Recursive Functions on Lazy Lists via Domains and Topologies

Andreas Lochbihler
Institute of Information Security
ETH Zurich, Switzerland

Johannes Hölzl
Institut für Informatik
TU München, Germany

ITP 2014
Running example: filtering lazy lists

Task: Given a codatatype

define a recursive function

and prove properties.
Running example: filtering lazy lists

Task: Given a codatatype \(\alpha \ llist = [] \mid \alpha \cdot \alpha \ llist \)

define a recursive function

\[
\text{lfilter } P \ [] = [] \\
\text{lfilter } P \ (x \cdot xs) = (\text{if } P \ x \text{ then } x \cdot \text{lfilter } P \ xs \text{ else } \text{lfilter } P \ xs)
\]

and **prove** properties.

\[
\text{lfilter } P \ (\text{lfilter } Q \ xs) = \text{lfilter } (\lambda x. \ P \ x \land Q \ x) \ xs
\]
Task: Given a codatatype \(\alpha \text{llist} = [] \mid \alpha \cdot \alpha \text{llist} \)

define a recursive function

\[\text{lfilter} \; P \; [] = [] \]
\[\text{lfilter} \; P \; (x \cdot xs) = (\text{if} \; P \; x \; \text{then} \; x \cdot \text{lfilter} \; P \; xs \; \text{else} \; \text{lfilter} \; P \; xs) \]

and prove properties.

\[\text{lfilter} \; P \; (\text{lfilter} \; Q \; xs) = \text{lfilter} \; (\lambda x. \; P \; x \land Q \; x) \; xs \]
Running example: filtering lazy lists

Task: Given a codatatype
\[
\alpha \ llist = [] \mid \alpha \cdot \alpha \ llist
\]

define a recursive function
\[
lfilter \ P \ [] = []
\]
\[
lfilter \ P \ (x \cdot xs) = (if \ P \ x \ then \ x \cdot lfilter \ P \ xs \ else \ lfilter \ P \ xs)
\]

and **prove** properties.
\[
lfilter \ P \ (lfilter \ Q \ xs) = lfilter \ (\lambda x. \ P \ x \land Q \ x) \ xs
\]

Usual definition principles
- well-founded recursion
- guarded/primitive corecursion
Running example: filtering lazy lists

Task: Given a **codatatype** \(\alpha\ \text{llist} = [] \mid \alpha \cdot \alpha\ \text{llist} \)

define a recursive function

\[
\text{lfilter } P [x\cdot xs] = (\text{if } P x \text{ then } x \cdot \text{lfilter } P xs \text{ else } \text{lfilter } P xs)
\]

and **prove** properties.

\[
\text{lfilter } P (\text{lfilter } Q xs) = \text{lfilter } (\lambda x. P x \land Q x) xs
\]

Usual definition principles

- well-founded recursion
- guarded/primitive corecursion
Running example: filtering lazy lists

Task: Given a codatatype \(\alpha \ llist = [] | \alpha \cdot \alpha \ llist \) define a recursive function

\[
\text{lfilter} \ P \ [\] = [\] \quad \text{guarded}
\]
\[
\text{lfilter} \ P \ (x \cdot xs) = (\text{if} \ P \ x \ \text{then} \ x \cdot \text{lfilter} \ P \ xs \ \text{else} \ \text{lfilter} \ P \ xs)
\]

and prove properties.

\[
\text{lfilter} \ P \ (\text{lfilter} \ Q \ xs) = \text{lfilter} \ (\lambda x. \ P \ x \land Q \ x) \ xs
\]

Usual definition principles
- well founded recursion
- guarded/primitive corecursion
Running example: filtering lazy lists

Task: Given a codatatype $\alpha \ llist = [] \mid \alpha \cdot \alpha \ llist$

Define a recursive function

$$lfilter \ P \ [] = [] \quad \text{guarded} \quad \text{unguarded}$$

$$lfilter \ P \ (x \cdot xs) = (if \ P \ x \ then \ x \cdot lfilter \ P \ xs \ else \ lfilter \ P \ xs)$$

and prove properties.

$$lfilter \ P \ (lfilter \ Q \ xs) = lfilter \ (\lambda x. \ P \ x \land Q \ x) \ xs$$

Usual definition principles

- well-founded recursion
- guarded/primitive corecursion
Running example: filtering lazy lists

Task: Given a codatatype \(\alpha \text{l} \text{list} = [] | \alpha \cdot \alpha \text{l} \text{list} \)

define a recursive function

\[
\text{lfilter } P \ [] = [] \quad \text{guarded} \quad \text{unguarded}
\]

\[
\text{lfilter } P \ (x \cdot xs) = (\text{if } P \ x \text{ then } x \cdot \text{lfilter } P \ xs \text{ else } \text{lfilter } P \ xs)
\]

and **prove** properties.

\[
\text{lfilter } P \ (\text{lfilter } Q \ xs) = \text{lfilter } (\lambda x. \ P x \land Q x) \ xs
\]

Usual

- well
- guarded

\textbf{Ifilter is underspecified:}

\[
\text{lfilter } (\leq 0) \ (1 \cdot [1, 1, 1, \ldots]) = \text{lfilter } (\leq 0) \ [1, 1, 1, \ldots]
\]
Beyond well-founded and guarded corecursion

\[\text{lfilter } P \; [] = []\]
\[\text{lfilter } P \; (x \cdot xs) = (\text{if } P \; x \; \text{then } x \cdot \text{lfilter } P \; xs \; \text{else } \text{lfilter } P \; xs)\]

\[\text{lfilter } P \; (\text{lfilter } Q \; xs) = \text{lfilter } (\lambda x. \; P \; x \land Q \; x) \; xs\]

Previous approaches:
Beyond well-founded and guarded corecursion

\[
\text{lfilter } P \; \emptyset = \emptyset
\]
\[
\text{lfilter } P \; (x \cdot xs) = (\text{if } P \; x \; \text{then } x \cdot \text{lfilter } P \; xs \; \text{else } \text{lfilter } P \; xs)
\]

\[
\text{lfinite } xs \lor (\forall n. \exists x \in \text{lset} \; (\text{ldrop } n \; xs). \; P \; x \land Q \; x) \longrightarrow
\]
\[
\text{lfilter } P \; (\text{lfilter } Q \; xs) = \text{lfilter} \; (\lambda x. \; P \; x \land Q \; x) \; xs
\]

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements

- close to specification
- properties need preconditions
- no proof principles
Beyond well-founded and guarded corecursion

\[
\text{lfilter } P \ [\] = [\] \\
\text{lfilter } P \ (x \cdot xs) = (\text{if } P \ x \ \text{then } x \cdot \text{lfilter } P \ xs \ \text{else } \text{lfilter } P \ xs)
\]

Previous approaches:

Partiality leave unspecified for infinite lists w/o satisfying elements

- close to specification
- properties need preconditions
- no proof principles

Search function check whether there are more elements

- total function, no preconditions
- additional lemmas about search function necessary
- ad hoc solution
Two views on \textit{ifilter}

\begin{center}
\texttt{ifilter :: (\alpha \Rightarrow bool) \Rightarrow \alpha llist \Rightarrow \alpha llist}
\end{center}
Two views on *lfilter*

\[
\text{lfilter} :: (\alpha \rightarrow \text{bool}) \Rightarrow \alpha \text{ llist} \Rightarrow \alpha \text{ llist}
\]

1. produces a list corecursively
 - \text{lfilter} :: \beta \Rightarrow \alpha \text{ llist}
 - find chain-complete partial order on \(\alpha \text{ llist}\)
 - take the least fixpoint for \text{lfilter}

\[\mapsto\] domain theory
 - fixpoint induction
 - structural induction

\[\mapsto\] topology
 - convergence on closed sets
 - uniqueness of limits
Two views on \textit{lfilter}

\[\text{lfilter} :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{ llist} \Rightarrow \alpha \text{ llist} \]

1. produces a list corecursively

- \text{lfilter} :: \beta \Rightarrow \alpha \text{ llist}
- find chain-complete partial order on \(\alpha \text{ llist}\)
- take the least fixpoint for \text{lfilter}

\[\leadsto \text{proof principles} \]

\[\leadsto \text{domain theory} \]
- fixpoint induction
- structural induction
Two views on \textit{lfilter}

\texttt{lfilter} :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{llist} \Rightarrow \alpha \text{llist}

1. produces a list corecursively
 - \texttt{lfilter} :: \beta \Rightarrow \alpha \text{llist}
 - find chain-complete partial order on \alpha \text{llist}
 - define \texttt{lfilter} on finite lists by well-founded recursion
 - take the least fixpoint for \texttt{lfilter}

2. consumes a list recursively
 - \texttt{lfilter} :: \alpha \text{llist} \Rightarrow \beta
 - find topology on \alpha \text{llist}
 - take the limit for infinite lists

\textbf{proof principles}

\Rightarrow \text{domain theory}

\begin{align*}
\text{fixpoint induction} \\
\text{structural induction}
\end{align*}
Two views on \textit{lfilter}

\[lfilter :: (\alpha \Rightarrow bool) \Rightarrow \alpha \ llist \Rightarrow \alpha \ llist \]

1. produces a list corecursively
 - \(lfilter :: \alpha \ llist \Rightarrow \beta \)
 - find chain-complete partial order on \(\alpha \ llist \)
 - define \(lfilter \) on finite lists by well-founded recursion
 - take the least fixpoint for \(lfilter \)

2. consumes a list recursively
 - \(lfilter :: \beta \Rightarrow \alpha \ llist \)
 - find topology on \(\alpha \ llist \)
 - define \(lfilter \) on finite lists by well-founded recursion
 - take the limit for infinite lists

proof principles

\(\rightsquigarrow \) topology

- convergence on closed sets
- uniqueness of limits

\(\rightsquigarrow \) domain theory

- fixpoint induction
- structural induction
Proof principles pay off

Isabelle proofs of \(\text{lfilter } P \ (\text{lfilter } Q \ xs) = \text{lfilter } (\lambda x. \ P \ x \land Q \ x) \ xs \)

Paulson's

subsection (Numerous lemmas required to prove \(\text{lfilter } \text{lfilter} \text{conj} \))

```isabelle
lemma \text{lfilter} \text{lfilter} \text{conj} \text{rule}: 
  \((\text{lfilter } P) \ (\text{lfilter } Q \ \text{xs}) \rightarrow \text{lfilter } P \ (\lambda x. \ P \ x \land Q \ x) \ \text{xs}) 
by \text{erule \text{lfilter} \text{lfilter} \text{induct}, \text{auto})
```

lemma \text{lfilter} \text{lfilter} \text{conj} \text{lemmas} \text{OP} \text{refl}:

```isabelle
lemma \text{lfilter} \text{lfilter} \text{conj} \text{Domain \rule}: 
  \((\text{lfilter } P) \ (\text{lfilter } Q \ \text{xs}) \rightarrow \text{lfilter } P \ (\lambda x. \ P \ x \land Q \ x) \ \text{xs}) 
by \text{erule \text{lfilter} \text{lfilter} \text{induct}, \text{auto})
```

lemma \text{lfilter} \text{lfilter} \text{conj} \text{rule}:

```isabelle
lemma \text{lfilter} \text{lfilter} \text{conj} \text{rule}: 
  \((\text{lfilter } P) \ (\text{lfilter } Q \ \text{xs}) \rightarrow \text{lfilter } P \ (\lambda x. \ P \ x \land Q \ x) \ \text{xs}) 
by \text{erule \text{lfilter} \text{lfilter} \text{induct}, \text{auto})
```

Structural induction

```isabelle
lemma \text{lfilter} \text{lfilter}: 
  \text{lfilter } P \ (\text{lfilter } Q \ \text{xs}) = \text{lfilter } (\lambda x. \ P \ x \land Q \ x) \ \text{xs} 
by \text{induction \text{xs}) \ \text{simp all}
```

Fixpoint induction

```isabelle
lemma \text{lfilter} \text{lfilter}: 
  \text{lfilter } P \ (\text{lfilter } Q \ \text{xs}) = \text{lfilter } (\lambda x. \ P \ x \land Q \ x) \ \text{xs} 
```

Continuous extension

```isabelle
lemma \text{lfilter} \text{lfilter}: 
  \text{lfilter } P \ (\text{lfilter } Q \ \text{xs}) = \text{lfilter } (\lambda x. \ P \ x \land Q \ x) \ \text{xs} 
by \text{rule \text{tendsto \text{closed}) \ \text{x\text{all}) \ \text{auto \text{closed \text{Collect \text{eq \text{isCont \text{filter}})}}}
```

Lochbihler (ETHZ), Hölz (TUM)

Recursively functions on lazy lists

ITP 2014 5 / 11
The producer view: least fixpoints

- prefix order \(\sqsubseteq \) defined coinductively
- least upper bound \(\bigsqcup Y \) defined by primitive corecursion

\((\sqsubseteq, \bigsqcup)\) forms a \textbf{chain-complete partial order (CCPO)} with \(\perp = [] \)
The producer view: least fixpoints

- prefix order \sqsubseteq defined coinductively
- least upper bound $\bigsqcup Y$ defined by primitive corecursion

(\sqsubseteq, \bigsqcup) forms a chain-complete partial order (CCPO) with $\bot = []$

Light-weight domain theory

$[\]$ represents "undefined", no additional values in αllist

full function space \Rightarrow, no continuity restrictions

Recursive functions on lazy lists

ITP 2014 6 / 11
The producer view: least fixpoints

- prefix order \sqsubseteq defined coinductively
- least upper bound $\bigsqcup Y$ defined by primitive corecursion

(\sqsubseteq, \bigsqcup) forms a chain-complete partial order (CCPO) with $\bot = []$

Light-weight domain theory

\[\text{\texttt{\textit{lfilter}} :: } (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{llist} \Rightarrow \alpha \text{llist} \]

\[\text{lfilter } P \text{ } xs = \begin{cases} & [], \text{ if } P x \text{ is not defined} \\ & \text{case } xs \text{ of } \[] \Rightarrow \[] \\ & x \cdot xs \Rightarrow \text{if } P x \text{ then } x \cdot \text{lfilter } P \text{ } xs \text{ else } \text{lfilter } P \text{ } xs \\ \end{cases} \]

Lochbihler (ETHZ), Hörl (TUM)
The producer view: least fixpoints

- prefix order \sqsubseteq defined coinductively
- least upper bound $\biguplus Y$ defined by primitive corecursion

(\sqsubseteq, \biguplus) forms a **chain-complete partial order (CCPO)** with $\bot = []$
The producer view: least fixpoints

- prefix order \sqsubseteq defined coinductively
- least upper bound $\biguplus Y$ defined by primitive corecursion

(\sqsubseteq, \biguplus) forms a chain-complete partial order (CCPO) with $\bot = []$
The producer view: least fixpoints

- prefix order \(\sqsubseteq \) defined coinductively
- least upper bound \(\bigcup \) defined by primitive corecursion

\((\sqsubseteq, \bigcup)\) forms a chain-complete partial order (CCPO) with \(\bot = [] \)

- lift \((\sqsubseteq, \bigcup)\) point-wise to function space \(\beta \Rightarrow \alpha \) \(\text{llist} \)
The producer view: least fixpoints

- prefix order \(\sqsubseteq \) defined coinductively
- least upper bound \(\bigcup Y \) defined by primitive corecursion

\((\sqsubseteq, \bigcup)\) forms a **chain-complete partial order (CCPO)** with \(\bot = [] \)

- lift \((\sqsubseteq, \bigcup)\) point-wise to function space \(\beta \Rightarrow \alpha \text{ llist} \)

Knaster-Tarski theorem:
If \(f \) on a ccpo is monotone, then \(f \) has a least fixpoint.
The producer view: least fixpoints

- prefix order \sqsubseteq defined coinductively
- least upper bound $\biguplus Y$ defined by primitive corecursion

(\sqsubseteq, \biguplus) forms a chain-complete partial order (CCPO) with $\bot = []$

partial-function (llist) $\text{lfilter} :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{llist} \Rightarrow \alpha \text{llist}$ where

\[
\text{lfilter} \ P \ \text{xs} = (\text{case} \ \text{xs} \ \text{of} \ [] \Rightarrow [] \\
| \ x \cdot \text{xs} \Rightarrow \text{if} \ P \ x \ \text{then} \ x \cdot \text{lfilter} \ P \ \text{xs} \ \text{else} \ \text{lfilter} \ P \ \text{xs})
\]

- lift (\sqsubseteq, \biguplus) point-wise to function space $\beta \Rightarrow \alpha \text{llist}$

Knaster-Tarski theorem:
If f on a ccpo is monotone, then f has a least fixpoint.
The producer view: least fixpoints

- prefix order \(\sqsubseteq \) defined coinductively
- least upper bound \(\bigsqcup \) \(Y \) defined by primitive corecursion

\((\sqsubseteq, \bigsqcup) \) forms a **chain-complete partial order (CCPO)** with \(\bot = [\] \)

```
partial-function (llist) lfilter :: (\( \alpha \Rightarrow \) bool) \Rightarrow \alpha llist \Rightarrow \alpha llist
where
lfilter \( P \) \( xs = \) (case \( xs \) of \( [] \) \Rightarrow \([\ ] \)
| \( x \cdot xs \) \Rightarrow if \( P \cdot x \) then \( x \cdot lfilter \( P \) \( xs \) else lfilter \( P \) \( xs \))
```

Light-weight domain theory

- \([\] \) represents “undefined”, no additional values in \(\alpha llist \)
- full function space \(\Rightarrow \), no continuity restrictions
- less automation
- less expressive (no nested or higher-order recursion)
The producer view: induction proofs

- structural induction

\[
\text{adm } Q \quad Q [] \quad \forall x. \text{INFINITE } xs \land Q xs \quad \rightarrow \quad Q (x \cdot xs)
\]

- fixpoint induction rule generated for \textit{Ifilter}
The producer view: induction proofs

- **structural induction**

\[
\frac{\text{adm } Q \quad Q []}{\forall x \ \text{lfinite } xs \land Q \ xs \rightarrow Q (x \cdot xs)}
\]

- **fixpoint induction** rule generated for \textit{lfilter}

Induction is sound only for \textit{admissible} statements \(Q \)
The producer view: induction proofs

- structural induction

\[
\text{adm } Q \quad Q [] \quad \forall x \; xs. \; \text{lfinite } xs \land Q \; xs \implies Q \; (x \cdot xs)
\]

- fixpoint induction rule generated for \textit{lfilter}

Induction is sound only for \textit{admissible} statements \(Q \).
The producer view: induction proofs

- **structural induction**

\[
\text{adm } Q \quad Q [] \quad \forall x \; xs. \ lfinite \; xs \land Q \; xs \quad \rightarrow \quad Q \; (x \cdot xs)
\]

- **fixpoint induction** rule generated for \(lfilter\)

Induction is sound only for **admissible** statements \(Q\)

lemma \(lfilter\; P\; (lfilter\; Q\; xs) = lfilter\; (\lambda x. \; P\; x \land Q\; x)\; xs\)

by (induction \(xs\)) simp_all
The producer view: induction proofs

- **structural induction**

 \[
 \text{adm } Q \quad Q \[\quad \forall x \; x s. \; \text{lfinite} \; x s \land Q \; x s \quad \rightarrow \quad Q \; (x \cdot x s) \quad Q \; x s
 \]

- **fixpoint induction** rule generated for *lfilter*

 \[
 \text{Induction is sound only for admissible statements } Q
 \]

proof automation via syntactic decomposition rules for admissibility

\[
\text{adm } (\lambda x s. \; \text{lfilter} \; P \; (\text{lfilter} \; Q \; x s) \;) = \text{lfilter} \; (\lambda x. \; P \; x \land Q \; x) \; x s
\]
The producer view: induction proofs

- **structural induction**

 \[
 \text{adm } Q \quad Q \; [] \quad \forall x \; xs. \; \text{lfinite } xs \land Q \; xs \rightarrow Q \; (x \cdot xs)
 \]

 \[Q \; xs\]

- **fixpoint induction** rule generated for \texttt{lfilter}

 Induction is sound only for admissible statements \(Q\)

 proof automation via syntactic decomposition rules for admissibility

 \[
 \text{adm } (\lambda xs. \text{lfilter } P \; (\text{lfilter } Q \; xs)) = \text{lfilter } (\lambda x. \; P \; x \land Q \; x) \; xs
 \]

 atomic predicate continuous contexts
The consumer view: continuous extensions

datatype $\alpha \ list = [] | \alpha \cdot \alpha \ list$

filter :: $(\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \ list \Rightarrow \alpha \ list$

1. Define *filter* recursively on *finite* lists.

Lochbihler (ETHZ), Hölzl (TUM) Recursive functions on lazy lists ITP 2014 8 / 11
The consumer view: continuous extensions

datatype α *list* = $\mathbb{[]}$ | $\alpha \cdot \alpha$ *list*

filter :: $(\alpha \rightarrow \text{bool}) \rightarrow \alpha$ *list* $\rightarrow \alpha$ *list*

$lfilter\ P\ xs = Lim\ (filter\ P)\ xs$

1. Define *filter* recursively on **finite** lists.

2. Take the limit.
The consumer view: continuous extensions

datatype \(\alpha \) list = [] | \(\alpha \cdot \alpha \) list

\[\text{filter} :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{ list} \Rightarrow \alpha \text{ list} \]

\[l\text{filter} \, P \, xs = \text{Lim} (\text{filter} \, P) \, xs \]

1. Define \(\text{filter} \) recursively on finite lists.
2. Take the limit.

Introduce **CCPO topology**

\(\sim \) define the open sets

Lochbihler (ETHZ), Hölzl (TUM)
The consumer view: continuous extensions

datatype $\alpha \ list = [] \mid \alpha \cdot \alpha \ list$

```
define filter recursively on finite lists.
```

```lfilter P xs = Lim (filter P) xs```

1. Define $\text{filter}$ recursively on finite lists.

2. Take the limit.

```
introduce CCPO topology
```

```
\sim define the open sets
```

```
non-empty overlap $open S$
```

Lochbihler (ETHZ), Hölzl (TUM)
The consumer view: continuous extensions

```plaintext
datatype α list = [] | α · α list
```

```plaintext
filter :: (α ⇒ bool) ⇒ α list ⇒ α list
```

1. Define `filter` recursively on `finite` lists.

2. Take the limit.

```
lfilter P xs = Lim (filter P) xs
```

**Properties of a CCPO topology**

- limits are unique
- finite elements are discrete, i.e., `open {xs}`

```
\[\begin{array}{c}
\text{not the Scott topology!} \\
\end{array} \]
```

introduce **CCPO topology**

```
\[\begin{array}{c}
\text{define the open sets} \\
\end{array} \]
```

```
\[\begin{array}{c}
\text{non-empty overlap} \quad \text{open} \ S \\
\end{array} \]
```

Lochbihler (ETHZ), Hölzl (TUM)
The consumer view: proving

1. Prove that \( \text{filter } P \) is continuous!
   follows from monotonicity of \( \text{filter} \)

2. Proof rule **convergence on a closed set** (specialised for \( \alpha \ llist \)):

\[
\begin{align*}
\text{closed } \{ xs \mid Q \; xs \} & \quad \forall ys. \text{ lfinite } ys \land ys \sqsubseteq xs \rightarrow Q \; ys \\
& \quad Q \; xs
\end{align*}
\]

**lemma** \( \text{lfilter } P \; (\text{lfilter } Q \; xs) = \text{lfilter } (\lambda x. P \; x \land Q \; x) \; xs \)

**by** (rule converge_closed[of _ xs]) (auto intro!: closed_eq isCont_lfilter )
1. Prove that \( \text{filter } P \) is continuous! It follows from monotonicity of \( \text{filter} \).

2. Proof rule **convergence on a closed set** (specialised for \( \alpha \ llist \)):

\[
\text{closed } \{xs \mid Q \ x \} \quad \forall ys. \ \text{Infinite } ys \land ys \subseteq xs \quad \rightarrow \quad Q \ ys
\]

**lemma** \( \text{Ifilter } P \ ( \text{Ifilter } Q \ xs) = \text{Ifilter } (\lambda x. \ P \ x \land Q \ x) \ xs \)

**by** (rule converge\_closed\[of \_ \ xs]) (auto intro!: \text{closed\_eq \ isCont\_Ifilter} )

**decomposition rules** for closedness
### Summary

<table>
<thead>
<tr>
<th>Comparison</th>
<th>least fixpoint</th>
<th>continuous extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccpo</td>
<td>on result type</td>
<td>on parameter type</td>
</tr>
<tr>
<td>monotonicity</td>
<td>of the functional</td>
<td>of the function</td>
</tr>
<tr>
<td>proof principles</td>
<td>structural induction (=) convergence on a closed set</td>
<td>fixpoint induction</td>
</tr>
</tbody>
</table>

Available in the AFP entry Coinductive
## Summary

<table>
<thead>
<tr>
<th>Comparison</th>
<th>least fixpoint</th>
<th>continuous extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccpo</td>
<td>on result type</td>
<td>on parameter type</td>
</tr>
<tr>
<td>monotonicity</td>
<td>of the functional</td>
<td>of the function</td>
</tr>
<tr>
<td>proof principles</td>
<td>structural induction $\Rightarrow$ convergence on a closed set</td>
<td>fixpoint induction</td>
</tr>
</tbody>
</table>

Available in the AFP entry Coinductive

Which codatatypes can be turned into *useful* ccpos?

- extended naturals $\textit{enat} = 0 \mid e\textit{Suc enat}$
- $n$-ary trees $\alpha \textit{tree} = \textit{Leaf} \mid \textit{Node} \alpha (\alpha \textit{tree}) (\alpha \textit{tree})$
- streams $\alpha \textit{stream} = \textit{Stream} \alpha (\alpha \textit{stream})$

\{ finite truncations \[ no finite elements \]
Two views on `lfilter`

\[
lfilter :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{l}l\text{ist} \Rightarrow \alpha \text{l}l\text{ist}
\]

1. produces a list corecursively
   - `lfilter :: \beta \Rightarrow \alpha \text{l}l\text{ist}
   - find topology on `\alpha \text{l}l\text{ist}`
   - define `lfilter` on finite lists by well-founded recursion
   - take the least fixpoint for `lfilter`

2. consumes a list recursively
   - `lfilter :: \alpha \text{l}l\text{ist}
   - find chain-complete partial order on `\alpha \text{l}l\text{ist}
   - define `lfilter` on finite lists by well-founded recursion
   - take the limit for infinite lists

Proof principles pay off

Isabelle proofs of `lfilter P \ (lfilter Q xs) = lfilter (\lambda x. P x \land Q x ) \ xs`

Paulson's
- Structural induction
- Fixpoint induction
- Continuous extension
- Uniqueness of limits

The consumer view: continuous extensions

```
datatype \alpha list = [] | \alpha \cdot \alpha list
filter :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha list \Rightarrow \alpha list
lfilter P xs = \text{Lim} \ (filter P) \ xs
```

1. Define `filter` recursively on finite lists.
2. Take the limit.

The producer view: least fixpoints

- prefix order `\leq` defined coinductively
- least upper bound `\bigcup Y` defined by primitive corecursion
- `(\leq, \bigcup)` forms a chain-complete partial order (CCPO) with `\bot = []`

```
partial-function (\text{l}l\text{ist}) lfilter :: (\alpha \Rightarrow \text{bool}) \Rightarrow \alpha \text{l}l\text{ist} \Rightarrow \alpha \text{l}l\text{ist}
where
lfilter P xs = (\text{case} \ xs \ \text{of} \ [\] \Rightarrow [\] \\
 x \cdot \ xs \Rightarrow \text{if} \ P \ x \ \text{then} \ x \cdot \ lfilter P \ xs \ \text{else} \ lfilter P \ xs)
```

Knaster-Tarski theorem:
If `f` on a ccpo is monotone, then `f` has a least fixpoint.