWitness(P, 〈w1, ..., wn〉)@j)
∨ (∃ P j.Reveal(P)@j)

∨ (∃ j1...jn. KU(w1)@j1 ∧ ... ∧ KU(wn)@jn)

The soundness lemma states that if any verifier accepts a zero-knowledge
proof which was constructed using an honest common reference string, then
there must exist a prover who knows the witness w1...wn or an agent was com-
promised (i.e. her secrets, including the witness were revealed) or the adversary
has in some other way gained knowledge of w1...wn. The last part models the
fact that if the adversary has learnt all the terms which constitute the wit-
ness, then he can construct a proof using that witness, therefore the predicate
KnowsWitness(.) can no longer hold24. As we discussed in section 2.2, there
sometimes is made a distinction between knowledge and existential soundness.
As we have stated there, we will mainly focus on knowledge soundness in this
thesis. The lemma presented here therefore refers to knowledge soundness, as is
already suggested by the predicate name KnowsWitness(.). We want to note as
well that, as was mentioned in section 4.1, using the model we proposed there,
it is in fact not possible to prove strictly existential soundness as we require a
fixed w to be present in the proof in order for the equational rule to be able to
reduce to trueZkp.

Definition 4.2 (Completeness lemma). The completeness lemma is defined

24We will revisit this requirement when we look at an alternative formulation of the sound-
ness lemma in section 6.2.

57

as follows:

∀ V w1...wn i1 i2 i3 id crs.

(∃ P j. KnowsWitness(P, 〈w1, ..., wn〉)@j)
∧ReceivedZkp(V, id, 〈w1, ..., wn〉, crs)@i1

∧HonestCRS(crs)@i2

∧Finish(V, id)@i3

=⇒ ∃ k. VerifiedZkp(V, id, 〈w1, ..., wn〉, crs)@k

The completeness lemma states that any verifier which has received a valid
zero-knowledge proof which was constructed using an honest common reference
string must also accept it. It should be noted that this lemma in our model
corresponds to a liveliness lemma, i.e. it in effect proves whether or not the
verifier V is “alive” and able to terminate the protocol. This is due to how we
model the verification process: it is impossible for the verifier to not accept a
true statement. For this reason it is also necessary to first of all include the
predicate Finish(V, id) in the lemma, but also bind this to the agent’s identifier
in this particular protocol run. Without this, the lemma can trivially be broken
as no protocol participant is required to finish. In other words, just because the
verifier has received a zero-knowledge proof, doesn’t mean that he also has to
indeed accept it, even though it is a valid statement. Since the agent’s identifier
is re-initiated for each protocol run, we also need it to bind the termination of
the protocol to that particular execution.

As we make the assumption that the underlying cryptosystem is perfectly
secure, both the soundness and completeness lemmas somewhat trivially hold.
However, they should still be included as they can give us an indication whether
or not the zero-knowledge proof has been modeled correctly. They therefore can
be considered a kind of sanity check of the protocol. We also consider them to
be an integral part of the properties we need to guarantee in the symbolic model:
with the cryptosystem providing us with a guarantee that these properties hold
computationally (under the perfect cryptography assumption), we must also
provide a proof that they hold in the symbolic model.

Definition 4.3 (Zero-knowledge lemma).

¬(∃ P w1...wn crs i1 i2.

HonestCRS(crs)@i1

∧CreatedZkp(P, 〈w1, ..., wn〉, crs)@i2

∧(∃ j. K(w1)@j ∨ ... ∨ ∃ j. K(wn)@j)

∧¬(∃ j. Reveal(P)@j))

This lemma states that the adversary cannot deduce any information re-
garding the witness without compromising the prover. The actual property we
defined in section 2.2 however, does not make a statement regarding the wit-
ness, but instead states that the adversary – or indeed any honest participant

58

– gains no additional knowledge from the proof beyond what he could have
computed himself. Unfortunately, this is precisely the kind of property that is
hard to represent in the symbolic model as we somehow have to define what this
“no additional knowledge” is. In other words, this property cannot be directly
translated into a lemma which uses terms and simple protocol predicates. We
think however, that the most crucial part is that nothing about the witness is
revealed. If in a particular protocol it is the case that there are other pieces
of information which may not be deduced, we propose that they are handled
similarly to a witness. I.e. they can be kept as persistent facts and can then
be included inside the reveal rule. They should then be added as additional “K
facts” to the above lemma. In case the witness consists of multiple terms, we
of course state that the adversary may not gain knowledge of any of these terms.

As we mentioned before, the three lemmas defined here are crucial properties
to prove for any protocol involving zero-knowledge proofs, but they are by far
not the most interesting. As we mostly employ these sorts of proofs to provide
anonymity or perhaps secrecy for some values, we would want to add some other
lemmas. Naturally, these proofs depend on the specific protocol and its security
goals and we therefore do not include any further definitions.

As with any protocol model in Tamarin, one should also include a so-called
“executability” lemma, which guarantees that the protocol can indeed be ex-
ecuted as intended. We also want to mention that due to how we modeled
the verification process if the equational rule set for the verification function is
not specified correctly, a well-chosen executability lemma should fail before any
of the others: since traces which do not verify a zero-knowledge proof are not
considered and the protocol can therefore not be executed. Again, we do not
provide a definition of an executability lemma here, but instead refer the user
to examples found in [26]. Even though we do not mention it specifically, we
have included and verified such an executability lemma in all of the examples
we present in section 4.3 and the case study from section 5.

4.3 Example models

In this section we present several examples – of increasing complexity – in which
we apply our zero-knowledge proof model presented in section 4.1. For these
initial examples we consider only the simplest of protocols where the prover P
sends a single zero-knowledge proof to a verifier V , which then either accepts the
proof or rejects it. In other words we focus only on the actual zero-knowledge
proof and not its embedding inside a larger protocol. While the latter is of course
the more interesting scenario as it reflects real-world cases, through these simple
examples we can more easily illustrate the capabilities as well as the limitations
of our model. We model a more complex protocol for our case study in section
5.

We can write such a simple protocol in the Alice-and-Bob notation as follows:

59

P → V : zkp(.)

We will only provide code snippets in this thesis. For the full source code
we refer the reader to [26]25. All Tamarin models can be found there, i.e. not
only the ones presented in this section, but also in 5 and 6. The models are
organised and labeled accordingly.

Simple example

In section 2.2 we have introduced a simple example for a zero-knowledge proof.
We now apply our proposed model to this example. We recall that in this exam-
ple, Alice wants to prove to Bob that she knows the secret key to a ciphertext.
In other words, the statement x = aenc(m, pk(sk)) and the witness w = sk.
The corresponding witness relation is defined as follows:

R := {(x,w) | ∃m. x = aenc(m, pk(w))}

For more details on the example we refer the reader to section 2.2. We now
present how to model this zero-knowledge proof. Note that many of the parts
we described in section 4.1 are generic and do not need to be adapted to this
model. We put special focus on the parts which do require adjustments.

Since this example includes asymmetric encryption we must include the
builtin asymmetric-encryption:

builtins: asymmetric-encryption

With the statement x and the witness w only consisting of a single term, the
handling of these two parameters will be particularly easy. We can therefore
declare the following functions:

functions: pk/1,
zkp/4,
verifyZkp/2,
trueZkp/0,
pubParams/1

The function pk is not central to the zero-knowledge proof model, but is
necessary to model the public key used in this example. We need to declare
equations only for two of these functions, namely verifyZkp and pubParams.
For the latter we use the exact equation we provided in the description of our
model in section 4.1.

To determine the equational rule(s) for verifyZkp we need to consider the
witness relation we have defined above. Since this relation only states exactly
what the statement x and w must correspond to, this easily translates to the
following (single) equational rule:

25A copy of the source code can also be found in the personal repository, i.e. [27]

60

equations: verifyZkp(crs, zkp(crs, aenc(m, pk(sk)), sk, r)) = trueZkp

We then can add the rule generate crs from our general model to generate
the common reference string. Also the equality restriction, i.e. restriction

Equality, which we need for the verification process, can be added without
adjustments. We model the public key infrastructure with the following rule
(similarly to the examples given in [15]):

rule generate_asymKeyPair:
[Fr(~sk)]

--[HonestKey($A, ~sk)]->
[!SecretKey($A, ~sk), !PubKey($A, pk(~sk))]

rule get_pubKey:
[!PubKey(A, pk(skA))]

-->
[Out(pk(skA))]

We next can initialise the prover and the verifier with two simple rules. As
is typically done in Tamarin models, we use a fresh value to provide a unique
identifier to both the prover and the verifier for a particular protocol run (see
also section 4.2). In case of the prover we also retrieve his secret and public key
and add this to the agent’s knowledge on the right-hand side.

We can now model the actual protocol run with two simple rules: In the
prover’s rule, he receives the common reference string and creates a message
(modeled as a fresh value). Using these terms he can then construct and send
the zero-knowledge proof with the function:

Out(zkp(crs, aenc(~m, pk(sk)), sk, r))

In the verifier’s rule, he receives this proof and the common reference string
using the In(.) function. We then only need to add the following action fact
which ensures that only protocol runs in which the proof is also verified are
considered.

Eq(verifyZkp(crs, zkp(crs, aenc(m, pk(sk)), sk, r)), trueZkp)

We also place all other action facts according to the specifications in section
4.2 along with the three lemmas defined in that same section. All lemmas were
successfully verified using this model.

Conjunctions and disjunctions

A natural next step is to model a proof whose statement is a Boolean formula
over multiple terms. By doing this we also move closer to the existing models
by Backes et al. (see [6], [7] and [8] or section 3).

We start by modeling a conjunction. Building from our running example, we
can formulate the realistic zero-knowledge proof in which Alice wants to prove

61

knowledge of two secret keys which can decrypt two ciphertexts. We can define
the corresponding witness relation as:

R := {((x1, x2), (w1, w2)) |
∃m1,m2. x1 = senc(m1, w1) ∧ x2 = senc(m2, w2)}

For simplicity reasons we have opted to use symmetric encryption in this
example instead and therefore make use of the Tamarin built-in function senc

from the builtin symmetric-encryption (see [15]).
The first thing we observe is that both the statement and the witness consist

of multiple terms. This gives us a nice example of how to handle such cases.
As we have mentioned in 4.1, we model our examples with a variable arity for
the zero-knowledge proof function instead of using the Tamarin syntactic sugar
<x1, ..., x2> for tuples. In this case the arity for the function zkp is defined
as |x|+ |w|+ 2 to account for the parameters crs and r. This means that zkp
in this example has arity 6.

We can therefore declare the same functions as in the previous example with
the same arities, except for zkp, which we declare as zkp/6. The only other
exception is the function pk. This was used to model a public key corresponding
to a secret key. Since we are using symmetric encryption only in our model,
this function is not necessary.

As described in section 4.1, we declare two equational rules to retrieve the
public parameters:

pubParams1(zkp(crs, x1, x2, w1, w2, r)) = x1
pubParams2(zkp(crs, x1, x2, w1, w2, r)) = x2

In case we would have opted to model this using tuples, we could have
written this as:

pubParams1(zkp(crs, <x1, x2>, w, r)) = x1
pubParams2(zkp(crs, <x1, x2>, w, r)) = x2

Or simply:

pubParams(zkp(crs, x, w, r)) = x

We also need to add equational rule(s) for the verification function. As this
is a conjunction, this translates easily to a single equational rule:

verifyZkp(crs, zkp(crs, senc(m1, sk1), senc(m2, sk2), sk1, sk2, r))
= trueZkp

The fact that we chose two separate terms to represent the messages which
are encrypted, i.e. m1 and m2, allows us to model the situation where two dis-
tinct messages were chosen, but also the case where m1 = m2. The rest of the
theory can be written almost identically to the one from the previous example.

62

As a next example we model the disjunction over two terms. We again build
from our running example and formulate the proof where Alice wants to prove
that she knows the secret key which can decrypt at least one of two ciphertexts.
The corresponding witness relation is therefore:

R := {((x1, x2), w) |
∃m1,m2. x1 = senc(m1, w) ∨ x2 = senc(m2, w)}

We can construct this model now in a very similar fashion to the conjunction.
The notable difference is that with only the statement, but not the witness being
a tuple, we have to declare the zero-knowledge proof as a 5-ary function. In order
to model the verification process, we declare the following equational rule set:

verifyZkp(crs, zkp(crs, senc(m1, sk1), senc(m2, sk2), sk1, r))
= trueZkp

verifyZkp(crs, zkp(crs, senc(m1, sk1), senc(m2, sk2), sk2, r))
= trueZkp

While in this example the number of equational rules we have to define is
still very manageable, this is no longer the case as we consider slightly more
complex, but still very simple examples. We will not look at these examples in
detail, and instead refer the reader to [26]. But we do want to point out two
observations.

For one, the user has to put quite some thought into the choice of the equa-
tional rule set and consider all the possible cases under which the verification
function reduces to trueZkp – or indeed does not. And second, all of our ex-
amples were still quite simple and nonetheless, we were already able to see the
potential blow-up of the number of equations required to successfully model the
verification process.

We were however able to successfully prove all the security properties defined
in section 4.2.

Limitations of the model

So far with the generic model we outlined in 4.1, we have been able to model all
zero-knowledge proof examples without a problem. We also were able to prove
all lemmas we defined in section 4.2. In this last example, we will now look at
a witness relation which cannot be modeled:

R := {((x1, x2, x3), (w1, w2, w3))|
(x1 = h(w1) ∨ x2 = h(w2)) ∧ (¬(x1 = h(w1)) ∨ x3 = h(w3)}

The function h(.) in this case corresponds to a cryptographic hash function,
which we chose over using encryption in order to keep the example as simple as
possible. In order to understand why this particular witness relation cannot be
modeled, we construct an assignment table, which can be found in table 10. In

63

x1 x2 x3

1 t1 t2 t3 false
2 t1 t2 h(w3) false
3 t1 h(w2) t3 true
4 t1 h(w2) h(w3) true
5 h(w1) t2 t3 false
6 h(w1) t2 h(w3) true
7 h(w1) h(w2) t3 false
8 h(w1) h(w2) h(w3) true

Table 10: Assignment table for the witness relation which breaks the traditional
model

each column we denote what the variable xi is matched against. By the term
ti we denote that the variable xi can match against any term except for h(wi).

And here we can already see the issue: through the use of equational rules
we cannot model that an otherwise unrestricted term t is not supposed to match
with another. And this is a problem with regards to this assignment table. If
we look at assignments number 3 and 7, we see that they only differ in the
assignment to the variable x1. However, one evaluates to true and the other to
false. In particular, if x1 = h(w1) the verifier must reject the proof. But by
using an equation to match x1 to any term t1 and then the verifier accepts the
proof, we have broken the model (see the full corresponding theory in [26]).

While the zero-knowledge proof we presented here is more of a theoretical
example, there exists an even simpler one with a potential real-world application.
We consider again the first example of a conjunction we presented in this section,
where Alice wants to prove that she knows two secret keys which can decrypt two
ciphertexts. We can then extend this example to simply include the condition
that the two secret keys must be distinct. The corresponding witness relation
is:

R := {((x1, x2), (w1, w2)) |
∃m1,m2. x1 = senc(m1, w1) ∧ x2 = senc(m2, w2) ∧ w1 6= w2}

We clearly cannot model this additional condition using equational rules
only, as this includes a comparison between two terms. If we recall the definiton
of term rewriting we presented in section 2.1, definition 2.7, we can see that
even if w1 = w2, there exists a substitution such that the verification function
will reduce to trueZkp.

This means that our model clearly is not strong enough to successfully model
all zero-knowledge proofs. As stated above, it struggles as soon as we have to
encode an inequality of two terms. In section 6.1 we will present a variation of
this model, which does not have this limitation. The possibility of human error

64

is also quite high in our model due to the complexity of choosing the correct
equational rule set for the verification function. As we will see, the new model
is much less error-prone.

65

5 Case study: Direct Anonymous Attestation
(DAA)

In order to test our model presented in section 4 on a real-world protocol, we
have decided to use the same case study as the model from [7] was tested on:
the Direct Anonymous Attestation (DAA) scheme. DAA was first introduced
by Brickell et al. in [28]. This scheme enables a trusted platform module , or
TPM for short, to authenticate itself remotely, while preserving the privacy of
the owner of the module.

The DAA protocol is comprised of two subprotocols: the join protocol and
the DAA-sign protocol. In the join protocol, the TPM is issued a certificate
by an entity called the issuer. The DAA-sign protocol then enables the TPM
to sign arbitrary messages using the obtained certificate. Such a signature is
then verified by the verifier. The first subprotocol is designed to ensure that
the TPM cannot be linked to its subsequently created signatures, even by the
issuer. The protocol also includes a mechanism called rogue-tagging, which
prevents corrupted, i.e. “rogue”, TPMs from getting issued certificates and
authenticating messages.

In order to achieve anonymity, both subprotocols rely on zero-knowledge
proofs. This means that there are multiple (different) zero-knowledge proofs
within a single protocol, making this an ideal case study.

The protocol we describe in detail below has been taken from [7]. We have
chosen to follow the exact same protocol specification as Backes et al. since we
want to replicate the results of the case study.

Setup

Each TPM has a unique identifier id and a public-private key-pair called an
endorsement key. It is assumed that the issuer knows the public part of the
endorsement key. We will denote the public and secret part of this key as
pk(ek(id)) and sk(ek(id)) respectively.

A TPM is able to construct so-called f-values, which it derives from a secret
seed we denote by daaseedid. An f -value fcnt is defined as H(daaseedid, cnt),
where H is some hash function and cnt is an internal counter. An f -value can
be understood as a virtual identity, with which the TPM can execute the join
and the DAA-sign protocol.

Additionally, each issuer and verifier holds a publicly known string called
the basename with bsnI referring to the basename of the issuer and bsnV of the
verifier respectively.

Join protocol

In the join protocol, a TPM may obtain a certificate from the issuer for one
of its f -values. As we do not want the issuer to learn the value f , in order to
achieve unlinkability between the TPM and its certificate, we instead blind f

66

with a random value v. The TPM then constructs a zero-knowledge proof with
the blinded value blind(f, v) as the public statement and f and v as the witness
terms.

The zero-knowledge proof also includes a value ζI which is a derivative of
the issuer’s basename bsnI and NI := daa exp(ζI , f). The function daa exp is
an exponentiation, which was modeled in [7] as a hash function. The use of
these values will be discussed further down when we look at the rogue-tagging
functionality.

The statement made in the proof is then that the same value f was used to
construct the term blind(f, v) and NI . The statement and witness are therefore
vectors of terms and defined as:

xjoin := (blind(f, v), NI , ζI)

wjoin := (f, v)

We define the corresponding witness relation as:

Rjoin := { ((x1,x2, x3), (w1, w2)) |
x1 = blind(w1, w2) ∧ x2 = daa exp(x3, w1) }

If the issuer accepts the proof, he then signs the blinded f -value with its
secret issuer’s key skI (with corresponding public key pk(skI)) and returns
this value x := blindsign(blind(f, v), skI) to the TPM. The TPM can then
construct the certificate by unblinding x with the secret random value v, i.e.
cert := unblind(x, v). The certificate is therefore equivalent to a valid blind
signature on f and can be used by the TPM to sign messages in the next sub-
protocol.

The join protocol however, also needs to ensure that only valid TPMs are
issued a certificate. The TPM therefore authenticates itself to the issuer through
a challenge-response nonce handshake: the TPM identifies itself to the issuer,
which then returns a nonce encrypted with the TPM’s public endorsement key.
The TPM then proves its identity by returning the hash of the nonce together
with the blinded f -value blind(f, v).

The join protocol then looks as follows in Alice-and-Bob notation:

T → I : id, zkpjoin(crs, blind(f, v), NI , ζI , f, v)

I → T : aenc(n, pk(ek(id)))

T → I : h(〈n, blind(f, v)〉)
I → T : blindsign(blind(f, v), skI)

Here we denote the TPM by T and the issuing entity as I. n is the nonce
with which the issuer challenges the TPM in the nonce handshake. With the
term id we refer to the identifier of the TPM T .

67

DAA-sign protocol

After successfully executing the join protocol, the TPM is now in possession
of a valid certificate cert for its f -value signed by the issuer. The TPM now
wants to use this certificate to authenticate a message m to a verifier. In other
words, he has to convince the verifier that the sender of the message m holds a
valid certificate. However, the TPM cannot simply send its certificate since that
would reveal its secret value f . Instead, the TPM can again produce a zero-
knowledge proof which shows that it knows a valid certificate. In order to link
the message m to the certificate, it is included as part of the public statement
inside the zero-knowledge proof (otherwise the protocol would be vulnerable to
a simple messsage substitution attack). In that way the proof serves as a sort
of signature on the message m with the certificate cert, wich we call a DAA-
signature.

Similarly to what was done in the join protocol, additional values are in-
cluded inside the zero-knowledge proof which serve again in the rogue-tagging
functionality which we will discuss below. We include ζ and define N :=
daa exp(ζ, f).

One might wonder, why these terms are not analogously named ζV and NV
as was done in the join protocol with regards to the issuer I. The reason is that
there are two ways in which this protocol may operate: we can either execute an
anonymous or a pseudonymous DAA-sign. In the anonymous DAA-sign ζ will
be a fresh value chosen by the TPM. In the pseudonymous DAA-sign ζ can be
understood as ζV and is derived deterministically from the verifier’s basename
bsnV , analogously to ζI in the join protocol. In this case N can be understood
as NV and takes the role of a verifier-specific pseudonym of the TPM.

In order to illustrate this we look at the following example: the TPM creates
two signatures – i.e. two zero-knowledge proofs – whereas one includes N1 =
daa exp(ζ1, f) and the other N2 = daa exp(ζ2, f). In case ζ is a deterministically
chosen derivative of bsnV , then N1 = N2, which means that the two signatures
can be linked. In case ζ is a fresh value however, there is no way the two
signatures can be connected to each other. It should be pointed out that in
neither case is it possible to link the signatures to the execution of the join
protocol nor to any signatures for other verifiers, hence it is just a verifier-
specific pseudonym.

We can therefore define the zero-knowledge proof used in this subprotocol
as:

xsign := (N, ζ, pk(skI),m)

wsign := (f, cert)

Whereas cert is defined as unblind(blindsign(blind(f, v), skI), v). We will con-
tinue to use this defintion of cert for brevity. We want to stress however, that
when we do this we understand the value f used in cert to be the same value as
the f used alongside it. We again also define the corresponding witness relation

68

as:

Rsign := { ((x1,x2, x3, x4), (w1, w2)) |
∃ v. x1 = daa exp(x2, w1) ∧ blindver(w2, blind(w1, v), x3) = true }

For this definition we had to include a function blindver(s, t, pk(sk)), which
evaluates to true if and only if the signature s is a valid signature of the term t
using the secret key sk. As the name of the function suggests, this verfication
is done “blindly”, i.e. the term t is not revealed through the process.

The DAA-sign protocol then consists of only two steps, i.e. the creation of
the zero-knowledge proof on the TPM’s side and the verification on the verifier’s
side. In Alice-and-Bob notation this can be written as follows (we again denote
the TPM as T and the verifier as V):

T → V : zkp(crs, N, ζ, pk(skI),m, f, cert)

Rogue-tagging

Since a TPM is a hardware module comprised of a single chip, it is very diffi-
cult to extract private information from it. However, it can still be done. In
case a TPM is compromised, an attacker is able to sign arbitrary messages and
since a certificate cannot be linked to a join protocol run, this cannot even be
traced back to the specific TPM. The adversary may even publish f -values and
corresponding certificates online, enabling anyone to fake DAA-signatures.

The protocol therefore includes a way in which compromised TPMs may be
handled. This is done through rogue-tagging, which uses two separate lists:

1. A list of revoked TPM ids which is maintained by the issuer

2. A rogue list which contains all f -values which have been made public,
so-called rogue f -values

Upon receiving an issuance request by a TPM via a zero-knowledge proof,
the issuer then checks the TPM’s id against its list of revoked ids and may
refuse the request. Note that this only works because the TPM authenticates
itself to the issuer. However, already issued certificates remain valid. This is
where the rogue list comes into play: let us consider a list of rogue f -values
F := (f1, ..., fn). Since the values ζ and N are part of the public statement of
the zero-knowledge proof, it can easily be checked whether f ∈ F by checking
whether N = daa exp(ζ, fi) for some i ∈ [1, n]. This means that a verifier can
easily determine whether a certificate has been marked rogue.

The role of ζI and NI is a bit less specific and has not been handeled in the
model from [7]. In the original paper by Brickell et al. [28] the authors mention

69

that the issuer may refuse a certificate request by a TPM which has sent too
many requests using different NI in a short amount of time. The authors point
out that what exactly “too many” means should be determined according to a
risk policy, which they state is beyond the scope of their paper.

As we will see below, we therefore decided, just as [7], not to model the
behaviour of the issuer according to the NI specifically. We however include NI
and ζI in the model of the zero-knowledge proof.

The model

For our model we have combined both subprotocols into a single Tamarin the-
ory, which can be found in [26]. As mentioned above, there are two versions of
this protocol, an anonymous and a pseudonymous one. We have opted to only
model the pseudonymous version. For the anonymous version, we would only
have to replace the value of ζ with a fresh value.

Since the protocol uses asymmetric encryption and a hash function, we in-
clude the Tamarin built-ins asymmetric-encryption and hashing. However,
there exists no Tamarin built-in which models blind signatures, we therefore
add the following functions to our model:

blind/2,
blindsign/2,
unblind/2,
blindmsg/1,
blindver/3,
true/0

And the single additional equational rule:

blindver(unblind(blindsign(blind(f, v), sk), v), blind(f, v), pk(sk))
= true,

blindmsg(unblind(blindsign(blind(f, v), sk), v)) = f

As we have often done in section 4.3, we model the public key as a one-way
function pk of the secret key. We do want to point out that it is not necessary
to model this as a function of the agent, i.e. the TPM’s id. This is because
just as we did in section 4.3, we can model the link between a certain secret key
or its corresponding secret key using a rule which generates the public-private
key-pair (i.e. simulating a public key infrastructure) and persistent facts. We
refer the reader to this previous section for more details.

The DAA protocol also makes use of other operations. In particular, we
need to focus on the creation of the f -values, ζ and N .

As previously mentioned, an f -value is defined as fcnt := H(daaseedid, cnt),
where H is some hash function. We model this as the one-way function (i.e.
a function without an equational rule) daa h/226. In order to more closely

26We could have also modeled this using the Tamarin built-in hash function h. We decided
to model this separately simply to highlight that it is a specific function which is described in
the original paper [28].

70

resemble the protocol specifications, we model the seed daaseedid as a persistent
fact !Seed(T, seed), which is generated – similarly to the private-public key-
pair – in a separate rule generate seed. The term seed is then added to
a TPM’s state upon initialisation and used to generate theoretically any but
practically only one of the TPM’s f -values.

The second parameter needed to calculate an f -value is a counter variable
in the protocol. We chose to model this as a fresh value. However, this does
not fully capture the nature of the counter variable. If the adversary learns
the current value of cnt and the daaseedid, she could determine all previously
created f -values of that TPM and therefore break anonymity. We model this
capability by introducing the persistent fact !Count(T, cnt) to the right-hand
side of the rule in which the f -value was created. Just as for every other secret,
we introduce rules enabling the adversary to learn cnt from this persistent fact.
In that way, all previously used values for cnt can be learnt by the adversary in
case she compromises a TPM.

As we mentioned before, we model the pseudonymous version of the protocol.
This means that both ζI and ζ are derivatives of the issuer’s and verifier’s
basename respectively. We model this deterministic derivation in the same way
as described in [7]: as a hash on the pairing of the basename and a public
constant, i.e. zetaI = h(<‘cnst’, bsnI>) and zeta = h(<‘cnst’, bsnV>),
with bsnI and bsnV referring to bsnI and bsnV respectively.27

Similarly to how we introduced the function daa h to model the hash function
H, we introduce daa exp/2 to model the exponentiation used in the computation
of NI and N . As stated in [28], in the DAA scheme, ζI and ζ are chosen in such
a way that the computation of the discrete logarithm is infeasible, which means
that we may simple model this as a one-way function.

We do want to mention that the protocol specification does not include any
exchange of identifiers beyond the TPM’s id sent alongside his join request. In
particular, this means that according to the specification, the TPM does not
actually know which I and which V he talks to. So the question that naturally
arises is how does the TPM know whose basename to use in the construction
of ζI and ζ. For simplicity reasons we are excluding this question from our
model, especially since this has no impact on the properties we will verify on
this protocol. We do want to stress however, that in case one wants to prove
linkability properties, this would have to be modeled differently. We refer the
reader to [23], where such linkability properties were modeled using Tamarin on
the ECC-variant of a DAA protocol.

Next, we need to model the zero-knowledge proofs and their verification

27While ζ is derived deterministically in the pseudonymous setting, it is not a fixed value.
The authors of [28] mention that how frequently the value of ζ changes will be decided based
on a risk policy. They argue that by changing ζ frequently enough, anonymity can also be
achieved in this way. However, we think the changing nature of ζ should not be included in
the symbolic model and instead recommend to either model the pseudonymous setting with
a fixed ζ or the anonymous one where ζ is a fresh value.

71

process. As we described in detail in section 4, we can model the zero-knowledge
proof as a (|x| + |w| + 2)-ary function. As we use two different proofs inside
the same protocol, we declare the two corresponding functions separately as:
zkp join/7 and zkp sign/8.

Both witness relations can be understood as simple conjunctions of predi-
cates and as we have seen in the conjunction example from 4.3, we can model
this using a single equational rule for each proof. Since the verification function
verifyZkp does not have variable arity, we can simply declare one and add the
two distinct equational rules:

verifyZkp(crs,
zkp_join(crs, blind(f,v), daa_exp(z,f), z, f, v, r)) = trueZKP

verifyZKP(crs,
zkp_sign(crs, daa_exp(zeta,f), zeta, pk(sk), m, f,
unblind(blindsign(blind(f,v), sk), v), r)) = trueZKP

We want to point out that the second equational rule is not a direct repre-
sentation of the witness relation of the DAA-sign protocol. The witness relation
contains the predicate ∃ v. blindver(w2, blind(w1, v), x3) = true. But blindver is
another function and can therefore not be included inside the equational rule.
However, if we want blindver to reduce to true, this is equivalent to all of the
equations below holding:

w2 = unblind(blindsign(blind(f, v), sk), v)

w1 =f

x3 = pk(sk)

As we can see, this is clearly captured by the equational rule we described
above.

What is still missing from the protocol model is the rogue-tagging mecha-
nism. We first of all, introduce two new predicates: RogueTPM(A) and RogueVal(f).
The first models the TPM A having been added to the issuer’s list of rogue
TPMs, while the latter represents the f -value f having been added to the rogue
list. As this is connected to the compromise of the TPM A, it would make
sense to add the action facts RogueTPM(A) and RogueVal(f) to the “reveal
rules”. However, the rogue-tagging only takes place, if the agent’s compromise
was detected. We therefore introduce for each secret a pair of rules representing
an undetected and a detected reveal. In the rule for the latter we then obvi-
ously include the aforementioned action facts. We have also specifically made a
distinction between a publishing of a certificate or an f -value, where the orig-
inating TPM is not known. Therefore in such a rule we would only add the
action fact RogueVal(f) (for the full set of “reveal rules” we refer the reader to
the corresponding Tamarin theory found in [26]):

rule publish_fValue:
[!FValue(T, f)]

--[Reveal(T), RogueVal(f)]->
[Out(f)]

72

rule detectedReveal_fValue:
[!FValue(T, f)]

--[Reveal(T), RogueTPM(T), RogueVal(f)]->
[Out(f)]

rule undetectedReveal_fValue:
[!FValue(T, f)]

--[Reveal(T)]->
[Out(f)]

As we have described in section 4, in case a witness is created during the
protocol run, we have to add it as a persistent fact on the right-hand side of the
protocol rule in which it was created. We therefore have added the corresponding
facts !FValue(T, f) and !Certificate(T, unblind(blindsign(blind(f, v),

skI), v)). We want to point out that while in the real-world scenario, the
TPM’s id, T , would obviously not be included as part of the released certificate
nor the f -value, we add it inside this persistent fact as it allows us to model
that T has been compromised (see above for an example).

What we then need to do is model the issuer’s behaviour with regards to the
rogue TPMs and the verifier’s behaviour with regards to rogue f -values. We do
this by adding actions and then corresponding restrictions.

We add the action AcceptedJoinRequest(T) to the issuer’s protocol rule in
which it has successfully completed the nonce handshake with the TPM. The
issuer then only proceeds if the request was made by a TPM which has not
previously been marked rogue. We can model this with the restriction:

restriction NotRogueTPM:
"All T #i. AcceptedJoinRequest(T)@i

==> not (Ex #j. RogueTPM(T)@j & j < i)"

To model the verifier’s behaviour, we add the action AcceptedDAASig(f),
which is naturally added to the singular verifier’s rule in which it verifies the
zero-knowledge proof. The accompanying restriction is:

restriction NotRogueVal:
"All f #i. AcceptedDAASig(f)@i

==> not (Ex #j. RogueVal(f)@j & j < i)"

Analogously to the action fact AcceptedJoinRequest we also include the
action Joined(T, unblind(blindsign(blind(f,v), skI), v)) in order to
model the agreement between the issuer and the TPM that the TPM has suc-
cessfully completed his join request.

As we have previously mentioned, we do not model the issuer’s behaviour
regarding vast amounts of requests from the same TPM. This means that no
other additions are necessary to model this mechanism.

In [7], the authors have chosen similar predicates, which they referred to as
rogue and rogueid. They do state that these two predicates depend on the val-
ues N , ζ and id. It is not entirely clear why they chose to do this and why they

73

did not choose to simply define it according the id and the f -value respectively.

There is one additional restriction we need to add to the protocol. As it
is specified now, the adversary can simply introduce her own f -value and (dis-
honest) secret key and then simply create a certificate with which she can sign
arbitrary messages m. Since the public key corresponding to the secret key
with which the certificate was signed is included as a public parameter, a zero-
knowledge proof constructed with this (invalid) certificate is clearly valid. While
we do not care that the adversary can construct an f -value, this may not be
the case for certificates. We therefore added the restriction that the secret key
with which the certificate is signed has been honestly generated:

restriction IsHonestIssuerKey:
"All sk #i. HonestIssuerKey(sk)@i
==> (Ex I #j. HonestKey(I, sk)@j)"

The action fact HonestIssuerKey(sk) can then simply be placed in the ver-
ifier’s rule where he either accepts or rejects the validity of the DAA-signature.
We consider this a reasonable restriction, since in real-life, both the TPM and
the verifier would have to have a list of issuers’ public keys they recognise, oth-
erwise all sorts of attacks would be possible. The above restriction successfully
models the behaviour that a verifier only accepts DAA-signatures which include
an issuer’s public key he considers to be honest.

Security properties

With the model now complete, we can take a look at the lemmas. Ideally, we
do not want to adjust the lemmas as we have defined them in 4.2. Since we now
suddenly have two distinct zero-knowledge proofs inside a single protocol, this
is unfortunately not entirely the case. While the soundness and completeness
lemmas did not need adjustments, the lemma for zero-knowledge did. The
reason behind this is that we want to make a statement that no part of the
witness can be learned by the adversary, even if a zero-knowledge proof was
created. This means we have to know the structure of the zero-knowledge
proof in order to make this statement (for the other lemmas we merely argued
regarding the witness tuple <w1,...,wn>, which we short-handed as the singular
term w). In particular, we have to know the number of witness terms in order
to make a general statement. By chance both zkp join and zkp sign contain
the same number of witness terms. We nonetheless want to introduce a way
this can be handled.

In order to do this, we need a way to distinguish the action facts placed for
one zero-knowledge proof from the ones placed for the other. However, we do not
want to do this for all the action facts, in order to avoid unnecessary overhead.
Instead, we recall the action fact CreatedZkp(P, w, crs) we introduced in 4.2.
As this action fact states that a zero-knowledge proof has been created, it is
therefore ideal to also encode the nature of this proof.

74

We introduce the modified action fact CreatedZkp(zkpId, P, w, crs),
whereas the parameter zkpId denotes the identifier of the zero-knowledge proof
which was created. After the creation of zkp join we therefore introduce the ac-
tion fact CreatedZkp(‘join’, P, w, crs) and analogously for zkp sign. We
can then simply state two separate zero-knowledge lemmas, whereas one refers
to CreatedZkp(‘join’, P, w, crs) and the other to CreatedZkp(‘sign’,

P, w, crs). This is a general method which can easily be applied to any other
protocol containing multiple zero-knowledge proofs. Whenever one wants to
make a general statement holding true for all zero-knowledge proofs, one can
simple make this statement for all possible zkpIds.

For this case study we also want to prove another property, namely the
authenticity of the TPM inside the join protocol. We have chosen this additional
property, as the authors from [7] stated that they found an attack on the DAA
protocol using their model. We will describe this attack in the next section.
First, we will look at the property defined in [7]:

JOINED(id, cnt, cert)⇒ CERTIFIED(id)

This can be easily translated into the following lemma using our previously
defined predicates:

∀ T f cert i.

Joined(T, f, cert)@i

⇒∃ j. AcceptedJoinRequest(T)@j

This very simple property just states that if a TPM T has joined under a
certificate cert, then it must also have been certified by an issuer, i.e. its join
request was accepted.

Results

Unfortunately, of the three zero-knowledge proof related lemmas, only the com-
pleteness lemma could be successfully verified. Both soundness and zero-knowledge
did not terminate. Upon further inspection, we could deduce that this non-
termination was linked to the presence of the equational rule for blindmsg, i.e.
blindmsg(unblind(blindsign(blind(f, v), sk), v)) = f. With the non-
terminating lemmas being the ones which contained a clause linked to the ad-
versary gaining knowledge (see the definitions for the lemmas in 4.2), we suspect
that this is the reason why the inclusion of this rule, which gives the adversary
more deduction capability, leads to non-termination.

Once we remove this equational rule from our model, we are again able
to successfully prove all three lemmas. We still consider this to be somewhat
of a successful result for the following reasons. First of all, the cause of the
non-termination is not directly linked to the zero-knowledge equational theory.

75

For another reason, if the zero-knowledge property holds, the adversary will in
almost no case be able to obtain the term unblind(blindsign(blind(f, v), sk), v),
which he needs in order to deduce the f -value. There are two exceptions. One
occurs if the adversary compromises the TPM which holds this certificate. This
is only because of how the term appears inside the protocol: it is sent as a witness
inside zkpsign and appears in the persistent “out fact” !Certificate(.), but
nowhere else. To model what the adversary can do with !Certificate(.), we
already have the following (strong) rules in place:

rule publish_certificate:
[!Certificate(T, unblind(blindsign(blind(f, v), sk), v))]

--[Reveal(T), RogueVal(f)]->
[Out(unblind(blindsign(blind(f, v), sk), v)), Out(f)]

rule dectedReveal_certificate:
[!Certificate(T, unblind(blindsign(blind(f, v), sk), v))]

--[Reveal(T), RogueTPM(T), RogueVal(f)]->
[Out(unblind(blindsign(blind(f, v), sk), v)), Out(f)]

rule undectedReveal_certificate:
[!Certificate(T, unblind(blindsign(blind(f, v), sk), v))]

--[Reveal(T), UndetectedReveal(T)]->
[Out(unblind(blindsign(blind(f, v), sk), v)), Out(f)]

The second exception occurs if the adversary compromises the TPM and
retrieves the random value v used to “blind” the f -value. We have not intro-
duced a rule to model this capability. It makes sense however, that the f -value
only remains secret until the originating TPM has been compromised and there
already exists a rule which models the reveal of v.

With these rules, we have already given the adversary the capability of
obtaining f from the value unblind(blindsign(blind(f, v), sk), v), namely by
adding the fact Out(f) to the right-hand side of the rule.

In other words, by having proven that the zero-knowledge property holds,
we can confidently say that all three lemmas hold. We therefore conclude that
we were successfully able to apply our model to a real-world protocol.

The question which is left open is whether or not we can also use our model
to prove other properties. In particular, we want to see if we can replicate
the attack presented in [7]. This attack is on the authenticity of the TPM
inside the join protocol. As we recall, the TPM authenticates itself to the issuer
with a challenge-response nonce handshake. This is vulnerable to a man-in-
the-middle attack. Here the adversary corrupts the secret endorsement key
of a TPM A. Another (uncorrupted) TPM B then sends a join request to
the issuer. The adversary interrupts this request, replaces the correct TPM’s
identifier B with the one of the corrupted TPM A. The issuer then conducts
the challenge-response handshake using the corrupted endorsement key of A, i.e.
the adversary sits in the middle. We can write this attack in the Alice-and-Bob
notation (we denote the adversary posing as the issuer by I(A)):

76

B → I(A) : B, zkp join(...blind(f, v)...)

A→ I : A, zkp join(...blind(f, v)...)

I → A : aenc(n, pk(ek(A))

I(A)→ B : aenc(n, pk(ek(B))

B → I : h(blind(f, v), n)

I → B : blindsign(blind(f, v), skI)

In the end, it is only B which holds the certificate: due to the zero-knowledge
property, the adversary cannot gain any knowledge regarding the secret compo-
nents of the zkp join function (also the adversary having already corrupted the
secret endorsement key of another TPM with which it could obtain a certificate
has nothing to gain from this). However, B receives the certificate without hav-
ing been authenticated by the issuer. B could be tagged as rogue or the issuer
may want to refuse to issue a certificate to B for another reason. This therefore
violates the security goals of the protocol.

Using the corresponding lemma we defined above for our protocol, we were
able to replicate this attack. We then decided to also implement the simple
protocol fix suggested by [7]: instead of sending the TPM’s id alongside the join
request, the id gets added to the public component of the zero-knowledge proof.
We again provide the full Tamarin theory in [26].

However, some attacks are still possible. First of all, if an issuer is compro-
mised, the adversary can trivially sign arbitrary join requests without having
authenticated the TPM. We consider this to not be a consequential attack, since
this property can obviously only be fulfilled until the issuer has been compro-
mised. Indeed, it is not clear why the lemma in [7] was not adjusted accordingly,
as it clearly cannot hold.

But even if we add that authenticity can only hold until the adversary has
compromised an issuer, an attack similar to the one described by the authors is
unfortunately still possible. In this case, the adversary additionally obtains the
f -value of B by compromising him. She can therefore construct her own proof
and can successfully inject the compromised agent’s A identifier into the public
component of the proof28.

This attack is possible for two reasons: for one we differentiate between
an undetected and a detected reveal and have therefore made the adversary
stronger. Since we were unable to obtain a copy of the source code of the
model from [7], we cannot compare this to the capabilities of their adversary.
However, it does seem reasonable that authenticity only holds unless an f -value
was corrupted and not tagged rogue. The other reason for which the attack is
possible is that the issuer does not check whether or not an f -value with which a
TPM issues a join request has been tagged rogue. The issuer therefore reissues
a certificate for a rogue f -value. This certificate is quite useless however since

28For details of the attack we refer the reader to the attack diagram found in [26]

77

it already has been made invalid through the rogue tag. We therefore have
decided to adjust the lemma to the following:

∀ T f cert i.

Joined(T, f, cert)@i ∧ ¬(∃ I k. RevealIssuer(I)@k)

∧ ¬(∃ k. UndectedRogueVal(f)@k)

∧ ¬(∃ k. RogueVal(f)@k)

⇒∃ j. AcceptedJoinRequest(T)@j

We were able to successfully prove the lemma with the above adjustment
on the fixed protocol according to the suggestion from [7] (and without the
equational rule for blindmsg29). This means that our model was also successful
in proving additional protocol properties.

29Due to the RevealIssuer(.) action fact, the verification of the lemma would otherwise again
not terminate.

78

6 Alternative models

In section 4 we have introduced a general model for zero-knowledge proofs,
which we have applied to a series of simple examples in 4.3 and our case study
protocol in section 5.

While our model succeeds in modeling real-world cases, we also identified
some down sides to using this straight-forward, traditional approach to modeling
cryptographic primitives in Tamarin. In this section we will therefore explore
two alternative approaches to this “traditional” model. We first introduce what
we call a “restriction-only” model and then give alternative definitions of the
soundness, completeness and zero-knowledge lemmas we presented in 4.2.

6.1 Restriction-only model

We mainly want to address two major issues we found with our “traditional
model”. First of all, we came across two examples in 4.3, which could not be
modeled with our approach. The natural question that arises is whether this
is a limitation inherent in the symbolic model or could we eliminate this by
altering our model.

The second disadvantage we found is that even with regards to the proofs
that can be modeled, we have to encode a potentially complex verification pro-
cess inside sometimes multiple term equations. This is error-prone and, depend-
ing on the proof’s complexity, introduces many maintainability issues. As the
goal of proving properties in the symbolic model is precisely to limit human
error and create more reliable proofs, this misses the mark.

The reason for this added complexity is that we are actually encoding the
definition of the witness relation into these multiple equations. A witness rela-
tion is nothing else but a Boolean formula over predicates which have to hold
for a pair (x,w). It is therefore not surprising why we did not – and indeed
cannot – always represent a Boolean formula in a set of equational rules.

In this section we propose a new way to encode the witness relation and
therefore not only immensely reduce the complexity of the specification of
the verification process, but are also able to successfully model our counter-
examples.

In the general model introduced in section 4 we have already come across the
restriction functionality provided by Tamarin. As stated in [15], it “restrict[s]
the set of traces to be considered in the protocol analysis” and is therefore
particularly useful when it comes to modeling the internal behaviour of a proto-
col participant. The manual specifically recommends to use restrictions during
the verification process of signatures when using the built-in theory for sign-
ing. Examples are given where an “equality restriction” is defined, such that
only protocol traces are considered in which the signature verification function
verify can be reduced to true. We have used this exact mechanism inside our
own model. What is interesting about restrictions is that they are written in
first-order logic, in other words, we are able to write any Boolean formula inside

79

a restriction. The natural question that therefore arises is whether we can en-
code the entire verification process including the witness relation in a restriction.

When we look at the verification process itself, this is nothing else than the
verifier accepting the proof if (x,w) ∈ R and otherwise rejecting it. If we want
to translate this into a restriction, this is the same as saying that we restrict
all protocol traces in which (x,w) /∈ R. We therefore must only find a way to
encode this membership in R as a Boolean formula. We recall from section 2.2
that formally, the witness relation is defined as:

R := { (x,w) | Predicates over x and w }

We can then translate the verification process to the following formula:

∀ crs x w i. ValidZkp(crs, zkp(crs, x, w))@i

=⇒ Predicates over x and w

This formula is of course directly translatable to a syntax suitable for a
Tamarin restriction and replaces the previous equality restriction. We can then
replace the action fact Eq(zkp(.), trueZkp), with ValidZkp(crs, zkp(.)).
As we noted in section 4.1, the common reference string crs used in the creation
of the proof has to be the same as the one used inside the verification. We want
to stress that this condition is also fulfilled when using a restriction as specified
above.

Our general model described in section 4 can then be further simplified by
removing the function terms verifyZkp and trueZkp, as well as any corre-
sponding equational rules. Instead, we directly translate the witness relation as
described above and add the corresponding action and restriction. No further
adjustments are necessary.

Due to the sole use of restrictions for the verification process, we call this a
restriction-only model. With this new approach we have found a way to directly
and cleanly encode the witness relation and in many ways more successfully
model the behaviour of the verifier algorithm.

We have tested this adapted model on all of our previous examples, including
the case study protocol, and were able to successfully model all of them using this
restriction-only approach. Below we show the encoding of the witness relation
as restrictions for some of the examples from section 4.3. For the full Tamarin
theory files, we refer the reader to [26].

Examples

As a first example, we want to again refer to the running example introduced
in section 2.2. We recall the witness relation which is of the most simple form:

R := {(x,w) | ∃m. x = aenc(m, pk(w))}

80

According to our specifications above, this translates to:

restriction IsValidZKP:
"All crs x w r #i. ValidZKP(crs, zkp(crs, x, w, r))@i

==> Ex m. x = aenc(m, pk(w))"

As we can see, this is a direct translation of the predicates in the witness
relation. If we look at the equational rule we presented in 4.3 for the same
zero-knowledge proof, it would not be as straight-forward to infer the witness
relation from the equation – even much less so for other examples where we
required multiple equations. Whereas using our restriction-based model, the
translation backwards is just as straight-forward.

As a next example, we want to consider the zero-knowledge proofs for which
we failed to produce a valid model. We recall the following witness relation:

R := {((x1, x2), (w1, w2)) |
∃m1,m2. x1 = senc(m1, w1) ∧ x2 = senc(m2, w2) ∧ w1 6= w2}

While we could not find a correct representation through an equational rule
set, we can now model the verification process as the following restriction:

restriction IsValidZKP:
"All crs x1 x2 w1 w2 r #i.
ValidZKP(crs, zkp(crs, x1, x2, w1, w2, r))@i

==> (Ex m. x1 = senc(m,w1))
& (Ex m. x2 = senc(m,w2))
& not w1 = w2"

With the traditional model, we could run a protocol execution with a false
proof – i.e. where the two secret keys were not distinct – in which the verifier
has accepted the proof instead of rejecting it. In our restriction-only model, the
“executability lemma” fails, which means that the false proof was rejected as it
should have been. When running the restriction-only model with a valid proof,
as expected, we can prove all the lemmas defined in section 4.2 as well as the
“executability lemma”. The same holds for the other example we gave which
could not be modeled with our “traditional” model.

As a last example, we want to look at the zero-knowledge proofs from our
case study from section 5. In this example we introduced two distinct zero-
knowledge proofs inside the same protocol. This of course means that in our
restriction-only model we need to define two restrictions to represent the two
distinct witness relations. We can of course do this by adding two separate
predicates ValidZkp join(.) and ValidZkp sign(.) for the corresponding functions
zkp join and zkp sign.

The restriction for the witness relation Rjoin is quite straight-forward and
we will not further expand on this. The case is slightly more interesting for the
witness relation for the DAA-sign zero-knowledge proof, Rsign. Just as with

81

the traditional model we are again not able to directly translate the predicate
∃ v. blindver(w2, blind(w1, v), x3) = true. The reason here is probably less obvi-
ous. Following the approach we have used so far, we would want to write the
restriction like this:

restriction IsValidZkp_sign:
"All crs x1 x2 x3 x4 w1 w2 #i.
ValidZkp_sign(crs, zkp_sign(crs, x1, x2, x3, x4, w1, w2))@i

==> (x1 = daa_exp(x2, w1)
& (Ex v sk. blindver(w2, blind(w1, v), x3) = true))"

The issue however is that Tamarin does not allow for reducible function
symbols to be used inside restrictions. This therefore leads to a wellformedness
error which states that the restriction uses terms of the wrong form. We instead
encode the equivalent witness relation we described in section 5. This leads to
the restriction:

restriction IsValidZkp_sign:
"All crs x1 x2 x3 x4 w1 w2 #i.
ValidZkp_sign(crs, zkp_sign(crs, x1, x2, x3, x4, w1, w2))@i

==> (x1 = daa_exp(x2, w1)
& (Ex v sk. x3 = pk(sk) &

w2 = unblind(blindsign(blind(w1, v), sk), v)
)

)"

We recognise that the only limitation of our model might be that reducible
function terms may not be included. However, in all the examples that we
have encountered where this was an issue initially, we could find an equivalent
encoding such as the one for Rsign.

In conclusion, we were not able to find a counter-example of a zero-knowledge
proof which could not be modeled using the restriction-only approach.

6.2 Alternative lemma definition

In addition to the restriction-only model alternative we have discussed in the
previous section, we can introduce another alternative to our model, this time
with regards to the lemmas.

The reason we propose this alternative is perhaps more subtle than the
one for introducing the restriction-only model. In order to construct the zero-
knowledge proof lemmas in our model, we rely heavily on action facts which are
bound to agents, i.e. the prover and the verifier (see section 4.2 for details). If
we now compare this to the mathematical definition of zero-knowledge proofs
we have given in section 2.2, we can see that they are not making the exact
same statement.

This issue is especially apparent in the definition of the soundness lemma, see
definition 4.1. To a reader who is familiar with writing lemmas in Tamarin, the
last part of the lemma, i.e. the statement that soundness can only be guaranteed
until the adversary has learned the witness, will probably be very familiar. It is
common to state secrecy lemmas in a similar way, i.e. one can only guarantee

82

secrecy until an agent has been compromised. We also saw something similar
regarding the authenticity lemma we presented for our case study in section
5. However, with regards to zero-knowledge proofs, this does not accurately
depict how soundness is defined in the mathematical sense. The last two terms
in the above lemma can be understood to represent the adversary’s ability to
construct proofs herself. We then say that if a statement was verified it was
valid unless the statement was made by the adversary. But perhaps somewhat
counter-intuitively, we do not care who makes the statement, only that it is
valid. So if the adversary learns a valid witness, she may construct a proof for
a valid statement and that should just as much be accepted as if it were made
by an honest protocol participant.

We therefore propose in this section an alternative version to the definitions
provided in section 4.2, namely one that is closer to the mathematical definition.

We will illustrate the general idea behind this alternative definition with
the soundness property. If we look at the mathematical definition of soundness
from 2.13, at a high-level, this property states that if a statement x is false, the
verifier must reject it. We can turn this around to saying that if the verifier has
accepted a proof, then its statement must have been valid.

In many ways, this is already reflected in our definition of the soundness
lemma (see definition 4.1). The only part we want to get rid of is the statement
that soundness only holds for proofs generated by honest agents. The issue
is however that we define a valid statement in our lemma as an honest prover
existing who knows the witness. So the issue is in fact the way in which we argue
about the validity of the statement. We therefore have to find an alternative to
how we encode this.

Mathematically a valid statement is defined as there existing a w, such that
(x,w) ∈ R. An obvious approach is therefore to directly encode this into the
lemma, i.e. we want to say that if a proof has been verified then there exists a
w such that the predicates over x and w from the witness relation hold. As it
turns out, this approach indeed works and fixes our issue.

Before we define the alternative versions of the lemmas, we have to introduce
new predicates, which replace the ones we have defined in 4.2:

1. CreatedZkpForWitness(P,w, crs): The prover, i.e. agent P , has created a
zero-knowledge proof for the witness w using the common reference string
crs. This predicate replaces the previous CreatedZkp(P,w, crs).

2. ReceivedZkp(V, id, zkp(.)): The verifier, i.e. agent V , with protocol run
identifier id has received the zero-knowledge proof zkp(.).

3. VerifiedZkp(V, id, zkp(.)): The verifier, i.e. agent V , with protocol run
identifier id has accepted the zero-knowledge proof zkp(.) as valid.

4. Finish(A, id): (unchanged)

83

We have also made use of another predicate VerifiedZkpForWitness(P,w, crs).
However, we only use this inside our executability lemma and we therefore do
not define this further.

We can now define the following lemmas:

Definition 6.1 (Alternative (knowledge) soundness lemma). The alternative
knowledge soundness lemma for a zero-knowledge proof with the corre-
sponding witness relation R = {(x,w) | Predicates over x and w} is defined as
follows:

∀ V id i1 i2 x1...xn w1...wm r crs.

VerifiedZkp(V, id, zkp(crs, 〈x1, ..., xn〉, 〈w1, ..., wm〉, r))@i1
∧HonestCRS(crs)@i2

=⇒ Predicates over x and w

Definition 6.2 (Alternative completeness lemma). The alternative com-
pleteness lemma for a zero-knowledge proof with the corresponding witness
relation R = {(x,w) | Predicates over x and w} is defined as follows:

∀ V id i1 i2 x1...xn w1...wm r crs.

(Predicates over x and w)

∧ReceivedZkp(V, id, zkp(crs, 〈x1, ..., xn〉, 〈w1, ..., wm〉, r))@i1
∧HonestCRS(crs)@i2

∧Finish(V, id)@i3

=⇒ ∃ k. VerifiedZkp(V, id, zkp(crs, 〈x1, ..., xn〉, 〈w1, ..., wm〉, r))@k

Definition 6.3 (Alternative zero-knowledge lemma). The alternative zero-
knowledge lemma is defined as follows:

¬(∃ P w1...wm crs i1 i2.

HonestCRS(crs)@i1

∧CreatedZkpForWitness(P, 〈w1, ..., wn〉, crs)@i2

∧(∃ j. K(w1)@j ∨ ... ∨ ∃ j. K(wn)@j)

∧¬(∃ j.Reveal(P)@j))

The first thing we want to note is that the soundness and the completeness
lemma now have to be defined specific to a zero-knowledge proof, as they contain
the definition of their corresponding witness relation. We can also note that the
zero-knowledge lemma did actually not change. We merely replaced the old
predicate CreatedZkp(.) with CreatedZkpForWitness(.). This is due to the fact
that it makes reference to the validity of the statement.

As we can see, we have successfully managed to eliminate the requirement
that the statement must have been made by an honest prover. What is interest-
ing is that this way of formulating the lemmas actually enables us to finally prove
the existential soundness property on its own. For some zero-knowledge proofs

84

we can now remove the witness as a parameter of the zkp function, such that
zkp(crs, x, r). We therefore define the following existential soundness lemma:

Definition 6.4 ((Existential) soundness lemma). The existential soundness
lemma for a zero-knowledge proof with the corresponding witness relation R =
{(x,w) | Predicates over x and w} is defined as follows:

∀ V id i1 i2 x1...xn r crs.

VerifiedZkp(V, id, zkp(crs, 〈x1, ..., xn〉, r))@i1
∧HonestCRS(crs)@i2

=⇒∃ w1...wm. Predicates over x and w

Since we have removed the witness from the zero-knowledge proof function,
we also have to adjust the completeness lemma analogously. We have therefore
managed to formulate lemmas which are as close as we can possibly get to the
mathematical definitions of zero-knowledge proofs.

Examples

We will not look at any examples in detail and instead refer the reader to the
Tamarin theories provided in [26], in the directory corresponding to this section
(i.e. section 6.2)30. We have implemented this model based on the restriction-
only model we introduced in section 6.1, we want to point out however that these
alternative lemmas can also be applied to the traditional model from section 4.

There is however one particularity we want to mention. We also applied this
modification of our traditional model to the case study protocol we introduced
in 5. We recall that this protocol includes two distinct zero-knowledge proofs.
As we have stated before, we are now – theoretically – able to prove existential
soundness instead of knowledge soundness. However, this is not practically
applicable to all zero-knowledge proofs. As we can see the zkpsign proof cannot
be modeled that way. This is due to the fact that there is an inter-dependency
between the various terms of the witness, i.e. f corresponds to the first term of
the witness and must also be used to construct the second part of the witness,
namely the certificate (we refer the reader to section 5 for details). We can
however still use the definition for the alternative knowledge soundness lemma
we have given above.

With regards to our case study, there was an additional advantage to proving
the alternative lemma definitions. We recall that there was an issue regarding
non-termination of the proof of the lemmas containing the Reveal(.) predicate.
With this no longer being the case in the alternative soundness lemma, the ver-
ification terminated even when including the equational rule for the blindmsg(.)
function.

30Some additional alternative lemma formulations can also be found in the Tamarin theory
files in the directory corresponding to the previous section 6.1 in [26]. We refer the reader to
the accompanying read-me file.

85

initial
restriction-

only
alternative-

lemma

DAA 6.831 8.8735 1.783
simple 0.161 0.167 0.163

conjunction 0.181 0.187 0.177

Table 11: Runtime in [s] of proofs in Tamarin of various models.

6.3 Discussion of alternative models

In this section, we will evaluate possible advantages or disadvantages the modifi-
cations we presented in 6.1 and 6.2 might have over the initial model introduced
in section 4.

We have analysed the run-time of several of our models on a 2.3 GHz Quad-
core Intel i7 and with Tamarin version 1.6.0. We present the results in table
11. For obvious reasons, we have only run the proofs on the case study variant
without the equational rule for blindmsg, as otherwise we would have a non-
terminating result. As we can see, for our simple examples, the differences
in run-time are only marginal and cannot be considered statistically relevant.
With regards to the run-time of our case study, the results are however quite
clear. We will now discuss this in further detail.

First of all, we have to mention that the number of lemmas which were
proven in the initial, restriction-only and alternative-lemma models are not the
same. This is due to the fact that in the alternative-lemma model we had to
introduce a separate lemma for each of the zero-knowledge proofs, not only for
zero-knowledge but also soundness and completeness. But even though in that
model we had to verify more lemmas, the runtime was significantly lower than
for the initial model. Whereas the restriction-only model required slightly more
runtime. This seems to consistently be the case also for our simple examples,
however as we mentioned before, we do not consider these variations to be
statistically relevant.

As previously discussed, there are some limitations to our initial model.
Nonetheless, there are advantages to this model with regards to runtime. For
certain complex protocols it could be beneficial to decrease verification time.
This is especially the case when paired with the alternate-lemma model. While
our examples all use the restriction-model for the verification process, the alternate-
lemma model can also be used together with the initial model. This could
increase runtime dramatically.

It might therefore seem strange to even include the original definition of
the lemmas. However, there could be proofs where it might not be possible to
postulate the lemmas in the required way, i.e. we might not find a way to satis-
factorily encode the predicates of the witness relation. As we have mentioned in
section 6.1, a possible limitation to the restriction-only model might be the fact
that certain function symbols may not appear inside a restriction. This might

86

lead to similar problems in lemmas. Another advantage of the initial definition
of the lemmas is that they are more generalisable as they are independent of
the specific zero-knowledge proof.

87

7 Comparing Tamarin to existing models

With the previously existing models we presented in section 3 showing so many
vast differences, we want to analyse in this section where our own model from
section 4 along with its modifications from section 6 falls.

At first glance, our initial model from section 4 seems to be closest to
the model from [8]. We can compare the two zero-knowledge proof functions,
zkp(crs, x, w, r) (our own) to ZK(crs(N1), x, w,N2) (from [8]). This comparison
becomes even stronger when we look at how we defined the verification process
in figure 1 to the one listed in table 8: in both cases do we define equational
rules reducing to (some notion of) true under the condition that (x,w) ∈ R.
As we have previously mentioned though, we do not know how the authors of
[8] encoded the witness relation. It could be conceivable however, that they
also reverted back to defining a set of equational rules. If this is the case, our
initial model can be viewed as the Tamarin equivalent to the model presented in
[8]. This would also mean that their model must show the same limitations as
ours and vice versa. As we were unable to obtain a copy of the source code de-
spite multiple attempts, we can unfortunately not make any further conclusions.

As we have previously discussed there are some obvious limitations to our
initial model. These apparently stem from the fact that we use an equational
rule set to encode the witness relation instead of a Boolean formula, since we
were able to successfully counter these limitations in the restriction-only model.
Because of this, it might seem that the model from [7] is stronger than the
initial model as it uses the formula F . This however is not always the case.
We recall that the authors described a compiler which could convert the zero-
knowledge proof specifications into an acceptable ProVerif input. However, they
have mentioned that ProVerif would on occasion no longer terminate on the out-
put of their compiler. This is apparently mainly the case due to the presence of
the Boolean operators ∧ and ∨. For these cases, they described a mechanism
with which – under certain conditions – the output could be modified such that
ProVerif could again terminate. Unfortunately we could not inspect this thor-
oughly, since we – as previously mentioned – could not obtain a copy of the
source code. However, as far as we could deduce from examples from the paper,
this mechanism includes the expansion of an equational rule for the verification
process to a set. This appears to be quite similar to our encoding of the witness
relation in the initial model. It is also not clear if this adjustment has to be
done manually or not. If that is the case, then it appears that our initial model
is quite similar to the model from [7] and that the latter – apart from the conve-
nience of an initial compiler – possibly has the same short-comings as our model.

The most interesting comparison however is between our restriction-only
model to the one presented in [6]. We recall that the latter model included the
notion of a “true zero-knowledge proof”, which evaluates to true or false in a

88

logical sense instead of using equational rules. This is very similar to how the
verification is done in the restriction-only model, as restrictions are written in
first-order logic. Therefore, a statement is also considered valid according to
whether or not a Boolean formula evaluates to true. The similarity between
the models is even stronger if we consider that “true zero-knowledge proofs”
need to evaluate to true in a syntactical sense. Since we are not allowed to use
function symbols for which there exists an equational rule inside restrictions, it
appears that the equality of ZKTerms is similar to the terms that may appear
in a restriction.

The model from [6] however is much more restrictive regarding the terms
allowed inside these “true zero-knowledge proofs”. We leave it as an open ques-
tion to evaluate whether or not the model from [6] could be extended to allow for
additional (as well as arbitrary user-defined) terms and whether our restriction-
only model then constitutes a valid implementation of that model.

Additionally, there is a strong indication that our restriction-only model in
combination with the alternative formulation of the lemmas is no longer as re-
strictive with regards to the conditions on zero-knowledge proofs presented in
[6] and then weakened in [8]. Especially with regards to the extractability prop-
erty which states that in the abstract model one needs to include the witness to
construct the proof. As we have shown in section 6.2, this is not always the case.

We also want to discuss the issue we encountered regarding non-termination
in our case study. With this being the same case study as in [7] and there having
also been some non-termination issues mentioned in that paper, we want to
compare this in more detail. From the paper [7] it appears that non-termination
was not issue when it came to the model of the case study, however this was not
mentioned specifically. However, there is no indication that these appearances
of non-termination are connected. Unfortunately, it is not always clear why
Tamarin does not terminate. We leave it as an open question to compare the
model of the DAA protocol presented here to the ECC-variant modeled in [23]
and [22].

In conclusion, our results suggest that our model is stronger and has less
limitations than the other models. We can achieve this specifically by modeling
the zero-knowledge proofs in Tamarin in which we use its special functionality of
restrictions. However, we can make no formal claim regarding the strength of our
model at this point. In general, more formalisation is necessary to understand
the exact limits of our proposed model and in particular compare it to the strict
limitations which were outlined in particular in [6] and [8].

89

8 Conclusion and future work

We were successfully able to formulate a generic model for zero-knowledge proofs
in Tamarin. We have both applied this model to various simple examples as
well as a real-world protocol in our case study. Together with the possible
modifications of the model we presented in section 6, we are confident to have
provided a generic model which can directly be applied to the proofs of many
more real-world protocols.

We have additionally provided a thorough discussion of the variations of our
own models in section 6.3 as well as a comparison of our models with the previ-
ously existing ones in section 7. These sections should ideally help a reader in
any decision with regards to the modeling of future protocols.

Some open questions have already been posed in previous sections. We will
summarise here now what we consider to be the most significant ones. In general,
we did not consider any formal analysis of the limitations of our model in this
thesis. We consider it especially relevant to investigate whether it is actually
possible to model all zero-knowledge proofs in our model. It would additionally
be interesting to know what the formal differences are between our initial and
the restriction-only model.

In previous models, i.e. [6] and [8], the authors outlined clear restrictions on
zero-knowledge proofs such that computational soundness could still be fulfilled.
At first glance, some of their arguments were not convincing. We especially were
able to circumvent their condition of extractability (see section 7 for details) in
some cases. However, as we stated in section 2.1, we did not require computa-
tional soundness in this thesis. It would be interesting however, to investigate
whether or not computational soundness first of all, holds in our model and then
second of all, whether it is still upheld without the extractability condition. An
open question is indeed whether we can weaken the restrictions stipulated in [8]
further or perhaps even dispose of all restrictions.

As stated in section 7, our restriction-only model seems quite close to the
model from [6] which uses the notion of “true zero-knowledge proofs” in its ver-
fication process. It is however an open question, how these two are connected
in a formal sense. Also, to our knowledge, there so far exists no implementa-
tion of the afore-mentioned model. By understanding the formal connections
between the two models, we would therefore also know whether our proposed
model constitutes a valid implementation.

Lastly, we have not provided zero-knowledge proofs as a built-in functionality
in Tamarin. By answering the above questions, one might get more clarity
regarding not only the formal limitations of our model, but also whether or it
could be provided as a Tamarin built-in.

90

References

[1] M. Chase, T. Perrin, and G. Zaverucha, “The Signal Private Group System
and Anonymous Credentials Supporting Efficient Verifiable Encryption,”
Cryptology ePrint Archive, Report 2019/1416, 2019, https://ia.cr/2019/
1416.

[2] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof-Systems,” in Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, ser. STOC ’85. Association
for Computing Machinery, 1985, pp. 291–304.

[3] D. Dolev and A. Yao, “On the Security of Public Key Protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[4] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN Prover
for the Symbolic Analysis of Security Protocols,” in Computer Aided Verifi-
cation, ser. Lecture Notes in Computer Science, N. Sharygina and H. Veith,
Eds. Springer, 2013, pp. 696–701.

[5] B. Blanchet and B. Smyth, “ProVerif 1.85: Automatic Cryptographic Pro-
tocol Verifier, User Manual and Tutorial,” 2011.

[6] M. Backes and D. Unruh, “Computational Soundness of Symbolic Zero-
Knowledge Proofs Against Active Attackers,” in 2008 21st IEEE Computer
Security Foundations Symposium. IEEE, 2008, pp. 255–269.

[7] M. Backes, M. Maffei, and D. Unruh, “Zero-Knowledge in the Applied Pi-
calculus and Automated Verification of the Direct Anonymous Attestation
Protocol,” in 2008 IEEE Symposium on Security and Privacy (sp 2008).
IEEE, 2008, pp. 202–215.

[8] M. Backes, F. Bendun, and D. Unruh, “Computational Soundness of Sym-
bolic Zero-Knowledge Proofs: Weaker Assumptions and Mechanized Veri-
fication,” in Principles of Security and Trust, ser. Lecture Notes in Com-
puter Science, D. Basin and J. C. Mitchell, Eds., vol. 7796. Springer Berlin
Heidelberg, 2013, pp. 206–225.

[9] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge
University Press, 1998.

[10] D. Jackson, “Improving automated protocol verification: Real world cryp-
tography,” PhD thesis, University of Oxford, 2020.

[11] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated Analysis of
Diffie-Hellman Protocols and Advanced Security Properties,” in 2012 IEEE
25th Computer Security Foundations Symposium. IEEE, 2012, pp. 78–94.

[12] R. Sasse and C. Sprenger, “Formal Methods for Information Security,”
Lecture notes from spring semester 2018 course, ETH Zurich.

91

[13] K. Milner, “Detecting the Misuse of Secrets:,” PhD thesis, University of
Oxford, 2018.

[14] M. Dehnel-Wild, “Component-Based Security Under Partial Compromise,”
PhD thesis, University of Oxford, 2018.

[15] Tamarin-Prover Manual. [Online] https://tamarin-prover.github.io/
manual (Last accessed on 2021-07-18).

[16] O. Goldreich, Foundations of Cryptography - Volume I Basic Tools. Cam-
bridge University Press, 2007.

[17] M. Blum, P. Feldman, and S. Micali, “Non-Interactive Zero-Knowledge and
Its Applications,” in Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, ser. STOC ’88. Association for Computing
Machinery, 1988, pp. 103–112.

[18] M. Bellare, G. Fuchsbauer, and A. Scafuro, “NIZKs with an Untrusted
CRS: Security in the Face of Parameter Subversion,” in Proceedings, Part
II, of the 22nd International Conference on Advances in Cryptology —
ASIACRYPT 2016, ser. Lecture Notes in Computer Science, J. H. Cheon
and T. Takagi, Eds., vol. 10032. Springer Berlin Heidelberg, 2016, pp.
777–804.

[19] M. Blum, A. De Santis, S. Micali, and G. Persiano, “Noninteractive Zero-
Knowledge,” SIAM Journal on Computing, vol. 20, no. 6, pp. 1084–1118,
1991.

[20] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography.
[Online] https://crypto.stanford.edu/∼dabo/cryptobook/BonehShoup 0 5.
pdf (Last accessed on 2021-08-28).

[21] M. Backes, D. Hofheinz, and D. Unruh, “CoSP: A general framework for
computational soundness proofs,” in Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security, ser. CCS ’09. Associa-
tion for Computing Machinery, 2009, pp. 66–78.

[22] J. Whitefield, L. Chen, R. Sasse, S. Schneider, H. Treharne, and S. Wese-
meyer, “A Symbolic Analysis of ECC-Based Direct Anonymous Attesta-
tion,” in 2019 IEEE European Symposium on Security and Privacy (EuroS
P). IEEE, 2019, pp. 127–141.

[23] S. Wesemeyer, C. J. Newton, H. Treharne, L. Chen, R. Sasse, and J. White-
field, “Formal Analysis and Implementation of a TPM 2.0-based Direct
Anonymous Attestation Scheme,” in Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, ser. ASIA CCS
’20. Association for Computing Machinery, 2020, pp. 784–798.

92

[24] W. Wang, Y. Qin, J. Liu, and D. Feng. Formal Analysis of a TTP-Free
Blacklistable Anonymous Credentials System (Full Version). [Online]
https://eprint.iacr.org/2017/1106.pdf (Last accessed on 2021-08-28).

[25] M. Backes, F. Bendun, M. Maffei, E. Mohammadi, and K. Pecina, “Sym-
bolic Malleable Zero-Knowledge Proofs,” in 2015 IEEE 28th Computer Se-
curity Foundations Symposium, 2015, pp. 412–426.

[26] S. Fischlin. Tamarin theories. [Online] https://www.ethz.ch/content/dam/
ethz/special-interest/infk/inst-infsec/information-security-group-dam/
research/software/fischlin-zk src.zip (Last accessed on 2021-09-04).

[27] S. Fischlin. Tamarin theories, personal repository. [Online] https:
//github.com/inafischlin/symb-zkp.git (Last accessed on 2021-09-02).

[28] E. Brickell, J. Camenisch, and L. Chen, “Direct Anonymous Attestation,”
in Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’04, no. 205. Association for Computing
Machinery, 2004, pp. 132–145.

93

