ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Formal Analysis of 5G Protocols

Bachelor Thesis
David Lanzenberger

September 9, 2017

Supervisors: Dr. Ralf Sasse, Dr. Lucca Hirschi
Professor: Prof. Dr. David Basin

Department of Computer Science, ETH Ziirich

Abstract

Security of telecommunication protocols is paramount. In this work,
we formally model protocols of the new 5G standard and analyze them
in the symbolic model of cryptographic protocol verification, making
use of TAMARIN, a state-of-the-art symbolic protocol analysis tool.

We model two newly proposed 5G protocols called Relay-Authentication
and Aggregation-Authentication, which make use of the Diffie-Hellman
key exchange as well as ID-based signatures. Our analysis reveals mul-
tiple weaknesses and we propose a number of improvements for the
protocol specifications in order to resolve them.

Moreover, we model the 5G authentication and key agreement proto-
cols EPS-AKA* and EAP-AKA’. We provide a comprehensive analysis
as well as a comparison between both protocols, showing that EAP-
AKA’ provides strictly stronger security guarantees than EPS-AKA*.

Finally, we present a modeling approach that leverages TAMARIN’s sup-
port for mutable global state as well as its built-in exclusive-or (XOR)
operator to account precisely for mechanisms of AKA-based protocols
that are ignored or greatly simplified in all prior formal models. We
apply our approach on EPS-AKA* to obtain a very precise model of
the protocol, for which we again verify the same security properties as
for our basic model.

Acknowledgements

I would like to express my sincere gratitude to everyone who con-
tributed towards the successful completion of this thesis and who en-
couraged me throughout those six months.

First, I would like to thank my advisors Ralf Sasse and Lucca Hirschi
for their valuable feedback on the draft versions of this thesis, for the
illuminating discussions, and for their patient assistance. I could not
have imagined having better advisors and mentors.

Furthermore, I would like to thank Professor David Basin for the op-
portunity to write this thesis in his group.

Finally, I thank my family and friends for their enduring support and
continuous encouragement throughout my years of study.

Contents

Contents v
1 Introduction 1
1.1 Related Work 2

1.2 Contributions 3

1.3 Outline e 4

2 Preliminaries 7
21 Backgroundon5G 0oL 7
2.1.1 Basic Network Structure 7

2.1.2 Abbreviations, 8

2.1.3 Security Functions 8

214 5G Security Protocols 9

2.2 Informal Security Protocols 9
221 ThreatModel 9

222 Security Properties 9

223 Channels. 10

224 Alice&Bob Notation 11

2.3 Formal Protocol Verification 13
231 TermRewriting 13

232 Multiset Rewriting 14

2.3.3 Formal Protocol Description 17

2.34 Formal Message Deduction and Dolev-Yao Adversary 18

2.3.5 Formal Protocol Property Specification 19

24 Tamarin. e e e e e 21
241 Equational Theories 21

2.42 Proof Strategy and Heuristics 22

243 Restrictions 22

2.4.4 Partial Deconstructions 23

245 PresentedModels. 23

CONTENTS

Vi

General Modeling Decisions
3.1 Key Derivation Functions
3.2 Digital Signatures o oL
3.3 Identity-Based Signatures
3.3.1 Concepts of ID-based Cryptography
332 Model
34 SecureChannels.
3.5 Compromise Scenarios
3.6 5G Roles and Agent Names

Protocols Using ID-Based Credentials

41 Relay-Authentication
411 Model Based on Simple PKI
412 Model with ID-based Credentials
413 Conclusion 0 ..

42 Aggregation-Authentication
421 Learning from Relay-Authentication
422 BuildingaModel
423 Security Properties
424 Conclusion 0 ...

EPS-AKA*

51 EPS-AKA
51.1 BuildingaModel
51.2 Security Properties (no confirmation messages)
5.1.3 Security Properties (with confirmation messages) . . .

52 EPS-AKA*
521 Security Properties
52.2 Generalizing the Confirmation Messages

53 Conclusion Lo

EAP-AKA’

6.1 BuildingaModel

6.2 Security Properties (no confirmation messages)

6.3 Security Properties (with confirmation messages)

6.4 Fast Re-Authentication
641 BuildingaModel
6.4.2 Security Properties
6.4.3 Security of EAP-AKA’ with Fast Re-Authentication . .

6.5 Comparing EAP-AKA’ to EPS-AKA*
6.5.1 Comparison without Confirmation Messages
6.5.2 Comparison with Confirmation Messages
6.53 Conclusion

25
25
25
25
26
26
27
27
28

29
29
30
32
33
33
35
36
37
39

41
42
44
45
48
49
50
53
54

Contents

7 Improving Model Precision 71
7.1 Sequence Number 71
7.1.1 Storing the Sequence Number 72

7.1.2 Checking Sequence Number Freshness 72

7.2 Re-Synchronization 72

7.3 BuildingaModel L. 73
73.1 Sequence Number 73

7.3.2 Re-Synchronization. 74

7.3.3 Non-Zero Anonymity Key 75

74 EPS-AKA* 76

8 Conclusion 79
A Tamarin Model - EPS-AKA* 83
B Abbreviations 105
Bibliography 107

vii

Chapter 1

Introduction

With smartphones penetrating various facets of everyday life, telecommuni-
cation is ubiquitous. Furthermore, novel use cases arising from the Internet
of Things (IoT) and so-called smart devices are going to increase the impor-
tance of telecommunication ever more rapidly.

Customers are increasingly relying on the availability and security of mobile
networks, for example, when online banking transactions are authenticated
with an SMS-delivered code. Clearly, private communication and, more
generally, the transmission of sensitive data over mobile networks makes
security an issue of critical importance.

Since the first generation (1G) of mobile network technology was introduced
in 1982, a new generation appeared approximately every 10 years. With each
of these generations, at least a few improvements concerning security were
established. When 2G [20] was deployed in 1991, encryption of voice and
text communication was supported for the first time. Subsequently, the 3G
standard [3] elevated 2G’s one-way authentication to mutual authentication
by introducing a new security protocol which allowed the user equipment to
authenticate the network it was attaching to. With 4G [4], the key hierarchy
has been improved in order to limit the damage caused by a partial compro-
mise of the infrastructure. Moreover, the protocols have been extended in
order to provide enhanced privacy protection for the users.

The current draft of the 5G security architecture [6] contains a variety of
security protocols. While some of those protocols build on older versions
from 3G or 4G, there are numerous new security protocols presented in [6].
For the first time, protocols based on the Diffie-Hellman key exchange and
on public key cryptography are taken into consideration.

Even though security protocols are known for being notoriously difficult to
design, most protocols that run in today’s mobile networks as well as those
being developed for the next generation are not designed with the goal

1. INTRODUCTION

of provable security in mind. Instead, protocols are often developed and
deployed before any formal verification, let alone thorough cryptographic
analysis. In the past, this has led to multiple attacks being found in widely
deployed telecommunication protocols [10, 28], most notably using meth-
ods of formal verification. Needless to say, an attack on a widely deployed
protocol in the global telecommunication network can cause severe damage.
Moreover, it may be very difficult to fix the protocol and it will often involve
expensive changes to the network infrastructure or even to the customer’s
cell phones.

Formal verification methods have been shown to be very effective in finding
attacks on security protocols. Inspecting and verifying a protocol in the
development phase and before it is deployed has the great advantage of
being able to fix possible weaknesses and flaws in its design. Moreover, a
successful verification can significantly increase the confidence in a protocol.

In this thesis, we analyze protocols of the upcoming 5G standard, making
use of formal verification methods to formally specify the protocols in a sym-
bolic model. Moreover, we prove confidentiality and authentication proper-
ties, encoded as reachability properties, of the analyzed protocols, ignoring
issues related to privacy for the most part. All of our proofs are carried out
with the TAMARIN prover, a state-of-the-art symbolic protocol analysis tool,
allowing us to automate large parts of most proofs.

1.1 Related Work

Most existing work on authentication and key exchange protocols in mobile
networks analyzes the 3GPP AKA protocol [3]. In particular, some security
requirements of AKA have been formally proved with an enhanced BAN
logic in [2].

Furthermore, attacks on AKA privacy properties have been found using an
automatic security protocol verifier called ProVerif in [10]. Moreover, [9]
provides a cryptographic analysis of the AKA protocol in a computational
model, and an unsuccessful attempt to increase the precision of the model
of [10] by using stateful modeling.

Additionally, ProVerif has been used in [28] to formally verify some privacy
properties of EAP-SIM as well as EAP-AKA, revealing new attacks on EAP-
SIM.

All existing analyses of 3GPP authentication protocols are affected by at least
one of the following issues and drawbacks:

e The analysis focuses only on the AKA key exchange protocol. How-
ever, in today’s mobile networks the AKA protocol is not used in its
pure form, but in variants such as EPS-AKA or EAP-AKA that have a

1.2. Contributions

different message format and even exchange some of the values in a
different order. This is a problem, because existing formal models and
security proofs do not trivially carry over to those variants.

e The analysis is imprecise in at least one of the following ways:

— The analysis models the protocols in a stateless fashion. This im-
plies that AKA’s sequence numbers cannot be modeled precisely,
since they require the presence of state to store the number be-
tween different sessions. Instead, the protocol is approximated
by replacing the sequence number by a different type of value,
such as a fresh value for each session that is magically shared
between the home network and the user equipment.

- Additional protocol mechanisms such as re-synchronization or
Fast Re-authentication are completely ignored.

— The exclusive-or operator is either not modeled at all, or it is re-
placed by a different operator that has simpler algebraic relations.

— The home network is modeled together with the serving network
as one entity participating in the protocol, leading to less precise
authentication properties.

e The analysis is outdated and does not take into account recent changes
[4, 6] to the protocol.

In this work, we overcome these limitations.

1.2 Contributions

Throughout this work, we will make strong use of the TAMARIN prover [32]
in order to prove properties of all analyzed protocols. For more details about
TAMARIN we refer to Section 2.4 on page 21.

We present the following main contributions:

1. A formal analysis and verification of newly proposed authentication
protocols which make use of identity-based cryptography. We high-
light multiple weaknesses and propose explicit improvements to be
added to the protocol specifications.

2. A formal analysis and verification of the complete EPS-AKA* protocol,
as well as a comparison with its predecessor EPS-AKA.

3. A formal analysis and verification of the complete EAP-AKA’ protocol.
Additionally, we formally verify the corresponding re-authentication

1. INTRODUCTION

mechanism in an isolated model. Furthermore, we provide a com-
prehensive comparison between EPS-AKA* and EAP-AKA’, exposing
interesting differences between the two protocols.

4. A precise model for the AKA protocol, leveraging TAMARIN’s support
for mutable global state as well as its built-in exclusive-or (XOR) opera-
tor. In particular, we model an incrementing sequence number with its
associated re-synchronization protocol. Finally, we demonstrate how
this model can be integrated into EPS-AKA* and verify the same secu-
rity properties as for our less precise model.

In all of our proposed models we aim for a high precision and try to make as
few assumptions as possible. The downside of this design choice is that the
complexity is considerably higher than in previous models. The TAMARIN
prover is very efficient and provides good heuristics, making it possible to
generate proofs of various properties for different protocols fully automati-
cally. While we are able to benefit greatly from TAMARIN and obtain fully
automatic proofs in many cases, the increased complexity reaches the tool’s
limits in some instances. In these cases, it was necessary either to provide
additional lemmas that helped to split a proof into smaller parts, or to guide
the proof search with manual choices which are automated by encoding
them as a heuristic in a so-called oracle.

The results of the analyses mostly provide confidence in the design of the
analyzed protocols, meaning that no completely new type of attack was
found. Since the specification of the protocols is not always precise and the
security goals are not stated accurately, it is however not straightforward to
draw a conclusion on the security of some of the protocols.

1.3 Outline

The thesis is structured as follows. In the second chapter, we introduce
a general background on 5G, some theory on informal as well as formal
security protocols and the TAMARIN prover.

In Chapter 3, we explain the basic modeling choices that need to be made
for basic primitives, such as key derivation functions or digital signatures.

We proceed in Chapter 4 by presenting a model for the ID-based authentica-
tion protocols that are described in Solution #2.16 and Solution #2.15 of [6],
followed by an analysis of their properties, revealing multiple weaknesses.
We iteratively improve the analyzed protocols until they achieve the desired
properties and conclude by proposing a set of corrections and clarifications
to incorporate into the protocol specifications.

In Chapter 5, we introduce a basic model for the EPS-AKA protocol as well
as its 5G successor EPS-AKA*. Moreover, we analyze and compare their

1.3. Outline

security properties.

We continue in Chapter 6 by building models for EAP-AKA’ as well as its
re-authentication mechanism and by formally verifying their properties. Ad-

ditionally, we provide a comprehensive comparison between the properties
of EAP-AKA’ and EPS-AKA*.

In Chapter 7, we present a precise model for the sequence number and its
re-synchronization mechanism. We show how the approach can be applied
to EPS-AKA* and again verify the properties proved in Chapter 5.

Finally, we conclude in Chapter 8 by reflecting on the overall results and the
difficulties that arose during the analysis of the protocols.

Chapter 2

Preliminaries

This chapter aims to establish all background information that is necessary
for the following discussion of 5G security protocols.

We start by providing some background on 5G. Then, we introduce general
notions that are useful when discussing security protocols informally and
proceed by formalizing those notions. Finally, we discuss the tool that is
used to prove properties of security protocols in this thesis.

2.1 Background on 5G

5G is the fifth generation of mobile network technology, a prospective stan-
dard that is currently being developed by the Third Generation Partnership
Project (3GPP) [1]. Once completed, 5G is supposed to supersede the current
4G standard.

The aim of this section is to introduce the basic terminology as well as the
basic structure of the next generation mobile network. We will restrict our-
selves to what is relevant to the discussion of 5G security protocols in the
following chapters.

Note that we will omit the prefix NextGen or NG that is used for many
terms within 5G. For example, 3GPP documents sometimes refer to 5G’s
user equipment (UE) as NextGen UE or NG-UE.

2.1.1 Basic Network Structure
The mobile network consists of three essential types of entities:

e User Equipment (UE): This is the end user device. The user equipment
contains a Universal Integrated Circuit Card (UICC), which is a smart
card that has a Universal Subscriber Identity Module (USIM).

2. PRELIMINARIES

E Jijsirllent Serving Home Network
q(t%s) “*| Network (SN) |~ (HN)

Figure 2.1: Basic network structure of 5G. The dashed line between HN and USIM denotes
shared knowledge of the IMSI and the key K.

The USIM contains all necessary information about the subscription at
a home network, including an International Mobile Subscriber Identity
(IMSI) that can be attributed to a unique home network. Moreover,
it stores a long-term key K that is shared exclusively with the home
network. All cryptographic operations which involve the key K run
within the USIM. The intention is that K never leaves the UICC smart
card.

e Home Network (HN): This is the network that a specific user subscrip-
tion is bound to. It knows the IMSI and the long-term key K which
are stored in the corresponding USIM.

e Serving Network (SN): This is the network that the user equipment
attaches to via its radio. In the roaming case, the serving network and
the home network are run by different network operators.

Note that the home network and the serving network are usually con-
nected over a secure channel (IPsec or TLS).

Figure 2.1 gives an overview of the basic network structure.

2.1.2 Abbreviations

Appendix B lists abbreviations that are relevant to the treatment of 5G in
this thesis.

2.1.3 Security Functions

The current draft for the 5G security architecture [6] introduces new security-
related entities.

o Authentication Credential Repository and Processing Function (ARPF): The
ARPF is a system residing in a secure environment in an operator’s
home network. It stores the long-term security credentials for user
equipment authentication and executes any cryptographic algorithms
that use those security credentials as input.

2.2. Informal Security Protocols

For example, the long-term key K that is shared between the home
network and the USIM is stored in the ARPF.

o Authentication Server Function (AUSF): This is a system residing in an
operator’s home network. It interacts with the SEAF (see below) in
order to authenticate user equipment.

e Security Anchor Function (SEAF): This is a physically protected system
residing in the serving network. It interacts with the AUSF in order to
authenticate user equipment.

Note that we treat the ARPF together with the AUSF as one entity, namely
the home network. This suffices for our purposes, since the ARPF is located
in a secure environment and can only communicate with the AUSF in its
home network. Moreover, we will make no distinction between SEAF and
the serving network.

2.1.4 5G Security Protocols

Numerous security protocols have been introduced in [6]. In this thesis,
we focus mainly on authentication and key exchange protocols for 3GPP
networks that are described in Security Area #2 of [6].

2.2 Informal Security Protocols

It is often useful to discuss security protocols informally before proceeding
with a formal analysis. Therefore, we establish an informal understanding
of our threat model, security properties, channels, and protocols.

2.2.1 Threat Model

Our threat model assumes a Dolev-Yao adversary similar as described in
[17]. In particular, the adversary controls the network, i.e., she can read,
intercept, and send messages. Moreover, the adversary can compromise
clients, i.e., she can reveal their secrets. Furthermore, the adversary is al-
lowed to apply public functions such as hashing, encryption, or signing on
values that she knows.

In addition, our threat model allows unbounded message lengths, an un-
bounded number of fresh nonces, and an unbounded number of protocol
sessions.

2.2.2 Security Properties

We give an informal definition of some basic security properties first, and
formalize them in Section 2.3.5.

2. PRELIMINARIES

10

Definition 2.1 (Authenticity) Information is authentic if the original message
sender is who he or she claims to be and the message is unchanged.

Definition 2.2 (Confidentiality, Secrecy) Confidentiality (also called secrecy) is
the property of information being protected from disclosure to unauthorized parties.

Definition 2.3 (Integrity) Information has integrity if it is not modified in any
way by unauthorized parties.

Authentication Properties for Protocols

We give an informal definition of a basic hierarchy of increasingly stronger
authentication properties for security protocols, similar to [26].

Definition 2.4 (Aliveness, informal, [26]) A protocol guarantees to an agent a
in role A aliveness of another agent b if, whenever a completes a run of the protocol,
apparently with b in role B, then b has previously been running the protocol.

Definition 2.5 (Weak agreement, informal, [26]) A protocol guarantees to an
agent a in role A weak agreement with another agent b if, whenever agent a com-
pletes a run of the protocol, apparently with b in role B, then b has previously been
running the protocol, apparently with a.

Definition 2.6 (Non-injective agreement, informal, [26]) A protocol guaran-
tees to an agent a in role A non-injective agreement with an agent b in role B
on a message M if, whenever a completes a run of the protocol, apparently with b
in role B, then b has previously been running the protocol, apparently with a, and
b was acting in role B in his run, and the two principals agreed on the message M.

Definition 2.7 (Injective agreement, informal, [26]) I[njective agreement is de-
fined to be non-injective agreement where additionally each run of agent a in role A
corresponds to a unique run of agent b.

The intuitive understanding of injective agreement it that it prevents replay
attacks.

2.2.3 Channels

For two parties to exchange messages, it is crucial that they are connected
in some way.

Definition 2.8 (Channel) A channel is a logical connection between two parties
that can be used to transmit messages.

Recall that our threat model assumes that the adversary controls the net-
work, i.e., she is able to read and send arbitrary messages of a regular chan-
nel. This motivates the following definition of an important type of channel,
making use of the defined notions of informal security properties.

2.2. Informal Security Protocols

Definition 2.9 (Secure channel) A secure channel is a channel that provides
confidentiality and authenticity. However, it does not protect from messages being
replayed or reordered by the adversary.

2.2.4 Alice&Bob Notation

In this document, we will specify protocols mostly in an extended form of
the so-called Alice&Bob notation before specifying them formally.

We understand protocols as a set of roles, where each role consists of a se-
quence of steps. Each step sends or receives messages. Moreover, we call
the protocol participants agents. Each agent has a name and can execute a
protocol in different roles with other agents.

In a nutshell, Alice&Bob notation is a compact and succinct description of
the messages that the protocol agents exchange in absence of an attacker. We
will not define the semantics of the Alice&Bob notation rigorously. Instead,
we explain the basic conventions and give a small example.

We use the following conventions.

e If an agent receives a message containing a term x and x is known
to the agent (e.g., because it is the peer’s agent name or the agent has
sent or received x in an earlier message of the same protocol run), then
it must verify that the values of both x’s match. This check is implicit
in the notation.

e If an agent receives a message, it will verify its structure up to the level
required to recover all subterms it needs, for example to match the
values it knows already (see previous point) or to compute subsequent
messages. This is crucial, since the recipient’s view may differ from the
sender’s view.

For example, if an Alice&Bob protocol specification describes a mes-
sage (x,hash(y)) for some hash function hash, then an agent who
knows only x (and not y) will accept any pair t with x as first element,
e.g.,t=(x,0)ort=(x, f((0,1))) for some function f.

e Messages marked with an asterisk * are optional, i.e., they can be
skipped by both the sending and the receiving agent.

o {|x[}x denotes symmetric encryption of the message x with key k. The
message x can be recovered from {| x|}, if and only if an agent knows

k.

o {m}g denotes the message m signed with key sk. A signature in Al-
ice&Bob notation is always hiding, i.e., the message itself cannot be
recovered from the signature.

2. PRELIMINARIES

12

e [m] is an abbreviation for (m, {m}). It can be understood as a form
of non-hiding signature.

e e—e denotes a secure channel (see Definition 2.9 on the preceding
page).

e Messages of a protocol are numbered consecutively, starting from 1.

Protocol 2.1 (Example)

1. A — B: (A {|n[}x)
2.B— A: {Bn}
3. Be—e C: ({n} k)

We informally describe how Protocol 2.1 runs.

Assume agent a is executing the protocol in role A with an agent b in role B.
Moreover, b is executing the protocol with a in role A and with an agent c
in role C.

1. a starts by sending the message (4, {|n[};) over an attacker-controlled
channel to b. Here, 1 is to be understood! as a fresh nonce and & is a
long-term key shared between a and b.

When b receives the message, it verifies the value of a in the messages
and tries to decrypt the value n.

2. If b has accepted the first message from g, it replies with the message
{b, n}\ over an attacker-controlled channel.

When a receives the message, it verifies the value of b and n as well as
the signature.

3. After b has sent the second message, it can optionally send the message
({n}k, k) to ¢ over a secure channel.

c will accept the message in any case, even if it has the wrong structure
(e.g., if it is a constant string). This is because ¢ does not know the key
k or the term {n}, and it does not need to extract one of those terms
to compute a subsequent message.

Attack Scenarios

We use so-called attack scenarios to outline protocol attacks. An attack sce-
nario uses the same notation as Alice&Bob protocols. Additionally, we use
the following conventions.

INote that this information is not implicit in the Alice&Bob notation. It is necessary to
state such facts separately.

2.3. Formal Protocol Verification

e We write Adv(R) to denote the adversary masquerading as agent R.

e Parallel protocol instances are indented in case an attack requires mul-
tiple instances.

e We omit messages that are not relevant for the attack.

e We distinguish different runs of the same agent A (if there is more
than a single run) with indices A[0], A[1],...

Assume that in Protocol 2.1 on the facing page, B would claim injective
agreement® with A on n after it received the first message. It is easy to see
that the property is violated, because the adversary can masquerade as A
and resend the first message to B. Attack Scenario 2.1 outlines the attack.

Attack Scenario 2.1 (Example)

1. A — B[0] : (A, {n[}x)
1. Ado(A) — B[1] : (A, {|n[}x)

The outlined attack violates injective agreement of B with A on the value n. It is a
trivial replay attack that makes B accept the same value n twice.

2.3 Formal Protocol Verification

In this section, we introduce a framework called multiset rewriting and then
describe how it can be used to formally specify protocols. Finally, we for-
mally define several useful security properties.

2.3.1 Term Rewriting
We recall basic notions of term rewriting, following [19].

Definition 2.10 (Signature) An unsorted signature X is a set of function sym-
bols, each having an arity n > 0. Nullary functions are constants.

Definition 2.11 (Term Algebra, Ground terms) Let X be a signature, X a set
of variables, V a set of names, such that 2., X, and V are pairwise disjoint. We call
the set Tx.(X,V) the term algebra over X. It is the least set such that:

e YUV CTe(X,V)

o Ifty,....tn € Tx(X,V) and f € X with arity n, then f(t,...,t,) €
T (X, V)

The set of ground terms Ty consists of terms built without variables, i.e., Ty :=

Ts(2,V).

2See Definition 2.7 on page 10.

13

2. PRELIMINARIES

14

It is often useful to specify term algebras with additional properties. For
example, we may want a binary function that is symmetric in its arguments,
ie., f(x,y) = f(y, x) for all x and y. Therefore, we define equations on terms.

Definition 2.12 (Equation, Equational Theory, Rule) An equation is a pair
of terms, written t = t', and a set of equations is called an equational theory
(%,E).

A rule is an oriented equation, written t — t' (right-oriented) or t « ' (left-
oriented).

A set of equations E induces a congruence relation =g on terms and thus the
equivalence class [t]g of a term modulo E. The quotient algebra Tx(X,V)/ -,
interprets each term by its equivalence class.

In the following, we define the concepts of substitution and matching.

Definition 2.13 (Substitution) A substitution is a functiono : X — Ty (X, V)
where o (x) # x for finitely many x € X.

We write substitutions in postfix notation and homomorphically extend them to a
mapping o : Te(X,V) — Te(X,V) on terms:

f(tl,...,tn)U':f(tl(T,...,tn(T)

Definition 2.14 (Position) A position p is a sequence of positive integers. The
subterm t|, of a term t at position p is obtained as follows.

o If p =[] is the empty sequence, then t|, = t.

o If p = [i] - p’ for a positive integer i and a sequence p', and t = f(t1,...,t,)
for feXand1 <i<nthent|, = ti|p/, else t|, does not exist.

Definition 2.15 (Matching, Matching substitution) A term t matches a term
I if there is a substitution o so that t = lo. We call o the matching substitution.

Now, we use the concepts of substitution and matching to define what it
means to apply a rule on a term.

Definition 2.16 (Application of a rule) A rule | — r is applicable on a term t,
when a subterm t\p of t matches 1, that is, there is a substitution o so that t|p =lo.

The result of such a rule application on t is the term t[rc|,, defined as t with the
subterm at position p replaced by the instantiation of the right-hand side of the rule
with the matching substitution, ro.

2.3.2 Multiset Rewriting

We introduce the basic definitions of multiset rewriting, following [29] and
[27]. In a nutshell, multiset rewriting allows specifying the execution of
concurrent systems with independent state transitions in a very intuitive
and simple way. In particular, it can be used to model security protocols.

2.3. Formal Protocol Verification

Definition 2.17 (Multiset) A multiset m over a set X is a set of elements, each
imbued with a multiplicity, i.e., m : X — IN, where m(x) denotes the multiplicity

of x.

Notation 2.18 We use C* for multiset inclusion, U* for multiset union, and * for
multiset difference without defining them formally.

Moreover, we use S* to denote the set of finite multisets over S.

Definition 2.19 (Fact) We assume an unsorted signature Xr,¢ of fact symbols,
each with an arity k > 0. Then

F(t, ... t)

for F € g with arity kand ty, ..., t € Te(X,V) is called a fact.
Moreover, a fact is always either linear or persistent.

Informally speaking, linear facts may be consumed, whereas persistent facts
can be reused arbitrarily often. This notion will be made formal in Defini-
tion 2.26.

Definition 2.20 (Labeled multiset rewriting) A labeled multiset rewriting
rule is a triple

I Ly

where | and r are multisets of facts, called state facts and a is a multiset of facts,
called action facts or events.

A labeled multiset rewrite system is a set of multiset rewriting rules.

Definition 2.21 (Fresh rule) We define a special rule for the creation of fresh val-
ues. This rule has no precondition and it is the only one allowed to produce such Fr
facts:

[} = [Fr(N)]

Definition 2.22 (Looping Rule) A labeled multiset rewriting rule | % r is called
a looping rule, if lin(l)o C* r for some substitution o, where lin(l) denotes the
multiset of linear facts in I.

Intuitively, once a looping rule has been applied, an infinite number of con-
secutive applications of this very rule may follow without using any other
rule.

Definition 2.23 (Fresh and public values) Let FV and PV be two countably
infinite and disjoint sets of fresh values and public values. We use terms in
Ts(X,FV U PV). Moreover, values in FV are called fresh.

15

2. PRELIMINARIES

16

Notation 2.24 We prefix a fact symbol F with an exclamation mark ! if and only if
it is persistent.

Moreover, we sometimes prefix a value v € V with a dollar sign $ (respectively with
a tilde ~) if it is a public value (fresh value), i.e., v € PV (v € FV).

In the following, we introduce the concept of ground instances and use it to
define the multiset rewriting step.

Definition 2.25 (Instance, Ground Instance) An instance of an object X (such
as a term, fact, or rewrite rule) is the result of applying a substitution o to all terms
in X, written Xo.

A ground instance of X is one where all resulting terms are ground (see Defini-
tion 2.11 on page 13).

For a multiset rewrite system R we use ginsts(R) to denote the set of all ground
instances of rules in R. Moreover, the set of ground facts is denoted by G.

Definition 2.26 (Labeled multiset rewriting step) For a multiset rewrite sys-
tem R we define the labeled transition relation steps(R) C G* x ginsts(R) x G*
as follows:

a

steps(R) := {(S,1 & r,8") | | % r € ginsts(R),lin(1) C* S,
per(l) €S, 8" = (S*lin(1)) U*r}

where lin(l) denotes the multiset of linear facts in | and per(l) denotes the set of

persistent facts in I.

Recall that multiset rewriting allows to specify the execution of concurrent
systems with independent state transitions. We use multiset rewriting steps
to formally define what it means to execute a system specified with multiset
rewriting. Moreover, we define the notion of execution traces.

Definition 2.27 (State, Execution) A state is a multiset of facts.
An execution of a multiset rewrite system R is an alternating sequence:
So, (ll g 1’1), S1,--4, Sk—l/ (Zk a_k> Vk), Sk

of states and multiset rewrite rule instances such that:
1. The initial state is empty: So = @

2. The sequence corresponds to a transition sequence, i.e., for all i:

(51;1,11' ﬂ> i, Sl) S steps(R)

2.3. Formal Protocol Verification

3. Fresh names are unique, i.e., for all n, i, and j:

i

=)= =)= [Fr(n)]) =i=j
Definition 2.28 (Trace) The trace of an execution
So, (5 71), 81, -, Sk, (I =5 71, Sk
is defined by the sequence of the multisets of its action labels, i.e.,

ai,...,Aqi

2.3.3 Formal Protocol Description

Having defined multiset rewriting, we can use it in order to formally specify
actual protocols.

Definition 2.29 (Message facts) We use the unary fact In(m) to denote that a
message m is received. Analogously, we use the fact Out(m) to denote that a
message m is sent.

Definition 2.30 (Agent state fact) An agent state fact for role R is a fact:
St_R.s(A,id, ky,..., ky)

where St_R_s € Yrqp and
e s € IN is the number of the protocol step within the role,
o A is the name of the agent executing the role,
e id is the thread identifier for this instantiation of role R, and

o ki € Tx(X,V) are terms in the agent’s knowledge.

Definition 2.31 (Protocol rule, Protocol) A multiset rewriting rule | % r is a
protocol rule, if it is an initialization rule or if following conditions are satisfied:

1. I contains only In, Fr and agent state facts.

2. r contains only Out and agent state facts.

3. Either In or Out facts occur in the rule, never both.
4

. Exactly one agent state fact occurs in each of | and r. If the fact
St_Rs(A,id, ky,... ky)

occurs in 1, then the fact St_R_s'(A,id,k},...,k,,) occurs in r, where s’ =
s+ 1.

17

2. PRELIMINARIES

18

5. Every variable in r that is not public most occur in I.
A protocol is a finite set of protocol rules.

We give a small example of how a formal protocol specification with multiset
rewriting might look like.

Consider the following protocol, in which 7 is a nonce generated by A.
Protocol 2.2

1.A— B:(An)
2.B— A:(B,n)

The Alice&Bob specification of Protocol 2.2 can be formalized using the fol-
lowing multiset rewrite system.

Create(A,id)
E—

o Rule Init_A: [Fr(id)] [St_A_O(A,id, B)]

Create(B,id)
—_—

o Rule Init_B: [Fr(id)] [St_B0(B, id, A)]

e Rule A_1send:

[St_A0(A,id,B),Fr(n)] — [St_-A1(A,id, B,n),Out((A,n))]

e Rule B_1recv: [St_.B_0(B,id, A), In((A,n))| — [St_-B_1(B,id, A, n)]
e Rule B_2send: [St_B_1(B,id, A,n)| — [St-B2(B,id, A, n), Out({B,n))]
e Rule A_2recv: [St_A_1(A,id,B,n),In((B,n))] — [St_A2(A,id, B,n)]

Note that the presented rule naming pattern will be used for multiset rewrite
rules in this thesis whenever possible. In particular, an Alice&Bob rule

i.,A—B:m

will be translated to two rules A_isend and B_irecv.

2.3.4 Formal Message Deduction and Dolev-Yao Adversary

The following set of rules is used for message deduction.

Definition 2.32 (Message deduction rules)
o [Out(x)] = [K(x)]

o [K()] 22 [1n(x)]

o [Fr(x)] — [K(x)]
o [K(t1),...,K(t)] = [K(f(tr,..., 4))] Vf € Z(k-ary)

2.3. Formal Protocol Verification

Intuitively, the rules of Definition 2.32 model a public channel that is con-
trolled by a Dolev-Yao style adversary. The adversary can read and block
every message sent. Moreover, she can send any message which is deducible
from the messages that she has seen.

2.3.5 Formal Protocol Property Specification

In order to be able to discuss properties of protocols specified with labeled
multiset rewriting systems, we instrument the protocol with so-called events.
Said events are simply facts that can only occur in a label of a multiset
rewriting rule.

In the following, we define a set of frequently used events.

Definition 2.33 (Frequently used events) We define the following events:

Create(A,id,R) Initialization event
Claim_claimtype(A,t) Claim event

Honest(A), Reveal(A) Honesty and reveal events
K(t) Adversary knowledge

Recall that we assume an adversary that is able to compromise agents. Ob-
viously, many security properties will only hold under the assumption that
at least some of the involved agents are not compromised. Therefore, a pro-
tocol rule is instrumented with an event Honest(A), if an agent’s claims rely
on agent A not being compromised by the adversary. Moreover, the rule that
lets the adversary compromise an agent A is instrumented with Reveal(A).

Definition 2.34 (Honesty) An agent A is honest in a trace tr if Reveal (A) & tr.

The defined events are used in a property specification language which is de-
fined as follows.

Definition 2.35 (Property specification language) We formulate security prop-
erties in first-order logic over the following predicates:

F@i Timestamped event

t =u Term equality

i =j Timepoint equality

i <j Timepoint inequality

The predicate F@i holds on trace tr = ay,...,a, if F € a;.

Security Properties

Using the events from Definition 2.33 as well as the property specification
language from Definition 2.35, we can formalize the security properties from
Section 2.2.2 on page 9.

We begin by defining the formal secrecy properties.

19

2. PRELIMINARIES

20

Definition 2.36 (Secrecy)

VA Mi. Claim_secret(A, M)@i
= —(3j.K(M)@j) V (3B k.Reveal (B)@k N\ Honest(b)@i)

Note that our definition of secrecy differs from classical semantic security
which is based on indistinguishability in a computational model. Instead,
we think of secrecy in terms of derivability. This is sometimes called weak
secrecy.

We proceed by formally defining the notion of Perfect Forward Secrecy
(PFS). Intuitively, Perfect Forward Secrecy on a value M means that the ad-
versary does not learn the secret M even if she compromises the long-term
keys of the involved agents only after PFS was claimed. It is easy to see that
PFS implies secrecy.

Definition 2.37 (Perfect Forward Secrecy (PFS))

VA Mi. Claim_secret(A, M)@i
= —(3j. K(M)@j) Vv (3B k.Reveal (B)@k N\ Honest(b)@i Nk < i)
Having defined the secrecy properties, we proceed with the authentication
properties.
Definition 2.38 (Aliveness)
Vabi. Claim_commit(a,b, ())@i
= (Jid R j. Create(b,id, R)@j)
V (3X r. Reveal (X)@r N\ Honest(X)@i)
Definition 2.39 (Weak agreement)
Vabi. Claim_commit(a,b, ())@i
= (Jj. Claim_running(b, a, ())@j)
V (3X r. Reveal (X)@r N\ Honest(X)@i)
Definition 2.40 (Non-injective agreement)
VabRy Ry ti. Claim_commit(a,b, (Ry, Ry, t))@i
= (Jj. Claim_running(b, a, (R, Ry, t)) @j)
V (3X r. Reveal (X)@r A Honest(X)@i)
Definition 2.41 (Injective agreement)
VabRy Ry ti. Claim_commit(a,b, (R, Ry, t))@i
= (3j. Claim_running(b,a, (Ry, Ry, t))@j
A —(3ap by ip. Claim_commit(ay, by, (R1, Ry, t)) @iy
A= (iz =1i)))
V (3X r. Reveal (X)@r A Honest(X)@i)

2.4. Tamarin

2.4 Tamarin

Throughout this thesis, we will specify 5G security protocols with multiset
rewriting systems and prove security properties for the protocols, making
use of the TAMARIN prover [30].

TAMARIN is a tool that can prove many trace properties fully automatically,
using a built-in heuristic to guide the proof search. If a proof search ter-
minates, the tool presents either a correctness proof or a counterexample.
However, the proof search may not terminate, in which case manual proof
guidance may be necessary to find a proof or a counterexample.

While alternative formal verification tools such as Scyther [16], ProVerif [12],
or Maude-NPA [18] can be used to run unbounded symbolic verification as
well, these tools fail to analyze protocols that require non-monotonic global
state, i.e., state that can be read and altered (by different parallel threads).
This makes TAMARIN a comparatively powerful tool and a good fit for our
purposes.

In this section, we restrict ourselves to basic features of TAMARIN along with
some difficulties that may arise when using it. For a detailed discussion on
the inner workings of TAMARIN’s algorithm, we refer to [29] and [27].

2.4.1 Equational Theories

TAMARIN comes with several built-in equational theories. We present an
overview of those that are used in this thesis.

e asymmetric-encryption: This theory models asymmetric encryption
of messages with a public key encryption scheme. It defines the equa-
tion adec(aenc(m, pk(sk)), sk) = mfor binary functions aenc, adec
and the unary function pk.

e signing: This theory models a signature scheme. It defines an equa-
tion verify(sign(m,sk),m,pk(sk)) = true for binary function sign,
ternary function verify, unary function pk and the constant function
true.

e symmetric-encryption: This theory models a symmetric encryption
scheme. It defines the equation sdec(senc(m,k),k) = m for binary
functions senc, sdec.

e diffie-hellman: This theory models computation in a finite cyclic
group, commonly used in protocols based on the Diffie-Hellman key
exchange. It defines the binary function ~ which is used for exponen-
tiation in the group. Moreover, it defines the unary function inv, the
constant 1, and the binary function * which are used to model the com-

21

2. PRELIMINARIES

22

mutative group of exponents. We omit the defined equations, referring
to [30].

e multiset: This theory models multisets by introducing an associative
and commutative operator +.

e xor: This theory models a commutative and associative operator XOR
with the neutral element 0 and the equation x XOR x = 0. Note that
at the time of writing, this theory is only provided in an experimental
version of TAMARIN.

Furthermore, we will make use of TAMARIN’s support for user-specified
equations and functions.

2.4.2 Proof Strategy and Heuristics

TAMARIN’s constraint solving algorithm keeps a set of constraints as its
state (3. When it tries to prove a property specified by the formula ¢, it
starts the search in a state which is constrained by the negated formula, i.e.,
Qo = {{—¢}}. Loosely speaking, the algorithm then picks a goal of the
current state and tries to solve it, until either the formula is found to be
unsatisfiable (the property holds), or until a satisfying trace (representing a
counterexample) is found.

The choice of the goal that is to be solved significantly impacts the runtime
of the algorithm. TAMARIN provides several built-in heuristics that can au-
tomatically make this decision. The default heuristic is the smart heuristic,
which works very well for a variety of protocols. For more involved pro-
tocols, however, the default heuristic may not be able to generate a proof
within a reasonable amount of time. In this case, it may help to use one of
the alternative built-in heuristics, or even a combination of them.

Alternatively, it is possible to manually select the proof goals in TAMARIN’s
interactive mode.

Oracle

Instead of selecting all proof goals manually in the interactive mode, it is
often convenient to write a so-called oracle. An oracle is a program that runs
completely independent of the TAMARIN prover. Its input is a numbered
list of proof goals, and its output is an ordered list of numbers, prioritizing
which proof goals are to be solved first.

2.4.3 Restrictions

It is often convenient to restrict the set of traces to be considered in the pro-
tocol analysis using so-called restriction formulas. This is a versatile concept.

2.4. Tamarin

For example, assume we want to model an agent comparing two terms x
and y. In order to do this, we can simply define a multiset rewrite rule with
the label Eq(x,y) and add the following restriction to the theory:

restriction Eq: "All x y #i. Eq(x,y) @i ==> x = y"

Moreover, restrictions are also can be used to model the verification of sig-
natures as well as branching behavior of protocols.

2.4.4 Partial Deconstructions

Before proving properties in a multiset rewriting system, TAMARIN goes
through a precomputation phase. In this phase, a set of possible sources
for the premise of each rule is precomputed.

In some cases, the algorithm cannot resolve the source of some of the fact, in
which case so-called partial deconstructions are left after the precomputation.

Partial deconstructions complicate automated proof generation significantly.
Therefore, it is often beneficial to specify inductive invariants, so-called
sources lemmas which are used in the precomputation phase only with the
specific purpose of removing partial deconstructions. Typically, a sources
lemma explains the origin of facts for which the algorithm is not able to
derive the origin automatically.

Note that sources lemmas need to be proved themselves by induction. More
often than not, TAMARIN can prove the required sources lemmas automati-
cally.

2.4.5 Presented Models

In this work, we develop multiple TAMARIN models, all of which can be
obtained via [24].

Moreover, all proofs are executed with TAMARIN 1.3.0 (with Git revision
hash 1b4bd1d166a7603ae9c7fda3b81¢30a9721d5b8b) on a machine with In-
tel Xeon E3-1231 v3 processor and 16GB memory, running Fedora 26.

23

Chapter 3

General Modeling Decisions

This chapter introduces general modeling decisions that are used through-
out this thesis. In particular, we present a new modeling primitive for ID-
based signature schemes.

3.1 Key Derivation Functions

Key derivation functions are modeled by a unary free function symbol KDF,
meaning that there are no defining equations. In case the functions take
multiple arguments a4y, ...,a,, we pass them all as one tuple (ay,...,a,). If
a protocol makes use of multiple key derivation functions fi,... f,, we set
the first argument in the tuple to the constant string ‘fi* when using the
function f;. For example, the key derivation function f3 with the argument
x is represented as KDF (< £3¢,x>)

3.2 Digital Signatures

We model digital signature schemes by making use of TAMARIN’s built-in
signing as explained in Section 2.4.1 on page 21.

Note that in contrast to the convention used in Alice&Bob notation, we treat
signatures as hiding in all formal protocol specifications. That is, we use
signatures only to authenticate the sender of a message, but never to extract
the message itself. We believe that hiding signatures reflect the reality of
today’s signature schemes more precisely than non-hiding signatures.

3.3 Identity-Based Signatures

We first introduce the basic concepts of identity-based cryptography, before
presenting our modeling approach for identity-based signatures.

25

3. GENERAL MODELING DECISIONS

26

3.3.1 Concepts of ID-based Cryptography

In a nutshell, identity-based cryptography is a type of public-key cryptogra-
phy, in which every user’s public key is computable from its identity name.
There are different ID-based primitives, such as identity-based signatures
schemes [31] or identity-based encryption schemes [13, 15].

Every identity-based system has a so-called Private Key Generator (PKG),
which is a trusted entity that computes the private keys corresponding to
each public key. First, the PKG generates a master key pair and publishes
the master public key, whereas the master private key is kept secret. Then,
participants of the system can compute public keys for arbitrary identities
from the master public key and the identity name. In order to obtain a pri-
vate key, a user authenticates to the PKG, which then generates the private
key corresponding to the user’s identity.

3.3.2 Model

In the following, we present our modeling approach for identity-based sig-
natures.

We introduce five user-specified functions:

e The binary function idsign and the ternary function idverify are
used to sign and verify messages. They are used completely analo-
gously to the functions from TAMARIN's built-in signing.

e The unary function GetIBMasterPublicKey is used to model the mas-
ter public key. For a PKG with master private key IBMasterPrivK, the
corresponding master public key is the term

GetIBMasterPublicKey (IBMasterPrivK)

e The binary functions IBPub and IBPriv are used to model the deriva-
tion of identity-based public and private keys. The public and private
key of an agent A for a PKG with master public key IBMasterPubK
and master private key IBMasterPrivK are represented by the terms
IBPub (A, IBMasterPubK) and IBPriv(A,IBMasterPrivkK), respectively.

Furthermore, we extend the equational theory by the following equation:

idverify(idsign(m,IBPriv(A, IBMasterPrivateKey)),m,
IBPub(A, GetIBMasterPublicKey(IBMasterPrivateKey))) = true

Note that true is user-specified constant, i.e., a nullary function symbol.

We proceed by briefly describing the rules that are used to model the initial-
ization of the important entities in an identity-based setup. Recall that we
prefix persistent fact symbols with an exclamation mark ! and public values
with a dollar sign $.

3.4. Secure Channels

The rule create_IB_PrivateKeyGenerator is used to generate a master pri-
vate key for a PKG:
[Fr(IBMasterPrivK) | —

['IB_MasterPrivateKey($PKG,

IBMasterPrivateKey),
Out(GetIBMasterPublicKey(IBMasterPrivK))]

Note that the master public key is sent out. This is crucial, because the
adversary needs to know the master public key to be able to generate valid
public keys for regular agents.

Next, we present the rule create_IB_identity, which uses the created mas-
ter private key to generate actual ID-based credentials for an arbitrary agent
A.

[IB_MasterPrivateKey(PKG, IBMasterPrivK)]

%

['IB_Identity($A, PKG, GetIBMasterPublicKey(IBMasterPrivK),
IBPriv($A, IBMasterPrivK))]

When an agent A instantiates a role R of a protocol, the persistent fact
IIB_Identity(...) will be used in the rule initialize_R as follows.

[Fr(id), 'IB_Identity(A, PKG, IBMasterPublicKey, IBPrivKey) |
Create(A,id,'R")
S

[St_.R_0(4A, id, PKG, IBMasterPublicKey, IBPrivKey)]

Note that we match only on the full master public key IBMasterPublicKey.
Hence, the agent instantiating a role does not learn the master private key
(unless it is leaked via another way).

3.4 Secure Channels

We model secure channels (see Definition 2.9 on page 11) between two
agents by pre-provisioning both with a long-term symmetric key SK. More-
over, we make use of TAMARIN’S built-in symmetric-encryption (see Sec-
tion 2.4.1 on page 21) to encrypt and decrypt all messages that the two
agents exchange over the secure channel.

Note that this allows the adversary to reorder and replay messages that are
sent over the secure channel, which is consistent with our definition of a
secure channel.

3.5 Compromise Scenarios

In all our models, we allow the adversary to reveal all long-term secrets
from the protocol participants. For example, a secure channel between two

27

3.

GENERAL MODELING DECISIONS

28

agents is always revealable by the adversary, giving her the ability to read
messages are sent over the channel and to send arbitrary new messages over
it.

Moreover, we carefully instrument all protocol specifications with precise
claims of honesty (see Definition 2.34 on page 19).

3.6 5G Roles and Agent Names

Agent names are of critical importance, especially when proving authentica-
tion properties of a protocol. In the following, we present the agent names
of the three entity types in 5G (see Section 2.1 of Chapter 2), together with a
convention for naming the roles.

e The user equipment is one role, called UE. Its agent name is the user
equipment’s IMSI.

o A serving network and the SEAF that resides within the serving net-

work are treated as one role, called SEAF. Its agent name is denoted
by SNid.

Note that this modeling choice makes no distinction between SEAF
and the serving network.

o A home network and the AUSF/ARPF residing within the home net-
work are treated as one role, called HSS. Its agent name is denoted by
HSS.

Note that treating AUSF and ARPF as one role suffices for our pur-
poses, since the ARPF is located in a secure environment and can only
communicate with the AUSF in its home network.

Chapter 4

Protocols Using ID-Based Credentials

In this chapter, we analyze two newly proposed 5G protocols which make
use of identity-based (ID-based) credentials. Both protocols are proposed
in [6] and make use of the Diffie-Hellman key exchange.

Since [6] is a Technical Report, i.e., a proposal for a new standard and not a
final specification, the protocol specifications are imprecise. Therefore, we
model over-approximations of the protocols in cases of uncertainty. More-
over, we iteratively improve the protocols until the desired properties are
achieved. Finally, we propose a set of corrections and clarifications to incor-
porate into the protocol specifications.

4.1 Relay-Authentication

Solution #2.16 of [6] describes a protocol which we call Relay-Authentication.
It is a Diffie-Hellman based protocol that assumes the user equipment (UE)
to be pre-provisioned with ID-based credentials. The protocol aims for mu-
tual authentication between a remote UE (e.g., a wearable device such as
a smart watch) and an authenticator AUTH. Moreover, the remote UE is
connected with AUTH only over a so-called relay UE (e.g., a smartphone).

The Relay-Authentication protocol runs as follows.
Protocol 4.1 (Relay-Authentication PKI v0)

1. UE — RELAY : ['request’, UE, g (ur)

2. RELAY — AUTH : ['request’, UE, gx]]sk(u]g)
3. AUTH — RELAY : [AUTH, g, g"skcaurn)
4. RELAY — UE : [[AUTH,gy,gx]]sk(AUTH)
5.UE — RELAY : [§']skuk)

6. RELAY — AUTH : [§"]sk(uk)

29

4. ProtocoLs UsING ID-BASED CREDENTIALS

30

Note that the relay node only forwards messages and hence has no influence
on the security properties of the protocol. Therefore, we ignore it in our
models for reasons of simplicity.

Moreover, we are interested in proving the following properties:
Secrecy of g*¥ for both UE and AUTH
Perfect Forward Secrecy of ¢*¥ for both UE and AUTH

Injective agreement for UE with AUTH on gV
e Injective agreement for AUTH with UE on g*¥

In case injective agreement does not hold, we try to find the strongest au-
thentication property that holds (if any).

4.1.1 Model Based on Simple PKI

In a first model, we assume a simple public key infrastructure (PKI), in
which every agent knows all necessary public keys as well as its own private
key.

Protocol 4.2 (Relay-Authentication PKI v1)

1. UE — AUTH : ['request’, UE, "] sx(uk)
2. AUTH — UE : [[AUTH,gy,gx]]sk(AUTH)
3.UE — AUTH : [[gy]]sk(ug)

We model this in the TAMARIN theory RelayAuthPKIvi.

Confusable Messages

In this first model, there are several ways to exploit the fact that the signed
messages can be confused. For example, the adversary can compromise one
AUTH agent and trick the UE into signing the message (‘request’,UE,g)
by claiming the Diffie-Hellman half-key ¢V = (‘request’, UE, g). This is also
called a type flaw attack, and it makes it easy to violate secrecy and non-
injective agreement from the perspective of a different (non-compromised)
AUTH agent.

A general method to prevent type flaw attacks is to add tags to the signed
messages. At first, it seems that it could be enough to tag the third message
and sign (‘confirm’,g¥). Unfortunately, it is still possible to confuse the
second message with the first in a very artificial case, in which AUTH =

‘request’ and an agent is running both roles UE and AUTH (with the same

key). Finally, if all three signed messages are tagged with distinct tags, all
confusion attacks can be successfully prevented:

4.1. Relay-Authentication

Protocol 4.3 (Relay-Authentication PKI v2)

1. UE — AUTH : ['request’, UE, "] sk(uk)
2. AUTH — UE : ['response’, AUTH, ¥, " sk(auth)
3. UE — AUTH : [‘confirm’, 8" sur)

Incorporating the tags into the model results in theory RelayAuthPKIv2.

Weak Agreement

While Perfect Forward Secrecy (PFS) is automatically proved in the second
model RelayAuthPKIv2, weak agreement for either UE or AUTH is still not
provided:

e If the adversary compromises the agent AUTH;, she can mount a man-
in-the-middle attack by forwarding the messages from an agent UE to
a non-compromised agent AUTH, and re-signing the response from
AUTH,; with the compromised key. When UE sends the final message,
the adversary can simply forward it to the non-compromised agent
AUTH,. This violates weak agreement for AUT H,.

We outline the described attack in Attack Scenario 4.1.

¢ Analogously, the adversary can compromise one agent UE; and mount
a man-in-the-middle attack on a non-compromised agent UE,. This
violates weak agreement for UE,.

Attack Scenario 4.1 Let AUTH; and AUTH, be the (distinct) agent identifiers.
Moreover, let the adversary have compromised AUTH;, i.e., she is able to sign
messages with sk(AUTHy).
1. UE — AUTH, : ['request’, UE, "] sk(uk)

1. Adv(UE) — AUTH, : ['request’, UE, g" s (ur)

2. AUTHy — Ado(UE) : ['response’, AUTH, ¥, 8 |sk(auth,)
2. Adv(AUTH;) — UE : ['response’, AUTH, 8", §* |sk(authy)
3. UE — AUTH; : ['confirm’, g ur)

3. Adv(UE) — AUTH, : [‘confirm’, g% wur)
Note that AUTH, executes the protocol with UE as its peer, whereas UE executes
it with AUTH; as its peer. Moreover, note that neither UE nor AUTH, have

been compromised by the adversary. Hence, this attack violates weak agreement for
AUTH, with UE.

This attack can be prevented by including the peer’s agent name into the
second and third signed message (reminiscent of Lowe’s fix to the Needham-
Schroeder protocol described in [25]):

31

4. ProtocoLs UsING ID-BASED CREDENTIALS

32

Protocol 4.4 (Relay-Authentication PKI v3)

1. UE — AUTH : ['request’, UE, g* | sk(ur)
2. AUTH — UE : ['response’, AUTH, g%, UE, §" [sk(autH)
3. UE — AUTH : ['confirm’,g¥, AUTH])

Incorporating this change into the model results in theory RelayAuthPKIv3.

Now, all desired properties are proved successfully. Tables 4.1 and 4.2 sum-
marize the security properties of the Relay-Authentication protocol for all
three versions.

Perspective
UE AUTH
vl | v2|v3 | vl |v2|vVv3
Secrecy | X | vV |V | X |V | V
PFS X | V|V x|V |V

Table 4.1: Secrecy properties of RelayAuthPKI [v1,v2,v3]. All properties are with respect to
8.

Perspective
UE — AUTH | AUTH — UE
vl | v2 | v3 | vl | v2
v v VR
X v X | X
X v X | X
X v X | X

Aliveness
Weak agreement
Non-injective agreement

ENENENE NP

X | X[XX

Injective agreement

Table 4.2: Authentication properties of RelayAuthPKI[v1,v2,v3]. All properties are with
respect to g¥. The role name left of the arrow — denotes the role claiming the corresponding
property, while the role name right of the arrow denotes its peer. For example, injective agreement
for UE with AUTH has the perspective UE — AUTH.

4.1.2 Model with ID-based Credentials

All observed problems based on the simple PKI model immediately extend
to an ID-based setup. Therefore, we start with theory RelayAuthPKIv3 rep-
resenting Protocol 4.4 and modify it, using the definitions and rules from
Section 3.3 for ID-based modeling. The resulting theory is RelayAuthIBS.

All desired properties are proved successfully, just as in RelayAuthPKIv3
(see Tables 4.1 and 4.2).

4.2. Aggregation-Authentication

4.1.3 Conclusion

We propose three crucial changes to the specification in Solution #2.16 of [6],
referring to the messages of Protocol 4.2 on page 30 and establishing the
correspondence to [6]:

e All protocol messages should be extended by a unique tag in order to
prevent them from being confused.

e The response message of AUTH (message 2, corresponding to the Au-
thentication Response in step 6 of Solution #2.16 in [6]) should include
the identity name of the remote UE.

e The response message of UE (message 3, corresponding to the Remote
UE Authentication Response in step 9 of Solution #2.16 in [6]) should
include the identity name of the authenticator.

With all these changes applied to the protocol, we are able to prove the
following properties automatically in our model:

e Perfect Forward Secrecy of ¢*¥ for both UE and AUTH.
e Mutual injective agreement on ¢*¥ between UE and AUTH.

Moreover, we have shown that only very weak security properties hold with-
out the proposed changes.

4.2 Aggregation-Authentication

We proceed by analyzing the Aggregation-Authentication protocol proposed
in Solution #2.15 of [6]. It strongly builds on Solution #2.16 (discussed in Sec-
tion 4.1). In particular, the Aggregation-Authentication protocol also makes
use of ID-based credentials as well as the Diffie-Hellman key exchange.

In contrast to Relay-Authentication, Aggregation-Authentication is designed
to allow efficient mutual authentication in a situation in which many differ-
ent devices (e.g., a group of IoT devices) are trying to access a network at
the same time. The fundamental idea is to have the network authenticator
AUTH generate only a single Diffie-Hellman half-key which is used not
only for one peer, but for a large batch of peers. Since each peer still gener-
ates its own half-key, this technique allows only the authenticator AUTH to
benefit in terms of efficiency.

The Aggregation-Authentication protocol runs as follows.

33

4. ProtocoLs UsING ID-BASED CREDENTIALS

34

Protocol 4.5 (Aggregation-Authentication v0)

1. UE; — AGGR: [[UEl,gxl]]sk(u}gl)

1. UE, — AGGR : [UEy, 8" sku,)
2. AGGR — AUTH : <[[u151,gﬁ]]sk(u£1), [[UEnzgx"]]sk(UE,,)>

3. AUTH — AGGR : [AUTH, ¢%,(g", ..., 8")s(aurs)
4. AGGR — UE;,...,UE, : [AUTH, g, (",..., 8" |saurs)

5.UE; —+ AGGR: <LIE1, [[gy]]sk(UEl)>

5. UE, - AGGR: <UEn/ [[gy]]sk(ua,)>
6. AGGR — AUTH : <LIE1, 187 1skuEy)s -+ UEn, [[gyﬂsk(uEn)>

Intuitively, each UE; is simply generating a Diffie-Hellman half-key ¢* and
sending it to AGGR. Then, AGGR aggregates all received half-keys into one
message and forwards it to AUTH in message 2. Then, AUTH generates
a Diffie-Hellman half-key ¢¥ which it reuses for each UE; that wants to
connect. Next, AUTH creates a signed message that includes its own half-
key g¥ as well as all half-keys ¢* and sends it out via message 3. Finally, each
UE; confirms AUTH'’s half-key by sending a signed copy of it in message 5.

Unfortunately, [6] does not describe how the aggregated signature (for mes-
sage 2) is generated or verified. It is, however, clear that such an aggregated
signature must have the property that the receiver is able to verify that each
of the received requests has been signed by the corresponding UE. There-
fore, we model the aggregated signature in the simplest possible way that
achieves this minimal property. As presented in the Alice&Bob version of
Protocol 4.5, the different signed messages [UE;, $*'[s(uE,) are aggregated
into one message by inserting them into a tuple.

Note that in practice, it would be best to use a signature scheme that sup-
ports space-efficient aggregate signatures [14, 22]. However, in such special-
ized signature schemes it is usually not possible to split up an aggregated
signature into its initial signatures. We note that with our modeling choice,
this is trivially possible. Furthermore, we believe this to be attack preserv-
ing, since it extends the adversary’s possibilities to manipulate protocol mes-
sages.

In the original protocol described in [6], UE does not resend its own name
together with the signed half-key of AUTH in message 5. We add this,
because it is required for AUTH to be able to verify the received signature.

4.2. Aggregation-Authentication

Note also that AGGR only has the role of aggregating and forwarding mes-
sages. It has no influence on the security of the protocol. Therefore, we
skip these intermediate forwarding steps for simplicity, which is completely
attack preserving.

Protocol 4.6 (Aggregation-Authentication v1)

1. UEy — AUTH : [UE1, " sk (uy)

1. UE, — AUTH : [UE,, 8" |sue,)
2. AUTH — UE,..., UE, : [AUTH, g, (g",...,8") s(auth)

3. UEy — AUTH : (UEy, [g']ur,))

3. UE,, - AUTH : <UEn, [[gy]]sk(UEn)>

4.2.1 Learning from Relay-Authentication

In case only a single UE participates in the protocol, this is essentially the
same as the original version of the Relay-Authentication protocol analyzed
in Section 4.1 on page 29. Hence, all attacks and issues that have already
been pointed out there trivially extend to the Aggregation-Authentication
protocol. Note that we provide no TAMARIN model for Protocol 4.6.

We modify the protocol to prevent all issues discussed in Section 4.1. In par-
ticular, we extend all three messages with a unique tag, we add each UE;’s
identity name to its half-key in the second message, and we add AUTH’s
identity name to the third message.

Protocol 4.7 (Aggregation-Authentication v2)

1. UEy — AUTH : ['request’, UE1, & |sk(uE,)

1. UE, — AUTH : ['request’, UEn,gx”]]sk(UEn)
2. AUTH — UEy,...,UE, : ['response’, AUTH, g’,

((UE1,8"), ..., (UEy, &) sk(auth)
3. UE, — AUTH : <UE1, [‘confirm’, gy,AUTH]]Sk(UEl)>

3. UE, — AUTH : <LIE,1, [‘confirnt’, gV,AUTH]]Sk(UEn)>

35

4. ProtocoLs UsING ID-BASED CREDENTIALS

36

4.2.2 Building a Model

AUTH needs to collect and store all messages from UEs in its local state
and then sign all Diffie-Hellman half-keys at once.

In general, multisets turn out to be convenient to model the necessary collec-
tion of half-keys, as TAMARIN supports them natively and it is easy to check
whether an element is contained in a multiset via simple pattern matching
(whereas a pair-based collection would require a looping rule?).

Our first model, implemented in the TAMARIN theory AggregateAuthIBSv2,
achieves this with a looping rule that is adding a pair (UE, ¢*) to a multiset
for every received request. Finally, receiving and verifying the confirmation
messages is modeled with a looping rule, too.

Unfortunately, the two looping rules and the large state make it very dif-
ficult to prove security properties in TAMARIN. In fact, it seems that even
executability of the protocol is provable automatically (or takes a very long
time) unless the formulas are constrained heavily, guiding the search in the
right direction.

To facilitate efficient automatic proving, we let the adversary construct the
required collection of half-keys, i.e., we add a message to the protocol that
is intended to be sent by the adversary (denoted by a channel arrow —
without sender name):

Protocol 4.8 (Aggregation-Authentication v3)
1. UEy — AUTH : [‘request’, LIEl,gxl]]sk(UEl)

1. UE, — AUTH : ['request’, UEy, §"|sk(uk,)
— AUTH : ((UEy, "), ..., (UE,, "))
2. AUTH — UEy,...,UE, : ['response’, AUTH, ¢Y,
((UE1, &), .., (UEn, &))sk(autH)
3. UE, — AUTH : <u51, [‘con firm’, gy,AUTH]Sk(UE1)>

3. UE, — AUTH : <LIEn, [‘confirnt’, gy,AUTH]]Sk(UEn)>

Note that this additional message is a composition of messages known to
the adversary. Hence, this is a completely attack preserving transformation
of the original protocol.

The new message allows us to completely avoid looping rules, using the
following modeling techniques:

ISee Definition 2.22 on page 15.

4.2. Aggregation-Authentication

o AUTH generates its half-key g¥ at the initialization, producing a per-
sistent fact !St_AUTH_O(...). For arbitrarily many UE, we create a
new state fact St_AUTH_1(...) from !St_AUTH_OC(...).

This can be understood as having multiple sub-instances of an agent’s
running protocol instance. Every sub-instance is responsible for receiv-
ing the request and the confirmation message of exactly one UE.

o After AUTH has received the collection of half-keys from the adver-
sary, it verifies whether a corresponding signed request has been re-
ceived for all occurring half-keys?. In the original protocol, this would
be checked implicitly, as the collection of half-keys is constructed by
AUTH instead of the adversary. To avoid another looping rule, we
model this check via a restriction in the TAMARIN theory.

We implement this new protocol in theory AggregateAuthIBSv3.

4.2.3 Security Properties

Secrecy and Perfect Forward Secrecy on ¢'¥ are proved automatically for
both UE and AUTH. Moreover, injective agreement for UE with AUTH
on ¢*¥ is proved automatically. However, TAMARIN finds attacks for both
non-injective and injective agreement for AUTH with UE on ¢¥. In the
following, we discuss the reasons for this and possible remedies.

Even though letting the adversary construct the aggregated signature tuple
is completely attack preserving, it is possible that attacks are not applicable
to the unmodified, more restrictive, protocol. Therefore, it is worth mention-
ing how a discovered attack relates to the original protocol.

Non-Injective Agreement for AUTH

Non-injective agreement from AUTH with UE can be violated, because UE
only confirms AUTH’s half-key but does not make any statement about its
own half-key again.

This allows the following attack scenario. An agent is running two instances
of the protocol as UE, sending out two requests with distinct half-keys g*!
and ¢g*. The attacker can prevent one of the two instances from receiv-
ing AUTH’s response. After AUTH has received the signed confirmation
message, it should only commit to the shared secret constructed using the
half-key of the instance which has received the response. Unfortunately,
the confirmation message gives AUTH no information to decide which in-
stance this is. If it decides on the wrong half-key (or even on both half-keys),

ZNote that in the original protocol, additionally the collection would not be allowed to
contain elements which do not have a corresponding signed request. It turns out that it is
no problem to allow this.

37

4. ProtocoLs UsING ID-BASED CREDENTIALS

38

non-injective agreement with UE is violated. Note that weak agreement is
unaffected by this.

It is easy to see that this attack can indeed be used to exploit the original
protocol.

A possible solution is that AUTH makes sure it accepts at most one half-
key per UE, for example the first that has been received. Another way to
address this issue would be to add UE’s half-key to the signed confirma-
tion message. We incorporate the former approach with a restriction into
the model, resulting in the new theory AggregateAuthIBSv4. Non-injective
agreement for AUTH is now proved successfully.

Injective Agreement for AUTH

Assume UE; and UE; execute the protocol with the same AUTH. After UE;
has sent its half-key g*!, the adversary can compromise UE; and send the
same half-key ¢*!, masquerading as UE,. Having compromised UE,, the
adversary can easily send the confirmation message on behalf of UE, and
trick AUTH into agreeing with both UE; and UE; on the same secret. Note
that adversary does not learn the secret, but this violates injective agreement
from AUTH with UE;.

It is easy to see that this attack extends to the original protocol. However,
one could argue that it is not an issue concerning the security of the proto-
col. Recall that the intuitive idea behind injective agreement is to prohibit
replay attacks. The formal definition of injective agreement captures this
by demanding that for every role and every value there can be at most one
commitment. This is a very strong requirement, and for this aggregated au-
thentication protocol one might argue that it is too strong. We demonstrate
this by proving the weakened injective agreement property that has been
derived by allowing the attack described above.

Definition 4.1 (Weakened injective agreement)

Vabti. Claim_commit(a,b, (Rq, Ry, t))@i
= (3j. Claim_running(b,a, (Rq, Ry, t))@j
A —(Fay by ip. Claim_commit(ay, by, (R1, Ry, 1)) @iy A —(ip = i)
A —(a = ay A Ir. Reveal (by)@r A1 < ip)))
V (3X r. Reveal (X)@r A Honest(X)@i)

It is easy to see that weakened injective agreement fits into Lowe’s hierar-
chy of authentication, meaning that injective agreement implies weakened
injective agreement and weakened injective agreement implies non-injective
agreement.

4.2. Aggregation-Authentication

The weakened injective agreement property for AUTH with UE allows ev-
ery agent in the role AUTH to make arbitrarily many additional commit-
ments on a value with compromised UEs. Intuitively, this means that we
allow multiple key exchanges on the same key ¢*¥ as long as no two differ-
ent UEs that are both honest are involved. If we additionally have secrecy of
the value ¢g'¥ (as in this case), one might argue there is no security issue con-
cerning authentication. However, this depends entirely on the exact threat
model and on the way the agreed-upon values are to be used in following
protocols. For example, if AUTH sends critical commands (signed with a
key derived from ¢g*¥) to UE immediately after a successful execution of the
authentication protocol, then AUTH may be tricked into sending multiple
of those commands, signed with the same key ¢*¥. This may make the hon-
est UE susceptible to replay attacks that are impossible if an authentication
protocol providing full injective agreement is executed.

A possible solution to provide full injective agreement is that AUTH ac-
cepts every half-key at most once. For example, AUTH can simply ignore
a half-key if it has already received the same half-key from a different UE®.
Using a restriction, we incorporate this into the model, resulting in the new
theory AggregateAuthIBSv5. Injective agreement for AUTH is now proved
successfully.

Perspective
UE AUTH
v3 | vd | vd | v3 | vd | V5
Secrecy | vV |V |V |V |V |V
PFS VIiVIiVvIiVvVIVvI|Y

Table 4.3: Secrecy properties of AggregateAuthIBS [v3,v4,v5]. All properties are with respect
to gW.

Tables 4.3 and 4.4 summarize the security properties of the last three ver-
sions of the Aggregation-Authentication protocol.

4.2.4 Conclusion

We propose a set of changes to the protocol specification in Solution #2.15
of [6], referring to the messages in Protocol 4.6 on page 35 and establishing
the correspondence to [6]:

e All protocol messages should be extended by a unique tag in order to
prevent them from being confused.

3Note that such a check needs only to be applied within one session and needs only
to store the half-keys of the current session. Hence, this approach does not require any
additional storage.

39

4. ProtocoLs UsING ID-BASED CREDENTIALS

40

Perspective
UE — AUTH | AUTH — UE

Aliveness
Weak agreement
Non-injective agreement

Weakened injective agreement
Injective agreement

ENENENENENP
ANENENENEN

XX | x|NNS

ENENENENENE:

RN ENENAN{-
SISSSA G

Table 4.4: Authentication properties of AggregateAuthIBS [v3,v4,v5]. All properties are with
respect to g*Y.

e UE,’s identity name should be added to its half-key in message 2 of
the protocol (corresponds to the message from step 6 of Solution #2.16
in [6]).

o The authenticators identity name should be added to message 3 (cor-
responds to message 9 of Solution #2.16 in [6]).

o The authenticator should check that it accepts at most one half-key per
UE in message 2 (corresponds to message 4 of Solution #2.16 in [6]).

e The authenticator should check that it accepts every half-key at most

once per session in message 2 (corresponds to message 4 of Solution
#2.16 in [6]).

With all these changes applied to the protocol, we are able to prove the
following properties automatically in our model:

o Perfect Forward Secrecy of g*¥ for both UE and AUTH.
e Mutual injective agreement on g*¥ between UE and AUTH.

Chapter 5

EPS-AKA*

This chapter addresses EPS-AKA*, which is described in Solution #2.22 of [6]
as well as in Section 6.1.3.2 of [5]. EPS-AKA* is an authentication and key
agreement protocol proposed for 5G, building on EPS-AKA [3] which is
currently used in 4G telecommunication networks. We model both EPS-
AKA and EPS-AKA* in order to be able to compare the security properties
of the protocols.

Recall the basic 5G network structure from Section 2.1 as well as the cor-
responding role and agent names described in Section 3.6. Our protocol
model has three essential roles: UE, SEAF and HSS.

e UE is the user equipment (e.g., a smartphone). It contains a USIM
with a long-term key K that is shared with the home network, and
a sequence number SQN that is synchronized with HSS in order to
prevent replay attacks.

e SEAF resides in the serving network. The serving network’s identity
name is denoted by SNid.

e HSS is the home network in which the AUSF and ARPF reside. Addi-
tionally, it knows the long-term key K that is shared with UE and the
sequence number SQN that is synchronized with UE.

Moreover, all communication between SEAF and AUSF is envisaged to be
Diameter-based, and runs over IPSec or TLS.

EPS-AKA and EPS-AKA* both are authentication and key agreement proto-
cols. We are interested in the following security properties, all with respect
to the key the protocol tries to agree on:

e Secrecy for UE, HSS, SEAF.

e Perfect Forward Secrecy for UE, SEAF, HSS with respect to the perma-
nent key K between UE and HSS.

41

5. EPS-AKA*

42

o Injective agreement for UE with SEAF and UE with HSS.
e Injective agreement for SEAF with UE and HSS with UE.

Note that we do not discuss authentication properties between HSS and
SEAF, because we assume they have already set up a secure channel.

In case injective agreement does not hold, we try to find the strongest au-
thentication property that holds (if any).

5.1 EPS-AKA

EPS-AKA is the 4G authentication and key agreement protocol. It is speci-
fied in [4], building on UMTS AKA as described in [3]. The most important
difference between UMTS AKA and EPS-AKA is that the values CK and IK
in the authentication vector have been replaced by a new key Kasyr that
depends on SNid.

Let f1, f» be MAC-functions and f3, fs, fs, KDF key generating functions.
Moreover, the specification allows f5 to be the constant zero function.

We define the following values:
e MAC := f1(K, AMF,SQN,RAND)

e XRES := RES := f2(K,RAND), where XRES is simply another name
for RES.

e CK := f3(K,RAND), also called confidentiality key
e IK:= f4(K,RAND), also called integrity key
e AK:= f5(K,RAND), also called anonymity key
e AUTN := (SQN @ AK, AMF, MAC)
e Kasme := KDF(CK, IK,SNid, SQN & AK)
o AV := (RAND, XRES, K asmr, AUTN)
EPS-AKA runs as follows.

Protocol 5.1 (EPS-AKA v0)

1. SEAF — UE : ‘IdentityRequest’
2. UE — SEAF : IMSI

3. SEAF e—e HSS : (IMSI,SNid)
4. HSS e—e SEAF : AV

5.SEAF — UE : (RAND, AUTN)
6. UE — SEAF : RES

5.1. EPS-AKA

Note the following:
e RAND is a fresh random value generated by HSS.

e SON is the sequence number generated by HSS. In this chapter, we
treat the sequence number as a fresh value that is generated by HSS.
The actual mechanism and a model for it is discussed in Chapter 7.

e SNid is the identifier of the serving network which is represented by
the role SEAF in our model.

e The Authentication Management Field (AMF) is a 16-bit value, where
the least significant bit is the AMF separation bit (see [4]). This is used
to distinguish authentication vectors for UMTS AKA from those for
EPS-AKA. Bits 1-7 are reserved and 8-15 are for proprietary purposes.

e Actually, HSS can send back many authentication vectors with con-
secutive sequence numbers SQN. However, in EPS-AKA* only one
authentication vector shall be sent, which is why we decide to make
this restriction already in the model of EPS-AKA.

Unfortunately, the protocol has a major correctness issue when specified like
this. It is easy to see that an agent SEAF that executes multiple instances of
the protocol (in the role SEAF) in parallel has no information to match the
different authentication vectors AV received from HSS to the corresponding
IMSI identifying UE. Remember that the communication between HSS and
SEAF is Diameter based. As specified in [21], Diameter includes a so-called
Session-Id AVP, which must be set to a locally unique value for every new

session. When receiving a response, the Session-Id AVP is used to match

with the corresponding session!.

We only include the mentioned Session-Id AVP into the messages between
HSS and SEAF and ignore all other Diameter headers.

Protocol 5.2 (EPS-AKA v1)

1. SEAF — UE : ‘IdentityRequest’
2. UE — SEAF : IMSI

3. SEAF e—e HSS : (S,IMSI,SNid)
4. HSS e—e SEAF : (S, AV)
5.SEAF — UE : (RAND, AUTN)
6. UE — SEAF : RES

The main goal of EPS-AKA is for UE to agree with each of SEAF and HSS
on Kasye and vice versa. However, K4syr is the only value depending on

IIn case no session is found, the received response message must be discarded.

43

5. EPS-AKA*

44

SNid. Most importantly, the response value RES to the challenge AUTN
does not depend on SNid. Hence, UE never makes a statement about its
view of SNid, which is why we will not achieve agreement on K4smg. The
EPS-AKA specification [4] addresses this issue in Section 6.1.1 as follows:

“SNid binding implicitly authenticates the serving network’s identity
when the derived keys from K asmg are successfully used.”

In order to be able to discuss security properties with respect to the event
in which derived keys from K45y are used successfully, we would need
to consider the messages that are exchanged after the actual authentication
protocol. Therefore, we extend the protocol by a simplified version of the
so-called NAS security mode command procedure (described in Section 7.2.4.4
of [4]), which is mandatory in 4G.

We define two confirmation messages con firmSEAF and confirmUE:
confirmSEAF := MACconfirm (KDFeonfirm(Kasme), ‘confirmSEAF”)
confirmUE := MACcopfirm (KDFeonfirm(Kasme), ‘confirmUE")

Note that MACcofirm is @ new MAC-function and KDF i is @ new key
derivation function. The extended protocol runs as follows.

Protocol 5.3 (EPS-AKA v2)

1. SEAF — UE : 'IdentityRequest’
.UE — SEAF : IMSI

. SEAF e—e HSS : (S,IMSI, SNid)
.HSS e—e SEAF : (S, AV)

.SEAF — UE : (RAND, AUTN)
.UE — SEAF : RES

.SEAF — UE : confirmSEAF
.UE — SEAF : confirmUE

® NJ O O = W N

5.1.1 Building a Model

We make the following modeling decisions:

e f5is the constant zero function. This is a valid instantiation according
to the specification. In case the sequence number SQN is generated
by a time-based scheme, it makes no sense to try to protect it with a
(non-zero) anonymity key, as the time is publicly known anyway.

e We model the sequence number SQN as a fresh nonce and assume
that UE is able to make sure it never accepts the same SQN twice.
This ignores all kinds of synchronization issues, and assumes infinite
state.

5.1. EPS-AKA

e Likewise, we model the Session-Id AVP S as a fresh nonce. In contrast
to the sequence number, however, this is a completely realistic model
as SEAF is actually able to generate locally unique identifiers. For
example, [21] proposes to simply use a counter which is increased for
every new request message.

e We model the secure channel between SEAF and HSS as described in
Section 3.4 on page 27.

Furthermore, we allow this key to be revealed by the adversary. As we
do not consider the key to be long-term, the notion of Perfect Forward
Secrecy is not affected by such a reveal.

This results in the TAMARIN theories EPSAKAv1 and EPSAKAv2 for Protocol 5.2
and Protocol 5.3, respectively.

5.1.2 Security Properties (no confirmation messages)

We start by discussing the security properties of EPS-AKA v1 (Protocol 5.2),
which does not include the confirmation messages.

It is easy to see that Perfect Forward Secrecy cannot possibly be provided.
This is because when the long-term key K shared between UE and HSS is
revealed by the adversary, she can immediately recover Kspg, using only
K and the message (RAND, AUTN) which has been sent from SEAF to UE
in plain text.

In order to achieve Perfect Forward Secrecy, we would recommend running
a Diffie-Hellman key exchange. It is possible, however, that this is consid-
ered to be computationally too expensive in the context of mobile devices.

In the following, we discuss the other security properties from the perspec-
tive of all three roles, namely UE, SEAF, and HSS. Recall that we do not
discuss authentication properties between HSS and SEAF, because we as-
sume they have already set up a secure channel.

o UE:

— Secrecy of Kxsumg is proved automatically.

— Aliveness of SEAF cannot be provided, since UE receives only
the messages 'IdentityRequest’ and (RAND, AUTN) from SEAF,
and neither of those make a statement about the identity SNid
of SEAF. TAMARIN automatically finds an attack. For reasons of
simplicity, we present a shorter version of this attack in Attack
Scenario 5.1 on the next page.

- Weak agreement with HSS is proved automatically. Non-injective
agreement with HSS on Kssyme, however, can be easily violated.

45

5. EPS-AKA*

The adversary only has to send the IMSI to a different serving
network (SEAF), and forward the resulting authentication vector
AV to UE. This succeeds, violating non-injective agreement on
Kasme, because Kaspye depends on SNid and UE has no way of
verifying the SNid that HSS used is the same as its own SNid
(recall that UE does not even have aliveness guarantee of SEAF).
Attack Scenario 5.1 describes this attack in more detail.

e SEAF:

— Secrecy of Kxsymg is proved automatically.

— Weak agreement with UE cannot be provided, because SEAF

does not receive any verifiable statement about UE’s view of SNid
(analogously to agreement from UE’s perspective). Once again,
we refer to Attack Scenario 5.1 to illustrate this issue.

Interestingly, aliveness of UE is still proved automatically. The
reason is in essence that HSS is able to verify aliveness of UE (see
below), and only if it has successfully done so it will respond with
an authentication vector. As all communication between HSS and
SEAF runs over a secure channel, SEAF is able to verify aliveness
of UE.

e HSS:

46

— Secrecy of Kxsumg is proved automatically.

— Aliveness of UE is provided, because only HSS and UE know the

IMSI, and only UE sends it. Therefore, if HSS sees the IMSI of
an issued USIM, it can be sure that the protocol has been exe-
cuted on a UE once before. Moreover, UE executes the protocol
only with the correct HSS (stored in the USIM), which is why
weak agreement of HSS with UE is satisfied and proved auto-
matically, too. Note that weak agreement as specified in Defini-
tion 2.39 only requires that the peer has been running the protocol
at least once before (with the correct HSS). In particular, a single
execution of UE may suffice to satisfy those properties for HSS,
even if HSS executes the protocol much later than UE and is ac-
tually only exchanging messages with the adversary.

However, non-injective agreement with UE on Kspe can be vio-
lated. This is no surprise, since HSS has no way of verifying what
SNid was used by UE. As K4sye depends on SNid, non-injective
agreement is trivially violated (see Attack Scenario 5.1).

5.1. EPS-AKA

Attack Scenario 5.1 Let SNid; and SNid, be the (distinct) identifiers of SEAF,
and SEAF,, respectively.

1. SEAF) — Adv(UE) : ‘IdentityRequest’
1. Adv(SEAF,) — UE : 'IdentityRequest’
2. UE — Adv(SEAF,) : IMSI

2. Ado(UE) — SEAF, : IMSI

3. SEAF, e—e HSS : (S, IMSI, SNid,)

4. HSS e—e SEAF, : (S, AV)
5. Adu(SEAF,) — UE : (RAND, AUTN)
6. UE — Adv(SEAR) : RES

6. Adv(UE) — SEAF, : RES

Note that SEAF, is not running an instance of the protocol. Hence, aliveness of
SEAF, is violated for UE.

Moreover, weak agreement of SEAF, with UE is violated, because UE is apparently
executing the protocol with SEAF, as its peer.

Furthermore, as Kasyr depends on SNid, this attack violates non-injective agree-
ment on Kasyg for UE with HSS and vice versa.

Tables 5.1 and 5.2 summarize all discussed security properties.

Perspective
UE | SEAF | HSS
Secrecy Kasme | v v v

PES KASME X X X

Table 5.1: Secrecy properties of theory EPSAKAv1, modeling EPS-AKA v1 (Protocol 5.2).

Perspective
UE — SEAF | UE — HSS | SEAF — UE | HSS — UE

Aliveness
Weak agreement

Non-injective agreement

XX NS
XXX [N
XX N[N

X[X | X |X

Injective agreement

Table 5.2: Authentication properties of theory EPSAKAv1, modeling EPS-AKA v1 (Protocol 5.2).
All properties are with respect to KasymE-

47

5. EPS-AKA*

5.1.3 Security Properties (with confirmation messages)

Next, we discuss the security properties of EPS-AKA v2 (Protocol 5.3), which

includes the confirmation messages.

It is easy to see that Perfect Forward Secrecy cannot possibly be provided.

The reason is the same as for Protocol 5.2 (see Section 5.1.2).

In the following, we examine the other security properties from the perspec-
tive of all three roles UE, SEAF and HSS. Recall that we do not discuss
authentication properties between HSS and SEAF, because we assume they
have already set up a secure channel.

o UE: Secrecy of Kssme and injective agreement with both SEAF and

HSS on K sy are proved automatically.

e SEAF: Secrecy of Kasyr and injective agreement with UE on Kasyr

are proved automatically.

e HSS:

— Secrecy of Kxsymg is proved automatically.

— Weak agreement with UE is proved automatically. However, non-
injective agreement with UE on K45y can be violated and a cor-
responding attack is found. The reason is the same as in the ver-
sion without confirmation messages (see Section 5.1.2). This is no
surprise, since the two versions with and without confirmation

messages are equivalent from the perspective of HSS.

Tables 5.3 and 5.4 summarize all discussed security properties.

Perspective
UE | SEAF | HSS
Secrecy Kasme | v v v
PFS K aspmE X X X

Table 5.3: Secrecy properties of theory EPSAKAv2, modeling EPS-AKA v2 (Protocol 5.3).

Perspective
UE — SEAF | UE — HSS | SEAF — UE | HSS — UE
Aliveness v v v v
Weak agreement v v v v
Non-injective agreement v v v X
Injective agreement v v v X

Table 5.4: Authentication properties of theory EPSAKAv2, modeling EPS-AKA v2 (Protocol 5.3).

All properties are with respect to K4symE-

48

5.2. EPS-AKA*

5.2

EPS-AKA*

EPS-AKA* is an authentication protocol proposed for 5G in [6] and [5]. It
makes a few modifications to EPS-AKA.

Up to now, roaming agreements have been based solely on trust. This means
that if a roaming partner claims that a UE has visited a specific serving
network, the home network operator has no way of verifying such a claim.
EPS-AKA* tries to address this very issue (see key issue #2.11 of [6], called
“Increasing home control in roaming situations”). The main goal is to provide
more guarantees to the home network HSS in order to reduce the trust that
HSS needs to put in the serving network in a roaming situation.

We define the following values:

MAC := f,(K, AMF,SQN, RAND)

XRES := (XRES;, XRES,) := RES := (RESy, RES;) = fo(K, RAND),
i.e.,, XRES and RES are simply other names for (XRES;, XRES;) and
(RES1, RES,), respectively.

CK := f3(K,RAND), also called confidentiality key

IK := f4(K,RAND), also called integrity key

AK := f5(K,RAND), also called anonymity key

AUTN := (SQN & AK, AMF, MAC)

Kasme := KDF(CK, IK, SNid, SQN & AK)

AV* := (RAND, XRES1, Kasmr, AUTN)

confirmSEAF := MACcofirm (KDFeonfirm(Kasme), ‘confirmSEAF’)
confirmUE := MACcopfirm (KDFeopfirm(Kasme), ‘confirmUE")

EPS-AKA* runs as follows.

Protocol 5.4 (EPS-AKA¥*)

. SEAF — UE : “IdentityRequest’

.UE — SEAF : IMSI

. SEAF e—e HSS : (S,IMSI, SNid)

. HSS e—e SEAF : (S, AV™)

.SEAF — UE: (RAND, AUTN)

.UE — SEAF : RES

. SEAF e—e HSS : (‘AuthCon firmation’, IMSI, SNid, RES)
.SEAF — UE : confirmSEAF

.UE — SEAF : confirmUE

O 0 NI O Ul i W N -

49

5. EPS-AKA*

50

Note the following:

o The value RES from EPS-AKA has been split up into two halves. More-
over, from the perspective of UE nothing has changed compared to
EPS-AKA. This design choice has been primarily motivated by back-
wards compatibility. When SEAF receives RES, it can only verify the
first half of it, because the authentication vector AV* contains only
XRES;. However, HSS is able to verify both RES; and RES,.

o The string “AuthConfirmation’ in message 7 is a tag which models
the Command Code from the Diameter header. It facilitates automated
proving of some of the security properties.

e Just as in EPS-AKA, we extended the raw protocol in two ways. First,
we added the Session-Id AVP S from the Diameter packet to the re-
quest from SEAF and the corresponding response from HSS. Then, we
also appended the two confirmation messages, modeling a lightweight
variant of the Security Mode Command Procedure (SMC), ignoring details
such as security capability information for UE and choice of crypto-
graphic algorithm. This remedies the exact same issues as in EPS-AKA
v1 (Protocol 5.2), which we confirmed to be present when omitting the
confirmation messages. Note that the SMC is not yet fully specified for
5G (see Section 5.2.4.7.2.4 of [6]). We discuss this issue in more detail
in Section 5.2.2, where we try to generalize the confirmation messages.

Building on the TAMARIN theory EPSAKAv2 for EPS-AKA, we develop a new
TaMARIN theory for EPS-AKA¥, called EPSAKA_STAR.

5.2.1 Security Properties

For the same reasons as in EPS-AKA, described in Section 5.1.2 on page 45,
EPS-AKA* cannot provide Perfect Forward Secrecy of K spmk.

In the following, we discuss the other security properties from the perspec-
tive of all three roles UE, SEAF, and HSS.

e UE: Secrecy of Kssme and injective agreement with both SEAF and
HSS on K sumE are proved automatically, just as in EPS-AKA.

e SEAF: Secrecy of Kasyr and injective agreement with UE on Kasyr
are proved automatically, just as in EPS-AKA.

e HSS:

— Secrecy of Kasumg is proved automatically.

— Weak agreement of HSS with UE is satisfied (and proved auto-
matically) for the same reasons as in EPS-AKA.

5.2. EPS-AKA*

Non-injective agreement with UE on K sy fails. This is no sur-
prise, since Kssyr depends on SNid and the additional message
makes no statement about the value of SNid that is used by UE.

However, the additional message increases the guarantees for
HSS. In particular, it allows HSS to agree injectively with UE
on RAND.

Tables 5.5 and 5.6 summarize all discussed security properties.

Perspective
UE | SEAF | HSS
Secrecy Kasme | v v v

PFS K asmE X X X

Table 5.5: Secrecy properties of theory EPSAKA_STAR, modeling EPS-AKA* (Protocol 5.4).

Perspective
UE — SEAF | UE — HSS | SEAF — UE | HSS — UE
Aliveness v v v v
Weak agreement v v v v
Non-injective agreement v v v X
Injective agreement v v v X
Injective agreement (RAND) v v v v

Table 5.6: Authentication properties of theory EPSAKA_STAR, modeling EPS-AKA* (Proto-
col 5.4). All properties are with respect to Kagpg, unless otherwise stated.

At this point, we take a step back and reevaluate the security requirements of
the protocol. Recall that the purpose of the additional message introduced
in EPS-AKA* is to remedy Key issue #2.11 that is described in [6]. We briefly
describe the two explicitly mentioned security threats, omitting some of the
details.

e Threat 1. A fraudulent serving network that has a roaming agreement
with the home network claims charges for an allegedly visited sub-
scriber, even though the subscriber never completed authentication in
the visited the serving network.

e Threat 2. A fraudulent serving network that has a roaming agreement
with the home network claims charges for a subscriber, who success-
fully completed authentication, but never attached to the network or
did not incur the claimed amount of traffic in the visited network.

It is obvious that Threat 2 cannot be addressed by a usual authentication pro-
tocol, because it would require the measurement of incurred traffic during
the complete communication session.

51

5. EPS-AKA*

52

Threat 1, however, could be solved by a conventional authentication pro-
tocol. Essentially, it suffices for HSS to have injective agreement on SNid.
Unfortunately, EPS-AKA* does not guarantee this.

Moreover, the attack described in Threat 1 can be mounted in EPS-AKA*
as follows. A fraudulent serving network simply requests an authentication
vector for an arbitrary UE. It then masquerades as a different serving net-
work (potentially even from a different country) and asks? the UE to solve
the challenge bound to the authentication vector. UE’s response RES is for-
warded to HSS, concluding the attack. Attack Scenario 5.2 describes this
attack in more detail.

Attack Scenario 5.2 Let SNid; and SNidy be the (distinct) identifiers of SEAF;
and SEAF,, respectively. Furthermore, we assume SEAF; to be a fraudulent serv-
ing network having a roaming agreement with the home network HSS.

1. SEAF; — UE : “IdentityRequest’

2. UE — SEAF, : IMSI

3. SEAF;, e—e HSS : (S,IMSI, SNidy)

4. HSS e—e SEAF; : (S, AV™)
5. Adv(SEAF,) — UE : (RAND, AUTN)
6. UE — E(SEAF,) : RES

7. SEAF, e—e HSS : (" AuthCon firmation’, IMSI, SNid;, RES)

As Kasme depends on SNid, this attack violates non-injective agreement of HSS
with UE.

The core of the issue is that, as explained before, UE never makes a statement
about its view on SNid. It seems that it is not possible to properly address
Threat 1 without changing UE’s role in the protocol.

Note, however, that the home network HSS achieves injective agreement
on the value RAND. Since RAND is a fresh value that HSS generates for
each new authentication vector, HSS has the guarantee that UE attached to a
serving network by solving the challenge that corresponds to RAND. Hence,
all attacks can be prevented in which a serving network illicitly claims that
a UE successfully attached to it even though UE has not provided a correct
response for the challenge that HSS generated. EPS-AKA, in contrast, is
trivially susceptible to those attacks, since HSS receives no message after
sending out the challenge.

2Note that this requires the fraudulent serving network to be in radio-range of UE.

5.2. EPS-AKA*

5.2.2 Generalizing the Confirmation Messages

The messages following the authentication protocol (e.g., EPS-AKA*) are not
tully specified for 5G yet (see Section 5.2.4.7.2.4 of [6]). Most likely, it will
be a Security Mode Command procedure (SMC) as proposed in Solution #1.31
of [5].

Recall that we model a simplified variant of such an SMC with a very specific
message format (see Protocol 5.4). However, we believe that a large family
of alternatives can be used to achieve the exact same security properties

as shown in Section 5.2.1. More specifically, we believe that the following
holds:

Claim 5.1 If messages 1-7 of Protocol 5.4 are extended by additional messages, such
that secrecy of Kasme still holds for UE and SEAF, then:

o Injective agreement on Kasmg for UE with both SEAF and HSS is es-
tablished the moment UE receives a message containing the term mp =
MAC(k,innery), where my has never been sent out by UE before, inner;
is a value known to UE, and k = Kagmg or k = KDF(Kasmg) for some key
derivation function KDF.

o Injective agreement on Kaspe for SEAF with UE is established as soon
as SEAF receives a message containing the term my = MAC(k,innery),
where my has never been sent out by SEAF before, inner, is a value known
to SEAF, and k = Kasyme or k = KDF(Kasmg) for some key derivation
function KDF.

The condition that secrecy of Kaspyr must still hold is essential, because in
general, adding new messages to a protocol is dangerous, especially if they
involve the secret key material. For example, one could extend the protocol
by a message that sends out the key Kspr in plain text.

Moreover, it is crucial for both UE and SEAF not to have sent the message
my and my before, because it would make them susceptible to a reflection
attack. Furthermore, UE and SEAF need to know the values inner; and
inner,, respectively, in order to be able to verify the MAC.

It seems that it is possible to further generalize the confirmation messages by
allowing messages of the form m = {|inner|},. However, this would require
an authenticated encryption scheme.

We believe that most practical use cases that occur when using the agreed-
upon key material from EPS-AKA and EPS-AKA* are an instance of the
proposed family of alternative protocol extensions. For example, the NAS
Security Mode Command procedure (specified in Section 7.2.4.4 of [4]) that is
used in 4G as well as Solution #1.31 of [6] that is proposed for 5G satisfy all
conditions of Claim 5.1.

53

5. EPS-AKA*

54

5.3 Conclusion

We analyzed the security of EPS-AKA as used in 4G, as well as its 5G succes-
sor EPS-AKA*. The main difficulty with both protocols was that UE never
makes a cryptographically verifiable statement about its view on the identity
SNid of the serving network. This has the following effects:

o Since the key Kaspr does depend on SNid, agreement on K45y r from
UE as well as with UE is not possible without additional confirmation
messages, modeling the Security Mode Command procedure (SMC).
This is suboptimal especially for 5G, where SMC is not fully specified

yet.

e While EPS-AKA* successfully increases the guarantees for the home
network, some attacks cannot be prevented. This is exactly because
agreement with UE on SNid fails.

We believe a good solution would be for UE to provide a cryptographically
verifiable statement on SNid. For example, it would suffice to make XRES
(the response to the challenge) additionally depend on SNid. However, the
deployment costs of such a change are probably considered too high. The
current proposal, EPS-AKA*, has the advantage of being equivalent to EPS-
AKA from the perspective of UE, resulting in full backwards-compatibility
for older devices.

Chapter 6

EAP-AKA’

This chapter addresses EAP-AKA’” which is specified in [23] as well as in
Section 6.1.3.1 of [5]. It makes use of the EAP framework [7, 8] and it builds
on EAP-AKA [11]. Moreover, Solution #2.9 of [6] explains how the EAP
framework is to be deployed in a 5G network.

Recall the basic 5G network structure from Section 2.1 as well as the cor-
responding role and agent names described in Section 3.6. Our protocol
model has three essential roles: UE, SEAF and HSS.

e UE is the user equipment (e.g., a smartphone). It contains a USIM
with a long-term key K that is shared with the home network.

e SEAF resides in the serving network. The serving network’s identity
name is denoted by both SEAF and SNid.

e HSS is the home network in which the AUSF and ARPF reside in.
Additionally, it knows the long-term key K that is shared with UE.

Moreover, all communication between SEAF and HSS is envisaged to be
Diameter-based, and runs over IPSec or TLS.

EAP-AKA' is an authentication and key agreement protocol. We are inter-
ested in the following security properties, all with respect to the master key
MK the protocol tries to agree on:

e Secrecy for UE, HSS, SEAF.

o Perfect Forward Secrecy for UE, SEAF, HSS with respect to the perma-
nent key K between UE and HSS.

e Injective agreement for UE with SEAF and UE with HSS.
e Injective agreement for SEAF with UE and HSS with UE.

Note that we do not discuss authentication properties between HSS and
SEAF, because we assume they have already set up a secure channel.

55

6. EAP-AKA’

In case injective agreement does not hold, we try to find the strongest au-
thentication property that holds (if any).

Let f1, f» be MAC-functions, f3, fs, fs, KDF key generating functions, and
PRF a pseudorandom function. Moreover, the specification allows f5 to be
the constant zero function.

In the following, we use the symbol ° instead of the prime symbol ’ to avoid
confusion with the string delimiter. We define the following values:

MAC := f1(K, AMF,SQN,RAND)

XRES := RES := f,(K,RAND), where XRES is simply another name
for RES.

CK := f3(K,RAND), also called confidentiality key
IK := f4(K,RAND), also called integrity key

AK := f5(K,RAND), also called anonymity key
AUTN := (SQN @& AK, AMF, MAC)

AV := (RAND, AUTN, SNid)

CK° := KDF('CK*, SNid, SQN @ AK, CK, IK)
IK® := KDF("IK*, SNid, SQN & AK, CK, IK)

Kener := PRF(“Kencr’, IK®, CK®,"EAPAKA®’, IMSI), also called encryp-
tion key

Kyt := PRF(‘Kaut’, IK°,CK°,’EAPAKA®’,IMSI), also called authenti-
cation key

K,e := PRF(‘Kre’,IK°,CK°,’EAPAKA®*,IMSI), also called reauthenti-
cation key

MSK := PRF("MSK’,IK°,CK®,"EAPAKA®,IMSI), also called Master
Session Key

EMSK := PRF(‘EMSK’,IK°,CK®,"EAPAKA®’,IMSI), also called Ex-
tended Master Session Key.

MK := (Kencr, Kgutn, Kre, MSK, EMSK), also called Master Key

Note that @ denotes the (bitwise) exclusive-or (XOR) operator.

In the following, we present a version of EAP-AKA'’.

56

Protocol 6.1 (EAP-AKA’ v1)

N O G s W N =

. SEAF — UE : “IdentityRequest’

.UE — SEAF : IMSI

. SEAF e—e HSS : (‘3',5,IMSI, SNid)

. HSS oo SEAF : ('4’,S, (Puss, AV) , HMAC (kaut, (Puss, AV)))
. SEAF — UE : ((Pyss, AV) , HMAC (kayt, (Puss, AV)))

.UE — SEAF : ((Pyg,RES) , HMAC (kaut, (Pug, RES)))

. SEAF e—e HSS : (7, S, (Pug, RES) , HMAC (kgut, (Pur, RES)))

8. HSS e—e SEAF : (‘8',S,’RequestSuccess’, HMAC (kayt, “RequestSuccess”))
9. SEAF — UE : (‘RequestSuccess’, HMAC (kaut, ‘RequestSuccess”))

10.* UE — SEAF : ('ResponseSuccess’, HMAC (kayut, ‘ResponseSuccess”))
11." SEAF e—e HSS : ("11°,S,"ResponseSuccess’,

HMAC (kqut, “ResponseSuccess”))

12. HSS e—e SEAF : (“12°,S,"EAPSuccess’, MK)
13. SEAF — UE : "'EAPSuccess’

Note the following:

RAND is a fresh random value generated by HSS.

SON is a fresh sequence number generated by HSS. In this chapter,
we treat the sequence number as a fresh value that is generated by
HSS.

A precise model for the sequence number and its corresponding re-
synchronization mechanism is discussed in Chapter 7.

SNid is the identifier of the serving network which is represented by
the role SEAF in our model.

Phss and Pyg are the so-called protection bits. Messages 8-11 (marked
with *) are optional and sent if and only if both Pyss and Py are set
to one. Moreover, Py g must be zero if Pygg is zero.

S is the session identifier from the Diameter header. It is freshly gen-
erated by SEAF and helps to bind the following message to the same
session.

All messages between HSS and SEAF are tagged with their message
number, modeling a reasonable choice of Diameter AVPs.

The Authentication Management Field (AMF) is a 16-bit value, where
the least significant bit is the AMF separation bit. This is used to
distinguish authentication vectors for EAP-AKA from those for EAP-
AKA'. Bits 1-7 are reserved and 8-15 are for proprietary purposes.

57

6. EAP-AKA’

58

o Actually, the identification process is more involved. For example, UE
can identify itself via a pseudonym that can be mapped to an IMSI (if
the mapping fails, HSS will request the full identity via an additional
message). Additionally, there are different encodings to transmit the
identity. We omit these options for reasons of simplicity, because the
first message from UE is unprotected anyway.

e Some of the EAP attributes, like ATxpr (for negotiating the key deriva-
tion function) have been omitted.

o All messages that serve a purely informational purpose and are not
cryptographically protected, like error messages, have been omitted.

¢ In this initial version, we ignore the Fast Re-authentication mechanism
and postpone its discussion to Section 6.4.

It is striking that there are no confirmation messages between the serving
network SEAF and UE after SEAF has successfully received the master key
MK from the home network. As in the analysis of EPS-AKA* in Chapter 5,
we additionally discuss the security properties of EAP-AKA’ (Protocol 6.1)
extended by a lightweight variant of the so-called Security Mode Command
Procedure (SMC). Said SMC is mandatory and always executed after the au-
thentication protocol (in this case EAP-AKA'). Note that the SMC is not fully
specified for 5G yet, which is why we base our model on Solution #1.31 and
Solution #1.32 of [6]. Moreover, we model a simplified variant, ignoring
details such as security capability information for UE and choice of crypto-
graphic algorithm. For a more thorough discussion of the SMC in 5G, we
refer to Section 5.2.2 on page 53.

We introduce two additional messages confirmSEAF and confirmUE that
are defined as follows.

Knasmm = KDFyasmm(MK)

Knasmmint := KDFxasmmint(Knasviv)
confirmSEAF := ({NAS_SM_COMMAND’,

HMAC(Kn asmmint,'NAS_.SM_.COMMAND"))
confirmUE := (‘NAS_SM_COMPLETE’,
HMAC(Ky asmmint,'NAS_SM_COMPLETE"))

Note that KDFyasymm as well as Kyasymint are new key derivation func-
tions.

The extended protocol runs as follows.

Protocol 6.2 (EAP-AKA’ v2)

1. SEAF — UE : ‘IdentityRequest’
2. UE — SEAF : IMSI
3. SEAF e—e HSS : (‘3,S,IMSI, SNid)
4. HSS e—e SEAF : ("4",S, (Pyss, AV), HMAC (kqut, (Priss, AV)))
5. SEAF — UE : ({Pyss, AV, HMAC (kaut, (Puss, AV)))
6. UE — SEAF : ({(Pyg, RES), HMAC (kqu, (Pug, RES)))
7. SEAF e—e HSS : ('7",S, (Pyg, RES) , HMAC (kaut, (Pue, RES)))
8." HSS e—~e SEAF : (‘8',S,’RequestSuccess’,
HMAC (kqut, “RequestSuccess”))
9. SEAF — UE : (‘RequestSuccess’, HMAC (kayut, “RequestSuccess”))
10.* UE — SEAF : (‘ResponseSuccess’,
HMAC (kqut, “ResponseSuccess”))
11.* SEAF e—e HSS : ("11°,S,"ResponseSuccess’,
HMAC (kqut, “ResponseSuccess”))
12. HSS e—e SEAF : (‘12,S,"EAPSuccess’, MK)
13. SEAF — UE : ‘EAPSuccess’
14. SEAF — UE : confirmSEAF
15. UE — SEAF : confirmUE

Note that messages 1 to 13 are exactly the same as in EAP-AKA’ v1 (Proto-
col 6.1).

Before presenting our model for EAP-AKA’, we briefly point out the high-
level differences between EAP-AKA’ and EPS-AKA*:

e Most importantly, in EAP-AKA’ the SEAF is acting essentially as a sim-
ple proxy, until HSS has authenticated UE and sends the agreed-upon
master key MK to SEAF. As a consequence, all messages between
SEAF and HSS except message 12 would not need to be transmitted
over a confidential channel. This is in contrast to EPS-AKA*, where
SEAF receives the secret key K,smg together with the authentication
vector and XRES from HSS, and verifies UE’s response RES to the
challenge itself.

e Furthermore, the key hierarchy for EAP-AKA’ is fundamentally dif-
ferent to EPS-AKA*. In particular, EAP-AKA’ binds the name of the
serving network SNid to the keys CK° and IK°.

59

6. EAP-AKA’

60

6.1 Building a Model

We make the following modeling decisions:

e The roles UE and HSS can be instantiated with an arbitrary choice of
their protection bit Py;r and Pyss, respectively. Note that the choice is
not bound to a particular agent name, but only to a concrete instance
of a role. In particular, it is possible for an agent UE to concurrently
execute two instances of the protocol (in the role UE) with different
protection bits.

e f5is the constant zero function. This is a valid instantiation according
to the specification. In case the sequence number SQN is generated
by a time-based scheme, it makes no sense to try to protect it with a
(non-zero) anonymity key, as the time is publicly known anyway.

e We model the sequence number SQN as a fresh nonce and assume
that the UE is able to make sure it never accepts the same SQN twice.
This ignores all kinds of synchronization issues, and assumes infinite
state.

o Likewise, we model the Session identifier S as a fresh nonce generated
by SEAF.

o We model the secure channel between SEAF and HSS as described in
Section 3.4 on page 27.

This results in the TAMARIN theories EAPAKAPRIMEv1 and EAPAKAPRIMEv2 for
Protocol 6.1 and Protocol 6.2, respectively.

6.2 Security Properties (no confirmation messages)

We start by discussing the security properties of EAP-AKA’ v1 (Protocol 6.1),
which does not include the confirmation messages.

It is easy to see that Perfect Forward Secrecy cannot possibly be provided.
This is because when the long-term key K shared between UE and HSS is
revealed by the adversary, she can immediately recover MK, using only K
and the message (Ppss, AV) which has been sent from SEAF to UE in plain
text.

In order to achieve Perfect Forward Secrecy, we would recommend running
a Diffie-Hellman key exchange. It is possible, however, that this is consid-
ered to be computationally too expensive in the context of mobile devices.

In the following, we discuss the other security properties from the perspec-
tive of all three roles, namely UE, SEAF, and HSS. Recall that we do not
discuss authentication properties between HSS and SEAF, because we as-
sume they have already set up a secure channel.

6.2. Security Properties (no confirmation messages)

e UE:

— Secrecy of MK is proved automatically.
— Injective agreement with HSS on MK is proved automatically.

— Weak agreement with SEAF is proved automatically. However,
non-injective agreement with SEAF on MK can be violated, and
an attack is found automatically. This is no surprise, since SEAF
receives the master key MK only at the very end of the protocol
(message 12), making it impossible for UE to have the guarantee
that SEAF has actually received the (correct) MK. Such a guaran-
tee, however, would hold if we would assume an uninterruptible
channel between the serving network and the home network. In
practice, this may be a reasonable assumption. Our model, how-
ever, allows the adversary to interrupt the channel between SEAF
and HSS.

e SEAF:

— Secrecy of MK is proved automatically, making use of the addi-
tional lemma helper_secrecy_SEAF that connects a secrecy claim
of SEAF to the corresponding secrecy claim of HSS. The helping
lemma itself is proved automatically, too. Moreover, the proof
reuses lemma secrecy_HSS (see below).

- Non-injective agreement with UE on MK is proved automatically,
using the lemma injectiveagreementHSS_UE (see below) as well
as the two helping lemmas helper_authentication_SEAF1 and
helper_authentication_SEAF2 (both of which are proved auto-
matically). helper_authentication_SEAF1 connects every com-
mit from SEAF with UE to a corresponding commit from HSS
with UE, while helper_authentication_SEAF2 connects every
commit from HSS with UE to a corresponding commit from UE
with SEAF.

We prove injective agreement with UE on MK, too. The proof,
however, is rather difficult. In essence, the idea is to specify an
additional lemma helper_authentication_SEAF5 that connects
two different commits of SEAF with UE on the same master key
MK to two distinct commits of HSS (on the same master key).
Reusing a strengthened form of secrecy_SEAF (which expresses
secrecy of MK for SEAF), said lemma can then be proved man-
ually. As an alternative, we provide an oracle! which guides the

ISee Section 2.4 on page 21.

61

6. EAP-AKA’

62

proof search. Using this oracle, TAMARIN successfully proves the
lemma helper_authentication_SEAF5 within minutes.

Reusing the mentioned helping lemmas, injective agreement with
UE on MK is proved automatically.

e HSS:

— Secrecy of MK is proved automatically.

— Injective agreement with UE on MK is proved automatically.

It is striking that injective agreement on MK is established between UE
and HSS (in both directions), even though the protected confirmation mes-
sages (messages 8-11) are optional. Hence, those messages are not needed
to achieve these security properties. It would be interesting to investigate
whether those messages provide any additional guarantees. If not, it would
be best to remove them from the protocol altogether.

Tables 6.1 and 6.2 summarize all discussed security properties.

Perspective
UE | SEAF | HSS
Secrecy MK | v v v
PFS MK X X X

Table 6.1: Secrecy properties of theory EAPAKAPRIMEv1, modeling EAP-AKA' v1 (Protocol 6.1).

Perspective
UE — SEAF | UE — HSS | SEAF — UE | HSS — UE
Aliveness v v v v
Weak agreement v v v v
Non-injective agreement X v v v
Injective agreement X v v v

Table 6.2: Authentication properties of theory EAPAKAPRIMEv1, modeling EAP-AKA’ v1 (Pro-
tocol 6.1). All properties are with respect to MK.

6.3 Security Properties (with confirmation messages)

Next, we discuss the security properties of EAP-AKA’” v2 (Protocol 6.2),
which includes the confirmation messages. Naturally, we hope to be able
to prove the same security properties as for EAP-AKA’ v1 and additionally
injective agreement from UE with SEAF on the master key MK.

6.3. Security Properties (with confirmation messages)

It is easy to see that Perfect Forward Secrecy cannot possibly be provided.
The reason is the same as for Protocol 6.1 (see Section 6.2).

In the following, we examine the other security properties from the perspec-
tive of all three roles UE, SEAF and HSS. Recall that we do not discuss
authentication properties between HSS and SEAF, because we assume they
have already set up a secure channel.

o UE:

— Secrecy of MK is proved automatically.

— Injective agreement with HSS on MK is proved automatically.

- Injective agreement with SEAF on MK is provable. The proof,
however, is rather difficult. We reuse a strengthened form of the
lemma secrecy_UE (which expresses secrecy of MK for UE) and
provide an oracle that is able to guide the proof search for the first
four depth levels of the proof. Using this oracle together with
TaMARIN’s standard smart heuristic (for all depth levels greater
than four), the proof succeeds within minutes.

e SEAF:

— We prove secrecy of MK, using the same approach as for EAP-
AKA'’ v1 (as described in Section 6.2 on page 60).

— We prove injective agreement with UE on MK, using the same
approach as for EAP-AKA’ v1 (as described in Section 6.2 on

page 60).

e HSS:

— Secrecy of MK is proved automatically.

— Injective agreement with UE on MK is proved automatically.

Tables 6.3 and 6.4 summarize all discussed security properties.

Perspective
UE | SEAF | HSS
Secrecy MK | v v v
PFS MK X X X

Table 6.3: Secrecy properties of theory EAPAKAPRIMEv2, modeling EAP-AKA’ v2 (Protocol 6.2).

As desired, all analyzed security properties from EAP-AKA’ v1 (Protocol 6.1)
are preserved. Additionally, injective agreement from UE with SEAF on the
master key MK is established.

63

6. EAP-AKA’

Perspective
UE — SEAF | UE — HSS | SEAF — UE | HSS — UE
Aliveness v v v v
Weak agreement v v v v
Non-injective agreement v v v v
Injective agreement v v v v

Table 6.4: Authentication properties of theory EAPAKAPRIMEv2, modeling EAP-AKA’ v2 (Pro-
tocol 6.2). All properties are with respect to MK.

6.4 Fast Re-Authentication

Recall that in EAP-AKA’ vl and EAP-AKA’ v2 (Protocols 6.1 and 6.2), we
ignored the Fast Re-authentication procedure. This is a protocol that can
be run after a successful authentication via EAP-AKA’. It aims to establish a
fresh Master Key MK, and to re-authenticate UE.

In the following, Kuut, Kener, and Ky, refer to the values that have been ex-
changed in a previous run of a full EAP-AKA’ authentication. Additionally,
we let PRF° be a new pseudorandom function, and we define the following
values:

MSK,, := PRF°(‘MSKre’, Ky,,"EAPAK A reauth’,
IMSI, counter, NONCEg)
EMSK,, := PRF°("EMSKre’, Ky, "EAPAKA°reauth’,
IMSI, counter, NONCEj)
MKy := (MSKye, EMSK,.)

The Fast Re-authentication protocol runs as follows.

Protocol 6.3 (EAP-AKA’ Fast Re-authentication)

1. SEAF — UE : “IdentityRequest’
2. UE — SEAF : IMSI
3. SEAF — UE : ({|'Reauth’, Psg o, counter, NONCEg|}k,,.,,
HMAC (Kaut, {|'Reauth’, Pyss, counter, NONCEs|}k,,..))
4. UE — SEAF : {({|{Pyg, counter|}k,,..,
HMAC (Kayt, {| Pug, counter|}tg,,.))
5 SEAF — UE : ({

‘RequestSuccess’, counter|}k,,..,
HMAC (kgyt, {|'RequestSuccess’, counter|}k,,..))
6. UE — SEAF : ({|'ResponseSuccess’, counter|}g,, .,

HMAC (kaut, {|'ResponseSuccess’, counter|}k,, .))
7.SEAF — UE : "EAPSuccess’

64

6.4. Fast Re-Authentication

Note the following:

o After successful execution, UE and SEAF use the new master key
MKge.

e counter is a 16-bit value that is generated by SEAF. It is used in a way
similar to the sequence number SQN from the AKA key exchange. UE
must verify that for every new re-authentication request from SEAF,
the included counter is strictly larger compared to the counter from the
previous re-authentication (if there is any). This ensures uniqueness
of counter and thereby establishes replay protection.

As a side effect, this counter also limits the number of possible re-
authentications.

e NONCE;s is a fresh value generated by SEAF. It is used in a way
similar to the value RAND from the AKA key exchange.

e Similar to EAP-AKA’ vl and EAP-AKA’ v2 (Protocols 6.1 and 6.2), mes-
sages 5 and 6 are optional. They are sent if and only if both protection
bits Pyr and Psgar are set to one.

It is apparent that the secret key K that is shared between UE and the home
network HSS is not used. Instead, Fast Re-authentication uses the previ-
ously exchanged key material (in particular K., and K,yt) to agree on a
new key. As a result, there is no need for HSS to participate in the process
of re-authentication.

Combining this with our existing model would nevertheless add a sub-
stantial amount of complexity, which we avoid by implementing the Fast
Re-authentication protocol in its own isolated model. This has the draw-
back that the proved security properties do not necessarily carry over to
a non-isolated model in which Fast Re-authentication runs together with
EAP-AKA’. We discuss this further in Section 6.4.3.

6.4.1 Building a Model

We make the following modeling decisions:

e For reasons of simplicity, the symmetric message encryption is ignored.
Instead, all encrypted messages are transmitted in plain text. This is
completely attack preserving, and we are still able to prove all desired
security properties.

o A full EAP-AKA’ authentication is represented by a persistent fact
IINITAUTH(imsi, SEAF, Kre, Kaut). From this fact, arbitrarily many
instances of SEAF and UE can be instantiated.

e The roles UE and SEAF can be instantiated with an arbitrary choice of
their protection bit Pyjg and Pspar, respectively. Note that for a single

65

6. EAP-AKA’

66

EAP-AKA’ authentication between UE and SEAF, the protection bits
are not necessarily fixed, that is, we allow them to change for every
new run of the Fast Re-authentication protocol.

e For reasons of efficient automatic verification, we let the adversary
construct the counter value for the serving network SEAF.

We add the restriction SEAFCounter, modeling that for a single EAP-
AKA’ authentication session, SEAF uses a unique counter value for
every new Fast Re-authentication. Note that we allow different au-
thentication sessions to share counters.

Furthermore, we add the restriction UECounter, modeling that for a sin-
gle EAP-AKA’ authentication session, UE only accepts unique counter
values for every re-authentication attempt within one authentication
session.

The implementation of the counter that is used in practice (described
above) is such that it can be seen as an instantiation of our model.
SEAF is able to generate unique counters, and UE is able to accept
only new counters.

The resulting TAMARIN theory is called EPSAKAPRIMEREAUTH.

6.4.2 Security Properties

Recall that the previously analyzed EAP-AKA’ does not provide Perfect For-
ward Secrecy. As the long-term key is still the same, an attacker can easily
exploit this fact to recover K;, and K, after the execution of the Fast Re-
authentication protocol. The use of exclusively symmetric key cryptography
makes it further trivial to compute MK, violating Perfect Forward Secrecy
of the Fast Re-authentication protocol.

However, secrecy of MK, is proved automatically for both SEAF and UE,
as well as injective agreement of SEAF with UE on MK, and vice versa.

Tables 6.5 and 6.6 summarize all discussed security properties.

Perspective

UE | SEAF

Secrecy MK, | v v
PFS MK,, X X

Table 6.5: Secrecy properties of theory EAPAKAPRIMEREAUTH, modeling EAP-AKA’ Fast Re-
authentication (Protocol 6.3).

An interesting observation is that UE only confirms the value counter to-
wards SEAF (see messages 4 and 6), and not the value NONCEs. As a

6.5. Comparing EAP-AKA’ to EPS-AKA*

Perspective
UE — SEAF | SEAF — UE
| Injective agreement MK, v v

Table 6.6: Authentication properties of theory EAPAKAPRIMEREAUTH, modeling EAP-AKA’ Fast
Re-authentication (Protocol 6.3).

consequence, non-injective agreement with UE on MK, can be violated in
case UE accidentally accepts the same counter twice, which should never
happen if UE executes the protocol correctly. The reason is that message
4 does not depend on NONCEg, so an attacker would be able to reuse an
old version of message 4 that has been generated for a different NONCEjg
(but for the same counter). Note that the encryption that the protocol uses
in practice to protect the messages (which is not implemented in our model)
would not mitigate this issue. An effective way to avoid this issue would be
to add NONCE;s (integrity protected) to message 4.

Similar to the full EAP-AKA’ authentication protocol, the protected confir-
mation messages do not seem to provide value from a security perspective.

6.4.3 Security of EAP-AKA’ with Fast Re-Authentication

Recall that we analyzed the EAP-AKA’ authentication protocol (Sections 6.2
and 6.3) and the Fast Re-authentication protocol in isolation.

Therefore, it is important to think about the consequences of merging these
two protocols into one protocol, just as it is done in practice.

We are confident that the proved security properties in each of the protocols
would also hold in a merged version. The key reason for this lies in the
fact that all cryptographically protected messages of the two protocols are
tagged integrity-protected in such a way that they cannot be confused with
each other. Moreover, messages which are not cryptographically protected,
i.e., transmitted in plain text, are completely controllable by the adversary
in our model. The fact that some of those messages are confusable by each
other is therefore irrelevant to the security properties. Hence, the two pro-
tocols are not expected to interfere with each other in any way that would
affect the security properties.

6.5 Comparing EAP-AKA’ to EPS-AKA*

Although both EAP-AKA’ and EPS-AKA* are based on the same AKA key
exchange, the protocols do not have the same security properties. In order to
be able to see essential differences between the protocols, we compare them
both with and without confirmation messages. Since their secrecy properties
are the same, we focus on the authentication properties.

67

6. EAP-AKA’

68

6.5.1 Comparison without Confirmation Messages

Table 6.7 contrasts the authentication properties of EPS-AKA* and EAP-
AKA’ without confirmation messages.

Perspective
UE — SEAF UE — HSS SEAF — UE HSS — UE
P, P, 2 P, 2 P,) 2
Aliveness X v v v v v v v
Weak agreement X v v v X v v v
Non-injective agreement X X X v X v X v
Injective agreement X X X v X v X v

Table 6.7: Authentication properties of EPS-AKA* (P, left) and EAP-AKA’ (P, right) without
confirmation messages. All properties are with respect to K4gpg for EPS-AKA*, and with respect
to MK for EAP-AKA'.

All differences are at least partially related to a failing agreement on the
identity name SNid of the serving network. Since the agreed-upon keys
Kasme and MK depend on SNid, agreement on the value of SNid is critical
for non-injective agreement on both K45y and MK.

For each perspective, we provide an intuitive understanding of the differ-
ences of the achieved authentication properties.

e UE — SEAF: EAP-AKA’ achieves weak agreement on MK, while
EPS-AKA* achieves only weak agreement on Kssyg. The reason for
this difference is mainly that the authentication vector AV of EAP-
AKA'’ contains the name of the serving network SNid, which is not the
case for EPS-AKA*, where UE receives no cryptographically verifiable
information on the value of SNid from any of its peers.

Note also that non-injective agreement fails for EAP-AKA’ only be-
cause SEAF receives the agreed-upon key MK only at the very end
of the protocol. As we assume an interruptible channel, UE has no
guarantee that SEAF will ever receive the key MK. In case of an unin-
terruptible channel, however, we believe the property would hold.

e UE — HSS: EAP-AKA’ achieves injective agreement on MK, while
EPS-AKA* fails to achieve even non-injective agreement on Kaspk.
The reason for this is identical to the previous case, i.e., UE receives
cryptographically verifiable information on the value of SNid only in
EAP-AKA’, but not in EPS-AKA*.

e SEAF — UE: EAP-AKA'’ achieves injective agreement on MK. This
is essentially because SEAF receives the key MK only from HSS after
HSS has verified the challenge response from UE. Since SEAF and

6.5. Comparing EAP-AKA’ to EPS-AKA*

HSS communicate over a secure channel, HSS is able to guarantee the
authentication properties to SEAF.

EPS-AKA*, however, fails to provide even weak agreement on Kspk.
The reason is that SEAF receives no cryptographically verifiable infor-
mation on the value of SNid from UE, making it trivial to violate weak
agreement.

e HSS — UE: EAP-AKA’ achieves injective agreement on the key MK,
while EPS-AKA* does not provide even non-injective agreement on
Kasme-

The reason for this difference is that in EAP-AKA’, UE’s response is
authenticated using the key K,,; which depends on the name of the
serving network SNid. In EPS-AKA*, however, the home network HSS
receives no cryptographically verifiable information on UE’s view of
the value SNid. In particular, the response RES does not depend on
SNid in any way.

6.5.2 Comparison with Confirmation Messages

Adding the confirmation messages between UE and SEAF helps in resolv-
ing all authentication issues of EPS-AKA* except non-injective agreement of
HSS with UE on the key Kaspg. This is no surprise, since HSS still receives
no cryptographically verifiable information on UE’s view of the value SNid.

Table 6.8 contrasts the authentication properties of EPS-AKA* and EAP-
AKA’ with confirmation messages.

Perspective
UE — SEAF | UEw~— HSS | SEAFw— UE | HSSw— UE
P, P, P P P P, P P,
Aliveness v v v v v v v v
Weak agreement v v v v v v v v
Non-injective agreement v v v v v v X v
Injective agreement v v v v v v X v

Table 6.8: Authentication properties of EPS-AKA* (P;, left) and EAP-AKA’ (P,, right) with
confirmation messages. All properties are with respect to Kagpg for EPS-AKA*, and with
respect to MK for EAP-AKA'.

6.5.3 Conclusion

The comparison highlights the fact that EAP-AKA’ provides strictly stronger
authentication guarantees than EPS-AKA¥, at least for agreement on the key
MK and K sk, respectively.

69

6. EAP-AKA’

70

Moreover, EPS-AKA* achieves multiple authentication properties only af-
ter the agreed-upon key material has been used at least once, for example
in confirmation messages (modeling the Security Mode Command (SMC)
procedure). In contrast, EAP-AKA' is able to provide all its authentication
guarantees before exchanging additional confirmation messages. A draw-

back of EAP-AKA'’ is, however, that the protocol exchanges more messages
than EPS-AKA*.

Chapter 7

Improving Model Precision

Our previously presented models of EPS-AKA* (Chapter 5) and EAP-AKA’
(Chapter 6) are based on two major simplifications.

e First and most importantly, the sequence number is modeled as a
fresh value and UE is simply assumed to never accept the same se-
quence number more than once. Additionally, the model completely
ignores the re-synchronization protocol, which is the mandatory mecha-
nism that is used to resynchronize the sequence number between UE
and the home network once it gets out of sync.

e Second, the anonymity key AK is modeled as a constant zero value
instead of a value derived from a key derivation function.

In this chapter, we present a modeling approach that leverages TAMARIN’s
support for mutable global state as well as its experimental XOR built-in to
precisely account for both the sequence number with re-synchronization as
well as a non-zero anonymity key AK. Moreover, we apply the approach to
EPS-AKA* and again verify the same security properties as in Chapter 5.

7.1 Sequence Number

The sequence number SON is part of the AKA key exchange protocol de-
scribed in [3]. As such, it is part of all AKA-based protocols. Annex C of [3]
describes multiple management schemes for the sequence number, some of
which are time-based. In this chapter, we focus on the management schemes
that are not time-based. In particular, we treat Profile 2 as described in Sec-
tion C.3.2 of [3].

The sequence number is a 48-bit value SQN, that is composed of the counter
value SEQ and IND, i.e,, SQN = SEQ||IND. Typically, SEQ is 43 bits long
and IND is 5 bits long.

71

7. IMPROVING MODEL PRECISION

72

7.1.1 Storing the Sequence Number

Every UE stores an array SEQ)s with a entries, indexed from 0 to a — 1. All
entries are initialized with zero. Typically, a = 32.

Every home network HSS stores a counter SEQyE for each UE. Said counter
is initialized to zero, and increased for every new authentication value. The
home network sends the value SQN = SEQgg/||IND, where IND is a value
between 0 and a — 1.

7.1.2 Checking Sequence Number Freshness

Let SQNps = SEQums||[IND)js denote the highest accepted sequence num-
ber that is contained in the array, i.e., SEQp;s = max; SEQs(7).

For fixed L and A, a UE accepts a new sequence number SQN = SEQ||IND
as fresh if and only if:

SEQ € (SEQums — L, SEQus + A] and SEQ > SEQus(IND)

Note the following:
e L is optional. In case it is not used, it is set to cc.
e A is typically 2%,
If a received SEQ is accepted as fresh, the value SEQys(IND) is set to SEQ.

Otherwise, a synchronization failure with the value SEQs is sent.

7.2 Re-Synchronization

Let f;" be a new MAC function and let f be a new key derivation function.
Moreover, let AV be the usual AKA authentication vector, let K be the sym-
metric key shared between UE and HSS, and let RAND be a fresh value that
is chosen by HSS during the usual AKA protocol. We define the following
values.

MACS := f{(AMF,RAND, K, SQNys)
AK := fi(RAND,K)
AUTS := (SQNys ® AK)||MACS

Note that the value AMF is the authentication management field, which
is used for additional indications between the user equipment UE and the
home network HSS.

If a synchronization failure with the value SEQ)s is sent, the following re-
synchronization procedure is run.

7.3. Building a Model

Protocol 7.1 (Re-Synchronization)

1. UE — SEAF : ('syncfailure’, AUTS)
2. SEAF e—e HSS : ("authrequest’,’sync failure’, RAND, AUTS)
3. HSS e—e SEAF : (‘authresponse’, AV)

When HSS receives the authentication request with synchronization failure
indication from SEAF, it will set its stored counter SQNyr to SQN,s if
SONgHE +1 < SQNys, i.e., if the next counter value would not be accepted
by UE. The new SQNpyE is then used to generate an authentication vector
AV.

7.3 Building a Model

In the following, we present a modeling approach for the sequence number
itself, the re-synchronization protocol, and a non-zero anonymity key.

7.3.1 Sequence Number

We make the following modeling decisions concerning the sequence number
SQN = SEQI|IND.

e We model SEQ as a possibly infinite multiset of ones (‘1’), capturing
the property that A is chosen such that the counter never wraps within
the usual lifetime of a user equipment.

o We set the array size a to one. This allows us to ignore the index IND
from SQN, as there is only one valid index.

This is a reasonable modeling choice, as the array indexing mecha-
nism is primarily used between different batches of authentication vec-
tors. However, as specified in [6], it is recommended (in some cases
even mandatory) that the serving network requests only one authenti-
cation vector at once. In this case, the array indexing mechanism is not
needed anyway.

e We ignore the check SEQ € (SEQums — L, SEQums + A], ie., we set
L=A=oco.

Note that the lower bound SEQ)s — L is optional to check, and the
upper bound SEQps + A is only needed to ensure that the counter
SEQ does not wrap within the usual lifetime of a user equipment UE.
This property is captured in our model already, as we have an infinite-
sized counter.

73

7. IMPROVING MODEL PRECISION

74

e The rule Register_IMST is used to create a fact SQN_UE(IMSI, ‘1)

and a fact SQN_HSS(HSS, ‘1¢) for every IMSI with HSS as its corre-
sponding home network name. This models the initialization of the
counter.

Whenever UE or HSS need to read or update the counter value of
SQON, the access is realized by directly using the fact SQN_UE(...) or
SQN_HSS(. . .), respectively.

This is crucial to avoid race conditions on the counter value. In practice,
every correct implementation of the protocol should guarantee that
there are no such race conditions.

f& is the constant zero function. This is a valid instantiation according
to the specification. In case the sequence number SQN is generated
by a time-based scheme, it makes no sense to try to protect it with a
(non-zero) anonymity key, as the time is publicly known anyway.

We let the adversary construct the counter in order to remove some of
the partial deconstructions'. Note that the counter is not secret anyway,
since we model f: as the constant zero function.

7.3.2 Re-Synchronization

Concerning the re-synchronization protocol, we take the following modeling
decisions:

e When a synchronization failure occurs, UE sends message 1 and SEAF

sends message 2 as described in Protocol 7.1. Then, UE, SEAF, and
HSS abort the protocol execution.

Instead of sending the following authentication vector in a dedicated
message as in Protocol 7.1 (message 3), HSS reruns the protocol and
sends a new authentication vector via the regular AKA-based protocol.
This is an approximation which allows us to reduce the complexity of
the model significantly.

In order to make it possible to execute the re-synchronization in our
model, we introduce a mechanism that modifies the sequence numbers
of UE and HSS such that a synchronization failure can be triggered.

For UE, we add a rule Increase_SQNUE which increases UE’s sequence
number to an arbitrary value. Note that decreasing UE’s sequence
number would trivially allow replay attacks, and a correct implemen-
tation of the protocol must ensure that the sequence number is only
increased.

1See Section 2.4.4 on page 23.

7.3. Building a Model

For HSS, we add a rule Havoc_SQNHSS which changes HSS’s sequence
number arbitrarily.

e The authentication management field AMF is modeled as the constant
string “AMF".

7.3.3 Non-Zero Anonymity Key

In case the sequence number SQN is generated by a time-based scheme, it is
publicly known anyway, making it pointless to protect it with an anonymity
key AK. However, if SQN is not generated by a time-based scheme, it is
reasonable to generate a non-zero anonymity key in order to protect the
user’s privacy.

This section is to be understood as an extension of the previous modeling
choices. We model fZ as a key derivation function and aim to prove secrecy
of the sequence number SQN for both UE and HSS.

In order to achieve this, it is necessary to modify the model of the sequence
number, because a multiset consisting only of ones (1°) cannot be a (weak)
secret from the adversary. We introduce the following modifications:

e The counter between UE and HSS consists of the two parts SONBASE
and SQNOFFSET. SQN’s value is SQNBASE + SQNOFFSET.

The value SQNBASE is set to a fresh value SQNBASE that is only
known to UE and HSS. After being generated, its value never changes.

The value SQNOFFSET is initialized to zero. It is increased by one
on every authentication attempt by the home network HSS. Note
that SONOFFSET essentially corresponds to the full sequence num-
ber SON in the previous model.

e When UE or HSS receive an SQN value, they separate it to the two
values SQNBASE and SQNOFFSET, allowing a more efficient proof
for some of the security properties.

Intuitively, this can be understood as the agents checking whether the
received value is actually greater or equal than SQNBASE and storing
only the new offset SON — SQNBASE. Note that values smaller than
SQNBASE are not accepted.

e As in the previous model, we let the adversary construct the part of the
counter that is known to the adversary anyway, namely SONOFFSET.

This allows us to remove some of the partial deconstructions?.

The sequence number being composed of a secret base and a public offset
intuitively represents a threat model in which the adversary is imagined

2See Section 2.4.4 on page 23.

75

7. IMPROVING MODEL PRECISION

76

to join the network at some point, not knowing the current value of the
sequence number. However, from the moment she has joined, she can easily
count the number of authentication runs and therefore infer the offset from
the secret base.

7.4 EPS-AKA*

We extend the previous model of EPS-AKA* as described in Chapter 5 it-
eratively with our new model, starting with the sequence number, then
adding the re-synchronization protocol, and finally the non-zero anonymity
key. The resulting theories are EPSAKA_STAR_REALSQN, EPSAKA_STAR_RESYNC
and EPSAKA_STAR_RESYNC_XOR. Note that EPSAKA_STAR_RESYNC_XOR builds
on EPSAKA_STAR_RESYNC, which itself builds on EPSAKA_STAR_REALSQN.

As the models become more involved, proving security properties quickly
becomes rather difficult. We briefly comment on the challenges encountered
with the three theories.

e EPSAKA_STAR_REALSQN: In order to prove authentication properties as
injective agreement on Kssyr between different roles, it is necessary
to use the helping lemmas UEcounterINIT and uniqueUECounter.

UEcounterINIT describes the property that every use of UE’s sequence
number SQN is preceded by an initialization of said sequence number.

uniqueUECounter describes the property that UE will never accept the
same sequence number SQN twice. It is proved automatically, making
use of the helping lemma HELPERuniqueUECounter.

HELPERuniqueUECounter describes the property that UE’s counter is
only increased. Unfortunately, the lemma is not automatically prov-
able with the default smart heuristic. We provide an oracle® that allows
to prove said lemma.

Note that HELPERuniqueUECounter is a helping lemma that is only
used to prove uniqueUECounter. In order to prove injective agreement
properties involving UE’s counter, only uniqueUECounter is used.

e EPSAKA_STAR_RESYNC: This theory is based on EPSAKA_STAR_REALSQN
(see above). It additionally models the re-synchronization protocol.

Similar as in theory EPSAKA_STAR_REALSQN, we add helping lemmas,
accounting for the different ways in which UE’s sequence number is
updated during the re-synchronization protocol.

e EPSAKA_STAR_RESYNC_XOR: This theory builds on EPSAKA_STAR_RESYNC
(see above).

3See Section 2.4 on page 21.

7.4. EPS-AKA*

Moreover, the theory makes use of TAMARIN’s experimental XOR fea-
ture to model the value SQN @ AK.

In order to prove some of the secrecy properties, we specify two ad-
ditional helping lemmas describing the secrecy of SQNBASE as well
as secrecy of the anonymity key AK. This allows us to automatically
prove secrecy of Kasye for UE, SEAF, and HSS, as well as secrecy of
the sequence number SQN for both UE and HSS.

Some of the authentication properties, however, are not provable auto-
matically with TAMARIN’s default smart heuristic anymore. We provide
an oracle that allows us to prove injective agreement on K4syg for UE
with both SEAF and HSS, and injective agreement on K 45 for SEAF
with UE.

With the techniques described above, we successfully prove the same secu-
rity properties as in Section 5.2 for all three theories EPSAKA_STAR_REALSQN,
EPSAKA_STAR_RESYNC and EPSAKA_STAR_RESYNC_XOR.

Furthermore, we are able to prove secrecy of the sequence number SQN for
both UE and HSS in theory EPSAKA_STAR_RESYNC_XOR.

Tables 7.1, 7.2, and 7.3 summarize the security properties.

Perspective Perspective
UE | SEAF | HSS UE | HSS
Secrecy Kasme | v v v | Secrecy SON | v/ v
PFS Kasme X X X Table 7.2: Additional secrecy proper-

Table 7.1: Secrecy properties that hold for the the- ties on SQN that hold exclusively for
ories EPSAKA_STAR_REALSQN, EPSAKA_STAR_RESYNC, theory EPSAKA_STAR_RESYNC_XOR, mod-
and EPSAKA_STAR_RESYNC_XOR, which model EPS- eling EPS-AKA* (Protocol 5.4) with re-
AKA* (Protocol 5.4) with different levels of exten- Synchronization and non-zero anonymity

sions. key.
Perspective
UE — SEAF | UE — HSS | SEAF — UE | HSS — UE
Aliveness v v v v
Weak agreement v v v v
Non-injective agreement v v v X
Injective agreement v v v X
Injective agreement (RAND) v v v v

Table 7.3: Authentication properties of theories EPSAKA_STAR_REALSQN, EPSAKA_STAR_RESYNC
and EPSAKA_STAR_RESYNC_XOR, modeling EPS-AKA* (Protocol 5.4) with different levels of ex-
tensions. All properties are with respect to Kaspg, unless otherwise stated.

77

Chapter 8

Conclusion

We formalized multiple authentication protocols of the new 5G standard
and were able to prove numerous security properties in our symbolic model.
The results mostly provide confidence in the design of today’s and future
telecommunication protocols.

In Chapter 4, we analyzed the newly proposed identity-based protocols
Relay-Authentication and Aggregation-Authentication as specified in Solu-
tion #2.16 and Solution #2.15 of [6], respectively. The results showed differ-
ent weaknesses. Most importantly, a design flaw affecting both protocols
allows mounting a man-in-the-middle attack on both roles of the protocols.
Moreover, the imprecise specification of the protocols was found to cause
several issues. For both protocols, we proposed changes to resolve all dis-
covered problems.

Then, in Chapter 5, we introduced a basic model for EPS-AKA as well as
its 5G successor EPS-AKA*. The subsequent analysis confirmed that EPS-
AKA provides the home network only with weak authentication properties
on the user equipment. EPS-AKA* was designed with the explicit goal of
improving authentication guarantees for the home network and we success-
fully proved stronger authentication properties. However, the protocol does
not achieve agreement for the home network with the user equipment on
the identity of the serving network. This has already been noted in the
comments that are provided with the current specification’s draft [6]. A so-
lution that would actually allow the home network to agree with the user
equipment on the identity of the serving network is most likely not possi-
ble without changing the user equipment’s role in the protocol. The 3GPP
seems to be reluctant to implement such a change, presumably because it
would break backwards compatibility with current user equipment.

In Chapter 6, we presented models for EAP-AKA’ as well as its Fast Re-
authentication mechanism and formally verified their properties. The com-

79

8. CONCLUSION

80

parison between the properties of EAP-AKA’ and EPS-AKA* has shown that
EAP-AKA’ achieves strictly stronger security guarantees than EPS-AKA*.
This is the case both before and after running the so-called Security Mode
Command procedure (SMC) which succeeds the actual authentication pro-
tocol, although the difference is more profound before running the SMC.
However, a drawback of EAP-AKA’ is that the protocol exchanges more
messages than EPS-AKA*.

Finally, we presented a precise model for the sequence number and its re-
synchronization mechanism in Chapter 7. We demonstrated how our ap-
proach can be applied to EPS-AKA* and again verified the properties proved
in Chapter 5.

In the following, we give an overview of the general types of problems that
we encountered during the analysis of the protocols.

e Protocol specifications are often imprecise, especially for non-standard
documents such as [6] in which the new 5G protocols using ID-based
credentials are described. This requires making additional assump-
tions on the protocols.

In general, we tried to make as few assumptions as possible, and when-
ever needed, we aimed to make assumptions in an attack-preserving
way. In some cases, however, this was very challenging. For example,
the specification of the protocols analyzed in Chapter 4 describes some
of the messages in words only. Hence, we needed to determine our
own message format for our model. This is a problem, since there may
exist attacks that depend on the concrete message format, for example
when exploiting that different messages are confusable.

For particularly imprecise protocol specifications, most notably the ID-
based protocols described in [6], we proposed a set of explicit improve-
ments to be added to the protocol specification.

Furthermore, some protocol specifications deliberately leave room for
a variety of different implementations. The intention is to enable the
different network operators to adjust their implementation to their
own needs. When modeling such a protocol for a specific variant, the
results do not easily translate to the alternative variants. Whenever
we modeled such a specific variant, we preferred the implementation
which we considered to be most common in practice.

e Security goals are often not stated explicitly or they are very imprecise.
Therefore, we tried to prove straightforward but strong security prop-
erties from the perspectives of the different protocol participants. In
some cases, this has led to attacks which may not be considered criti-
cal with respect to the implicit security goals of the telecommunication
network.

We strongly suggest that the protocol designers provide an accurate
specification along with a precise statement of the desired security
goals. Especially for the new 5G protocols, this is of critical importance,
since for most of them it is not determined yet in what exact context
and environment they are going to be used.

e The security properties of some of the analyzed protocols strongly de-
pend either on a higher layer protocol such as Diameter, or on a pro-
tocol that is run subsequently to the actual authentication protocol.
Therefore, it was sometimes necessary to take the behavior of these
additional dependencies at least partially into account. In general, this
is suboptimal, because the results of the formal analysis may not triv-
ially hold anymore if only one of these dependencies is modified or
replaced.

e Overloaded protocols with many seemingly unnecessary messages,
most notably EAP-AKA’, have led to a high model complexity. This
created the need for many helping lemmas in order to prove the de-
sired properties, or even the development of a so-called oracle to guide
the proof search.

Throughout this work, we made strong use of the TAMARIN prover which
turned out to be a very valuable tool. It allowed us to prove many properties
fully automatically. In case a property did not hold, the tool was often able
to find an attack. However, for the most complex models, in particular those
for EAP-AKA’ and the precise version of EPS-AKA*, a significant manual
effort was required in order for the proofs to succeed. More specifically,
the built-in heuristics of TAMARIN were not able to provide choices that led
to a successful proof for these models within a reasonable amount of time.
Hence, it was necessary to provide either additional helping lemmas that
helped to split a proof into smaller parts, or a so-called oracle to guide the
proof search with superior choices than the built-in heuristics. Even though
some of the models represented a major challenge for the tool in its present
version, we expect TAMARIN to evolve, the heuristics to improve, and the
efficiency to increase, such that no manual work will be required in the
future for similar models.

Within the telecommunication protocol landscape and especially 5G, we ex-
pect the following challenges to be addressed in future work:

e Include a precise model for sequence number with re-synchronization
and exclusive-or operator, such as presented in Chapter 7, into EAP-
AKA.

e Model EAP-AKA’ in combination with its Fast Re-authentication pro-
tocol, as opposed to our separated modeling approach.

e Model and formally verify other 5G protocols.

81

8. CONCLUSION

82

e Model and formally verify indistinguishability properties of various
protocols. This is particularly interesting for privacy concerns.

e Combine different authentication protocols that current devices sup-
port into one model and verify the combined properties. Since even the
most recent devices support obsolete protocols (e.g., from 2G), there is
the potential risk of downgrade attacks.

For some of this future work, it will most likely be necessary for formal
verification tools to become more efficient. There are multiple directions
to pursue this goal. One direction might be to improve the heuristics in
order to be able to find more complex proofs fully automatically. Another
direction might be to provide a more expressive input language, for example
by adding special annotations that allow guiding the proof search algorithm
in a more convenient way than what is currently possible using oracles for
TAMARIN.

Appendix A

Tamarin Model - EPS-AKA¥*

theory EPSAKA_STAR_RESYNC_XOR
begin

/[#HHH RS HEH R H R H R SRR SRR R R R R R R R R
//Sources: 3GPP TR 33.899 V1.3.0 (2017-08),

// 3GPP TS 33.401 V14.2.0 (2017-03),
// 3GPP TS 33.102 V14.1.0 (2017-03)
//Author: David Lanzenberger

//Date: July 2017

k32 e T
builtins: symmetric-encryption, multiset, xor

functions: KDF/1

[[HHKEY GENERATION RULES###H#H#H#HHHH

// both UE and HSS initialize their counter to 1
rule Register_IMSI:
[Fr(Timsi), Fr("Kimsi), Fr(~SQNBASE)]
--[UEInitCounter(~“imsi, $HSS, ~SQNBASE)
, HSSInitCounter ($HSS, ~imsi, ~SQNBASE)
, REGISTER_IMSI("imsi, $HSS, “Kimsi)
1->
['IMSI("imsi, $HSS)
, 'IMSIK("imsi, $HSS, ~Kimsi)
, SQNUE(~imsi, $HSS, ’1°)
, SQNHSS($HSS, ~imsi, ’17)
, 'SQNBASEUEHSS(~imsi, $HSS, ~SQNBASE)

// This shared symmetric key is used to model a secure channel
// between SEAF and HSS. It ensures authenticated and confidential

83

A. TAMARIN MoDEL - EPS-AKA*

// messages, as well as integrity. However, it allows the adversary
// to replay messages arbitrarily many times and to reorder them.
rule Shared_Symmetric_Key:

[Fr("SK)]

--[Shared_Symmetric_Key(~SK,$SEAF,$HSS)]->

[ISYMKEY("SK,$SEAF,$HSS)]

[/ #H S RS HREVEAL RULES######

rule Reveal_IMSI:
['IMSIK(imsi, HSS, Kimsi)]
--[Reveal(<’IMSI’,imsi>)]1->
[Out(Kimsi) 1]

rule Reveal_Shared_Symmetric_Key:
[!'SYMKEY (SK,SEAF,HSS)]
--[Reveal (<’SEAFHSS’,SEAF,HSS>) 1->
[Out(SK) 1

[/ # e H## SEQUENCE NUMBER RULES######H#H St o 4

// we allow HSS’s counter to be changed to an arbitrary value
// this models situations in which HSS gets out of sync with UE
rule Havoc_SQNHSS:
[SQNHSS(HSS, imsi, SQNBASEOFFSET)
, !SQNBASEUEHSS (imsi, HSS, “SQNBASE)
, In(newSQNBASEOFFSET)
]
--[HAVOCSQNHSS(HSS, imsi, ~SQNBASE,
SQNBASEOFFSET, newSQNBASEQFFSET)
, USE_SQNHSS(HSS, imsi, ~“SQNBASE, newSQNBASEOFFSET)
1->
[SQNHSS(HSS, imsi, newSQNBASEQFFSET)]

// we allow HSS’s counter to be changed to an arbitrary value
// this models situations in which HSS gets out of sync with UE
rule Increase_SQNUE:
[SQNUE(imsi, HSS, SQNBASEQFFSET)
, !'SQNBASEUEHSS(imsi, HSS, “SQNBASE)
, In(newSQNBASEOFFSET)
]
--[INCREASESQNOFFSETUE(imsi, HSS, “SQNBASE,
SQNBASEQFFSET, newSQNBASEQFFSET)
, UE_SET_SQN(imsi, HSS, ~“SQNBASE, newSQNBASEOFFSET)
, LessThan(SQNBASEOFFSET, newSQNBASEOFFSET)
1->
[SQNUE(imsi, HSS, newSQNBASEOFFSET)]

84

[/ ## R H A INTTIALTZATION RULESH#H###########HfH#

rule initialize_UE:
[Fr(~id)
, 'IMSI(imsi, $HSS)
, 'IMSIK(imsi, $HSS, Kimsi)
]
--[Create(imsi, ~id, ’UE’) 1->
[St_UE_O(imsi, Kimsi, ~id, $HSS, $sSNid)]

rule initialize_SEAF:
[Fr(Tid)
, !SYMKEY (SK,$SEAF, $HSS)
]
--[Create($SEAF, ~id, ’SEAF’)]1->
[St_SEAF_O($SEAF, ~id, $HSS, SK)]

rule initialize_HSS:
[Fr(~id)
, 'IMSIK(imsi, $HSS, Kimsi)
, !SYMKEY (SK, $SEAF, $HSS)
]

--[Create($HSS, ~id, ’HSS’)]1->
[St_HSS_O($HSS, ~id, imsi, Kimsi, $SEAF, SK)]

[/ # A HHPROTOCOL RULESH### S #fH HE H 4

rule SEAF_1send:
let m = ’IdentityRequest’
in
[St_SEAF_O($SEAF, id, $HSS, SK) 1
—-[SEAF_1isend(id) 1->
[Out(m)
, St_SEAF_1($SEAF, id, $HSS, SK)
]

rule UE_1recv:
let m = ’IdentityRequest’
in
[St_UE_O(imsi, Kimsi, ~id, $HSS, $SNid)
, In(m)
]
--[->
[St_UE_1(imsi, Kimsi, ~id, $HSS, $SNid)]

rule UE_2send:
[St_UE_1(imsi, Kimsi, ~id, $HSS, $SNid)]
--[//This is necessary for weak agreement from HSS with UE,
//because the protocol tries to agree on KASME,

85

A. TAMARIN MoDEL - EPS-AKA*

//which is not known at this step.
//Furthermore, this is the only message sent from UE
//before the last message is received by HSS
Running(imsi, $HSS, <’HSS’,’UE’,’dummy’>)
1->
[St_UE_2(imsi, Kimsi, ~id, $HSS, $SNid)
, Out(imsi)

]

rule SEAF_2recv:
[St_SEAF_1($SEAF, id, $HSS, SK)
, In(imsi)
]
--[->
[St_SEAF_2($SEAF, id, imsi, $HSS, SK)]

rule SEAF_3send:
let m = <~S,imsi, $SEAF>
menc = senc{m}SK
in
[Fr(™S)
, St_SEAF_2($SEAF, id, imsi, $HSS, SK)
]
--[SEAF_SendEncrypted($SEAF,~S) 1->
[Out(menc)
, St_SEAF_3($SEAF, id, imsi, $HSS, SK, ~S)
]

rule HSS_3recv:
let m = <S,imsi, $SEAF>
menc = senc{m}SK
in
[St_HSS_O($HSS, id, imsi, Kimsi, $SEAF, SK)
, In(menc)
]
--[1->
[St_HSS_1($HSS, id, imsi, Kimsi, $SEAF, SK, S) 1]

rule HSS_4send:

//the o0ld counter is increased by one
let SQONBASEOFFSET = OLDSQNBASEOFFSET+’1’

SQN = "SQNBASE + SQNBASEOFFSET
MAC = KDF(<’f1’, Kimsi, ’AMF’, SQN, ~RAND>)
XRES1 = KDF(<’f2’, Kimsi, “RAND, ’1°>)
XRES2 = KDF(<’f2’, Kimsi, ~RAND, ’2’>)
XRES = <XRES1,XRES2>

86

CK = KDF(<’f3’, Kimsi, “RAND>)
IK = KDF(<’f4’, Kimsi, ~“RAND>)
AK = KDF(<’f5’, Kimsi, “RAND>)

SQNxorAK = SQN XOR AK
KASME = KDF(<’KASME’,CK, IK, $SEAF, SQNxorAK>)
AUTN = <SQNxorAK, ’AMF’, MAC>
AV_STAR = <"RAND, XRES1, KASME, AUTN>
AV_STARenc = senc{<S,AV_STAR>}SK

in

[St_HSS_1($HSS, id, imsi, Kimsi, $SEAF, SK, S)

// Modeling trick to get rid of partial deconstructions
, In(OLDSQNBASEOFFSET)
, SQNHSS($HSS, imsi, OLDSQNBASEOFFSET)
, !SQNBASEUEHSS (imsi, $HSS, ~SQNBASE)
, Fr("RAND)
]
--[HSS_4SendEncrypted ($HSS, <S,AV_STAR>)
, Running($HSS, imsi, <’UE’,’HSS’,KASME>)
, HSS_SQN_NEXT($HSS, imsi, ~SQNBASE, SQNBASEOFFSET)
, SecretSQN(<’HSS’,$HSS>, SQN)
, Honest(<’IMSI’,imsi>)
, USE_SQNHSS($HSS, imsi, ~“SQNBASE, SQNBASEOFFSET)
1->
[St_HSS_2($HSS, id, imsi, Kimsi, $SEAF, SK, S, SQN, ~RAND)
, SQNHSS($HSS, imsi, SQNBASEQFFSET)
, Out (AV_STARenc)
]

rule SEAF_4recv:
let AV_STAR = <RAND, XRES1, KASME, AUTN>
AV_STARenc = senc{<~S,AV_STAR>}SK
in
[In(AV_STARenc)
, St_SEAF_3($SEAF, id, imsi, $HSS, SK, ~S)
]
--[->
[St_SEAF_4($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR)]

rule SEAF_b5send:
let AUTN = <SQNxorAK, ’AMF’, MAC>
AV_STAR = <RAND, XRES1, KASME, AUTN>
m = <RAND,AUTN>
in
[St_SEAF_4($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR)]
--[Running($SEAF, imsi, <’UE’,’SEAF’,KASME>)
, OUT_SEAF_5send(m)
1->
[St_SEAF_5($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR)

A. TAMARIN MoDEL - EPS-AKA*

, Out(m)
]

rule UE_5recv_SEQGOOD:

let SQN = SQNxorAK XOR AK
MAC = KDF(<’f1’, Kimsi, ’AMF’, SQN, RAND>)
CK = KDF(<’f3’, Kimsi, RAND>)
IK = KDF(<’f4’, Kimsi, RAND>)
AK = KDF(<’f5’, Kimsi, RAND>)
AUTN = <SQNxorAK, ’AMF’, MAC>
m = <RAND,AUTN>
KASME = KDF(<’KASME’,CK,IK,$SNid,SQNxorAK>)

in
[In(m)
, St_UE_2(imsi, Kimsi, ~id, $HSS, $SNid)

// Modeling trick to get rid of partial deconstructions
, In(SQNMAXBASEQOFFSET), In(SQNBASEOFFSET)
, SQNUE(imsi, $HSS, SQNMAXBASEOFFSET)
, !'SQNBASEUEHSS (imsi, $HSS, ~SQNBASE)
]
——[LessThan (SQNMAXBASEOFFSET, SQNBASEQOFFSET)
, UE_SQN_PREV(imsi, $HSS, ~SQNBASE, SQONMAXBASEOQFFSET)
, UE_SQN_NEXT(imsi, $HSS, ~SQNBASE, SQONBASEOFFSET)
, SQNBASE(imsi, $HSS, ~SQNBASE)
, Secret(<’IMSI’,imsi>, KASME)
, SecretSQN(<’IMSI’,imsi>, SQN)

// local check making sure that the received
// SQN really is larger than SQNBASE
, Eq("SQNBASE+SQNBASEQOFFSET, SQN)
, Running(imsi, $SNid, <’SEAF’,’UE’,KASME>)
, Honest (<’SEAFHSS’,$SNid,$HSS>)
, Honest(<’IMSI’,imsi>)
, Running(imsi,$HSS,<’HSS’, UE’,<’RAND’ ,RAND>>)
, UE_5Brecv_SEQGOOD(~id)
, UE_SET_SQN(imsi, $HSS, ~SQNBASE, SQNBASEOFFSET)
1->
[St_UE_3(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)

//the received SQN is the new maximum
, SQNUE(imsi, $HSS, SQNBASEOFFSET)
]

rule UE_brecv_SEQRBAD:

let SQN = SQNxorAK XOR AK
MAC = KDF(<’f1’, Kimsi, ’AMF’, SQN, RAND>)
CK = KDF(<’f3’, Kimsi, RAND>)
IK = KDF(<’f4’, Kimsi, RAND>)

AK = KDF(<’f5’, Kimsi, RAND>)
AUTN = <SQNxorAK, °’AMF’, MAC>
m = <RAND,AUTN>
SQNMAX = “SQNBASE+SQNMAXBASEQOFFSET
MACS = KDF(<’flstar’,’AMF’,RAND,Kimsi,SQNMAX>)
AK_STAR = KDF(<’fbstar’, RAND, Kimsi>)
AUTS = <SQNMAX XOR AK_STAR, MACS>
in
[In(m)
, St_UE_2(imsi, Kimsi, ~id, $HSS, $SNid)

// Modeling trick to get rid of partial deconstructions
, In(SQNMAXBASEOFFSET), In(SQNBASEOFFSET)
, SQNUE(imsi, $HSS, SQONMAXBASEOFFSET)
, !'SQNBASEUEHSS (imsi, $HSS, ~SQNBASE)
]
--[GreaterOrEqualThan (SQNMAXBASEOFFSET, SQNBASEQOFFSET)
, Eq("SQNBASE+SQNBASEQFFSET, SQN)
, UESyncFailure(imsi, $HSS, ~SQNBASE,
SQNMAXBASEQOFFSET, SQNBASEOFFSET)
, UE_brecv_SEQBAD("id)
, UE_SQN_NOCHANGE (imsi, $HSS, ~“SQNBASE, SQNMAXBASEQOFFSET)
1->
[//UE’s run of the protocol is aborted (needs to be restarted)
Out (<’syncfailure’, AUTS>)

//SQNMAX remains unchanged
, SQNUE(imsi, $HSS, SQNMAXBASEQFFSET)
]

rule UE_6send:
let RES1 = KDF(<’f2’, Kimsi, RAND, ’1°>)
RES2 = KDF(<’f2’, Kimsi, RAND, ’2°>)
RES = <RES1, RES2>
in
[St_UE_3(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)]
--[1->
[Out(RES)
, St_UE_4(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)
]

rule SEAF_6recv_NOSYNCFAILURE:
let AUTN = <SQNxorAK, ’AMF’, MAC>
AV_STAR = <x, XRES1, KASME, AUTN>

//we can only match on the first half of RES
RES = <XRES1,RES2>
in

A. TAMARIN MoDEL - EPS-AKA*

[St_SEAF_5($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR)
, In(RES)
]
--[Secret (<’SEAF’,$SEAF>,KASME)
, Honest (<’SEAFHSS’,$SEAF, $HSS>)
, Honest(<’IMSI’,imsi>)
, SEAF_6recv_NOSYNCFAILURE(id)
1->
[St_SEAF_6($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES)]

rule SEAF_6recv_SYNCFAILURE:
let AUTN = <SQNxorAK, ’AMF’, MAC>
AV_STAR = <RAND, XRES1, KASME, AUTN>
//we can only match on the first half of RES
RES = <XRES1,RES2>
in
[St_SEAF_5($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR)
, In(<’syncfailure’, AUTS>)
]
-—[SEAFSyncFailure ($SEAF)
, SEAF_6recv_SYNCFAILURE(id)
1->
[// SEAF’s run of the protocol is aborted (needs to be restarted)
Out (senc{<’authrequest’,’syncfailure’ ,RAND,AUTS>}SK)
]

rule SEAF_7send:
let m = <’AuthConfirmation’, imsi, $SEAF, RES>
menc = senc{m}SK
in
[St_SEAF_6($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES) 1]
--[SEAF_SendEncrypted ($SEAF,m)]1->
[St_SEAF_7($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES)
, Out(menc)

]

rule HSS_7recv_NOSYNCFAILURE:

let CK = KDF(<’f3’, Kimsi, ~RAND>)
IK = KDF(<’f4’, Kimsi, ~RAND>)
AK = KDF(<’f5’, Kimsi, ~“RAND>)

SQNxorAK = SQN XOR AK

XRES1 = KDF(<’f2’, Kimsi, “RAND, ’1°>)
XRES2 = KDF(<’f2’, Kimsi, “RAND, ’2°>)

RES = <XRES1,XRES2>

m = <’AuthConfirmation’, imsi, $SEAF, RES>
menc = senc{m}SK

KASME = KDF (<’KASME’,CK,IK,$SEAF,SQNxorAK>)

90

in
[St_HSS_2($HSS, id, imsi, Kimsi, $SEAF, SK, S, SQN, ~“RAND)
, In(menc)
]
--[Secret(<’HSS’,$HSS>, KASME)
Honest (<’SEAFHSS’ ,$SEAF, $HSS>)
Honest (<’IMSI’,imsi>)
Commit ($HSS,imsi,<’HSS’, UE’ ,KASME>)
Commit ($HSS,imsi,<’HSS’, UE’,<’RAND’, “RAND>>)
HSS_7recv_NOSYNCFAILURE(id)
, HSSCOMPLETED (id)
1->
[St_HSS_3($HSS, id, imsi, Kimsi, $SEAF, SK, S, SQN, ~RAND)]

// if the next counter would not be accepted by UE,
// HSS verifies the value of MACS
// and sets its sequence number to SQNMAX
rule HSS_7recv_SYNCFAILURE_UPDATECOUNTER:
let MACS = KDF(<’flstar’,’AMF’,~RAND,Kimsi,SQNMAX>)
AK_STAR = KDF(<’f5star’, RAND,Kimsi>)
SQNMAX = SQNMAXXORAKSTAR XOR AK_STAR
AUTS = <SQNMAXXORAKSTAR, MACS>
m = <’authrequest’,’syncfailure’, "RAND,AUTS>
menc = senc{m}SK
in
[St_HSS_2($HSS, id, imsi, Kimsi, $SEAF, SK, S, SQN, ~RAND)
, SQNHSS($HSS, imsi, CURRENTSQNBASEOFFSET)
, 'SQNBASEUEHSS (imsi, $HSS, ~SQNBASE)
, In(menc)

// Modeling trick to get rid of partial deconstructions
, In(SQNMAXBASEOFFSET)
]
--[// as specified in the protocol,
// HSS’s counter is only updated if it is necessary
LessThan (CURRENTSQNBASEQFFSET, SQNMAXBASEQOFFSET)
, HSSSyncFailure($HSS, imsi, “SQNBASE,
CURRENTSQONBASEOFFSET, SQNMAXBASEQFFSET)
, HSS_7recv_SYNCFAILURE_UPDATECOUNTER(id)

// local check to verify that SQNMAX
// is really an greater or equal SQNBASE
, Eq("SQNBASE+SQNMAXBASEQFFSET, SQNMAX)
, USE_SQNHSS($HSS, imsi, “SQNBASE, SQNMAXBASEQFFSET)
1->
[// HSS’s run of the protocol is aborted (needs to be restarted)
SQNHSS ($HSS, imsi, SQNMAXBASEOFFSET)

91

A. TAMARIN MoDEL - EPS-AKA*

rule SEAF_8send:
let AV_STAR = <x, XRES, KASME, AUTN>
confirmSEAF = KDF(<’MACconfirm’,
KDF (<’KDFconfirm’, KASME>),
>confirmSEAF’>)

in

[St_SEAF_7($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES)]
-—-[->

[St_SEAF_8($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES)

, Out(confirmSEAF)

]

rule UE_8recv:
let confirmSEAF = KDF(<’MACconfirm’,
KDF (<’KDFconfirm’, KASME>),
’confirmSEAF’>)
in
[St_UE_4(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)
, In(confirmSEAF)
]
--[Commit(imsi, $SNid, <’UE’,’SEAF’,KASME>)
, Commit(imsi, $HSS, <’UE’,’HSS’,KASME>)
, Honest (<’SEAFHSS’ ,$SNid,$HSS>)
, Honest(<’IMSI’,imsi>)
1->
[St_UE_5(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)]

rule UE_9send:

let confirmUE = KDF(<’MACconfirm’,
KDF (<’KDFconfirm’, KASME>),
>confirmUE’>)

in

[St_UE_5(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)]

--[UECOMPLETED(~id) 1->

[St_UE_6(imsi, Kimsi, ~id, $HSS, $SNid, RAND, KASME)

, Out(confirmUE)

]

rule SEAF_O9recv:
let AV_STAR = <x, XRES, KASME, AUTN>
confirmUE = KDF(<’MACconfirm’,

KDF (<’KDFconfirm’, KASME>),
>confirmUE’>)

in

[St_SEAF_8($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES)

, In(confirmUE)

92

]
—-[Commit ($SEAF, imsi, <’SEAF’,’UE’,KASME>)
, Honest(<’SEAFHSS’,$SEAF, $HSS>)
, Honest(<’IMSI’,imsi>)
, SEAFCOMPLETED (id)
1->
[St_SEAF_O($SEAF, id, imsi, $HSS, SK, ~S, AV_STAR, RES)]

[/ # R HRES TR TCT TONS## S

restriction Equality:
"All x y #i. Eq(x,y)@#i ==> x=y"

restriction LessThan:
"All x y #i. LessThan(x,y)0#i ==> Ex z. x + z = y"

restriction GreaterOrEqualThan:
"All x y #i. GreaterOrEqualThan(x,y)@#i ==> not (Ex z. x + z = y)"

[/ #E A # SOURCES LEMMA##H#H

// this is necessary to remove the partial deconstructions
// AUTOMATIC PROOF (2017-09-09)
lemma types [sources]:

(
A1l RAND AUTN #i. OUT_SEAF_5send(<RAND,AUTN>)@i ==
(Ex #j. KU(RAND)Qj & #j<#i) & (Ex #j. KU(AUTN)Qj & #j<#i)
| (Ex #j HSS XRES KASME S.
HSS_4SendEncrypted (HSS, <S,<RAND, XRES, KASME, AUTN>>)G@j
& #j<#i)
)
&
(
A1l HSS S AV_STAR #i. HSS_4SendEncrypted(HSS, <S,AV_STAR>)@i ==
(Ex #j. KU(S)@Qj & #j<#i)
| (Ex #j SEAF. SEAF_SendEncrypted(SEAF,S)Q@j & #j<#i)
)

[/ #HHHHH R EXECUTABILITY LEMMAS#H#t#######H### #HH#

// FINDS EXPECTED TRACE AUTOMATICALLY (2017-09-09)
// “1min
lemma key_setup_possible:
exists-trace
n
Ex imsi SEAF HSS KASME #i #j #k.
Secret(<’IMSI’,imsi>, KASME)Q@i & Secret(<’SEAF’,SEAF>,KASME)Qj

93

A. TAMARIN MoDEL - EPS-AKA*

94

& Secret(<’HSS’,HSS>,KASME)@k & (not imsi = SEAF)
& (not imsi = HSS) & (not SEAF = HSS)
& (Ex #q. Commit(SEAF, imsi, <’SEAF’,’UE’,KASME>)Qq)
& (Ex #q. Commit(imsi, HSS, <’UE’,’HSS’,KASME>)@q)
& (Ex #q. Commit(imsi, SEAF, <’UE’,’SEAF’,KASME>)Qq)
&
not (Ex X #r. Reveal(X) @ r)
&
(A1l imsil imsi2 id1 id2 #i #j. (Create(imsil,idl,’UE’)@i
& Create(imsi2,id2,’UE’)Qj) ==> #i = #j)
&
(A1l SEAF1 SEAF2 idl id2 #i #j. (Create(SEAF1,id1,’SEAF’)Qi
& Create(SEAF2,id2,’SEAF’)@j) ==> #i = #j)
&
(A1l HSS1 HSS2 idil id2 #i #j. (Create(HSS1,id1,’HSS’)@i
& Create(HSS2,id2,’HSS’)Qj) ==> #i = #3)
&
(A1l HSS imsi SQNBASE SQNBASEOFFSET #i.
HSS_SQN_NEXT(HSS, imsi, SQNBASE, SQNBASEOFFSET)@i
==> SQNBASEOQOFFSET = ’1°+’1’)
&
(A1l imsi HSS SQNBASE SQNBASEOFFSET #i.
UE_SQN_NEXT(imsi, HSS, SQNBASE, SQNBASEQOFFSET)@i
==> SQNBASEOQOFFSET = ’1°+°1°)
&
(not (Ex HSS imsi SQNBASE SQNOFFSET newSQNOFFSET #r.
HAVOCSQNHSS (HSS, imsi,
SQNBASE,
SQNOFFSET,
newSQNOFFSET) @r)
)
&
(not (Ex HSS imsi SQNBASE SQNBASEOFFSET newSQNBASEOFFSET #r.
INCREASESQNOFFSETUE (imsi, HSS,
SQNBASE, SQNBASEQOFFSET,
newSONBASEOFFSET) @r

// FINDS EXPECTED TRACE AUTOMATICALLY (2017-09-09)
// "1imin
lemma resync_possible:

exists-trace

Ex imsi HSS SEAF SQNBASE KASME SK

idUE1 idSEAF1 idHSS1 idUE2 idSEAF2 idHSS2

#il #12 #13 #i4 #ib5 #16 #1i7 #i8 #19 #i10

#i11 #112 #i13 #i14 #i15 #i16 #i17 #i18.

(not imsi = SEAF) & (not imsi = HSS) & (not SEAF = HSS)

&

// We start by setting UE out of sync with HSS
INCREASESQNOFFSETUE (imsi, HSS, SQNBASE, ’1’, *1°+°1°+’1°)@il
&

Shared_Symmetric_Key (SK,SEAF,HSS)Qi2

&

// The first authentication attempt is

// supposed to result in a synchronization failure
Create(imsi,idUE1,’UE’)@i3

&

Create (SEAF,idSEAF1,’SEAF’)@i4

&

Create(HSS,idHSS1, HSS’)@i5

&

HSS_SQN_NEXT(HSS, imsi, SQNBASE, ’1’+°1’)@i6

&

UESyncFailure(imsi, HSS, SQNBASE, ’1°+’1°+°1’, ’1°+°1°)@i7
&

SEAFSyncFailure (SEAF)@i8

&

HSSSyncFailure(HSS, imsi, SQNBASE, ’1’+’1’, ’1°+°1°+°1°)@i9
&

// Having received the synchronization failure message
// with correct SQNMAX from UE,
// the following protocol run is successful

Create(imsi,idUE2,’UE’)@i10

&

Create (SEAF,idSEAF2,’SEAF’)@il1
&

Create (HSS,idHSS2, ’HSS’)@i12

&

HSS_SQN_NEXT(HSS, imsi, SQNBASE, ’1°+’1°+°1°+°1°)@il3
&
UE_brecv_SEQGO0OD(idUE2)@i14
& UE_SQN_NEXT(imsi, HSS, SQNBASE, ’1’+’1°+’1°+’1°)@il4
& Secret(<’IMSI’,imsi>, KASME)@il4
&
SEAF_6recv_NOSYNCFAILURE(idSEAF2)@i15
& Secret(<’SEAF’,SEAF>,KASME)@il5
&
HSS_7recv_NOSYNCFAILURE(idHSS2)@i16
& Secret(<’HSS’ ,HSS>,KASME)@il6

95

A. TAMARIN MoDEL - EPS-AKA*

96

&

HSSCOMPLETED (idHSS2)@i16

& UECOMPLETED(idUE2)@i17

& SEAFCOMPLETED (idSEAF2)@i18

// We add a few more restrictions to speed up

// the search for the desired trace

&

(A1l imsi2 HSS2 sqgnbase sqn sqnnew #j.
INCREASESQNOFFSETUE(imsi2, HSS2, sqnbase, sqn, sqnnew)@j
==> #j = #il

)

&

(A1l id #j. SEAF_6recv_SYNCFAILURE(id)@j ==> id = idSEAF1)

&

(A1l id #j. SEAF_6recv_NOSYNCFAILURE(id)G@j
==> id = idSEAF2 & #j=#i15)

&

(A1l id #j. HSS_7recv_SYNCFAILURE_UPDATECOUNTER(id)@j
==> id = idHSS1)

&

(A1l id #j. HSS_7recv_NOSYNCFAILURE(id)@j
==> id = idHSS2 & #j=#i16)
&
(A1l id #j. UE_brecv_SEQBAD(id)@j ==> id = idUE1)
&
(A1l id #j. UE_Brecv_SEQGOOD(id)@j ==> id = idUE2 & #j=#i14)
&
(A1l imsi2 id #j. Create(imsi2,id,’UE’)@j
==> (#j = #i3 | #j = #i10) & imsi=imsi2)
&
(A11 SEAF2 id #j. Create(SEAF2,id,’SEAF’)@j
==> (#j = #i4 | #j = #i11) & SEAF=SEAF2)
&
(A11 HSS2 id #j. Create(HSS2,id, ’HSS’)@]
==> (#j = #i5 | #j = #i12) & HSS=HSS2)

&

(A1l SK2 SEAF2 HSS2 #j. Shared_Symmetric_Key(SK2,SEAF2,HSS2)Qj
==> #j=#i2)

&

(
#il < #12 & #i2 < #i3 & #i3 < #i4 & #i4 < #ib & #ib < #i6
& #i6 < #17 & #i7 < #18 & #i8 < #19 & #i9 < #i10
& #1100 < #i11 & #i11 < #i12 & #112 < #i13 & #113 < #i14
& #i14 < #115 & #i15 < #116 & #116 < #i17 & #117 < #i18
)

&
(A1l imsi HSS SQNBASE SQNBASEOFFSETprev SQNBASEQOFFSETnext #i.

UE_SQN_PREV(imsi, HSS, SQNBASE, SQNBASEOFFSETprev)@i
& UE_SQN_NEXT(imsi, HSS, SQNBASE, SQONBASEOFFSETnext)@i

==> SQNBASEQOFFSETnext = SQONBASEOFFSETprev + ’1°

)

&

(not (Ex X #r. Reveal(X) @ r))

&

(not (Ex HSS imsi SQNBASE SQNOFFSET newSQNOFFSET #r.
HAVOCSQNHSS (HSS, imsi, SQNBASE, SQNOFFSET, newSQNOFFSET)@r)
)

[/ # i H# SECRECY HELPER LEMMAS########H#H - 4H4

// AUTOMATIC PROOF (2017-09-09)
lemma HELPERsecrecySQONBASE_UE [reuse]:
A1l imsi HSS SQNBASE #i. UEInitCounter(imsi, HSS, SQNBASE)@i
== (not (Ex #j. KU(SQNBASE)@j))
| (Ex #j. Reveal(<’IMSI’,imsi>)@j)

// AUTOMATIC PROOF (2017-09-09)
lemma HELPERsecrecySQNBASE_HSS [reuse]:
n
A1l imsi HSS SQNBASE #i. HSSInitCounter(HSS, imsi, SQNBASE)e@i
==> (not (Ex #j. KU(SQNBASE)@j))
| (Ex #j. Reveal(<’IMSI’,imsi>)@j)

// AUTOMATIC PROOF (2017-09-09)
lemma HELPERsecrecyKimsiDerivations [reuse]:

A1l imsi HSS Kimsi #i. REGISTER_IMSI(imsi, HSS, Kimsi)@i
(not (Ex f X #j. not(f = ’f1’) & not(f = ’£2’)
& KU(KDF(<f, Kimsi, X>))@j))
| (Ex #j. Reveal(<’IMSI’,imsi>)@j)
// note that f1 is used for the MAC contained in AUTN,
// so the attacker can learn this by revealing
// the secret channel between SEAF and HSS
// moreover, note that f2 is used for the challenge
// response XRES, so the attacker can learn this
// by revealing the secret channel between SEAF and HSS

97

A. TAMARIN MoDEL - EPS-AKA*

[/ # R H# SECRECY LEMMASH#####H###H#HH H H HH #

// AUTOMATIC PROOF (2017-09-09)
// <1imin
// reuses the HELPERsecrecy lemmas
lemma secrecy_UE:
"A11l A x #i.
Secret(<?’IMSI’,A>,x) @i ==
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// AUTOMATIC PROOF (2017-09-09)
// <lmin
// reuses the HELPERsecrecy lemmas
lemma secrecy_HSS:
"A11l A x #i.
Secret (<’HSS’,A>,x) @i ==>
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// AUTOMATIC PROOF (2017-09-09)
// <1imin
// reuses the HELPERsecrecy lemmas
lemma secrecy_SEAF:
"A11l A x #i.
Secret (<’SEAF’ ,A>,x) Qi ==
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// FINDS _NO_ ATTACK AUTOMATICALLY (see following lemma)
lemma secrecy_PFS_UE:
"A1l A x #i.
Secret(<’IMSI’,A>,x) @i ==>
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(<’IMSI’,X>)@r
& Honest(<’IMSI’,X>) @i & r < i)"

// (this enforces an attack without

// revealing the key shared between SEAF and HSS)
// FINDS ATTACK AUTOMATICALLY (2017-09-09)

// "1min

// reuses the HELPERsecrecy lemmas

lemma secrecy_PFS_UE_special:

(not (Ex SEAF HSS #j. Reveal (<’SEAFHSS’,SEAF,HSS>)Qj))

A1l A x #i.
Secret (<’IMSI’,A>,x) @i ==

98

not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(<’IMSI’,X>)@r
& Honest(<’IMSI’,X>) @i & r < i)"

// FINDS _NO_ ATTACK AUTOMATICALLY (see following lemma)
lemma secrecy_PFS_HSS:
"A11l A x #i.
Secret(<’HSS’,A>,x) @i ==
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(<’IMSI’,X>)@r
& Honest(<’IMSI’,X>) @i & r < i)"

// (this enforces an attack without

// revealing the key shared between SEAF and HSS)
// FINDS ATTACK AUTOMATICALLY (2017-09-09)

// "1min

// reuses the HELPERsecrecy lemmas

lemma secrecy_PFS_HSS_special:

(not (Ex SEAF HSS #j. Reveal(<’SEAFHSS’,SEAF,HSS>)@j))
A1l A x #i.
Secret (<’HSS’ ,A>,x) @i ==>
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(<’IMSI’,X>)@r
& Honest(<’IMSI’,X>) @i & r < i)"

// FINDS _NO_ ATTACK AUTOMATICALLY (see following lemma)
lemma secrecy_PFS_SEAF:
"A11l A x #i.
Secret (<’SEAF’ ,A>,x) Qi ==
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(<’IMSI’,X>)@r
& Honest(<’IMSI’,X>) @i & r < i)"

// (this enforces an attack without
// revealing the key shared between SEAF and HSS)
// FINDS ATTACK AUTOMATICALLY (2017-09-09)
// “1lmin
// reuses the HELPERsecrecy lemmas
lemma secrecy_PFS_SEAF_special:
n
(not (Ex SEAF HSS #j. Reveal(<’SEAFHSS’,SEAF,HSS>)@j))
==>
A1l A x #i.
Secret (<’SEAF’ ,A>,x) @i ==
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(<’IMSI’,X>)@r
& Honest(<’IMSI’,X>) @i & r < i)"

99

A. TAMARIN MoDEL - EPS-AKA*

[/ #COUNTER HELPER LEMMAS####### - #H#H#

//Before proving authentication properties,
// we need a few properties about the counters of UE and HSS
// AUTOMATIC PROOF (2017-09-09)
// <lmin
lemma HSScounterInit [use_induction, reuse]:
n
A1l imsi HSS SQNBASE SQNBASEQOFFSET #i.
USE_SQNHSS(HSS, imsi, SQNBASE, SQNBASEOFFSET)@i
==> (Ex #j. HSSInitCounter (HSS, imsi, SQNBASE)Q@j & #j<#i)

// AUTOMATIC PROOF (2017-09-09)
// <limin
lemma UEcounterINIT [use_induction, reuse]:
(A1l imsi HSS SQNBASE SQNBASEOFFSET #i.
UE_SQN_NEXT (imsi, HSS, SQNBASE, SQNBASEQOFFSET)Q@i
==> (Ex #j. UEInitCounter(imsi, HSS, SQNBASE)Qj & #j<#i))
&
(A1l imsi HSS SQNBASE SQNBASEOFFSET #i.
UE_SQN_NOCHANGE (imsi, HSS, SQNBASE, SQNBASEQOFFSET)@i
==> (Ex #j. UEInitCounter(imsi, HSS, SQNBASE)Qj & #j<#i))
&
(A1l imsi HSS SQNBASE SQNBASEOFFSET newSQNBASEOFFSET #i.
INCREASESQNOFFSETUE (imsi, HSS,
SQNBASE,
SQNBASEOFFSET,
newSQNBASEOFFSET) @i
==> (Ex #j. UEInitCounter(imsi, HSS, SQNBASE)Qj & #j<#i)
)

// reuses UEcounterINIT

// NO AUTOMATIC PROOF, but provable with the provided oracle

// ~10min

lemma HELPERuniqueUECounter

[use_induction, reuse,

hide_lemma=HSScounterInit,

hide_lemma=uniqueHSSCounter,
hide_lemma=HELPERsecrecySQONBASE_UE,
hide_lemma=HELPERsecrecySQNBASE_HSS,
hide_lemma=HELPERsecrecyKimsiDerivations]:

n

(A1l imsi HSS SQNBASE SQONBASEOFFSET1 SQNBASEOFFSET2 #i #j.
UE_SET_SQN(imsi, HSS, SQNBASE, SQONBASEOFFSET1)@i

100

& UE_SET_SQN(imsi, HSS, SQNBASE, SQNBASEOFFSET2)@j
& #i<#j
==> (Ex dif. SQNBASEOFFSET1+dif=SQNBASEOFFSET2)
)
&
(A1l imsi HSS SQNBASE SQNBASEOFFSET1 SQNBASEOFFSET2 #i #j.
UE_SET_SQN(imsi, HSS, SQNBASE, SQNBASEOFFSET1)ei
& UE_SQN_NOCHANGE (imsi, HSS, SQNBASE, SQNBASEOFFSET2)Qj
& #i<#j
==> SQNBASEOFFSET1=SQNBASEOFFSET2
| (Ex dif. SQNBASEOFFSET1+dif = SQNBASEOFFSET2)
)
&
(A1l imsi HSS SQNBASE SQNBASEOFFSET1 SQNBASEOFFSET2 #i #j.
UE_SQN_NOCHANGE (imsi, HSS, SQNBASE, SQNBASEOFFSET1)@i
& UE_SET_SQN(imsi, HSS, SQNBASE, SQNBASEOFFSET2)Gj
& #i<#j
==> (Ex dif. SQNBASEOFFSET1+dif = SQNBASEOFFSET2)
)
&
(A1l imsi HSS SQNBASE SQNBASEOFFSET1 SQNBASEOFFSET2 #i #j.
UE_SQN_NOCHANGE (imsi, HSS, SQNBASE, SQNBASEOFFSET1)e@i
& UE_SQN_NOCHANGE (imsi, HSS, SQNBASE, SQNBASEOFFSET2)@Qj
& #i<#j
==> SQNBASEOFFSET1=SQNBASEOFFSET2
| (Ex dif. SQNBASEOFFSET1+dif = SQNBASEOFFSET2)
)

//reuses HELPERuniqueUECounter

// AUTOMATIC PROOF (2017-09-09)

// <lmin

lemma uniqueUECounter

[reuse,

hide_lemma=HSScounterInit,

hide_lemma=uniqueHSSCounter] :

All imsi HSS SQNBASE SQNBASEQFFSET #i #j.
UE_SQN_NEXT(imsi, HSS, SQNBASE, SQNBASEOFFSET)Qi
& UE_SQN_NEXT(imsi, HSS, SQNBASE, SQNBASEOFFSET)@j
==> #i=#j

[/ # R # SON SECRECY LEMMAS#H######### - ###H#####

// reuses the HELPERsecrecy lemmas
// AUTOMATIC PROOF (2017-09-09)

// <lmin

lemma secrecySQON_UE

101

A. TAMARIN MoDEL - EPS-AKA*

[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"A11l A x #i.
SecretSQN(<’IMSI’,A>,x) @i ==
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// reuses the HELPERsecrecy lemmas
// AUTOMATIC PROOF (2017-09-09)
// <imin
lemma secrecySQN_HSS
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"A11l A x #i.
SecretSQN(<’HSS’ ,A>,x) Q@i ==>
not (Ex #j. K(x)@j)
| (Ex X #r. Reveal(X)Q@r & Honest(X) @i)"

[/ # s #H# AUTHENTICATION FROM UE######## i #

// PROOF USING THE PROVIDED ORACLE (2017-09-09)
// "1imin
lemma injectiveagreementUE_SEAF
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"All a b t #i.
Commit (a,b,<’UE’,’SEAF’,t>) @i
==> (Ex #j. Running(b,a,<’UE’,’SEAF’,t>) @j
& j<i
& not (Ex a2 b2 #i2. Commit(a2,b2,<’UE’,’SEAF’,t>) @i2
& not (#i2 = #i)))
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// PROOF USING THE PROVIDED ORACLE (2017-09-09)
// "1imin
lemma injectiveagreementUE_HSS
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"All a b t #i.
Commit(a,b,<’UE’,’HSS’,t>) @i
==> (Ex #j. Running(b,a,<’UE’,’HSS’,t>) Q]
&3 <i
& not (Ex a2 b2 #i2. Commit(a2,b2,<’UE’,’HSS’,t>) @i2

102

& not (#i2 = #i)))
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

[/ # R HHH# AUTHENTICATION FROM SEAF##t#### s ## - ###4#

// PROOF USING THE PROVIDED ORACLE (2017-09-09)
// "1imin
lemma injectiveagreementSEAF_UE
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"All a b t #i.
Commit (a,b,<’SEAF’,’UE’,t>) @i
==> (Ex #j. Running(b,a,<’SEAF’,’UE’,t>) @j
& j<i
& not (Ex a2 b2 #i2.
Commit (a2,b2,<’SEAF’,’UE’,t>) @i2
& not (#i2 = #i)))
| (Ex X #r. Reveal (X)@r & Honest(X) @i)"

[/ # R HHH# AUTHENTICATION FROM HSS###t####### i H4

// AUTOMATIC PROOF (2017-09-09)
// <imin
lemma weakagreementHSS_UE
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"All a b t #i.
Commit (a,b,<’HSS’,’UE’,t>) @i
==> (Ex t2 #j. Running(b,a,t2) @j)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// FINDS ATTACK AUTOMATICALLY (2017-09-09)
lemma noninjectiveagreementHSS_UE
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,
hide_lemma=HELPERuniqueUECounter] :
"All a b t #i.
Commit(a,b,<’HSS’,’UE’,t>) Qi
==> (Ex #j. Running(b,a,<’HSS’,’UE’,t>) @j)
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

// AUTOMATIC PROOF (2017-09-09)

// <imin

lemma injectiveagreementHSS_UE_ONLYRAND
[hide_lemma=HSScounterInit,
hide_lemma=UEcounterINIT,

103

A. TAMARIN MoDEL - EPS-AKA*

hide_lemma=HELPERuniqueUECounter] :
"All a b t #i.
Commit(a,b,<’HSS’,’UE’,<’RAND’,t>>) @i
==> (Ex #j. Running(b,a,<’HSS’,’UE’,<’RAND’,t>>) @]
& j < i
& not (Ex a2 b2 #i2.
Commit (a2,b2,<’HSS’,’UE’,<’RAND’ ,t>>) @i2
& not (#i2 = #i)))
| (Ex X #r. Reveal(X)@r & Honest(X) @i)"

end

104

Appendix B

Abbreviations

AKA
AMF
ARPF
AUSF
AUTN
CK
EAP
HN
HSS
IK
IMEI
IMSI
KDF
NAS
NG
PSK
SEAF
SIM
SN
SNid
SON
UE
UICC
UMTS
USIM
XRES

Authentication and Key Agreement
Authentication Management Field
Authentication Credential Repository and Processing Function
Authentication Server Function
Authentication token

Cipher Key

Extensible Authentication Protocol

Home Network

Home Subscriber Server

Integrity Key

International Mobile Station Equipment Identity
International Mobile Subscriber Identity

Key Derivation Function

Non Access Stratum

NextGen

Pre-shared Key

Security Anchor Function

Subscriber Identity Module

Serving Network

Serving Network Identifier

Sequence Number

User Equipment

Universal Integrated Circuit Card

Universal Mobile Telecommunication System
Universal Subscriber Identity Module
Expected Response

105

Bibliography

(1]
(2]

[4]

[5]

Third Generation Partnership Project (3GPP). http://www.3gpp.org/.

3GPP. Formal Analysis of the 3G Authentication Protocol. TR 33.902
V4.0.0, 3rd Generation Partnership Project (3GPP), Sept. 2001.

3GPP. 3G security; Security architecture. TS 33.102 V14.1.0, 3rd Gener-
ation Partnership Project (3GPP), Mar. 2017.

3GPP. 3GPP System Architecture Evolution (SAE); Security architec-
ture. TS 33.401 V14.2.0, 3rd Generation Partnership Project (3GPP), Mar.
2017.

3GPP. Security Architecture and Procedures for 5G System. TS 33.501
V0.3.0, 3rd Generation Partnership Project (3GPP), Aug. 2017.

3GPP. Study on the security aspects of the next generation system. Draft
TR 33.899 V1.3.0, 3rd Generation Partnership Project (3GPP), Aug. 2017.

B. Aboba et al. Extensible Authentication Protocol (EAP). RFC 3748,
REC Editor, June 2004.

B. Aboba, D. Simin, and P. Eronen. Extensible Authentication Protocol
(EAP) Key Management Framework. RFC 5247, RFC Editor, August
2008.

S. Alt, P-A. Fouque, G. Macario-Rat, C. Onete, and B. Richard. A Cryp-
tographic Analysis of UMTS/LTE AKA. In International Conference on
Applied Cryptography and Network Security, pages 18-35. Springer, 2016.

M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and
R. Borgaonkar. New Privacy Issues in Mobile Telephony: Fix and Ver-
ification. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 205-216. ACM, 2012.

107

http://www.3gpp.org/

BIBLIOGRAPHY

108

[11] J. Arkko and H. Haverinen. Extensible Authentication Protocol Method
for 3rd Generation Authentication and Key Agreement (EAP-AKA).
RFC 4187, RFC Editor, January 2006.

[12] B. Blanchet et al. An Efficient Cryptographic Protocol Verifier Based on
Prolog Rules. In CSFW, pages 82-96, 2001.

[13] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil
Pairing. In Advances in Cryptology — CRYPTO 2001, pages 213-229.
Springer, 2001.

[14] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifi-
ably Encrypted Signatures from Bilinear Maps. In Advances in Cryptol-
ogy — EUROCRYPT 2003, pages 416—432. Springer, 2003.

[15] C. Cocks. An Identity Based Encryption Scheme Based on Quadratic
Residues. In Cryptography and Coding, pages 360-363. Springer, 2001.

[16] C.]. Cremers. The Scyther Tool: Verification, Falsification, and Analysis
of Security Protocols. In Computer Aided Verification CAV 2008. Springer,
2008.

[17] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE
Transactions on information theory, 29(2):198-208, 1983.

[18] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic
Protocol Analysis Modulo Equational Properties. In Foundations of Se-
curity Analysis and Design V, pages 1-50. Springer, 2009.

[19] S. Escobar, R. Sasse, and J. Meseguer. Folding Variant Narrowing and
Optimal Variant Termination. In Proceedings of the 8th International Con-
ference on Rewriting Logic and Its Applications, WRLA10, pages 52-68.
Springer-Verlag, 2010.

[20] ETSI. GSM Technical Specification - GSM 04.08. Draft TR GSM 04.08
V5.3.0, European Telecommunications Standards Institute (ETSI), July
1996.

[21] V. Fajardo,]J. Arkko, J. Loughney, and G. Zorn. Diameter Base Protocol.
RFC 6733, RFC Editor, October 2012.

[22] C. Gentry and Z. Ramzan. Identity-Based Aggregate Signatures. In
Public Key Cryptography - PKC 2006. Springer, 2006.

[23] P. E.]J. Arkko, V. Lehtovirta. Improved Extensible Authentication Pro-
tocol Method for 3rd Generation Authentication and Key Agreement
(EAP-AKA’). RFC 5448, RFC Editor, January 2009.

Bibliography

[24] D. Lanzenberger. 5G Tamarin Models. https://www.ethz.
ch/content/dam/ethz/special-interest/infk/inst-infsec/
information-security-group-dam/research/software/5G_
lanzenberger.zip.

[25] G. Lowe. An attack on the Needham-Schroeder public-key authentica-
tion protocol. Information processing letters, 56(3):131-133, 1995.

[26] G. Lowe. A hierarchy of authentication specifications. In Computer
security foundations workshop, 1997. Proceedings., 10th, pages 31-43. IEEE,
1997.

[27] S. Meier. Advancing automated security protocol verification. PhD thesis,
ETH Zurich, 2013.

[28] P. O'Hanlon, R. Borgaonkar, and L. Hirschi. Mobile Subscriber WiFi
Privacy. In IEEE Symposium on Security and Privacy 2017 workshop on
Mobile Security Technologies. IEEE, 2017.

[29] B. Schmidt. Formal analysis of key exchange protocols and physical protocols.
PhD thesis, ETH Zurich, 2012.

[30] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated Analysis
of Diffie-Hellman Protocols and Advanced Security Properties. In Com-
puter Security Foundations Symposium (CSF), 2012 IEEE 25th, pages 78-94.
IEEE, 2012.

[31] A. Shamir et al. Identity-Based Cryptosystems and Signature Schemes.
In Advances in Cryptology — CRYPTO 1984, pages 47-53. Springer, 1984.

[32] Tamarin prover. https://tamarin-prover.github.io/.

109

https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.zip
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.zip
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.zip
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/software/5G_lanzenberger.zip
https://tamarin-prover.github.io/

	Contents
	Introduction
	Related Work
	Contributions
	Outline

	Preliminaries
	Background on 5G
	Basic Network Structure
	Abbreviations
	Security Functions
	5G Security Protocols

	Informal Security Protocols
	Threat Model
	Security Properties
	Channels
	Alice&Bob Notation

	Formal Protocol Verification
	Term Rewriting
	Multiset Rewriting
	Formal Protocol Description
	Formal Message Deduction and Dolev-Yao Adversary
	Formal Protocol Property Specification

	Tamarin
	Equational Theories
	Proof Strategy and Heuristics
	Restrictions
	Partial Deconstructions
	Presented Models

	General Modeling Decisions
	Key Derivation Functions
	Digital Signatures
	Identity-Based Signatures
	Concepts of ID-based Cryptography
	Model

	Secure Channels
	Compromise Scenarios
	5G Roles and Agent Names

	Protocols Using ID-Based Credentials
	Relay-Authentication
	Model Based on Simple PKI
	Model with ID-based Credentials
	Conclusion

	Aggregation-Authentication
	Learning from Relay-Authentication
	Building a Model
	Security Properties
	Conclusion

	EPS-AKA*
	EPS-AKA
	Building a Model
	Security Properties (no confirmation messages)
	Security Properties (with confirmation messages)

	EPS-AKA*
	Security Properties
	Generalizing the Confirmation Messages

	Conclusion

	EAP-AKA'
	Building a Model
	Security Properties (no confirmation messages)
	Security Properties (with confirmation messages)
	Fast Re-Authentication
	Building a Model
	Security Properties
	Security of EAP-AKA' with Fast Re-Authentication

	Comparing EAP-AKA' to EPS-AKA*
	Comparison without Confirmation Messages
	Comparison with Confirmation Messages
	Conclusion

	Improving Model Precision
	Sequence Number
	Storing the Sequence Number
	Checking Sequence Number Freshness

	Re-Synchronization
	Building a Model
	Sequence Number
	Re-Synchronization
	Non-Zero Anonymity Key

	EPS-AKA*

	Conclusion
	Tamarin Model - EPS-AKA*
	Abbreviations
	Bibliography

