ETH:-zurich Research Collection

Master Thesis

SCION’s Hidden Paths Design Formal Security Analysis

Author(s):
Zenoni, Mauro

Publication Date:
2020

Permanent Link:
https://doi.org/10.3929/ethz-b-000411121 -

Rights / License:

In Copyright - Non-Commercial Use Permitted —

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000411121
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

SCION'’s Hidden Paths Design
Formal Security Analysis

Master Thesis
Mauro Zenoni

April 7, 2020

Professor: Prof. Dr. David Basin
Supervisors: Dr. Ralf Sasse, Dr. Jonghoon Kwon

Department of Computer Science, ETH Ziirich

Abstract

When designing complex software architectures, shortcomings con-
cerning its intended security properties are simply to be expected. For-
tunately, nowadays we can rely on sophisticated tools to support the
formal modeling and analysis of security protocols, which can help to
drastically reduce the possibility of real-world attacks on the resulting
infrastructure. More precisely, with the use of automated provers, we
can obtain formal proofs for all the specific security properties that we
are interested in verifying for the message exchanges under analysis.
In this thesis, we focus on SCION, a security-first Future Internet ar-
chitecture developed at ETH Zurich. In particular, we start from an
intuition on how to address a lack of server authentication in SCION’s
Hidden Paths Design and, from there, we propose a sensible solution
to this problem that maximizes the reuse of well established proto-
cols and minimizes the deployment efforts, all while making sure that
we are not violating SCION'’s architectural principles. Finally, we per-
form a formal security analysis of our solution by leveraging Tamarin,
a state-of-the-art security protocol verification tool that comes with a
sound and complete proof search algorithm. In this context, we also
explain how our analysis successfully yielded all the results we were
hoping for, thus confirming the correctness of our proposed solution
and justifying its suitability to be adopted as part of SCION’s specifi-
cation.

Contents

Contents

1 Introduction

2 SCION Internet Architecture
Architecture Overview

2.1
2.2
2.3
24
2.5

Control Plane
Data Plane

Control Plane Authentication

Hidden Paths Design

25.1 Hidden Paths Infrastructure
2.5.2 Hidden Paths Server Authentication.

3 Tamarin Prover

5 Reissuance Protocol

3.1 Security ProtocolModel
311 Terms. e
312 Rules
313 Facts
3.14 Security Protocol Theory

32 AdversaryModel oo oL

3.3 Security Properties

34 Restrictions. e

3.5 ProofSearch

4 Problem Statement and Proposed Solution

41 Intuition

42 Assumptions.

43 Realization e

4.4 Rationale for the Proposed Solution

23
25
26
27
28

31

ii

CONTENTS

5.1 Reissuance Protocol Specification 31
511 Initial Knowledge. 33

512 Message Exchange 33

5.2 Reissuance Protocol Extension 37
5.3 Modeling Choices and Abstractions 38
53.1 Signatures 38

53.2 Digital Certificates 38

5.3.3 Abstracted SCION Topology 39

534 Abstracted TRC 39

53.5 SCION Certificates Dissemination 40

536 Timestamps 42

5.3.7 Abstracted SCION Certificates Structure 43

54 Modeled Protocol Specification 44
54.1 InfiniteRoles 45

54.2 Model Splitting o L. 46

6 Proof Summary 47
6.1 AdversaryModel L. 47
6.2 Security Properties 48
6.2.1 Agreement Properties 49

6.3 Proofsand Results 54

7 Conclusion 59
Bibliography 63
Abbreviations 67
Glossary 69
A TRC Structure 71
A1l Thevalidityobject 72
A2 The attributesobject 72
A3 Thekeysobject 72
A4 The signatureobject. 72

B SCION Certificates Structure 73
B.1 The validityobject 74
B2 Thekeysobject 74
B.3 Theissuerobject 74

C AS Certificate Reissuance Protocol 75
C.1 Initial Knowledge 75
C.2 Full Formal Specification. 76

iv

Contents

D Abstracted Reissuance Protocol 81
D.1 Initial Knowledge 81
D.2 Full Formal Specification 82

Chapter 1

Introduction

Traditionally, security analyses of cryptographic protocols have been con-
ducted by providing informal arguments for their presumed correctness.
Such arguments have oftentimes been proven to be too weak or even flawed,
thus failing to foresee real-world attacks on protocols otherwise deemed
trustworthy. Nowadays, we can instead rely on powerful tools to support
the formal modeling and analysis of security protocols. Especially, with the
use of automated provers, we can obtain formal proofs for all the specific
security properties that we are interested in verifying for the message ex-
changes under analysis. For these purposes, in the course of this thesis we
will leverage Tamarin [3], a state-of-the-art security protocol verification tool
which comes with a sound and complete proof search algorithm.

More precisely, the security analysis that we are going to perform concerns
SCION [2], a security-first Future Internet architecture developed at ETH
Zurich and designed for high-availability and efficient packet delivery, even
in the presence of malicious operators and devices actively corrupting the
network. This network architecture leverages the Isolation Principle, which
aggregates different Autonomous Systems (ASes) deploying SCION into inter-
connected Isolation Domains (ISDs), each one protected from external influ-
ences and maintaining independent roots of trust.

Now, let us imagine coming up with an idea on how to solve the latest issue
with the design of a complex software architecture. What is more, let us sup-
pose that the problem to be addressed concerns a security critical aspect of
the system under development. How to be sure, then, that a solution based
on mere intuitions can effectively be implemented without compromising
the overall security of the resulting system?

This is exactly the question that we had to ask ourselves after the engineers
at Anapaya Systems [1], a spin-off of ETH Zurich leading the implementation
of the SCION architecture for the consumer market, brought to our attention

1. INTRODUCTION

the existence of a critical authentication problem in SCION’s specification.
In particular, we came upon a lack of server authentication in the Hidden
Paths Design [17], whereas, in that context, a Beacon Server (BS) and a Hidden
Path Server (HPS) located in different ASes are supposed to only communi-
cate over a secure channel, i.e., authenticated at both ends and confidential.
Hence, the need to provide some assurance over the idea of bootstrapping
TLS trust directly from SCION'’s AS Certificates, so as to solve this security
shortcoming by establishing an encrypted QUIC [9] channel between the
two servers. That entails both finding a concrete solution which realizes
this intuition and carrying out a formal security analysis of the resulting
protocol to verify its legitimacy.

Contributions

We expect our work to be of particular interest to the people at Anapaya
Systems, to the scholars of the Network Security group, and to future users
of Tamarin. In particular, throughout this thesis we will present a variety
of achievements encompassing different topics concerning the field of infor-
mation security. Our work spans discussions about the security of SCION’s
architecture, considerations on design choices in the context of Hidden Path
communication, symbolic protocol modeling and formal security analysis in
Tamarin.

Below, we are going to provide a summary of our main contributions.

* We have investigated the security problem afflicting the Hidden Paths
Design and expanded our inquiry to the broader lack of server authen-
tication mechanisms in SCION.

* We have found a solution implementing the idea of bootstrapping TLS
trust from AS Certificates. When coming up with a concrete protocol
realizing this intuition, we focused on ease of deployability. Hence, we
made the effort to reuse well established mechanisms already imple-
mented in SCION and to only require minimal changes to the existing
SCION infrastructure.

e We have modeled in Tamarin both the Reissuance Protocol, i.e., the
protocol in SCION that we have based our solution on, and our pro-
posed extension for it. In this phase, we had to make some interesting
modeling choices to effectively reproduce the Reissuance Protocol in
Tamarin.

¢ We have performed a formal security analysis of the Reissuance Pro-
tocol in Tamarin, thus providing strong assurance of its security prop-
erties. Given the successful results from the Tamarin prover, we were
able to conclude that our proposed extension for the Reissuance Pro-

tocol constitutes a suitable solution to the authentication problem in
the Hidden Paths Design.

Related Work

For our security analysis, we decided to rely on the Tamarin prover. Other
protocol verification tools, such as ProVerif [6] and Scyther [7], already en-
joyed great popularity when Tamarin was first introduced in a 2012 paper
[15] from Schmidt et al. However, Tamarin presents itself as a more mod-
ern alternative, capable, among other things, of providing fully automated
support for handling Diffie-Hellman exponentiation [15] and for verifying
observational equivalence properties [5]. The reason we lean on this partic-
ular tool for the purposes of our thesis, though, is that it allows us to make
use of AC-operators [14], including multisets and natural numbers, to spec-
ify temporal properties in an intuitive way, and to simultaneously deal with
an unbounded number of sessions and a mutable global state [4]. This com-
bination of features sets Tamarin apart from its predecessors and, as we will
see in later chapters, is of primary importance for modeling the protocols
that will be considered in our security analysis.

The solution we have designed to bootstrap a QUIC channel between a BS
and an HPS, while relevant today and much requested by the engineers
at Anapaya Systems to deploy a first fully working implementation of the
Hidden Paths Design, could be replaced in the future by PISKES [13]. This
is a proposed extension to the SCION architecture that refines and expands
the Dynamically Recreatable Keys (DRKey) system. DRKey was originally part
of SCION'’s specification [12], but it was later set aside because of some
vulnerabilities caused by an improper application of signature schemes that
were recently discovered by leveraging the Tamarin prover [10] .

PISKES is a symmetric-key derivation system which assumes the prior exis-
tence of an asymmetric key pair for each of the participating ASes in SCION.
The corresponding public key has to be authenticated directly by SCION'’s
Control Plane PKI (CP-PKI). We have listed this key as the Encryption Key in
the AS Certificate format specification in Section B.2 of the Appendix. All
ASes that want to deploy PISKES also need to set up an infrastructure of
dedicated PISKES key servers. These key servers, among other things, are
responsible for exchanging with other ASes the symmetric root keys which
will later be used to derive a hierarchy of symmetric keys for all the enti-
ties located within these ASes. This initial key establishment is carried out
between pairs of ASes and is secured via their Encryption Keys.

This symmetric-key derivation system implements full end-to-end authen-
ticity and secrecy of communication between two entities located in different
ASes in SCION, provided that these source and destination ASes are hon-
est. In particular, while for the solution proposed in this thesis we assume

1. INTRODUCTION

the existence of a trusted local Certificate Authority (CA) service in the source
and destination ASes, for PISKES we need to assume that their respective
key servers are not compromised, or otherwise an attacker could imperson-
ate any entity located within these ASes. Under this assumption, PISKES
enables a BS and an HPS located in different ASes to obtain a Pre-Shared
Key (PSK) [19] which can be directly used to bootstrap an encrypted QUIC
channel connecting the two.

Outline

Preliminary to the understanding of this thesis are some fundamental no-
tions on Tamarin and on SCION. These topics will be fully covered in the
next two introductory chapters. In the fourth chapter, we will illustrate step
by step how our attempt to answer a request for help from the engineers
at Anapaya Systems evolved into the solution that we ended up modeling
in Tamarin. In chapter five, we will presents all the relevant details of the
Reissuance Protocol and the main modeling choices needed to reproduce it
effectively in Tamarin. In the sixth chapter, we will introduce the adversary
model we assumed in our security analysis, the security properties we chose
to verify, and the formal results we were able to obtain from the Tamarin
prover. Finally, in the very last chapter, we will draw the final conclusions
on our work.

All the Tamarin models that we have produced in course of this thesis and

all the formal proofs of the security properties that we have verified for them

have been made available for consultation?.

ITamarin Models and Proofs:
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/
information-security-group-dam/research/software/scion-hps-zenoni.zip.

Chapter 2

SCION Internet Architecture

SCION is a Future Internet architecture designed for high-availability and
efficient packet delivery, even in the presence of malicious operators and
devices actively corrupting the network. As of 2020, SCION is an on ongo-
ing project at ETH Zurich. This architecture was extensively documented in
a 2017 book [12] from the Network Security group. More up to date doc-
umentation over specific processes in SCION can be found in the GitHub
repository! where the project is maintained.

2.1 Architecture Overview

The fundamental building block of the entire SCION architecture is what we
call Isolation Domain (ISD), i.e., a logical grouping for Autonomous Systems
(ASes). A privileged set of these ASes that we call Primary ASes constitutes
the ISD Core and carries out all administrative tasks within the ISD.

Each ISD is regulated by its own Trust Root Configuration (TRC), which is
defined and maintained by the ISD Core and contains a list of all Primary
ASes in the ISD, as well as some public keys which serve as the roots of trust
for all SCION Certificates from the same ISD. Policies governing the use and
update of these keys are also encoded within the TRC itself. Since authen-
tication in SCION strictly relies on SCION Certificates and these certificates
are authenticated by the ISD’s roots of trust, the TRC can be seen as the sole
way for bootstrapping all authentications for ASes within the same ISD.

In a process called beaconing, Primary ASes make use of Path-segment Con-
struction Beacons (PCBs) to explore possible inter- and intra-ISD routing paths.
As they traverse the network, these beacons collect path information that
they accumulate inside cryptographically protected fields called hop fields
and progressively build up path segments. A few PCBs are later selected and

1SCION codebase: https://github.com/scionproto/scion. Accessed: 2020-02-25

2. SCION INTERNET ARCHITECTURE

Figure 2.1: Simple SCION Architecture Example. We can distinguish three ISDs, each one contain-
ing several interconnected ASes. ISD Cores are represented at the top of the ISD. The Primary ASes are
respectively A and B for the first ISD, C and D for the second ISD, and E, F and G for the third one.

their path segments registered at dedicated servers, thus making the discov-
ered routing paths available to end-hosts. These phases of path exploration
and path registration constitute SCION’s Control Plane architecture and will
be further discussed in the next section.

In SCION, we distinguish between border routers and internal routers. While
border routers are meant for connecting ASes together, internal routers only
forward packets within a single AS. A fundamental paradigm of the SCION
Architecture is that packets sent through the network already carry with
them all AS-level routing information that border routers use to direct them
towards their destination via the desired sequence of ASes. This paradigm,
usually referred to as packet-carried forwarding state, completely removes the
need for stateful inter-AS forwarding tables at the border routers, thus es-
tablishing a more efficient stateless forwarding plane.

In order to obtain the end-to-end path required for forwarding a packet to
its destination, an end-host must first retrieve the necessary path segments

2.2. Control Plane

via path lookup and combine them appropriately via path combination. These
two processes, which together are referred to as path resolution, constitute
SCION’s Data Plane architecture and will be explained in further detail in
Section 2.3.

The main components of SCION’s AS infrastructure are:

® Beacon Servers: they are responsible for the beaconing process and
hence for the periodic creation and propagation of PCBs.

® Path Servers: they are organized in a hierarchy of caches, and are re-
sponsible for registering path segments provided by beacon servers
and for making them available to the end-hosts.

e Certificate Servers: they are responsible for managing the cryptographic
keys of an AS and for caching TRCs and SCION Certificates.

2.2 Control Plane

While inter-ISD beaconing allows Primary ASes to discover paths to other
Primary ASes from different ISDs, unprivileged ASes learn paths to their
ISD Core via intra-ISD beaconing.

In particular, in SCION the following path segments can be assembled:
* Up-Segment: a path segment from an unprivileged AS to its ISD Core.

* Down-Segment: a path segment from the ISD Core to an unprivileged
AS in the same ISD.

¢ Core-Segment: a path segment between Primary ASes.

Typically, path segments are bidirectional, meaning that mirroring up- and
down-segments can be converted and used interchangeably.

Beaconing is a periodic and asynchronous process which originates in the
ISD Core, where Core Beacon Servers generate PCBs. For discovering up- and
down-segments, these beacons are then propagated in a multipath flood
to downstream ASes, while for learning core-segments, they are spread
throughout the entire network traversing only Primary ASes.

At every AS, a beacon server adds to the incoming PCB a new hop field
before forwarding it to the next AS. This hop field contains the identifiers
for the ingress and egress links of the AS, thus allowing for a fine-grained
representation of paths which distinguishes between disjoint paths even for
the same AS sequence. For example, note in Figure 2.1 how, in the rightmost
ISD, ASes R and Q, or even Primary ASes E and F, are connected via more
than one direct link.

2. SCION INTERNET ARCHITECTURE

Each hop field is cryptographically protected in order to ensure path cor-
rectness. In particular, an AS adding this forwarding information to a PCB,
makes sure to also compute a message authentication code (MAC) over it, us-
ing a secret symmetric key only known to its own beacon servers and border
routers. This MAC can be efficiently verified by the border routers of the
same AS during package forwarding. Moreover, each AS uses its private
Signing Key to sign all PCBs that it forwards. In Section 2.4 we will see how
these signatures can be used by all entities to verify the authenticity of a
PCB or of the corresponding path segment.

Every time a beacon server receives a PCB, it can decide to extract its path
segment and register it at an appropriate path server. SCION distinguishes
between core path servers, which are located inside the ISD Core, and lo-
cal path servers, which reside in unprivileged ASes. More precisely, down-
segments and core-segments are registered at core path servers, while up-
segments are only registered at local servers.

2.3 Data Plane

We have seen in the previous section how up-, down-, and core-segments
are discovered and registered at appropriate path servers across the SCION
network.

Now, by referring to Figure 2.1, let us consider a source end-host located in
AS K, inside the leftmost ISD, wanting to deliver a packet to a destination
end-host located in AS R, inside the rightmost ISD. In order to do so, K
needs a valid path from source to destination, that he is going to obtain by
combining an up-segment to the source ISD Core, a core-segment between
source and destination ISD Cores, and finally a down-segment from the
destination ISD Core to AS R.

The source end-host can fetch all required path segments by querying a local
path server. First, this local path server responds with an up-path to one of
the Primary ASes in the same ISD, e.g., a path from K to B. Then, if not
already present inside its cache, the local path server will contact a Primary
AS in the same ISD for the remaining core- and down-segments. In turn, this
core path server will query a core path server in the destination ISD Core
if the requested path segments were not already cached locally. Eventually,
the local path server will update its cache with the newly retrieved core-
and down-segments and serve them to the source end-host. In our running
example, a valid core-segment could describe a path from B to E, and a
down-segment a path for reaching R from E.

Once the end-to-end forwarding path is assembled, this is added to the
header of the SCION packet, which is now ready to leave AS K. SCION bor-
der routers will take care of forwarding the packet to the next AS following

2.4. Control Plane Authentication

the links specified in its header. Each AS involved in the packet delivery can
verify the authenticity of this forwarding information by checking the MAC
that was previously computed in the beaconing phase.

All along the network, the packet is efficiently forwarded without the need
for intermediate border routers to inspect the address of the destination end-
host in R nor to consult any inter-AS routing table. Only border routers in
AS R will read the destination address to deliver the packet to the correct
local end-host. It is worth making clear that SCION does not define the
protocols used for intra-AS communication. Hence, an AS is free to choose
independently the technology used for the delivery of packets between the
end-hosts and their respective border routers.

2.4 Control Plane Authentication

We have previously mentioned how all authentications in SCION are based
on SCION Certificates. In particular, SCION’s Control Plane PKI (CP-PKI)
enables each ISD to set up and maintain its own roots of trust, and also to
authenticate the identities of all ASes within it. This can be effectively done
by issuing and disseminating SCION Certificates which bind AS identities
to public keys and which are verifiable via the corresponding roots of trust.
In particular, every AS is uniquely identified in SCION by the concatenation
of an ISD identifier and an AS identifier, which we are going to call ISD-AS
identifier from now on.

The TRC serves as a root certificate. It is self-signed by a quorum of Pri-
mary ASes and defines the ISD’s roots of trust, i.e., a set of root public keys
which are considered to be axiomatically trusted. TRC updates must also
be signed by a quorum of Primary ASes, thus ensuring that each TRC can
be validated against all of its previous versions, starting from the base TRC
which bootstrapped the update chain. Moreover, all Primary ASes in an ISD
are synchronized in a way that allows them to hold a consistent view over
their TRC, i.e., no two TRCs should exist with same version number and
different contents for the same ISD. Lastly, there is an important distinction
to make between a valid and an active TRC. A TRC which is formally correct
and consistent with its previous versions is said to be valid when its validity
period has already started but not yet ended. An active TRC is a valid TRC
which is also either the latest TRC version or the previous one, if this is still
considered to be in its grace period. The exact structure of a TRC, with a short
description of all its fields, can be found in Section A of the Appendix.

We distinguish between two kinds of SCION Certificates: AS Certificates and
Issuer Certificates. In short, AS Certificates are used by all ASes whenever
they need to produce a cryptographic signature in SCION, e.g., for signing
PCBs during beaconing. On the other hand, Issuer Certificates can only be

2. SCION INTERNET ARCHITECTURE

10

owned by a special category of Primary ASes, called Issuing ASes, and they
are used uniquely to authenticate AS Certificates in the same ISD. The exact
structure of both SCION Certificates, with a short description of all their
fields, can be found in Section B of the Appendix.

Key Name Location of Public Key Usage
Offline Root Key TRC Sensitive TRC update
Online Root Key TRC Regular TRC update
Issuing Key TRC Signing Issuer Certificates
Issuer Certificate Key Issuer Certificate Signing AS Certificates
Signing Key AS Certificate Signing Control Plane messages

Table 2.1: Summary of the main private keys in SCION’s CP-PKI

Figure 2.2: Trust flow in SCION’s CP-PKI

As listed in Table 2.1, a TRC authenticates up to three public keys for each
Primary AS. The first two are associated with the private keys involved in

2.4. Control Plane Authentication

the processes of safety-critical and automated TRC update, which are, respec-
tively, the Offline and the Online Root Key. The last one is associated with
the private key responsible for the authentication of Issuer Certificates, i.e.,
the Issuing Key. To complete the picture, the authenticity of the Signing Key
of an AS can be verified via its AS Certificate, and the authenticity of the
Issuer Certificate Key signing this AS Certificate can be verified via the asso-
ciated Issuer Certificate. In turn, the authenticity of the Issuing Key signing
this Issuer Certificate follows directly from the authenticity of the TRC itself.
The scheme in Figure 2.2 further illustrates how trust in SCION flows from
TRCs to AS Certificates via Issuer Certificates.

Offline and Online Root Keys can only be held by a special category of
Primary ASes, called Voting ASes. On the other hand, holding Issuing Keys
and Issuer Certificate Keys is responsibility of Issuing ASes. Finally, any AS,
regardless of its privileges, can hold a Signing Key.

Updating an Issuer Certificate only involves the owner Issuing AS self-
signing the certificate with its own Issuing Key. By contrast, updating an
AS Certificate involves both a Requesting AS and an Issuing AS signing
the certificate with its own Issuer Certificate Key. We will see in detail the
protocol for updating AS Certificates in Section 5.

For any given AS Certificate, there exists exactly one Certificate Chain. This
consists of the AS Certificate itself paired with the Issuer Certificate authenti-
cating it. Since the AS Certificate internally references this Issuer Certificate,
a Certificate Chain is uniquely identified just by the pair of AS Certificate
tields (subject, version). See Section B of the Appendix for the full de-
scription of an AS Certificate.

Newly created or updated TRCs and Certificate Chains are made available
to certificate servers across the SCION network via a process of dissemination.
Availability of all these certificates at various entities in an AS is required, for
example, when a beacon server wants to verify a PCB to propagate further,
when a path server wants to verify a path segment to register, or simply,
when an end-host wants to verify the authenticity of a message signed by
the Signing Key of another AS. When a beacon server is missing a SCION
Certificate or a TRC for verifying one of the signatures in a PCB, it can re-
quest it from the sending beacon server. When a path server is missing one
of these certificates for verifying one of the signatures in a path segment, it
can either request it from the beacon server who is trying to register it or
to the remote path server who provided the segment. Both beacon servers
and paths servers take care of submitting the retrieved TRCs and SCION
Certificates at a local certificate server, so that end-hosts can directly retrieve
them from there. Additionally, end-hosts will receive all missing TRCs and
SCION Certificates needed for a full path verification when querying their
local path server for an end-to-end path to their desired communication

11

2. SCION INTERNET ARCHITECTURE

12

partner. We can then say that dissemination relies on the process of beacon-
ing for updating beacon servers, and on the processes of path registration
and path lookup for updating respectively path servers and end-hosts.

2.5 Hidden Paths Design

We have already seen in Section 2.2 how path servers maintain and dis-
tribute path segments all across the SCION network in order to allow a
server located inside an AS to be reached by any other remote end-host of
SCION. Hence, by default, path segments in SCION are intended to be pub-
lic and retrievable without restrictions by any network entity, who is then
free to assemble valid forwarding paths with them.

Hidden Path communication [17] was introduced to provide a solution for all
use cases where a specific service located inside an AS should only be ac-
cessed by authorized remote end-hosts. The idea behind it is to avoid regis-
tering certain path segments at regular path servers, but effectively keeping
them hidden by only sharing them out-of-band with selected authorized
entities. Only these entities will then be able to construct the valid forward-
ing path needed for reaching the remote service. Of course, restrictions
can be put in place at the application layer for preventing unauthorized en-
tities from accessing the service. However, it is particularly beneficial for
precluding the possibility of a denial-of-service attack to completely forbid
unauthorized parties from establishing connections to the service in the first
place.

2.5.1 Hidden Paths Infrastructure

In the context of Hidden Path communication, all down-segments that an AS
wants to maintain hidden are registered at a dedicated Hidden Path Server
(HPS), instead of at a regular path server. These special servers enforce
access control and only allow authorized entities to retrieve the hidden path
segments needed for creating forwarding paths. On the other hand, up-
segments are still registered at a local path server, but in a way that end-
hosts recognize as being hidden path segments.

During the path registration phase, a Beacon Server (BS) must now distin-
guish between public path segments to register at regular path servers and
hidden path segments to register at HPSes. Furthermore, hidden path seg-
ments can be registered as both up- and down-segments, as up-segments
only, or as down-segments only. These decisions are guided by dedicated
policies which are expressed in a configuration file local to the BS.

An illustration summarizing the communication scheme of the Hidden Paths
Design can be found in Figure 2.3, on page 14.

2.5. Hidden Paths Design

Hidden Path Group

A group of ASes among which hidden paths are shared is what we call a
Hidden Path Group (HPG). A Hidden Path Group Configuration (HPGCfg) is the
configuration file governing an HPG and defining the following fields:

® GroupID: unique group identifier.
¢ Version: configuration file version number.
¢ Owner: ISD-AS identifier of the AS owning the HPG.

e Writers: ISD-AS identifiers of all ASes in the group with permission
to register hidden path segments.

* Readers: ISD-AS identifiers of all ASes in the group with permission
to query hidden path segments.

* Registries: ISD-AS identifiers of all ASes containing HPSes which
can be used by Writer ASes of the group to register hidden path seg-
ments.

The Owner AS creates the HPG. It is also responsible for sharing out-of-band
the HPGCfg with all members of the group and for keeping it updated to
its latest version.

Every AS belonging to an HPG deploys at least one HPS. When queried
by an authorized local end-host for a hidden path segment, an HPS can re-
solve the request in one of the following two ways. If the HPS belongs to
a Registry AS of the HPG, it can return the requested hidden path segment
directly from its database. Otherwise, if the desired hidden path segment
is not already present inside its cache, the HPS resolves the request by for-
warding the query to a Registry AS of the HPG and by updating its cache
with the reply.

2.5.2 Hidden Paths Server Authentication

One of the unsolved security aspects of the Hidden Paths Design concerns
server authentication. In particular, for the process of hidden path segment
registration to be secure, a BS needs to authenticate the HPS before submit-
ting a hidden path segment to it. Nevertheless, no mechanism providing
this kind of server authentication is part of the SCION architecture yet.

13

2. SCION INTERNET ARCHITECTURE

Figure 2.3: Hidden Path communication scheme. After an HPG is created, Writer ASes can register
hidden down-segments at HPSes of Registry ASes of their group. These hidden path segments can later
be queried by Reader ASes of the group to start communicating with the Writer ASes.

14

Chapter 3

Tamarin Prover

Given the formal specification of a security protocol and a security property
defined for such a protocol, proving correctness of the protocol specification
with respect to the security property is no trivial task.

The complexity of this problem largely comes from the size of the state
space that needs exploration before concluding, whether the specified secu-
rity property holds for the security protocol or not. In particular, the size of
such state space is strongly affected by three possible sources of unbound-
edness in the security protocol:

1. Unbounded Messages: no restrictions on the complexity of messages
that can be composed by an intruder

2. Unbounded Fresh Nonces: no limit on the number of distinct fresh
nonces that can be generated in the model

3. Unbounded Sessions: no bounds on how many concurrent protocol
sessions of the security protocols can be executed

In the most general case, i.e., when dealing with an unbounded number of
messages, fresh nonces, and sessions, the resulting state space is infinite and
the task of proving correctness of a security protocol becomes an undecid-
able problem. This means that no finite procedure exists for fully exploring
the state space, and hence an automated verification tool such as the Tamarin
prover is not guaranteed termination.

This generic unbounded setting is exactly the one we are going to consider
throughout our entire formal security analysis. In particular, we are going
to leverage the Tamarin prover for modeling SCION’s AS Certificate Reis-
suance Protocol, which will be introduced in Section 5, and for proving
several security properties for its specification.

In short, the Tamarin prover takes as input the symbolic model of a security
protocol, the specification of the security property to be verified, and the

15

3. TAMARIN PROVER

16

definition of the assumed adversary capabilities. Albeit without any guar-
antee of termination, Tamarin’s automated proof search procedure, later ex-
plained in Section 3.5, is both sound and complete. This means that, if the
automated proof search algorithm terminates, the tool always returns either
a formal proof of correctness or a counterexample, i.e., the trace of a possible
attack violating the security property in question.

3.1 Security Protocol Model

Let us introduce the specification for a simple security protocol, which will
help us explain Tamarin’s modeling features throughout this entire chapter.

ids, sks, pks, pkr idr, skr, pkr, pks

Agent S Agent R

generate nonce x

X, {x}sks

Figure 3.1: Toy Example. Agent S signs a fresh nonce and sends it to Agent R.

In Figure 3.1 we can see that our reference toy protocol is unidirectional and
involves two distinct roles: a sender and a receiver. In this example, Agent S
plays the role of sender, while Agent R plays the role of receiver. Each agent
is characterized by its own session identifier, respectively ids and idg, and
by a public-private key pair. Here, we have keys (sks, pks) for Agent S and
(skr, pkr) for Agent R. The initial knowledge of each of these agents also
comprises each other’s identity and public key. Agent S, instantiating the
sender role, generates a fresh nonce x and signs it with his private key sksg,
thus producing signature {x },. Then, Agent S sends both the signed nonce
and its signature to Agent R, who instantiates the role of receiver. Agent R
will only accept the received nonce after verifying the signature with respect

to pks.

In this toy protocol, we will only consider roles having finite length. How-
ever, we will see in Section 5.4.1 that for the purposes of our analysis we

3.1. Security Protocol Model

will necessarily have to define infinite length roles.

The Tamarin prover enables us to reason about the correctness of this simple
security protocol in an automated way. Nevertheless, we first need to model
the security protocol using Tamarin’s symbolic language, which is based on
multiset rewriting and defined using three main elements: terms, rules and
facts.

3.1.1 Terms

In Tamarin, a term is the most elementary building block of the modeling
language. A term comes in the form of either a variable, a constant, or an
n-ary function over terms, e.g., f(t1,t,...,t,). Tamarin already defines sev-
eral built-in functions, but arbitrary function symbols can additionally be
defined by the user.

We call a substitution a function mapping variables to terms. Moreover, we
say that a term t matches another term g if there exists a substitution ¢ such
that, when applied to all variables in g, equals ¢ syntactically. This substitu-
tion ¢ is what we call the matching substitution.

The sort of a variable can optionally be made explicit using prefixes:
* ~x specifies that variable x is fresh
¢ $x specifies that variable x is public
e #i specifies that variable i stands for a timepoint

Generic terms that do not belong to any of these three sorts remain without
prefix.

3.1.2 Rules

Multiset rewriting is a formalism for specifying a labeled transition system de-
fined over multisets of facts. A multiset, or bag, is just a set where the same
elements are allowed to appear multiple times. We are going to explain in
detail what a fact is in the next subsection.

In Tamarin, a rewrite rule follows this pattern:
rule examplerule: [1] --[al -->[r]

The keyword rule indicates the beginning of the rule named example_rule
which describes a single transition from left-hand side / to right-hand side
r, labeled as a. Letters I, r, and a are nothing but placeholders for multisets
of facts. In particular, facts contained in / and r are referred to as state
facts, because they keep track of the progress of processes in the system,

17

3. TAMARIN PROVER

18

while facts in a are called action facts, because they record the event of the
rule being triggered. The ordered succession of such events is what we call
execution trace of the transition system.

To be more explicit, a state in the transition system is a multiset containing
state facts as well as special facts denoting the adversary knowledge, which
we are going to introduce later in Section 3.2. Transitioning from one state
to the next one is made possible via rewrite rules. A rule is only triggered
when the current system state is a superset of an instantiation of its left-
hand side with a matching substitution . When triggered, all state facts
in the right-hand side of the rule are instantiated with ¢ and added to the
next system state. On the other hand, all instantiations of the action facts
of the rule are added to the execution trace along with the timepoint of the
triggering event.

3.1.3 Facts

In Tamarin, a fact follows this pattern:

F(t1) o tn)

F is a fact symbol, while each ¢; is a term. Arity of a fact is fixed, i.e., the
same fact symbol cannot appear multiple times with a different number of
arguments.

By default, a fact in Tamarin is linear. If a linear fact occurs on the left-hand
side of a rule but not on the right-hand side, then this fact is consumed by
the rule and hence removed from the next state of the transition system. On
the other hand, a persistent fact is never removed from the state once it is
introduced. In Tamarin, a fact is persistent when prefixed with a bang, e.g.,
'F(t_.1, ..., tm).

A special fact called Fr is used to model the generation of unique fresh val-
ues. This fact can only appear on the left-hand side of a rewrite rule and its
only argument is the fresh value being generated. Fresh values are gener-
ally used to represent random nonces, cryptographic keys, and identifiers.
In Section 5.3.6 we will see how these fresh nonces can also be used to model
timestamps in cryptographic certificates.

Two additional special facts are also needed to model the interaction of pro-
tocol participants with the adversary-controlled network (see Section 3.2 for
details about Tamarin’s threat model). The In fact models an agent receiving
a message from the network and can only be found on the left-hand side of
a rewrite rule, while the Out fact models an agent sending a message out to
the network and can only be found on the right-hand side.

WO ND U WN =

3.1. Security Protocol Model

3.1.4 Security Protocol Theory

theory ToySecurityProtocol
begin
builtins: signing
// Public key infrastructure
rule Register_pk:
[Fr(~skA)]
-=>
['Ltk($A, ~skA), 'Pk($A, pk(~skA)), Out(pk(~skA))]
// Initialization rules
rule Init_S:
[Fr(~idS), !'Ltk($S, ~skS), !Pk($R, pkR)]
--[Create_S($S, ~idS)]1->
[Initial_State_S($S, ~idS, ~skS, pkR, $R) 1]
rule Init_R:
[Fr(~idR), !'Ltk($R, ~skR), !Pk($S, pkS) 1]
--[Create_R($R, ~idR)]1->
[Initial_State_R($R, ~idR, ~skR, pkS, $S) 1]
// Protocol rules
rule Agent_S_send:
let message = <~x, sign(~x, ~skS)>
in
[Initial_State_S($S, ~idS, ~skS, pkR, $R), Fr(~x) 1]
--[Send($S, message) 1->
[Out(message)
rule Agent_R_receive:
let message = <x, signed_x>
in
[Initial_State_R($R, ~idR, ~skR, pkS, $S), In(message)]
--[Recv($R, message), Equal(verify(signed_x, x, pkS), true)]->
[1]
// Restriction
restriction Equal:
"All x y #i. Equal(x, y) @i ==> (x = y)"
end
- J

Listing 3.1: Tamarin Model for the Toy Security Protocol from Figure 3.1

Listing 3.1 shows how the toy security protocol defined in Figure 3.1 can
be modeled in Tamarin. The entire model is contained in a single theory file
called ToySecurityProtocol. Tamarin defines several built-in message the-
ories, such as hashing, signing, asymmetric-encryption, and multiset.
These built-ins consist of functions and equational theories specifying the
properties of those functions, which can be imported into the model.

In this toy example, we only need to import the signing built-in message
theory (see line 4), which defines function symbols sign, verify, pk, and
true, as well as the following equation relating all function symbols to-
gether:

verify(sign(m, sk), m, pk(sk)) = true

Only one infrastructure rule, namely Register_pk, is needed for modeling the
entire PKI (see line 7). This rule generates the secret key of an agent $A as
a fresh value and stores it into the persistent fact !Ltk. The corresponding

19

3. TAMARIN PROVER

20

1
2

public key is stored into the persistent fact !Pk and also sent out into the
network, thus making it visible to the adversary.

Agents are initialized via initialization rules. Here, Init_S initializes an agent
in the sender role (see line 13) and Init_R in the responder role (see line
18). These rules are responsible for setting up the agents’ initial knowledge
for the current session. They take as input persistent facts from the infras-
tructure rules to retrieve all required public and private keys and they also
generate an identifier for the current session as a fresh value.

We can clearly see from Listing 3.1 that an agent’s internal state in a pro-
tocol session is merely represented via state facts. Here, we only have
state facts Initial State_S for Agent S and Initial State R for Agent
R. These facts are created on agent initialization and imbued with the re-
spective agent’s initial knowledge. Rule Agent_S_send (see line 25) con-
sumes state fact Initial State_S and models Agent S sending the signed
nonce to Agent R. Rule Agent_R_receive (see line 32) consumes state fact
Initial_State R and models Agent R receiving nonce x and its signature.
At this point, Agents S and R can run the protocol a second time only after
initializing a new session, because the current session is over and the agents’
states need to be recreated.

3.2 Adversary Model

The Tamarin prover works under the assumption of a worst-case adversary
who controls the entire network. This active saboteur, best described in [8]
and widely known in literature as the Dolev-Yao adversary, can intercept or
delete any message in the network and additionally inject newly constructed
messages, which can be arbitrarily derived from his knowledge by applying
public functions and by generating fresh values.

Adversary knowledge is represented via the special fact K. For instance, K (x)
indicates that term x is known to the adversary. Built-in rules in Tamarin
make sure that all terms appearing in Out and In facts are also known to the
adversary, thus modeling the assumption of a completely corrupt network.
Adversary capabilities can be extended by the user via additional rewrite
rules. For instance, in the setup of our running example from Listing 3.1,
we can define the adversary compromising an agent in the system via the
following reveal rule, which models an agent’s private key being revealed to
the network.

rule Reveal_1ltk:
['Ltk($A, ~skA)] --[Reveal($A) 1-> [Out(~skA)]

'
-

Listing 3.2: Reveal rule in Tamarin

W N

3.3. Security Properties

3.3 Security Properties

Security properties are specified as first-order logic formulas and are checked
against the execution traces of the transition system. More precisely, in
Tamarin these formulas are called lemmas and are defined over action facts
and timepoints. Existential and universal quantification is possible both over
the terms contained in action facts and over timepoints, using keywords Ex
and A1l respectively. Syntactically, Tamarin allows us to define action fact
F at timepoint i as F @i, and to check for equality or temporal ordering
between timepoints as #i = #j and #i < #j respectively.

We can also use lemmas to prove executability of the modeled protocol,
hence ensuring that all security properties that we are proving do not just
verify vacuously because our protocol does not run to completion. We can
achieve this level of assurance by leveraging the exists-trace keyword.
When added to a lemma, this keyword says that the lemma can be consid-
ered to be verified even if the formula only holds over one single trace. In
all other cases, the formula must hold over all possible traces of the protocol
for the lemma to be considered verified.

Here is a simple sanity check for our toy security protocol from Listing 3.1:

lemma executable:
exists-trace
t "Ex R message #i. Recv(R, message) @i & not (Ex A #j. Reveal(A)@j)" |

Listing 3.3: Executability check in Tamarin

3.4 Restrictions

Restrictions in Tamarin are used to reduce the number of traces of the tran-
sition system which are considered in the security analysis. Restrictions are
expressed using the same first-order logic language as security properties,
but prefixed with keyword restriction instead of lemma.

In our toy security protocol from Listing 3.1, the equality restriction starting
at line 40 is necessary to make sure that Agent R only accepts nonce x
when correctly signed by Agent S. This is because the restriction forces the
protocol analysis to only consider traces where the output of the verify
function equals the constant true (see line 36).

3.5 Proof Search

The Tamarin prover relies on a technique called symbolic backwards search to
prove validity of a security property for a given protocol. The idea behind
this approach is starting the proof search from the negated security property,

21

3. TAMARIN PROVER

22

i.e., from the symbolic representation of possible attack states. From there,
trace exploration proceeds backwards trying to find if a valid initial state is
reachable. If such an initial state is found, this means that the security prop-
erty is violated and that the trace leading there, which describes a possible
attack over the protocol, serves as a counterexample for it. Otherwise, if the
proof search algorithm terminates before any valid initial state is found, the
security property is said to be verified.

As previously mentioned in this chapter, this search algorithm is both sound
and complete. However, since the problem of verifying correctness of a secu-
rity protocol is undecideable, the algorithm is not guaranteed to terminate.

Proofs for security properties can be constructed in two different ways in
Tamarin: automatically or interactively. Tamarin’s automated mode relies on
heuristics to guide the proof search without receiving any user input during
the process. If the automatic proof fails to reach termination, users can
resort to guiding the proof search manually with Tamarin’s interactive mode
in hopes of reaching either a proof of correctness or a counterexample for
the desired security property.

Chapter 4

Problem Statement and Proposed
Solution

Figure 4.1: Magnified view of sections of Registry and Writer ASes from the same HPG with
depiction of some of their servers and routers. This diagram refers to the same SCION topology from
Figure 2.3, on page 14. For the hidden path segment registration process, it is the BS in the Writer AS
who is responsible for registering hidden down-segments at the HPS in the Registry AS.

23

4. PROBLEM STATEMENT AND PROPOSED SOLUTION

24

We have already mentioned in Section 2.5.2, when dealing with the security
of the Hidden Paths Design, how SCION is currently lacking a mechanism
for providing server authentication. Engineers at Anapaya Systems [1], a spin-
off of ETH Zurich in charge of leading the implementation of the SCION
architecture and responsible for bringing it to the market, have long been
working to address this weakness. In particular, their goal is to come up
with a practical solution that can be easily deployed on their implementation
of the SCION architecture, currently maintained in the company’s public
GitHub repository!.

In July 2019, this problem was pointed out publicly in a GitHub Issue [16].
The Anapaya Team has since explained to us that, in the context of hidden
path segment registration, not only authentication of the HPS, but also au-
thentication of the BS and confidentiality of the exchanged down-segments
are desired for meeting the security goals of the Hidden Paths Design. More-
over, we have been informed by the people at Anapaya Systems that, due
to other engineering constraints, they are required to exchange all Control
Plane messages involved in the Hidden Paths Design [18], including hidden
path segment registration packets, over encrypted QUIC [9] channels.

This technical constraint imposes some restrictions on the solution space as
well. That is because QUIC is a transport protocol implemented on top of
UDP capable of establishing end-to-end secure channels, i.e., authenticated
at both ends and confidential, which in turn uses TLS certificates in its hand-
shake protocol. Hence, if we trust the correctness of the QUIC protocol, the
problem of setting up a secure channel between a BS and an HPS, such as in
the setting depicted in Figure 4.1, boils down to finding a way for the two
counterparts to exchange mutually trusted TLS certificates authenticating
the asymmetric keys used for bootstrapping an end-to-end encrypted QUIC
channel.

In the above-mentioned GitHub Issue, the Anapaya Team has also presented
an intuition on how to solve this problem of establishing initial TLS trust,
which will be introduced in Section 4.1. Their request to the Information Se-
curity group was then to come up with the design of a new protocol realiz-
ing their intuition in SCION, which we are going to introduce in Section 4.3,
and to provide some assurance over its security properties by leveraging
Tamarin’s automated security protocol analysis. In Section 4.2 we are also
going to mention the main assumptions over the SCION architecture guid-
ing the design of our concrete solution, while in Section 4.4 we will discuss
the advantages and disadvantages of the ideas behind it.

1SCI0N codebase: https://github.com/scionproto/scion. Accessed: 2020-02-25

4.1. Intuition

4.1 Intuition

To recapitulate, in order to run the handshake needed for establishing an
end-to-end secure QUIC channel between a BS and an HPS located in a dif-
ferent AS, we need each endpoint to share a TLS certificate that the counter-
part can trust to be authentic. Nevertheless, before diving into the intuition
that the Anapaya Team suggested for solving this problem of TLS trust boot-
strapping, there is an important distinction that needs to made about the
granularity of authentication achievable when establishing a QUIC channel
between two ASes.

On the one hand, we could be interested in achieving authentication at the
AS level only. This would require having a single TLS certificate per AS to
be shared among all services within it. In this way, a BS can only be sure
to be sending the hidden down-segments to the intended Registry AS, but
not to the intended HPS within it. Similarly, the HPS can only be sure to
be registering a hidden path segment coming from an acceptable Writer AS,
but with no guarantees on which BS within it has actually submitted it.

On the other hand, a finer grained level of authentication would require
each service in an AS to be identified by a different TLS certificate. In such
a setting, the BS and the HPS are able to authenticate each other with pre-
cision at the service level. This implies that, once they have established the
QUIC channel, they can be sure to be communicating with the intended
counterpart in a confidential way, secure even with respect to other services
located in the same source and destination ASes.

Two different, but somehow related, intuitions were then proposed by the
Anapaya Team to solve the problem for both granularity levels.

In the first case, the intuition is to have each AS embed a self-signed TLS
certificate into its own AS Certificate. This entails adding the self-signed TLS
certificate as a new field in the AS Certificate, so that it will also be included
in the signature produced by the respective Issuing AS when authenticating
the AS Certificate as a whole.

Hence, this first proposal suggests having the TLS certificates from the Reg-
istry AS and the Writer AS authenticated via the following certificate trust
flow:

TRC — Issuer Certificate — AS Certificate — TLS Certificate

In the second case, where we are interested in distinguishing among multi-
ple identities within the same AS, the proposal is to have a local Certificate
Authority (CA) adding a new certification layer between the AS Certificate
and the various TLS certificates for the entities in the AS. Note how the ap-
proach from the previous case does not efficiently scale to a setting with

25

4. PROBLEM STATEMENT AND PROPOSED SOLUTION

26

multiple distinct identities in the same AS, since this would require to em-
bed an unspecified number of TLS certificates into the same AS Certificate,
which would be inherently impractical. The proposed idea here is still to
only embed one certificate into the AS Certificate, namely, a self-signed CA
certificate. The purpose of this additional certificate is to authenticate all
other TLS certificates in the AS, thus adding a new segment to the chain of
trust needed for bootstrapping a secure QUIC channel between two ASes.

Hence, this second proposal suggests having the TLS certificates from the
BS and the HPS authenticated via the following certificate trust flow:

TRC — Issuer Certificate — AS Certificate — CA Certificate — TLS Certificate

In the end, we understood that both granularity levels are achievable with
the same unified solution, which is so flexible that it even allows to combine
different authentication granularities at opposite ends of the QUIC chan-
nel. We will see in Section 5.2 how the AS Certificate format, exhaustively
described in Section B of the Appendix, was extended to include two new
fields: one for embedding a TLS certificate and the other for embedding a
CA certificate. In this way, each entity across SCION can choose indepen-
dently which certificate to use, and therefore which level of authentication
to employ, when establishing an end-to-end secure QUIC channel to another
AS.

4.2 Assumptions

Engineers at Anapaya Systems have explicitly asked us to consider the ASes
as black boxes when coming up with a concrete solution realizing their intu-
itions. This means considering an AS as an entity whose inner workings are
left to the AS itself to sort out independently, provided that they allow the
AS to interact with other entities of the network as dictated by the protocols
governing SCION.

The reason behind this request is that the solution we should provide them
with is intended to become an integral part of the specification of the Hid-
den Paths Design, which in turn is part of the broader SCION architecture.
However, SCION, due to the isolation properties that it was built upon,
lacks the authority to prescribe the internal topology of an AS or the specific
technologies employed for intra-AS communication. Hence, designing the
internals of an AS remains an orthogonal problem to our search for a proto-
col for bootstrapping TLS trust from AS Certificates following the intuitions
outlined in Section 4.1.

From here onwards, we can therefore rely on the following assumptions
about the internals of an AS:

4.3. Realization

¢ Internal traffic can be secured however the AS sees fit. We can there-
fore assume the existence of a secure channel, i.e., authenticated and
confidential, between any two entities in the same AS.

¢ The AS can set up a trusted local CA. This entity is assumed to operate
honestly and that is why all self-signed CA and TLS certificates it pro-
duces can be fully trusted by all entities in the same AS. In virtue of
the previous assumption about securing communication within an AS,
we can therefore also rely on the fact that the private keys associated
with these certificates can be made available in a confidential way to
all the entities who are expected to know them.

¢ The consistency model is not part of SCION’s specification. An AS
may choose to deploy multiple instances of the same SCION server,
e.g.,, more than one Certificate Server (CS), but the way that these
servers are kept synchronized is left to the AS to solve. We can there-
fore ignore all complexities deriving from this multiplicity and just
assume that an AS only deploys at most one single SCION server per
typology, i.e., no more than one CS, BS, HPS, or Path Server in the
same AS.

The above-mentioned assumptions allow us to think of an AS as a single
irreducible node of the network when designing, and later modeling in
Tamarin, the concrete protocol which realizes the intuitions presented in
Section 4.1.

4.3 Realization

At this point, what is left to be done for solving the problem of bootstrap-
ping TLS trust from AS Certificates, is to design a protocol allowing each AS
to embed a local CA certificate and an AS-level TLS certificate into the cur-
rent version of its own AS Certificate, as per the intuitions from Section 4.1.

Nevertheless, after analyzing all assumptions presented in Section 4.2, we
concluded that there is actually no need to design a new protocol from
scratch, but rather our best option is to leverage the existing mechanism
of AS Certificate renewal in SCION, after extending it to suit our pur-
poses. This mechanism is exemplified by the AS Certificate Reissuance Proto-
col, whose specification will be explained in detail in Section 5.1, and which
consists of a 2-message exchange between an AS and its Issuing AS. It is
worth noting that these two ASes may actually coincide. This edge case,
however, does not affect the dynamics of AS Certificate renewal, since the
Issuing AS can be expected to simply run the AS Certificate Reissuance
Protocol with itself in such circumstances. Morover, this protocol would in
practice be executed between a CS in the AS requesting the certificate reis-
suance and a CS in the Issuing AS responding to this request with a newly

27

4. PROBLEM STATEMENT AND PROPOSED SOLUTION

28

issued AS Certificate. However, given all the assumptions pointed out in
Section 4.2, we can consider the parties involved in this exchange to be di-
rectly the two ASes themselves, seen as elementary nodes of the SCION
network operating as black boxes, and not the two specific entities located
within those ASes.

In short, in the AS Certificate Reissuance Protocol, the AS needing a re-
newed AS Certificate can send a reissuance request to the same Issuing AS
who signed the latest version of the AS Certificate. This request should con-
tain the proposed new version of the AS Certificate to be authenticated by
the Issuing AS, together with a signature computed over it with the latest
Signing Key of the AS. In turn, after checking the correctness of the request
and possibly updating a few fields in the proposed certificate version, the Is-
suing AS will sign the new AS Certificate and reply with the corresponding
Certificate Chain.

Our idea is to extend this protocol to allow the AS initiating the exchange
to additionally embed a CA certificate or a TLS certificate into the proposed
new version of the AS Certificate sent over to the Issuing AS. Naturally, both
certificates could also be embedded together in the same request to the Is-
suing AS, and, in case these certificates are already present as embeddings
in the latest version of the AS Certificate, they could be updated indepen-
dently with each new reissuance request. The Issuing AS does not need to
alter or expand the series of correctness checks performed over the incoming
request before signing the new AS Certificate version. That is because, as
explained in Section 4.2, the embedded self-signed CA and TLS certificates
are considered to be trusted in the AS where they were created and their
authenticity follows directly from the authenticity of the reissuance request
where they are embedded, which, in turn, is already verified by the receiv-
ing Issuing AS by checking the signature produced with the Signing Key of
the latest AS Certificate.

For the remainder of our analysis, we will focus exclusively on modeling
the AS Certificate Reissuance Protocol in Tamarin. We will also try to ver-
ify several security properties for this model so as to justify the extension
of the protocol that we have just proposed for solving the problem of boot-
strapping TLS trust from AS Certificates. The analysis of mechanisms for
establishing a trusted initial AS Certificate or for recovering after a Signing
Key compromise remain instead out of the scope of our work.

4.4 Rationale for the Proposed Solution

Certainly, the decision of embedding full CA and TLS certificates into AS
Certificates is not the most efficient solution for the kind of problem that
we are trying to solve, given that this significantly increases the overall size

4.4. Rationale for the Proposed Solution

of the Certificate Chains which are continuously spread across the SCION
network. In fact, other approaches may have been taken for establishing a
secure, i.e., authenticated and confidential, end-to-end channel between a
BS and an HPS located in different ASes. However, given the technical con-
straints from the engineers at Anapaya Systems imposing that this channel
had to be implemented via the QUIC protocol, which in turn relies on TLS
certificates for authenticating the two endpoints, the solution we have pre-
sented in the course of this chapter is particularly suitable for a couple of
different reasons:

1. Availability of the counterpart’s embedded CA and TLS certificates,
along with the entire certificate chain needed for their verification,
is entirely taken care of by SCION’s standard dissemination mecha-
nisms. In particular, if a BS and an HPS located in different ASes want
to communicate with each other, they first need to retrieve a verifiable
end-to-end path that connects them. This can be done via a standard
path lookup to a local path server, which will not only return the de-
sired path, but also all TRCs and SCION Certificates needed for a full
path verification. This necessarily includes the TRC, Issuer Certificate
and AS Certificate of the destination AS, and consequently also the
CA and TLS certificates which are embedded into such an AS Certifi-
cate. It is worth pointing out, instead, that whenever the BS or the
HPS chooses to adopt a finer granularity of authentication, we do not
need the SCION architecture to additionally take charge of distribut-
ing those TLS certificates which are directly authenticated by a CA cer-
tificate. That is because, unlike the certificate chains needed for their
verification, these TLS certificates are exchanged anyway between the
BS and the HPS as part of the QUIC handshake.

2. Ease of deployability. Implementing this solution as described in Sec-
tion 4.3 only requires minimal changes to the SCION infrastructure.
The sole preexisting protocol which actually needs to be extended is
the AS Certificate Reissuance Protocol. Furthermore, this extension
only affects the AS requesting the certificate renewal, who should now
be given the possibility to embed a CA and a TLS certificate into the
proposed new version of the AS Certificate. No change is needed on
the side of the Issuing AS authenticating the reissued AS Certificate,
since the additional embedded certificates are trusted and hence do
not need to be checked in any way.

For the sake of completeness, let us consider a couple of alternative solutions
that do not rely on the embedding of self-signed CA and TLS certificates for
bootstrapping TLS trust from AS Certificates, and let us explain how these
solutions are disadvantageous with respect to our specific needs.

One possibility would be to extend SCION'’s current Certificate Chain for-

29

4. PROBLEM STATEMENT AND PROPOSED SOLUTION

30

mat to also include a CA and a TLS certificate, thus having these two ad-
ditional certificates signed directly by the Issuer Certificate Key rather than
simply self-signed and embedded into the AS Certificate.

Even though this solution may appear to improve the overall efficiency of
SCION’s Control Plane, given that it spares the AS Certificate from increas-
ing in size, it would actually greatly complicate the distribution of CA and
TLS certificates across SCION. This is because it removes the hard link be-
tween these certificates and the AS Certificate, which, in the solution we
chose, is achieved via the process of embedding. The result is that SCION’s
already rather complex model for trust material dissemination, currently
comprising a layer for TRC dissemination and a layer for Issuer Certificate
and AS Certificate dissemination, would need to be extended with a new
layer just for CA and TLS certificate dissemination. To complicate things
even further, adding a new layer to the model for trust material dissemina-
tion would also imply adding a new layer to the model for trust material
revocation. Moreover, this solution would be far more expensive to imple-
ment and deploy, since it would require several SCION’s services to adapt
to this extended format for Certificate Chains.

Another option would be to keep the CA and TLS certificates embedded
into the AS Certificate, so as to simplify dissemination, but having them
signed directly by the Signing Key of the AS rather than just self-signed.

In this case, the resulting trust flow would be equivalent to the one we get for
our chosen solution. Nevertheless, this suggested solution would seriously
hamper the regular process of QUIC channel establishment. This is because,
when the exchanged certificates are trusted self-signed TLS certificates or
TLS certificates authenticated by a trusted self-signed CA certificate, the
QUIC handshake executes without any need for further inputs. However,
dealing with TLS and CA certificates which are directly authenticated by
AS Certificates would require the standard TLS libraries used by the QUIC
protocol to be rewritten, so as to allow for the verification of these certifi-
cates based on SCION's roots of trust. This proposal would be particularly
impractical to implement, since renouncing the out-of-the-box support pro-
vided by the standard TLS libraries comes with significant coding effort and
security risks.

Chapter 5

Reissuance Protocol

The AS Certificate Reissuance Protocol, simply referred to as the Reissuance
Protocol for the remainder of this chapter, is the mechanism that all ASes in
SCION, Primary ASes included, have to use whenever they need to get their
current AS Certificate renewed. A request for AS Certificate renewal may
be issued, for example, when the validity period of the latest AS Certificate
or of the Issuer Certificate authenticating it is about to expire, or when the
AS needs to update one of the public keys contained in the AS Certificate.
Refer to Section B of the Appendix for an overview of all the fields making
up an AS Certificate.

This protocol, as we have previously mentioned in Section 4.3, consists of a
2-message exchange between the AS initiating the interaction, that we will
call Requesting AS, and the Issuing AS responding to the request with a new
AS Certificate version. For reasons already discussed in Section 4.2, we can
ignore the fact that the protocol is in practice executed between the CSes of
these two ASes and just reason about the message exchange at the AS level.

In the course of this chapter, we will first present the full specification of the
Reissuance Protocol and our proposed extension for it, which enables the
optional embedding of a CA and a TLS certificate into the renewed version
of the AS Certificate (see Sections 5.1 and 5.2). Later, we will explore how
we were able to abstract this protocol in a way that could be modeled in
Tamarin and present the resulting specification (see Sections 5.3 and 5.4).

5.1 Reissuance Protocol Specification

In this section, we are going to present a specification for the Reissuance Pro-
tocol which was directly extracted from the implementation of the SCION
architecture maintained by Anapaya Systems and available at the company’s

31

5. REerssuaNce ProTocoL

32

public GitHub repository!. We are going to refer to the fields of TRCs and
SCION Certificates in the same way we do when describing the format of
these certificates in Sections A and B of the Appendix.

Before diving into the specifics of the protocol, though, let us first list a series
of invariants concerning TRCs and Certificate Chains. These conditions,
which should always hold true to preserve the integrity of SCION’s CP-PK]I,
are going to be helpful for understanding all the steps of the Reissuance
Protocol and the consistency checks performed in it.

Certificate Chains must be uniquely identified by the pair of AS Cer-
tificate fields (subject, version), as already explained in Section 2.4.

The owners of the two certificates in a Certificate Chain must reside in
the same AS.

The validity period of an AS Certificate must be covered by the validity
period of the Issuer Certificate in the same Certificate Chain.

The validity period of an Issuer Certificate must be covered by the
validity period of the TRC authenticating it.

An Issuer Certificate can still be considered valid and verifiable even
when the TRC version authenticating it is no longer active, as long as
the Issuing Key which has signed it is still associated with a newer
active version of the same TRC.

Requesting AS Issuing AS

<Request, Sign Req_old key>

<Iss_Cert_version.y, AS_Cert_version x>

<Iss_Cert_version z, Reply>

Figure 5.1: AS Certificate Reissuance Protocol Overview. Refer to Section C of the Appendix for
the details about the content of the messages exchanged. The response from the Issuing AS depends on
the condition given in Step 3 in the second phase of the protocol, listed in Section C.2 of the Appendix.
In this message sequence chart, we use an alternative composition, labeled as alt, to represent this
conditional response.

1SCION codebase: https://github. com/scionproto/scion. Accessed: 2020-02-25

5.1. Reissuance Protocol Specification

In Figure 5.1, we have depicted an overview of the messages exchanged
between the Requesting AS and the Issuing AS. In Sections 5.1.1 and 5.1.2
we are going to present the full specification of the Reissuance Protocol,
informally. The full formal specification of the Reissuance Protocol is left to
Section C of the Appendix.

5.1.1 Initial Knowledge

We have already seen that the Reissuance Protocol is executed between a
Requesting AS and an Issuing AS located in the same ISD. What is more,
both ASes need to hold some initial knowledge before they can initiate the
protocol.

In particular, we assume that they both have access to:
¢ A clock synchronized with all other ASes in the ISD.

¢ All TRCs issued for the ISD, starting from the current base TRC which
bootstrapped the update chain.

Additionally, the Issuing AS is expected to know:
¢ All AS Certificates issued for the Requesting AS.

¢ All Issuer Certificates owned by the Issuing AS and the Issuer Certifi-
cate Keys associated with them.

On the other hand, the Requesting AS is expected to know:

¢ A Certificate Chain where the AS Certificate contained in it is still valid
and is the latest version in store owned by the Requesting AS.

¢ The Signing Key associated with the AS Certificate of this Certificate
Chain.

5.1.2 Message Exchange

The entire Reissuance Protocol can be subdivided into three main phases,
which we are going to call, in order of execution, Requesting AS Send, Issu-
ing AS Receive and Send, and Requesting AS Receive. In the first phase, the
Requesting AS produces a reissuance request and sends it over to the Issu-
ing AS. In the second phase, the Issuing AS receives the reissuance request,
elaborates an appropriate response, and sends it back to the Requesting AS.
In the last phase, the Requesting AS receives the response from the Issuing
AS and, if all correctness checks succeed, updates its own knowledge with
the received SCION Certificates.

Below, we are now going to present each one of these three phases in more
detail. We will do this by giving an informal explanation of all of their

33

5. RerssuaNcE ProTOCOL

34

fundamental execution steps. Throughout the course of this description, we
will refer to Section C.2 of the Appendix for the formal specification of these
individual steps.

1. Requesting AS Send.

The Requesting AS makes a copy of the AS Certificate contained in the Cer-
tificate Chain that we have mentioned in Section 5.1.1 (Step 1.1). This AS
Certificate version is part of the initial knowledge of the Requesting AS and
serves as the base for the proposed new version of the AS Certificate to be
sent over to the Issuing AS. Before it is ready, though, the version number
of this copy must be incremented by one (Step 1.2). Optionally, the Request-
ing AS can also decide to update its own Signing Key with this reissuance
request (Step 1.3). That can be done by incrementing the version number
of the Signing Key by one, and by updating the corresponding public key
accordingly. In addition to this, the Requesting AS can also decide to change
the algorithm that the Signing Key can be used with by updating the cor-
responding algorithm identifier. Eventually, this modified copy of the latest
AS Certificate version held in store by the Requesting AS gets signed by the
Requesting AS with the possibly updated Signing Key (Steps 1.4 and 1.5).
The resulting certificate is now ready to be sent over to the Issuing AS as the
proposed new version of the AS Certificate.

This proposed new version of the AS Certificate, though, must be paired
with a new signature computed over it by the Requesting AS with the Sign-
ing Key of the AS Certificate that was used as a base for it (Step 1.6). The
two signatures contained in the resultant AS Certificate renewal request sent
over to the Issuing AS (Step 1.7) serve as proofs of possession for the Signing
Keys held by the Requesting AS.

2. Issuing AS Receive and Send.

The Issuing AS receives the reissuance request from the Requesting AS
(Step 2.1). In order to compute all the necessary correctness checks over
this incoming request, the Issuing AS retrieves a Certificate Chain where the
AS Certificate contained in it is still valid and is the latest version issued for
the Requesting AS (Step 2.2). Note that, if this AS Certificate version hap-
pened to have already expired, the Issuing AS would not be able to reissue
any newer version of the AS Certificate for the Requesting AS and so its up-
date chain would come to a standstill. In practice, this has to be considered
an anomalous event which would require some other mechanism outside
the scope of our analysis to produce and distribute out-of-band a new valid
version of the AS Certificate, thus restarting the update chain.

Now, in Section 5.1.1 we have assumed that the Issuing AS, on the basis that
it is a Primary AS, knows all the AS Certificates issued for the Requesting

5.1. Reissuance Protocol Specification

AS. Nevertheless, the Requesting AS itself is not guaranteed to hold all of
them in its store and it may even be missing the latest AS Certificate issued
for it. This kind of situation, where the two ASes are out of sync and have a
discording view on which AS Certificate issued for the Requesting AS is the
latest, may in practice be caused by a reset of some CS in the Requesting AS
or by a fault in the inter-AS SCION Certificate distribution mechanisms.

To remedy this possible inconsistency, the Issuing AS checks the version
number of the proposed new version of the AS Certificate contained in the
incoming request (Step 2.3). If this is less than or equal to the version num-
ber of the latest AS Certificate from the point of view of the Issuing AS, then
it means that we are in the situation described above where the Requesting
AS has lost some of its own AS Certificates. The Issuing AS will then update
the Requesting AS by sending back the most recent Certificate Chain issued
for it. On the other hand, if the version number of the latest AS Certificate
from the point of view of the Issuing AS is exactly one shy of the version
number of the proposed new version of the AS Certificate, then the two
ASes are in sync and the Issuing AS can continue with the reissuance of the
AS Certificate.

Hence, the Issuing AS proceeds with the verification of the two signatures
contained in the incoming AS Certificate renewal request (Steps 2.4 and 2.6)
and with the validation of the proposed new version of the AS Certificate
contained in it (Step 2.5). In particular, this proposed certificate should be
owned by the Requesting AS and it should indicate that it was originally au-
thenticated by the same Issuer Certificate contained in the Certificate Chain
which was retrieved by the Issuing AS at the beginning of this second phase
of the protocol. Moreover, if the public key listed in this proposed new
version of the AS Certificate has changed from the previous version, then
the version number of the corresponding Signing Key should also have in-
creased by one.

Next, the Issuing AS can start to assemble a new Certificate Chain (Step 2.7).
The Issuer Certificate contained in it is the latest version owned by the Issu-
ing AS and is supposed to still be valid at the time of reissuance. Necessarily,
this Issuer Certificate is going to have a version number greater than or equal
to the Issuer Certificate originally authenticating the proposed new version
of the AS Certificate. Now, the Issuing AS proceeds with changing the infor-
mation about the issuer in the proposed new version of the AS Certificate,
so that it points to the Issuer Certificate contained in the new Certificate
Chain. Moreover, the validity period of this proposed certificate is updated,
so as to be fully covered by the validity period of the Issuer Certificate in
this new chain.

Please note, however, that the validity period of the reissued AS Certificate
could in practice be set either by the Requesting AS or by the Issuing AS,

35

5. RerssuaNcE ProTOCOL

36

based on policies specific to the ISD. In this specification for the Reissuance
Protocol, we arbitrarily chose to have the Issuing AS performing this opera-
tion. The advantage of this choice is that the Issuing AS can avoid checking
the validity period of the incoming request, since this is going to be over-
written anyway.

Lastly, the Issuing AS signs the resulting AS Certificate with the Issuer
Certificate Key associated with the Issuer Certificate in the new Certificate
Chain. This AS Certificate is added to the new Certificate Chain, which is
now officially issued, locally stored by the Issuing AS (Step 2.8), and finally
sent back to the Requesting AS (Step 2.9).

3. Requesting AS Receive.

In this phase of the protocol, we only describe the Requesting AS handling
the receiving of a newly issued Certificate Chain from the Issuing AS. The
handling of the case we have seen in Step 2.3, where the Requesting AS
needs resynchronization, is instead not part of the specification of the Reis-
suance Protocol. That is because, besides receiving back from the Issuing AS
its latest Certificate Chain, another mechanism is also needed for enabling
the Requesting AS to securely recover its possibly missing Signing Key. We
assume this separate protocol to be executed correctly and out-of-band, and
thus we are not going to provide its specification in this context.

The Requesting AS receives the newly issued Certificate Chain from the Is-
suing AS (Step 3.1). It then checks that all the information about the Signing
Key in the AS Certificate is left unchanged with respect to the proposed
version in the reissuance request (Step 3.2), and that the Issuer Certificate
authenticating it is either the latest version known by the Requesting AS or
a newer one (Steps 3.3 and 3.4).

Next, the Requesting AS retrieves the latest issued TRC version and checks
that it is still active (Steps 3.5 and 3.6). This TRC is necessary for executing
the next step of the protocol, where the received Certificate Chain is vali-
dated (Step 3.7). In particular, the owner of the Issuer Certificate contained
in it should be listed as an Issuing AS in the retrieved TRC. Moreover, the
version number of the TRC referenced in this Issuer Certificate should be
less than or equal to the version number of this retrieved TRC, and both
TRCs should list the same public keys for the Issuing AS. The Certificate
Chain should also be correct from the point of view of the validity periods
of the two SCION Certificates in it. This means that the validity period of
the AS Certificate should be covered by the validity period of the Issuer
Certificate, which, in turn should be covered by the validity period of the
TRC referenced in it. Eventually, the owners indicated in the two SCION
Certificates contained in the Certificate Chain are checked to be respectively
the Requesting AS and the Issuing AS, and their signatures are verified us-

5.2. Reissuance Protocol Extension

ing the corresponding public keys listed in the Issuer Certificate and in the
retrieved TRC.

If any of the checks performed in Step 3.7 failed, the Requesting AS repeats
the entire series of checks using the Grace TRC in place of the latest TRC
retrieved in Step 3.5. The Grace TRC is the second to last issued version of
the TRC, but only if this is a version which can still be proven to be active
(Step 3.8).

In the end, if all the checks have succeeded, the Requesting AS locally stores
the newly received Certificate Chain as its latest (Step 3.9).

5.2 Reissuance Protocol Extension

As we have explained in Section 4.1, our solution for bootstrapping TLS
trust from AS Certificates forces us to extend the AS Certificate format that
we have described in Section B of the Appendix.

This extension is limited to the addition of a new section that we have called
embedded_certificates and which consists of two fields: CA and TLS. These
additional fields were created, respectively, for embedding a trusted self-
signed CA certificate and a trusted self-signed TLS certificate, both gener-
ated inside the AS owning the AS Certificate.

The entire section is optional and the two fields may be empty in theory. We
do not define how this section is managed during the creation of the initial
version of an AS Certificate, since this is out of the scope of the Reissuance
Protocol. We can therefore expect to find this section missing or one of the
two fields empty in any new version of the AS Certificate.

The Reissuance Protocol also needs to be extended, but the additions are
minimal. More precisely, in the first phase of the protocol, the Requesting
AS is allowed to perform the following operations on the proposed new
version of the AS Certificate to be sent over to the Issuing AS:

* Create the embedded_certificates section, if missing.
* Remove the embedded _certificates section, if present.

¢ Embed a new self-signed certificate in the CA field, in the TLS field, or
in both, if they are empty.

¢ Update or remove the self-signed certificate of either the CA field, the
TLS field, or both, if they are not empty.

We have already mentioned in Section 4.4 that, since the embedded self-
signed certificates are trusted, they are never checked for correctness during
the Reissuance Protocol. This implies that, in the second phase of the pro-
tocol, no modification is required on the Issuing AS side, which will simply

37

5. RerssuaNcE ProTOCOL

38

ignore the additional embedded certificates. In the third phase, though,
the Requesting AS will only accept the reissued Certificate Chain if the
embedded_certificates section is left unchanged by the Issuing AS with
respect to the first phase.

5.3 Modeling Choices and Abstractions

The bulk of our work was put into modeling the Reissuance Protocol in
Tamarin and proving security properties for it. We have also separately
modeled our proposed extension of the protocol, as it was described in Sec-
tion 5.2, to prove that it executes as expected. Naturally, several aspects of
the Reissuance Protocol, and more generally of SCION’s CP-PKI, needed to
be adapted in order to be modeled in Tamarin and, at times, even completely
abstracted away in the model.

In the following subsections we will present the most significant modeling
choices we made when producing our Tamarin models and all the abstrac-
tions resulting from those choices.

5.3.1 Signatures

We have already seen in Section 3 that Tamarin is a purely symbolic verifi-
cation tool. This approach implicitly assumes that the processes of signing
and verifying signatures are approximated via abstract function symbols.

When modeling TRCs and SCION Certificates in Tamarin, we will therefore
abstract away all indications about the signing algorithms to be used with
the listed keys, since these are an implementation detail which cannot be
accurately captured with Tamarin’s built-in message theories.

5.3.2 Digital Certificates

All digital certificates in SCION, i.e., TRCs, Issuer Certificates, AS Certifi-
cates, CA certificates and TLS certificates, are complex objects consisting of
nested attribute-value pairs.

We are going to represent these data structures in Tamarin as multisets of
pairs. This can be done by leveraging the multiset built-in theory, which
introduces a new symbol, +, serving as an associative-commutative opera-
tor. As shown in Listings 5.1 and 5.2, this solution allows for some more
symbolic flexibility if compared to a solution based on lists of pairs.

In particular, in Listings 5.1 and 5.2 we can see an example of two occur-
rences of the same fact, AS_Certificate, containing the representation of a
mock certificate. These two instances can be used to match the same certifi-
cate in Tamarin, because the variable rest in Listing 5.2 can be symbolically

~NO O WN -

1

5.3. Modeling Choices and Abstractions

-
AS_Certificate(

<’attrl’, ’vall’> +
<’attr2’, ’val2’> +
<’attr3’, ’val3’> +
<’interesting_attr’, ’interesting_val’> +
<’attrb’, ’valb’>
& J
Listing 5.1: A mock certificate in Tamarin. All of its attribute-value pairs are listed explicitly.
s e . . ; . N
LAS_Cert1f1cate(<’1nterest1ng_attr’, ’interesting_val’> + rest) J

Listing 5.2: A mock certificate in Tamarin. Only one attribute-value pair is listed explicitly.

substituted for all the missing attribute-value pairs from the certificate in
Listing 5.1. This second occurrence of the fact could also be used to match
multiple different certificates in the same Tamarin model, provided that they
all contain the attribute-value pair which was listed explicitly. The same ex-
pressiveness could not be achieved if the attribute-value pairs in the mock
certificates were contained in a list, instead of in a multiset.

5.3.3 Abstracted SCION Topology

Our Tamarin model of the SCION topology is restricted to considering only
one ISD. That is because both parties involved in the Reissuance Protocol,
i.e., the Requesting AS and the Issuing AS, must be located in the same ISD
and all ISDs in SCION behave in principle in the same way. As a conse-
quence of this choice, instead of using ISD-AS identifiers, we can simply
adopt AS identifiers to uniquely identify an AS in our model.

What is more, all mechanisms in SCION which are not strictly part of the
Reissuance Protocol are left outside the scope of our analysis, e.g., the Issuer
Certificate Reissuance Protocol, the protocols used for creating the initial
versions of SCION Certificates, or the quorum mechanism for TRC updates.
Hence, they are simply assumed to work as expected and are not modeled
in full in Tamarin. In particular, we only need to consider the existence of
regular ASes and Issuing ASes. All other typologies of Primary ASes can be
safely abstracted away in the model.

Naturally, following our overall assumptions from Section 4.2, we will keep
reasoning about ASes as black boxes. Thus, we will not model in Tamarin
any detail concerning the inner workings of an AS.

5.3.4 Abstracted TRC

We have seen in Section 5.1.1 that both the Requesting AS and the Issuing
AS are supposed to have access to the entire history of TRC updates in their
ISD. However, since we have chosen to only model one ISD and to abstract

39

5. RerssuaNcE ProTOCOL

40

away altogether the process of TRC update, as explained in Section 5.3.3, we
will assume the existence of a unique TRC shared among all ASes from now
on.

This decision entails that we need to model neither the validity period nor
the version number of this unique TRC. Since this TRC is simply given and
assumed to be correct, we can also abstract away all information about the
voting quorum, the grace period, and the proofs of possession for the listed
keys. Moreover, we only need to consider Issuing Keys, since neither Online
nor Offline Keys are directly used in the Reissuance Protocol. What is left of
the TRC format listed in Section A of the Appendix which is still of interest,
is a series of entries mapping AS identifiers of Issuing ASes to those public
keys corresponding to their Issuing Keys.

In our Tamarin model, we have decided to represent each one of these TRC
entries with a separate persistent fact, as shown in Listing 5.3. We use a
specific restriction to make sure that only one of these persistent facts exists
for each distinct AS, thus modeling the uniqueness of the TRC.

-
L! TRC(<$AS_Identifier, pk(~issuingKey)>)

-/

Listing 5.3: Persistent fact modeling an abstracted TRC entry.

5.3.5 SCION Certificates Dissemination

Each new version of a SCION Certificate is stored in a separate persistent
fact, as shown in Listing 5.4.

(. . . . \
L!Certlflcate(certlflcate) J

Listing 5.4: Persistent fact modeling a SCION Certificate in the model. Here, the certificate
variable could stand either for an AS Certificate or for an Issuer Certificate.

We have already seen in Section 5.1.1 that Issuing ASes are supposed to
have access to all the Issuer Certificates they own, as well as to all the AS
Certificates previously issued. On the other hand, a Requesting AS may
be out of sync and hence not correctly updated on which version of its AS
Certificate is currently the latest issued in the model.

To keep constant track of which Issuer Certificate version is currently the
latest in its update chain, we add to the Tamarin execution trace a new
action fact Past_Issuer Certificate(old certificate) whenever an Is-
suer Certificate, here old_certificate, is updated to a newer version. The
existence of such an action fact in the execution trace can be looked up
via a specific restriction for checking if an Issuer Certificate is the latest
version created in the model for a given Issuing AS. In particular, the re-
striction shown in Listing 5.5 makes sure that rules containing action fact

> wWN -

5.3. Modeling Choices and Abstractions

Latest_Issuer_Certificate(certificate) are only triggered if the version
of the Issuer Certificate in the variable certificate is currently the latest in
its update chain.

restriction issuer_certificate_is_latest:
"All certificate #i.

\ Latest_Issuer_Certificate(certificate) @i ==>

t not (Ex #j. (#j < #i) & Past_Issuer_Certificate(certificate) @j)"

Listing 5.5: Restriction ensuring that an Issuer Certificate is currently the latest issued version.

In Tamarin, to model the different view that Requesting ASes and Issuing
ASes may have over AS Certificates, we track separately if an AS Certificate
is the latest version issued in the model or if this is just the latest version
known to its owner Requesting AS.

In particular, for checking if an AS Certificate is the latest version issued
in the model, we proceed in a similar way to the case of Issuer Certifi-
cates. Hence, we add to the execution trace an action fact with fact symbol
Past_AS_Certificate_global whenever an AS Certificate is updated, and
an action fact with fact symbol Latest_AS Certificate_global whenever
we need to make sure, before triggering a rule, that a specific AS Certificate
is the latest version in the model.

On the other hand, for checking if an AS Certificate is the latest version
known to its owner Requesting AS, we first need to keep track of which AS
Certificates are known by each Requesting AS. This can effectively be done
in Tamarin via a separate rule that adds to the execution trace an action fact
Received_AS _Certificate($AS_Identifier, certificate) which models
the AS identified by $AS_Identifier receiving the AS Certificate in the vari-
able certificate. The same action fact is also added to the execution trace
at the end of each successful run of the Reissuance Protocol and whenever
the Issuing AS needs to trigger a resynchronization of the Requesting AS in
the second phase of the protocol. Later, when we want to make sure that
a specific AS Certificate is the latest version known to the Requesting AS
before triggering a rule, we can use a restriction that checks the execution
trace for the existence of the corresponding Received_AS_Certificate fact
and for the absence of other Received_AS Certificate facts for the same
Requesting AS and a higher version of the AS Certificate.

At this point, it is worth making clear that we do not need to introduce any
new persistent fact to model the Requesting AS and the Issuing AS storing
the private keys associated with their SCION Certificates. That is because
Tamarin’s symbolic language allows us to derive a private key directly from
the public key associated with it. Therefore, we designed our Tamarin rules
so that the Issuing AS will be able to extract all its Issuer Certificate Keys
directly from the Issuer Certificates authenticating them. Similarly, the Re-
questing AS will be able to retrieve its Signing Keys from the AS Certificates

41

5. RerssuaNcE ProTOCOL

42

authenticating it, but only for those AS Certificate versions which were cor-
rectly registered as received by their owner.

5.3.6 Timestamps

The Tamarin prover does not allow us to represent timestamps directly in
the model. Hence, we are forced to abstract away all the time indications
in the Reissuance Protocol specification. This means that the validity of a
SCION Certificate cannot be determined based directly on time.

We can address this limitation by expressing the notion of validity of a cer-
tificate using a fresh value. As shown in Listing 5.6, we can therefore intro-
duce a persistent fact to record a fresh validity indicator being created along
with each new SCION Certificate.

o - B
L!Tlmestamp(wtlmestamp) J

Listing 5.6: Validity indicator, here called timestamp, stored in its persistent fact upon creation.

This validity indicator, as we are going to make more clear in Section 5.3.7,
is intended to replace both timestamps contained in the validity object
of SCION Certificates. You can refer to Section B of the Appendix for an
overview of all the fields making up a SCION Certificate. The underlying
idea here is to make SCION Certificates implicitly valid at creation time,
hence avoiding the need to model certificates turning valid, and only using
the validity indicator to model expiring certificates. This simplification is
justified by the fact that our model transcends the problem of clocks out of
sync in SCION, as mentioned in Section 5.1.1. Under this assumption that
all clocks in an ISD are synchronized, a SCION Certificate with timestamp
validity.not_before set to a timepoint in the future would be considered
malformed and immediately discarded by any agent in the system anyway.
What is more, this solution for modeling the validity of SCION Certificates
intrinsically captures the correct state transition from valid to expired only,
hence preventing an expired certificate from being turned valid ever again.

A new rule presented in Listing 5.7 takes care of simulating the passing of
time and making these validity indicators expire. In particular, the action
fact Timestamp_has_Expired(~timestamp, certificate) produced by this
rule records in the execution trace that the validity indicator timestamp has
expired and that the corresponding SCION Certificate contained in variable
certificate cannot be considered valid anymore. The existence of such an
action fact in the execution trace can be looked up via a specific restriction
whenever, before triggering a rule, checking the validity of a SCION Certifi-
cate is needed.

5.3. Modeling Choices and Abstractions

rule Timestamp_Expiration:
let certificate =

<’payload’, <’validity’, ~timestamp> + rest> + signature
in
| [!Timestamp(~timestamp), !Certificate(certificate) 1]
| --[Timestamp_has_Expired(~timestamp, certificate)]->
L [1] \

Listing 5.7: Rule simulating the expiration of a validity indicator.

For each Certificate Chain in the model, we also ensure via a specific restric-
tion that the Issuer Certificate contained in it cannot expire before the AS
Certificate. As a direct consequence of this restriction, we can be sure that
if an AS Certificate is valid at a certain point in time, then also the Issuer
Certificate authenticating it will be valid.

It is worth noting that this way of modeling the validity of a SCION Cer-
tificate remains an abstraction. What we call validity indicator and often
refer to as timestamp in Tamarin is not a representation of an actual mo-
ment in time but rather a marker expressing whether the SCION Certificate
connected to it should be considered expired or not. Hence, the practice
of updating a timestamp which has not yet expired to another timestamp
in the future just to extend its validity period does not translate into our
model at all. For this reason, we will restrain from mentioning this kind of
timestamp updates in the abstracted version of the Reissuance Protocol that
we will introduce in Section 5.4.

What is more, the whole idea behind the existence of a Grace TRC in SCION
is simply to provide some more flexibility to the validity period of a TRC.
Nevertheless, this feature is also going to be lost in our Tamarin model as a
consequence of abstracting away timestamps.

5.3.7 Abstracted SCION Certificates Structure

After applying the various abstractions presented throughout Section 5.3,
the resulting SCION Certificates that we ended up modeling in Tamarin ap-
pear to be considerably streamlined when compared to their full structure
that we have listed in Section B of the Appendix. We still distinguish be-
tween a payload section and a signature section, but now we only model
six top-level fields for the payload: subject, version, certificate_type,
validity, signing and issuer.

The meaning of the version and certificate_type fields remains unvaried.
On the other hand, the subject field, because of the abstractions in the
SCION topology described in Section 5.3.3, is now a unique AS identifier.
Also, this time the validity field directly points to a validity indicator, as it
was mentioned in Section 5.3.6.

The signing field replaces the keys field and points to an object consisting
of only two fields: key and key_version. This is because we only need to

43

5. RerssuaNcE ProTOCOL

44

model one type of key for each SCION Certificate, i.e., the Issuer Certificate
Key in Issuer Certificates and the Signing Key in AS Certificates. Other key
types do not take part in the Reissuance Protocol and can therefore be safely
abstracted away in the model. In particular, the key field contains the public
key contained in the SCION Certificate and the key_version field its version
number.

The issuer field, in AS Certificates, remains unvaried and still points to
an issuer object. On the other hand, in Issuer Certificates, this field can be
omitted altogether. This is because, for reasons explained in Section 5.3.4, we
only consider a unique TRC in the model and this implies the existence of
only one possible Issuing Key for each Issuing AS that could be responsible
for signing its Issuer Certificates.

As proposed in Section 5.2, to these six top-level fields we can add one
more field for embedding trusted self-signed TLS and CA certificates, called
embedded_certificates. Since these embedded certificates are trusted and
the self-signed signatures over them are never verified in the context of
the Reissuance Protocol, they can be reduced to only two fields: key and
validity. The key field contains the public key of the certificate, while the
validity field contains a validity indicator like those we have introduced
for the SCION Certificates.

In order to simplify pattern matching of certificates and reduce the total
number of rules used to model the Reissuance Protocol in Tamarin, we rep-
resent all AS Certificates as if they always embed both a CA and a TLS
certificate. Absence of either one of these certificates is simply modeled as a
dummy expired certificate.

5.4 Modeled Protocol Specification

In Section 5.3 we have discussed various abstractions that we had to resort
to when trying to reduce the complexity of SCION’s CP-PKI to a model that
could be effectively implemented in Tamarin. As for the Reissuance Protocol
itself, we have already mentioned that, in order to fit our modeling choices, it
needs some adaptations too. For instance, the Requesting AS and the Issuing
AS now need to deal with the streamlined format for SCION Certificates that
we presented in Section 5.3.7. They also need to reason about the validity of
these certificates in a whole different way, as we explained in Section 5.3.6,
and adapt their behavior to the context of the restricted SCION topology we
assumed in Section 5.3.3.

The full formal specification of the abstracted version of the Reissuance Pro-
tocol we ended up modeling in Tamarin can be found in Section D of the
Appendix.

5.4. Modeled Protocol Specification

5.4.1 Infinite Roles

In our Tamarin model, we use infrastructure rules to create an initial in-
stantiation of the CP-PKI. This consists of a unique TRC and of arbitrary
Certificate Chains for the various ASes in the ISD.

In particular, we have a rule for creating the entries of the unique TRC, one
for creating the first version of an AS Certificate for an AS, and one for
creating the first version of an Issuer Certificate for an Issuing AS. These
three rules model the outcomes of protocols in SCION which are not strictly
part of the Reissuance Protocol and hence, as explained in Section 5.3.3, are
left out of our Tamarin model and security analysis. Furthermore, we have
added rules for starting update chains from these initial SCION Certificates
and for extending these chains incrementally with newly issued certificate
versions.

These infrastructure rules are not restricted to being executed solely before
the rules implementing the actual Reissuance Protocol. To the contrary, we
can expect them to be triggered at all times and even to be interleaved with
successful runs of the Reissuance Protocol, so as not to exclude the possi-
bility of a subsequent creation of new SCION Certificates or an exceptional
out-of-band update of existing ones. It is also thanks to these infrastructure
rules that we can model the Requesting AS and the Issuing AS possibly
being out of sync with respect to the AS Certificates that they share.

What is more, we do not need to explicitly model in Tamarin the initializa-
tion of the Requesting AS and the Issuing AS. That is because all information
regarding their identities and their internal state at any given time is entirely
deducible from their SCION Certificates stored in persistent facts and from
the execution trace, as it should be clear from Section 5.3.5. A new regular
AS simply comes into existence when the first version of an AS Certificate
is created for its AS identifier. In addition to that, an Issuing AS will only
come to be after its Issuing Key is generated and the corresponding public
key is added to the unique TRC. More generally, linear state facts are only
used by the Requesting AS during the execution of the Reissuance Protocol.
In this context, the Requesting AS needs a state fact to preserve its tempo-
rary knowledge of the reissuance request sent over to the IssuingAS from
the first phase of the protocol, where this request is created, to the third
phase, where it is used to validate the incoming response.

All of this entails that the roles instantiated by the Requesting AS and by
the Issuing AS are in fact infinite, in the sense that, following their initial
creation, they are never consumed after a successful run of the Reissuance
Protocol. That is, on the one hand, the initial knowledge of the two ASes
before running the Reissuance Protocol is derived directly from the cur-
rent state of SCION’s CP-PKI and from the execution trace. On the other

45

5. RerssuaNcE ProTOCOL

46

hand, all knowledge gained from the protocol execution is added back to
our model of the CP-PKI and tracked in the execution trace. Therefore, the
Reissuance Protocol can be executed an infinite number of times between
a Requesting AS and its Issuing AS, and, with each new run of the proto-
col, these two ASes keep building upon what they have obtained from the
previous run, without ever resetting their knowledge.

It should not come as a surprise, after reading Section 3.5, that the com-
bination of unrestricted infrastructure rules and infinite roles for the pro-
tocol participants negatively affects the performance of Tamarin’s symbolic
backwards search, since this necessarily causes an explosion of the possible
states that need to be explored. We will introduce a few optimizations for
our Tamarin model that address this problem when presenting the results
of our security analysis in Section 6.3.

5.4.2 Model Splitting

As a way to reduce the complexity of our Tamarin model, we decided to
split the Reissuance Protocol into two possible scenarios and analyze each
scenario in a separate theory file. This choice turned out to be particularly
helpful for improving the efficiency of the Tamarin prover when trying to
verify the security properties that we are going to introduce in Section 6.2.

In particular, in the first scenario we focused on modeling the resynchro-
nization capabilities of the Reissuance Protocol. Hence, in this theory file
we implemented the first phase of the protocol in full, but we cut short the
role of the Issuing AS at Step 3 in the second phase. Therefore, for all cases
where the Requesting AS is missing the latest AS Certificate issued for it, we
modeled the Issuing AS interrupting the Reissuance Protocol execution and
triggering the resynchronization process. As explained in Section 5.3.5, this
entails in Tamarin that the Issuing AS updates out-of-band the Requesting
AS with the missing Certificate Chain and that the Requesting AS manages
to successfully recover its possibly lost Signing Key.

On the other hand, in the second scenario we make sure that, before ini-
tiating the Reissuance Protocol, the Requesting AS and the Issuing AS are
already synchronized with respect to the latest Certificate Chain that they
share. Therefore, in this theory file we were able to model and analyze the
full message exchange between Requesting AS and Issuing AS, comprising
all three phases of the Reissuance Protocol.

Chapter 6

Proof Summary

In the course of this chapter, we will present how we were able to leverage
the Tamarin prover to provide some assurance over the security properties
of the modeled Reissuance Protocol specification which we have described
in Section 5.4. Our goal is to formally verify those security requirements
necessary to justify the extension of the Reissuance Protocol that we have
specified in Section 5.2 and that we have also separately modeled in Tamarin.

In this process, we will first need to define a suitable adversary model (see
Section 6.1) and specify the desired security properties to be verified (see
Section 6.2). Lastly, we will explain how we were able to obtain the for-
mal proofs of correctness for these properties, and we will present our final
results (see Section 6.3).

6.1 Adversary Model

We have already seen in Section 3.2 how Tamarin’s threat model assumes
the existence of a Dolev-Yao adversary who fully controls network commu-
nication. There, we have also mentioned that the adversary capabilities can
be extended via additional reveal rules, which model agents of the system
being compromised. More specifically, we consider an agent to be com-
promised if at least one of its private keys was revealed to the adversary-
controlled network.

To increase the flexibility of our extended adversary capabilities, we set up
one distinct reveal rule for each type of key in the model. In particular, we
want to give the adversary-controlled network the opportunity to receive:

* Any private key authenticated by a TLS certificate.
* Any private key authenticated by a CA certificate.
¢ Any Signing Key authenticated by an AS Certificate.

47

6. PROOF SUMMARY

48

OCONDO D WN =

* Any Issuer Certificate Key authenticated by an Issuer Certificate.
¢ Any Issuing Key listed in the unique TRC.

In all these rules, we use action fact Reveal ($AS) to record in the execution
trace that the AS with identifier $AS was compromised. In Listing 6.1, we
can see a reveal rule modeling Issuer Certificate Key 1tkIssuer being sent
out to the adversary-controlled network, thus leading to the compromise of
the Issuing AS with identifier $IssuingAS.

rule Reveal_IssuerCertificateKey:
[!Certificate(

<’payload’,
<’subject’, $IssuingAS> +
<’certificate_type’, ’issuer’> +

<’signing’,
<’key’, pk(~ltkIssuer)> +
<’key_version’, keyVersion>

signature

1
--[Reveal($IssuingAS)]1->
[Out(~1ltkIssuer) |

Listing 6.1: Reveal rule for the Issuer Certificate Key authenticated by an Issuer Certificate.

6.2 Security Properties

In Tamarin, as we have seen in Section 3.3, we use lemmas to define the
security properties we are interested in verifying for the model of a protocol.
Throughout this section, we are going to introduce the various lemmas that
we designed for proving correctness of the Reissuance Protocol.

First of all, we specified a series of consistency checks making sure that
the infrastructure rules mentioned in Section 5.4.1 work as expected and
are consistent with SCION’s CP-PKI invariants. Besides, we leveraged the
exists-trace keyword to define a number of executability checks ensuring
that the modeled protocol can run to completion without adversary inter-
vention in a selection of possible execution scenarios.

The first two security properties that we introduce, for simplicity referred to
as lemma 1 and lemma 2, are needed to verify that all the update chains of
SCION Certificates follow an ordered progression, without any skipped or
duplicate version number. The next two security properties, which we call
lemma 3 and lemma 4, take care of proving the correct advancement of the
version number of the Signing Key in an AS Certificate, and, analogously,
of the version number of the Issuer Certificate Key in an Issuer Certificate.
These version numbers are incremented by exactly one in any newer version
of the certificate where the key has changed, but remain unaltered in all
other update events.

6.2. Security Properties

One more security property, that we simply refer to as lemma 5, ensures
that, if a Requesting AS accepts an incoming Certificate Chain in the third
phase of the Reissuance Protocol, it means that the AS Certificate contained
in it was reissued by the correct Issuing AS in the second phase of the pro-
tocol after receiving the corresponding reissuance request sent by the same
Requesting AS in the first phase. This security property assumes that the Re-
questing AS and the Issuing AS involved in the execution of the Reissuance
Protocol are not compromised or otherwise the lemma would be trivially
violated by the adversary impersonating either the Requesting AS in the
tirst phase of the protocol, or the Issuing AS in the second phase. Lemma
5 is particularly useful because it will be reused by the Tamarin prover to
help verifying the agreement properties that we are just about to present in
Section 6.2.1.

6.2.1 Agreement Properties

Since the Reissuance Protocol only deals with public SCION Certificates and
no confidential information is exchanged between the Requesting AS and
the Issuing AS, we do not need to define any secrecy property for our model.
We will instead focus on agreement properties, namely identity agreement,
injective agreement and strong session agreement. For the formal definitions
of these three properties, we will rely on the hierarchy of authentication
specifications identified by Lowe in [11].

Before we begin to present the three agreement properties in detail, it is im-
portant to remember that, as explained in Section 5.4.2, we decided to split
the Reissuance Protocol into two possible scenarios, which we have modeled
in separate theory files. In the first theory file we only study the resynchro-
nization capabilities of the Reissuance Protocol, whereas the model of the
full message exchange between the Requesting AS and the Issuing AS is left
to the second theory file. Now, when it comes to our agreement properties,
we are actually only interested in proving them for this second scenario.
That is because the resynchronization process, which, as we have seen in
Section 5.1.2, is assumed to always execute correctly and out-of-band, has
no undesired side effects anyway and can be expected to be triggered at any
time by other mechanisms in the ISD unrelated to the Reissuance Protocol.
Therefore, no agreement with the Issuing AS is required for the outcomes of
a resynchronization of the Requesting AS to be consistent with the current
instantiation of the CP-PKL

Moreover, since all of our agreement properties will be defined over the
messages exchanged as a whole and not over specific elements of these
messages, we can restrict ourselves to only proving them for the Reissuance
Protocol and avoid repeating the same proofs for the extended version of
the protocol presented in Section 5.2. That is because, as we have already

49

6. PROOF SUMMARY

50

explained, the Reissuance Protocol specification remains substantially un-
varied and no new checks are introduced on the side of the Issuing AS
to deal with the extended version of the AS Certificate presented in Sec-
tion 5.3.7. Hence, the TLS and CA certificates which are possibly contained
in the reissuance request and in the returned Certificate Chain will simply
inherit from the AS Certificates where they are embedded all the properties
that we were able to prove for them in the Reissuance Protocol. Therefore,
for this extended version of the Reissuance Protocol, we will limit ourselves
to verifying consistency checks, executability checks, and the first four lem-
mas about correctness of SCION Certificate updates, so as to prove that our
extended model works as expected.

Identity Agreement

With identity agreement, we are interested in making sure that whenever the
Requesting AS and the Issuing AS accept a message from their counterpart,
they agree on the identity of this agent. When verifying this property, as
well as the other two agreement properties, we expect the Requesting AS
and the Issuing AS to be honest, i.e., not compromised. Otherwise, much
like in the case of lemma 5, if either one of these agents is compromised,
agreement would be trivially broken.

In particular, our interpretation of identity agreement perfectly fits Lowe’s
formal definition of weak agreement, which we quote verbatim below:

Definition 6.1 (Weak Agreement) [11] We say that a protocol guarantees to an
initintor A weak agreement with another agent B if, whenever A (acting as ini-
tiator) completes a run of the protocol, apparently with responder B, then B has
previously been running the protocol, apparently with A.

In Tamarin, we express agreement properties in terms of specific action facts
called claim events that we add as labels to the protocol rules. Here, we
distinguish between two claim events: a running claim, with fact symbol
Running, and a commit claim, with fact symbol Commit. In Figure 6.1, we
illustrate how these claim events are laid out in the execution trace of the
Reissuance Protocol for verifying weak agreement.

Furthermore, when labeling our rules in Tamarin, each commit claim must
be accompanied by all the relevant honesty claims, i.e., one separate action
fact Honest ($AS) for each AS with identifier $AS which is expected to be
honest. In our model, for all three of the agreement properties that we are
interested in proving, these honesty claims are Honest ($R) and Honest ($I),
where $R and $I are the AS identifiers, respectively, of the Requesting AS
and of the Issuing AS.

In Listing 6.2, we define a lemma to look up all these claims, so as to verify
weak agreement for the Reissuance Protocol.

6.2. Security Properties

Requesting AS
| Requesting |

<Rum1ing($R, $I, < identity’>)>

Req

Issuing AS

Resp

<Commit($I, $R, <‘identity’>)>
I
<Running($1, $R, <‘identity’>)>

<Commit($R, $I, <‘identity’>) >

O W N -

Figure 6.1: Weak Agreement in the Reissuance Protocol. $R and $I are the AS identifiers,
respectively, of the Requesting AS and of the Issuing AS. Req and Resp are placeholders, respectively,
for the reissuance request and for the returned Certificate Chain. The honesty claims Honest ($R) and
Honest ($I) which accompany both commit claims are omitted from the chart.

lemma weakagreement:
"All a b #i

Commit (a,b,<’identity’>) @i

==> (Ex #j. Running(b,a,<’identity’>) @j)
| (Ex X #r. Reveal(X)@r & Homnest(X) @i)"

Listing 6.2: Lemma defining the weak agreement property.

51

6. PROOF SUMMARY

52

0N U WN -

0N U WN -

Injective Agreement

A stronger agreement property, and actually the strongest in the hierarchy
defined by Lowe, is injective agreement, also sometimes referred to simply as
agreement. Its formal definition is quoted verbatim below:

Definition 6.2 (Injective Agreement) [11] We say that a protocol guarantees to
an initiator A agreement with a responder B on a set of data items ds if, whenever
A (acting as initiator) completes a run of the protocol, apparently with responder
B, then B has previously been running the protocol, apparently with A, and B
was acting as responder in his run, and the two agents agreed on the data values
corresponding to all the variables in ds, and each such run of A corresponds to a
unique run of B.

As we can derive from its definition, unlike weak agreement, injective agree-
ment does not only ensure that the two agents agree on each other’s iden-
tities, but also that they agree on their respective roles and on a set of data
items exchanged during the protocol run. What is more, this property en-
forces a unique correspondence between matching protocol runs of the two
agents, thus effectively ruling out the possibility of replay attacks. In the
context of the Reissuance Protocol, these two agents are always the Request-
ing AS and the Issuing AS, and their roles are represented, respectively, with
constants ‘R’ and ‘I’. Moreover, as we can see in Figure 6.2, we want the
two ASes to agree on the entire content of the messages exchanged, i.e., on
the whole reissuance request and on the whole returned Certificate Chain.

In Listing 6.3, we define the lemma specifying injective agreement of the
Requesting AS with the Issuing AS on the returned Certificate Chain, i.e.
agreement with the responder. On the other hand, in Listing 6.4, we de-
fine the lemma specifying injective agreement of the Issuing AS with the
Requesting AS on the reissuance request, i.e. agreement with the initiator.

(lemma injectiveagreementRESPONDER:
"All a b t #i.
Commit (a,b,<’R’,’I’,t>) @i
==> (Ex #j. Running(b,a,<’R’,’I’,t>) @j
& not (Ex a2 b2 #i2. Commit(a2,b2,<’R’,’I’,t>) @i2
& not (#i2 = #i))

)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

Listing 6.3: Injective agreement property from the perspective of the Requesting AS.

(lemma injectiveagreementINITIATOR:
"All a b t #i.
Commit(a,b,<’I’,’R’>,t>) @i
==> (Ex #j. Running(b,a,<’I’,’R’,t>) @j
& not (Ex a2 b2 #i2. Commit(a2,b2,<’I’,’R’,t>) @i2
& not (#i2 = #i))

)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

Listing 6.4: Injective agreement property from the perspective of the Issuing AS.

6.2. Security Properties

| Requesting AS | Issuing AS |

<Running($R, $L, <°T?; “R*; Req>)>

Req

Y

<Commit($I, $R, <‘I’, ‘R’, Req>)>
I
<Running($I, $R, <‘R’, ‘I’, Resp>)>

Resp

A

<Commit($R, $I, <‘R’, ‘I’, R.esp>)>

Figure 6.2: Injective Agreement in the Reissuance Protocol. $R and $I are the AS identifiers,
respectively, of the Requesting AS and of the Issuing AS. Req and Resp are placeholders, respectively,
for the reissuance request and for the returned Certificate Chain. The honesty claims Honest ($R) and
Honest ($I) which accompany both commit claims are omitted from the chart.

Strong Session Agreement

Building upon the definition of injective agreement, we can go one step fur-
ther and introduce an even stronger agreement property, called strong session
agreement. With injective agreement, as it should be clear from the chart in
Figure 6.2, we can be sure that the two agents agree on each other’s iden-
tities and roles, and on the two messages exchanged, when these messages
are taken individually. Nevertheless, there is no way for us to be certain
that the reissuance request and the returned Certificate Chain are gener-
ated and exchanged in the same protocol session. Now, with strong session
agreement, we can achieve precisely this level of certainty by ensuring that
the two agents agree on the full session transcript. Evidently, this property
can only be verified from the point of view of the Requesting AS, since this
agent is the receiver of the last message in the protocol and hence the only
one who can agree with the Issuing AS on the full transcript.

The corresponding lemma can be found in Listing 6.5. In Figure 6.3, we

53

6. PROOF SUMMARY

0N OB WN -

illustrate how the claim events looked up by this lemma are laid out in the
execution trace of the Reissuance Protocol for verifying strong session agree-
ment.

lemma strong_session_agreement:
"All a b t #i.
Commit(a,b,<’session’,t>) @i
==> (Ex #j. Running(b,a,<’session’,t>) @j
& not (Ex a2 b2 #i2. Commit(a2,b2,<’session’,t>) @i2
& not (#i2 = #i))

)
| (Ex X #r. Reveal(X)@r & Homest(X) @i)"

Listing 6.5: Lemma defining the strong session agreement property.

Requesting AS Issuing AS

Req

<Running($I, $R, <‘session’, <Req, Resp>>)>

Resp

<Commit($R, $I, <‘session’, <Req, Resp>>)>

54

Figure 6.3: Strong Session Agreement in the Reissuance Protocol. $R and $1 are the AS identifiers,
respectively, of the Requesting AS and of the Issuing AS. Req and Resp are placeholders, respectively,
for the reissuance request and for the returned Certificate Chain. The honesty claims Honest ($R) and
Honest ($I) which accompany the commit claim are omitted from the chart.

6.3 Proofs and Results

All the security properties presented in Section 6.2 have been successfully
verified. With the resulting formal proofs of correctness, we have now
achieved the level of assurance desired to conclude that the extension of
the Reissuance Protocol specified in Section 5.2 is suitable for solving our
underlying problem of bootstrapping TLS trust from AS Certificates.

Most of these security properties were proven automatically by the Tamarin
prover, without any need for user input during the proof search proce-

6.3. Proofs and Results

dure. However, some agreement properties needed their proof searches to
be guided manually in Tamarin’s interactive mode in order for them to reach
termination. More generally, the extensiveness of the Reissuance Protocol
model that we have implemented in Tamarin tends to weight negatively on
the number of steps necessary to reach termination and on the overall proof
times. On the one hand, as we have already mentioned in Section 5.4.1,
that is because of the unrestricted infrastructure rules and the infinite roles
for the protocol participants which are needed for expressing the complex-
ity of SCION’s CP-PKI. On the other hand, this is also due to the fact that
all messages exchanged in the protocol are made up of large multisets of
pairs containing a number of different fresh values, which are on their own
burdensome to deal with in Tamarin.

To make proofs shorter and easier to prove automatically, we had to devise
a few expedients that helped us make our Tamarin model more efficient. In
the next subsections we are going to present our main findings leading to
these optimizations.

Lemma 5 Breakdown

As we have already pointed out in Section 6.2, the security property that
we refer to as lemma 5 is preliminary to the verification of the agreement
properties presented in Section 6.2.1. That is because the first-order formula
constituting this lemma is reused directly by the Tamarin prover to simplify
the proof search of the following lemmas about agreement.

Lemma 5 proved to be particularly challenging to verify. Ultimately, we
decided to break it down into three simpler sublemmas so that these could
be reused by the Tamarin prover to find a shorter proof for the main lemma.

® Lemma 5.1. This sublemma ensures that, if a Requesting AS accepts
an incoming Certificate Chain in the third phase of the Reissuance
Protocol, then the same Requesting AS has previously sent the corre-
sponding reissuance request for it in the first phase of the protocol.

¢ Lemma 5.2. This sublemma ensures that, if an Issuing AS reissues an
AS Certificate for a Requesting AS in the second phase of the Reis-
suance Protocol, then this Requesting AS has previously sent the cor-
responding reissuance request for it in the first phase of the protocol.

® Lemma 5.3. This sublemma ensures that, if a Requesting AS accepts
an incoming Certificate Chain in the third phase of the Reissuance
Protocol, then the AS Certificate contained in it was reissued by the
correct Issuing Certificate in the second phase of the protocol.

55

6. PROOF SUMMARY

56

Origin of fresh keys

To prove a security property, as we have already explained in Section 3.5,
the Tamarin prover starts from its negated formula and proceeds backwards
in search of a valid initial state. During this backwards search, the Tamarin
prover tends to trace the origin of fresh values back to the respective in-
stances of the Fr fact which generated them before deciding whether it can
safely stop exploring a certain execution trace or not. This conservative
behavior contributes to the strong soundness and completeness guarantees
characterizing Tamarin’s symbolic backwards search. Nevertheless, this fea-
ture also prolongs the proof search in all cases where the trace under anal-
ysis could intuitively be discarded earlier, regardless of any assumptions
about the origin of the fresh values in it. Hence, on average, this behav-
ior increases the number of steps that the Tamarin prover needs to execute
before abandoning the exploration of an invalid execution trace.

At first glance, this may not seem like a substantial problem. However,
let us not forget that our model allows for the creation of arbitrarily long
update chains of SCION Certificates. Also, let us consider the fact that the
number of states that need exploration is blown out of proportion by the
inconvenient combination of unrestricted infrastructure rules and infinite
roles for the protocol participants that we have discussed in Section 5.4.1. In
light of these considerations, it should now be clear how a systematic delay
in discarding invalid execution traces can make a difference when it comes
to the proof search reaching termination.

When trying to address this problem, our main concern is finding a way
for the public key of an AS Certificate to be directly linked back to the
rule where it was first generated via the Fr fact, which could be either an
infrastructure rule or a rule modeling the Requesting AS executing the first
phase of the Reissuance Protocol. That is because, otherwise, the Tamarin
prover would be forced to explore the update chain of the AS Certificate up
to the certificate version where the current Signing Key was first generated.
This process may require Tamarin’s backwards search to go through the
execution of several runs of the Reissuance Protocol, which, in turn, may
involve a number of updates of the signing Issuer Certificate Key as well.

It is specifically for this purpose that we introduced the new persistent fact
shown in Listing 6.6, which registers when a new public key pk (~1tkAS) is
generated for the AS identified by $AS_Identifier.

[!FreshKey($AS_Identifier, pk(~1tkAS)) j

Listing 6.6: Persistent fact registering a new Signing Key being created.

What is more, all the rules in our model where a new version of the Signing
Key is created take as input both the persistent fact storing the AS Certifi-

6.3. Proofs and Results

cate to be updated and the Fr fact generating the new Signing Key. Given
any one of these rules, the public key contained in the preexisting AS Cer-
tificate and the public key freshly produced in the rule itself via the Fr fact
are inevitably different. That is because, as we have already mentioned in
Section 3.1.3, all cryptographic keys in Tamarin are represented as fresh val-
ues and no two fresh values generated by the Fr fact are ever the same. In
our particular case, one fresh value is generated in the rule itself, while the
other one already existed prior to the rule being triggered. This entails that
the two keys come from distinct instances of the Fr fact and must therefore
be different. Nevertheless, the Tamarin prover still assumes that these two
values may in principle be the same and first needs to trace back the exact
rule originating the public key contained in the AS Certificate before con-
cluding that they are in fact different. To avoid this kind of unnecessary
trace exploration, we decided to use the following inequality restriction to
make sure that the two public keys are always considered to be different
straight away in all the rules where they appear together.

(restriction Inequal:
L "All x y #i. Inequal(x, y) @i ==> not(x = y)"

-

Listing 6.7: Inequality restriction.

Placeholder for validity indicators

As we have explained in Section 5.3.6, we make use of specific fresh val-
ues that we call validity indicators to express whether a SCION Certificate
should be considered expired or not. Moreover, we have seen in Section 5.1.2
that in our Reissuance Protocol specification it is the Issuing AS who is re-
sponsible for setting the validity period of the reissued AS Certificate. There-
fore, in our Tamarin model, even though the proposed new version of the AS
Certificate sent over by the Requesting AS as part of the reissuance request
still contains a validity indicator that was copied over from the latest version
of the AS Certificate, this validity indicator will always be overwritten by the
Issuing AS without ever being checked.

To prevent the Tamarin prover from uselessly tracing back the origin of this
fresh value, we simply substitute it for a unique placeholder which can be
retrieved from the persistent fact with fact symbol PF. This placeholder is
generated by the rule in Listing 6.8 and its uniqueness is guaranteed by the
restriction in Listing 6.9.

1 (rule Placeholder_Fresh: w
2| [Fr(~p) 1 \
3 | --[Placeholder_Fresh_Triggered(~p) 1-> ‘
4 L ['PF(~p) 1] J

Listing 6.8: Rule creating the placeholder for validity indicators.

57

6. PROOF SUMMARY

58

1
2
3
4

(restriction Unique_Placeholder_Fresh: 1
"A1l p1 p2 #i #3.

\ Placeholder _Fresh_Triggered(pl) @i & \
L Placeholder_Fresh_Triggered(p2) @j ==> (#i = #j)" J

Listing 6.9: Restriction enforcing the uniqueness of the placeholder for validity indicators.

It is worth making clear that the solution we have just presented is not the
only possible optimization when it comes to avoiding to deal with the origin
of the residual validity indicator in the reissuance request. For instance,
instead of using a placeholder for this fresh value, we could simply replace it
with a public or a constant value. Nevertheless, this solution would require
the Issuing AS to pattern match the reissuance request from the Requesting
AS differently, so as to account for the new value sort. At this point, we
could even omit the pair containing this validity indicator altogether from
the multiset representing the proposed new version of the AS Certificate
sent over to the Issuing AS. Still, we would need to alter the rule modeling
the Issuing AS executing the second phase of the Reissuance Protocol to
accept a shorter format for the reissuance request.

The advantage of our solution is that it preserves the sort of the validity
indicator and does not require any changes in the way that the Issuing AS
pattern matches the incoming reissuance request. This is important because,
as we have mentioned in Section 5.1.2, the decision to always have the Is-
suing AS setting the validity period for the reissued AS Certificate in our
Reissuance Protocol specification is completely arbitrary. In practice, some
ISDs may have the Requesting AS perform this operation instead. There-
fore, our chosen solution allows the Tamarin model to be easily adapted
to alternative specifications of the Reissuance Protocol without any need to
adjust the way that the Issuing AS receives the reissuance request from the
Requesting AS, once all the references to the unique persistent fact with fact
symbol PF are removed.

Chapter 7

Conclusion

This thesis has stemmed from an intuition on how to address a lack of server
authentication in SCION’s Hidden Paths Design. From there, we have de-
vised a sensible solution to this issue that could easily be deployed and best
tit SCION’s architectural principles. We have later focused on performing
a security analysis of SCION’s Reissuance Protocol which was entirely sup-
ported by the Tamarin security protocol verification tool. We have leveraged
this automated prover to formally model the Reissuance Protocol and to
verify for it all the security properties we needed to justify our proposed
solution to the authentication problem in the Hidden Paths Design, which
we have also modeled in the tool as an extension of the Reissuance Protocol.

In short, it was first brought to our attention that, in the context of hidden
path segment registration, a Beacon Server (BS) and a Hidden Path Server
(HPS) located in different Autonomous Systems (ASes) necessitated a way
to authenticate each other before sharing confidential information, but no
mechanism existed in SCION for this purpose. Hence, the idea to establish
an end-to-end encrypted QUIC channel between the two in order to ensure
secure communication, i.e., authenticated at both ends and confidential. The
problem therefore shifted to finding a way for the two servers to exchange
the mutually trusted TLS certificates needed to bootstrap this encrypted
QUIC channel. The crucial intuition was then to embed either a TLS certifi-
cate or a CA certificate authenticating multiple TLS certificates directly into
the AS Certificates of the two ASes where the BS and the HPS are located,
so as to facilitate their distribution across the SCION network.

Our main contributions have been devising a solution to realize this intuition
as an extension of the Reissuance Protocol and conducting a formal security
analysis to verify its legitimacy. In particular, we have decided to rely on the
already existing Reissuance Protocol for securely embedding CA and TLS
certificates into AS Certificates because we wanted to maximize the reuse of
well established protocols and minimize the efforts to deploy our solution.

59

7. CONCLUSION

60

Eventually, our security analysis successfully yielded all the results we were
hoping for, thus confirming the correctness of our proposed extension of the
Reissuance Protocol. Now, from all the proofs of correctness generated by
the Tamarin prover, we have obtained the formal guarantee that we can se-
curely work out the problem of bootstrapping TLS trust from AS Certificates
with a readily deployable solution which only requires minimal changes to
the existing SCION infrastructure. This solution not only allows us to es-
tablish an encrypted QUIC channel between a BS and an HPS in the context
of Hidden Path communication, but it can also inherently scale to provide
mutual authentication for any two entities in SCION.

We expect possible future work to build upon the Tamarin models that we
have made available with this thesis, so as to assess the security of further
extensions of the Reissuance Protocol. This protocol is a cardinal mechanism
in SCION’s CP-PKI and we speculate it may still be worth of analysis, for
instance, in the broader context of certificate revocations and of PISKES [13],
i.e.,, a symmetric-key derivation system which was proposed as an addition
to the SCION architecture.

Another possibility could be to stretch Tamarin’s symbolic modeling capa-
bilities to perform a more sophisticated security analysis of the Reissuance
Protocol, e.g., by verifying more advanced security properties or by devis-
ing more elaborate adversary models. A great example of how to conduct
this kind of advanced security analysis is provided by Jackson at al. [10].
This paper introduces a more refined symbolic representation of signatures
in Tamarin, which allows us to capture the subtle and unexpected behav-
iors of some cryptographic functions affecting several real-world signature
schemes. The security properties that we have successfully verified using
Tamarin’s built-in signing functions could therefore be explored again in
light of the more expressive signing functions suggested in the paper. Here,
the goal would be to also account for the actual signature schemes em-
ployed in the current implementation of the Reissuance Protocol in the at-
tempt to discover attacks which exploit specific weaknesses of their signing
algorithms.

Lastly, Tamarin’s automated reasoning could be enhanced to prevent the
inefficiency in its symbolic backwards search that we have highlighted in
Section 6.3, on pages 56 and 57. There, we have explained how, in specific
circumstances, the Tamarin prover fails to foresee that certain fresh values
must inevitably come from different Fr facts, and hence cannot be the same
value. For our models, we were able to avoid the unnecessary trace explo-
ration which ensues from this shortcoming by using the inequality restric-
tion introduced in Listing 6.7 and thus by adding suitable action facts with
fact symbol Inequal to all rules where we found the need to explicitly dis-
tinguish between fresh values that we can immediately tell can never be the

same. Nevertheless, it would be beneficial to have this issue directly ad-
dressed in the proof search algorithm, so as to systematically improve the
overall efficiency of future security analyses in Tamarin.

61

Bibliography

(1]

(6]

(8]

Anapaya Systems AG website. https://www.anapaya.net/about. Ac-
cessed: 2020-03-04.

SCION Architecture website. https://www.scion-architecture.
net/. Accessed: 2020-02-19.

Tamarin Prover website. https://tamarin-prover.github.io/. Ac-
cessed: 2020-02-19.

David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Symboli-
cally Analyzing Security Protocols Using Tamarin. ACM SIGLOG News,
4(4):19-30, November 2017.

David Basin, Jannik Dreier, and Ralf Sasse. Automated Symbolic Proofs
of Observational Equivalence. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, CCS 15, pages
1144-1155, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

B. Blanchet. An efficient cryptographic protocol verifier based on pro-
log rules. In Proceedings. 14th IEEE Computer Security Foundations Work-
shop, 2001., pages 82-96, 2001.

Cas] F Cremers. The Scyther Tool: Verification, Falsification, and Anal-
ysis of Security Protocols. In Aarti Gupta and Sharad Malik, editors,
Computer Aided Verification, pages 414—418, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 30(2):198-208, 1983.

63

BIBLIOGRAPHY

64

[9]

[12]

[13]

[15]

[17]

[18]

[19]

Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. Internet-Draft draft-ietf-quic-transport-27, IETF
Secretariat, February 2020. http://www.ietf.org/internet-drafts/
draft-ietf-quic-transport-27.txt.

Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse.
Seems Legit: Automated Analysis of Subtle Attacks on Protocols that
Use Signatures. Cryptology ePrint Archive, Report 2019/779, 2019.
https://eprint.iacr.org/2019/779.

Gavin Lowe. A Hierarchy of Authentication Specifications. In Proceed-
ings of the 10th IEEE Workshop on Computer Security Foundations, CSFW
97, page 31, USA, 1997. IEEE Computer Society.

Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Laurent
Chuat. SCION: A Secure Internet Architecture. Springer International
Publishing AG, 2017.

Benjamin Rothenberger, Dominik Roos, Markus Legner, and Adrian
Perrig. PISKES: Pragmatic Internet-Scale Key-Establishment System.
In Proceedings of the 15th ACM Asia Conference on Computer and Commu-
nications Security (ASIA CCS’20), 2020.

B. Schmidt, R. Sasse, C. Cremers, and D. Basin. Automated Verification
of Group Key Agreement Protocols. In 2014 IEEE Symposium on Security
and Privacy, pages 179-194, 2014.

Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Au-
tomated Analysis of Diffie-Hellman Protocols and Advanced Security
Properties. In Proceedings of the 2012 IEEE 25th Computer Security Foun-
dations Symposium, CSF 12, pages 78-94, USA, 2012. IEEE Computer
Society.

Scionproto. Bootstrap TLS trust from AS Certificates. Issue
2882. https://github.com/scionproto/scion/issues/2882. Ac-
cessed: 2020-03-04.

Scionproto. Hidden Paths Design. https://github.com/scionproto/
scion/blob/master/doc/HiddenPaths.md. Accessed: 2020-04-01.

Scionproto. Hidden Paths Design - Control Plane messages specifica-
tion. https://github.com/scionproto/scion/blob/master/proto/
path_mgnmt . capnp. Accessed: 2020-03-04.

Martin Thomson and Sean Turner. Using Transport Layer Secu-
rity (TLS) to Secure QUIC. Internet-Draft draft-ietf-quic-tls-10, IETF

Bibliography

Secretariat, March 2018. http://www.ietf.org/internet-drafts/
draft-ietf-quic-tls-10.txt.

65

Abbreviations

AS Autonomous System
BS Beacon Server

CA Certificate Authority
CP-PKI Control Plane PKI
CS Certificate Server

HPG Hidden Path Group
HPGCfg Hidden Path Group Configuration
HPS Hidden Path Server

ISD Isolation Domain

PCB Path-segment Construction Beacon
PKI Public-Key Infrastructure

TRC Trust Root Configuration

67

Glossary

Autonomous System (AS) A locally connected network under a common
administrative control

Beacon Server (BS) A server responsible for the SCION path exploration
mechanism

Certificate Authority (CA) An entity trusted to identify entities in a network
and to bind them to public keys by issuing digital certificates

Certificate Server (CS) A server that keeps cached copies of Trust Root Con-
tigurations (TRCs) and SCION Certificates

Hidden Path Group (HPG) A gouping of ASes sharing hidden path infor-
mation among them

Hidden Path Group Configuration (HPGCfg) The configuration file defin-
ing a Hidden Path Group (HPG)

Hidden Path Server (HPS) A server responsible for caching hidden seg-
ments and answering hidden path requests

Isolation Domain (ISD) A hierarchical grouping of networks under a com-
mon organizational domain sharing the same TRC

Path-segment Construction Beacon (PCB) Cryptographically protected mes-
sages generated by Primary ASes and spread across the network to
collect routing path information

Path Server A server responsible for the SCION path registration and lookup
mechanisms

Trust Root Configuration (TRC) A certificate that defines the roots of trust
(i.e., public keys) for an Isolation Domain (ISD)

69

Appendix A

TRC Structure

In SCION, a Trust Root Configuration (TRC) is made up of a payload field
and a signatures field. The former points to the payload of the TRC, while
the latter points to an array of signatures computed over the TRC payload
and paired with their metadata.

The structure of the TRC payload comprises the following fields:

isd: Isolation Domain (ISD) identifier (unique and immutable).
version: TRC version number (starts at 1).

base_version: version number of the base TRC.

description: human-readable description of the ISD or of the TRC.

voting_quorum: number of Primary ASes with voting privileges needed
for signing a TRC update.

format_version: version number of the TRC format.

grace_period: number of seconds during which the unexpired previ-
ous version of the TRC is still considered active.

trust_reset_allowed: boolean value specifying if a trust reset for the
ISD is allowed.

validity: a validity object (see Section A.1).

primary_ases: object mapping the identifier of each Primary AS in the
ISD, expressed as an ISD-AS identifier, to an attributes object (see
Section A.2) and a keys object (see Section A.3).

votes: object mapping the ISD-AS identifier of each AS that signed
the TRC update to a signature object (see Section A .4).

proof_of_possession: object mapping ISD-AS identifiers to an array
of possible key types (offline, online, and issuing). This object

71

A. TRC STRUCTURE

72

identifies all keys that appear new or updated in the current version
of the TRC. ASes owning the corresponding private keys need to ad-
ditionally sign the TRC with these keys to show proof of possession for
them.

A.1 The validity object

The structure of a validity object within a TRC comprises the following
fields:

* not_before: timestamp before which the containing TRC is not con-
sidered valid yet.

* not_after: timestamp after which the containing TRC is not consid-
ered valid anymore.

A.2 The attributes object

The attributes object represents a set of attributes reflecting privileges
that a Primary AS may have. These attributes are: authoritative, core,
issuing, and voting.

A.3 The keys object

The keys object maps up to three key types (offline, online, and issuing)
to an object with the following three fields:

* key_version: key version number (starts at 1).
* algorithm: identifier of the algorithm this keys can be used with.

¢ key: the corresponding public key.

A.4 The signature object

The structure of a signature object within a TRC comprises the following
fields:

* key_type: type of the key used to sign the TRC update (either offline
or online).

* key_version: version number of the key used for producing the sig-
nature.

Appendix B

SCION Certificates Structure

The structure of an Issuer Certificate and of an AS Certificate is identical,
except for the contents of the issuer object (see Section B.3). This is because
an AS Certificate is signed with an Issuer Certificate Key, and hence authen-
ticated by an Issuer Certificate, while an Issuer Certificate is authenticated
directly by a Trust Root Configuration (TRC), since it is self-signed with an
Issuing Key.

A SCION Certificate is made up of a payload field and a signature field.
The former points to the payload of the SCION Certificate, while the latter
points to the signature computed over the payload, together with its meta-

data.

The structure of a SCION Certificate payload comprises the following fields:

subject: ISD-AS identifier (unique).
version: SCION Certificate version number (starts at 1).
format_version: version number of the SCION Certificate format.

description: human-readable description of the Autonomous System
(AS) or of the SCION Certificate.

certificate type: either issuer for Issuer Certificates or as for AS
Certificates.

validity: a validity object (see Section B.1).
keys: a keys object (see Section B.2).

issuer: an issuer object (see Section B.3).

73

B. SCION CERTIFICATES STRUCTURE

74

B.1 The validity object

The structure of a validity object within a SCION Certificate comprises the
following fields:

* not_before: timestamp before which the containing SCION Certificate
is not valid for verifying signatures yet.

* not_after: timestamp after which the containing SCION Certificate is
not valid for verifying signatures anymore.

B.2 The keys object

The keys object maps each type of key included in the SCION Certificate
(issuing, encryption, signing, or revocation) to an object comprising the
following fields:

* algorithm: identifier of the algorithm this keys can be used with.
* key: the corresponding public key.
* key_version: key version number (starts at 1).

Key type issuing stands for the Issuer Certificate Key of an Issuer Certificate.
Key type signing stands for the Signing Key of an AS Certificate. Key type
revocation stands for the Revocation Key, which is optional both in Issuer
and in AS Certificates, and can be used in the SCION Certificate revocation
process. Lastly, key type encryption stands for the Encryption Key. This
key can only be found in AS Certificates and is part of a symmetric-key
derivation system called PISKES [13] which was proposed as an extension
to the SCION architecture.

B.3 The issuer object

If tield certificate_type is set to as, then the issuer object comprises the
following fields:

¢ ia: ISD-AS identifier of the Issuing AS signing this AS Certificate with
an Issuer Certificate Key.

* certificate_version: version number of the Issuer Certificate whose
associated Issuer Certificate Key was used for signing this AS Certifi-
cate.

Otherwise, if field certificate_type is set to issuer, then the issuer object
only comprises the following field:

® trc_version: version number of the TRC that the Issuing AS used
when self-signing this Issuer Certificate with its associated Issuing Key.

Appendix C

AS Certificate Reissuance Protocol

The AS Certificate Reissuance Protocol, here simply referred to as the Reis-
suance Protocol, is a protocol executed between a Requesting AS and an Issu-
ing AS located in the same Isolation Domain (ISD). The goal of this protocol
is to enable the Issuing AS to respond to a request for AS Certificate renewal
from the Requesting AS with a newly issued AS Certificate version.

C.1 Initial Knowledge

Both the Requesting AS and the Issuing AS need to hold some initial knowl-
edge before they can initiate the protocol.

Their shared knowledge comprises:

¢ The current time from a clock synchronized with all other ASes in the
ISD, which we are going to refer to as NOW.

¢ All TRCs issued for the ISD, starting from the current base TRC which
bootstrapped the update chain.

The Issuing AS is also expected to know:
¢ All AS Certificates issued for the Requesting AS.

¢ All Issuer Certificates referencing the Issuing AS in their subject field
and the Issuer Certificate Keys associated with them.

On the other hand, the Requesting AS is expected to know:

¢ A Certificate Chain <Iss_Cert_version_w, AS_Cert_version_v>, where:

— AS_Cert_version_v is the latest AS Certificate (version v) in store
referencing the Requesting AS in its subject field.

— Iss_Cert_version_w is the Issuer Certificate (version w) referenced
in AS_Cert_version_v.payload.issuer.

75

C. AS CERTIFICATE REISSUANCE PrROTOCOL

76

— AS_Cert_version_v.payload.validity.not_before
<= NOW <= AS_Cert_version_v.payload.validity.not_after.

¢ The Signing Key associated with AS_Cert_version_v.

C.2 Full Formal Specification

The Reissuance Protocol consists of three phases, called, in order of exe-
cution, Requesting AS Send, Issuing AS Receive and Send, and Requesting AS
Receive.

Below, we are going to provide the formal specification for these three
phases, which lists into detail all of their fundamental execution steps.

1. Requesting AS Send.

N =

. Create new Request as the copy of AS_Cert_version_v.
. Increment Request.payload.version by 1.

. (Optional) Update Signing Key:

a) Update Request.payload.keys.signing.algorithm and
Request.payload.keys.signing.key.
b) Increment Request.payload.keys.signing.version by 1.

Produce signature Sign Req new_key over Request.payload with the
(possibly new) Signing Key associated with Request.

. Set Request.signature to Sign Req new key.

Produce signature Sign Req_old_key over Request with the Signing
Key associated with AS_Cert_version_v.

Send <Request, Sign_Req_old key> to the Issuing AS.

2. Issuing AS Receive and Send.

1.
2.

Receive <Request, Sign Req_old key> from the Requesting AS.

Retrieve Certificate Chain <Iss_Cert_version y, AS Cert_version x>,
where:

a) AS_Cert_version_x is the latest AS Certificate (version x) issued

for the Requesting AS.

b) Iss_Cert_version_y is the Issuer Certificate (version y) referenced
in AS_Cert_version_x.payload.issuer.

C.2. Full Formal Specification

c) AS_Cert_version x.payload.validity.not_before
<= NOW <= AS_Cert_version_x.payload.validity.not_after.

3. Check Request.payload.version:
a) If (Request.payload.version - 1) == x, continue execution.
b) If Request.payload.version <= x, return the Certificate Chain

<Iss_Cert_version.y, AS_Cert_version_x> to the Requesting AS
and stop execution.

c) If (Request.payload.version - 1) > x,signal a malformed reis-
suance request and stop execution.
4. Verity Sign Req_old_key with AS_Cert_version_x.payload.keys.signing.key.
5. Validate Request:

a) Check Request.payload.subject == AS Cert_version x.payload.subject.
b) Check Request.payload.issuer.ia == own ISD-AS identifier.
c) Check Request.payload.issuer.certificate version ==

d) Check (Request.payload.keys.signing.key !==
AS Cert_version x.payload.keys.signing.key) iff
(Request.payload.keys.signing.key_version ==
AS Cert_version x.payload.keys.signing.key_version + 1).

6. Verify Request.signature with Request.payload.keys.signing.key.
7. Issue a new Certificate Chain <Iss_Cert_version z, Reply>, where:

a) Iss Cert_version z is the latest Issuer Certificate (version z) in
store, and:

iz >=y.
ii. Iss Cert_version z.payload.validity.not _before
<= NOW <=Iss_Cert_version_z.payload.validity.not_after.

b) Reply is a new object created as the copy of Request, but where:

i. Reply.payload.validity is updated to satisfy
Iss_Cert_version_z.payload.validity.not_before <=
Reply.payload.validity.not_before <= NOW <=
Reply.payload.validity.not_after <=
Iss_Cert_version_z.payload.validity.not_after.

ii. Reply.payload.issuer.certificate_version is set to
Iss_Cert_version_z.payload.version.

77

C. AS CERTIFICATE REISSUANCE PrROTOCOL

78

c) Reply.signature is set to the signature produced over Reply . payload
with the Signing Key associated with Iss_Cert_version_z.

8. Store <Iss_Cert_version_z, Reply> asanewly issued Certificate Chain.

9.

o

Send <Iss_Cert_version_z, Reply> to the Requesting AS.

. Requesting AS Receive.

1. Receive <Iss_Cert_version_z, Reply> from the Issuing AS.

2. Check Request.payload.keys.signing == Reply.payload.keys.signing.
3.
4

Check Request.payload.issuer.ia == Reply.payload.issuer.ia.

. Check Request.payload.issuer.certificate version <=

Reply.payload.issuer.certificate_version.

Retrieve TRC_version_t, i.e., the latest TRC (version t) in store.

. Check that TRC_version_t is active, i.e., TRC_version_t.validity.not_before

<= NOW <= TRC_version_t.validity.not_after.

. Validate the received Certificate Chain <Iss_Cert_version_z, Reply>:

a) Iss_Cert_version_z.subject must be listed as an Issuing AS in
TRC_version_t.

b) Retrieve TRC_version_g, i.e., the TRC (version q) referenced in
Iss_Cert_version_z.payload.issuer.trc_version.

¢) Check TRC_version_q.version <= TRC_version_t.version.

d) Check TRC_version q.validity.not _before <=
Iss_Cert_version_z.payload.validity.not_before <=
Reply.payload.validity.not_before <= NOW <=
Reply.payload.validity.not_after <=
Iss_Cert_version_z.payload.validity.not_after <=
TRC_version_q.validity.not_after <=TRC_version_t.validity.not_after.

e) Check that TRC_version_qand TRC_version_t have listed the same
issuing public key for the Issuing AS.

f) Validate Reply:

e Check Reply.subject == own ISD-AS identifier.
¢ Verify Reply.signature with
Iss_Cert_version_z.payload.keys.signing.key.

C.2. Full Formal Specification

g) Validate Iss_Cert_version. z:

® Check Iss_Cert_version_z.subject == ISD-AS Identifier of
the Issuing AS.

* Verify Iss_Cert_version_z.signature with the issuing pub-
lic key listed in TRC_version_t for the Issuing AS.

8. If any of the checks in the previous step failed:
a) Retrieve GraceTRC, i.e. TRC version t - 1.

b) Check that GraceTRC is active, i.e.,

(GraceTRC.validity.not_before <= NOW <= GraceTRC.validity.not_after)
AND

(NOW <= TRC_version_t.validity.not_before + TRC_version_t.grace _period).

c) Repeat checks in Step 7 with GraceTRC replacing TRC_version_t.

9. Store <Iss_Cert_version_z, Reply>asanewly issued Certificate Chain.

79

Appendix D

Abstracted Reissuance Protocol

If we consider all the modeling abstractions presented in Section 5.3, it
should be clear that the specification of the AS Certificate Reissuance Proto-
col that we have exhaustively described in Section C of the Appendix needs
some substantial adaptations before it can be implemented in Tamarin.

In the course of this section, we are going to formally present how the Reis-
suance Protocol was adjusted to fit our modeling choices in Tamarin.

D.1 Initial Knowledge

Both the Requesting AS and the Issuing AS still need to hold some initial
knowledge before they can initiate the abstracted protocol, but here, their
shared knowledge only comprises the unique TRC issued for the ISD.

The Issuing AS is also expected to know:
¢ All AS Certificates issued for the Requesting AS.

¢ All Issuer Certificates referencing the Issuing AS in their subject field
and the Issuer Certificate Keys associated with them.

On the other hand, the Requesting AS is expected to know:
o A Certificate Chain <Iss_Cert_version_w, AS_Cert_version_v>, where:

— AS_Cert_version_v is the latest received AS Certificate (version v)
referencing the Requesting AS in its subject field.

— Iss_Cert_version_wis the Issuer Certificate (version w) referenced
in AS_Cert_version_v.payload.issuer.

— AS_Cert_version_v.payload.validity is a validity indicator which

has not yet expired.

81

D. ABSTRACTED REISSUANCE ProTOCOL

82

¢ The Signing Key associated with AS_Cert_version_v.

D.2 Full Formal Specification

Below, we are going to provide a new formal specification of the three phases
making up the Reissuance Protocol. This time, we will list into detail all of
their execution steps the way we have modeled them in Tamarin following
the abstractions presented in Section 5.3.

1. Requesting AS Send.

—_

Create new Request as the copy of AS_Cert_version_v.
Increment Request.payload.version by 1.
(Optional) Update Signing Key:

a) Update Request.payload.signing.key.

b) Increment Request.payload.signing.version by 1.

Produce signature Sign_Req new_key over Request.payload with the
(possibly new) Signing Key associated with Request.

Set Request.signature to Sign Req_new key.

. Produce signature Sign Req_old key over Request with the Signing

Key associated with AS_Cert_version_v.

. Send <Request, Sign Req_old_key> to the Issuing AS.

2. Issuing AS Receive and Send.

1.
2.

Receive <Request, Sign Req_old key> from the Requesting AS.

Retrieve Certificate Chain <Iss_Cert_version_y, AS_Cert_version x>,
where:

a) AS_Cert_version_x is the latest AS Certificate (version x) issued

for the Requesting AS.

b) Iss_Cert_version_y is the Issuer Certificate (version y) referenced
in AS Cert_version x.payload.issuer.

c) AS_Cert_version x.payload.validity is a validity indicator which
has not yet expired.

3. Check Request.payload.version:

D.2. Full Formal Specification

a) If (Request.payload.version - 1) == x, continue execution.

b) If Request.payload.version <= x, trigger an out-of-band resyn-
chronization process updating the Requesting AS with the miss-
ing Certificate Chain <Iss_Cert_version.y, AS_Cert_version x>
and then stop execution.

c) If (Request.payload.version - 1) > x, stop execution.
4. Verify Sign Req_old_key with AS_Cert_version_x.payload.signing.key.
5. Validate Request:

a) Check Request.payload.subject == AS_Cert_version_x.payload.subject.
b) Check Request.payload.issuer.ia == own AS identifier.
c) Check Request.payload.issuer.certificate_version == y.

d) Check (Request.payload.signing.key !==
AS Cert_version x.payload.signing.key) iff
(Request.payload.signing.key_version ==
AS Cert_version x.payload.signing.key version + 1).

6. Verify Request.signature with Request.payload.signing.key.
7. Issue a new Certificate Chain <Iss_Cert_version z, Reply>, where:
a) Iss_Cert_version_ z is its latest Issuer Certificate (version z), and:

iz >=y.
ii. Iss_Cert_version_ z.payload.validity is a validity indica-
tor which has not yet expired.

b) Reply is a new object created as the copy of Request, but where:

i. Reply.payload.validity is updated to a new validity indi-
cator.

ii. Reply.payload.issuer.certificate_version is set to
Iss_Cert_version_z.payload.version.

c) Reply.signature is set to the signature produced over Reply . payload
with the Signing Key associated with Iss_Cert_version_z.

8. Register Iss_Cert_version_z as a newly issued Issuer Certificate.

9. Send <Iss_Cert_version_z, Reply> to the Requesting AS.

83

D. ABSTRACTED REISSUANCE ProTOCOL

84

3. Requesting AS Receive.

1. Receive <Iss_Cert_version_z, Reply> from the Issuing AS.

2. Check Request.payload.signing == Reply.payload.signing.

3. Check Request.payload.issuer.ia == Reply.payload.issuer.ia.
4

. Check Request.payload.issuer.certificate version <=
Reply.payload.issuer.certificate_version.

5. Validate the received Certificate Chain <Iss_Cert_version z, Reply>:

a) Check that Reply.payload.validity is a validity indicator which
has not yet expired.

b) Validate Reply:

¢ Check Reply.subject == own AS identifier.
* Verify Reply.signature with
Iss_Cert_version_z.payload.signing.key.

¢) Validate Iss_Cert_version_ z:

® Check Iss_Cert_version z.subject == AS Identifier of the
Issuing AS.

¢ Verify Iss_Cert_version_z.signature with the issuing pub-
lic key listed in the unique TRC for the Issuing AS.

6. Register <Iss_Cert_version_z, Reply> asanewly received Certificate
Chain.

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiguette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date

papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

