
Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compilation in the HotSpot VM

Zoltán Majó

HotSpot Compiler Team
Oracle Corporation

December 2015

1

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated
into any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

2

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

References

Some of the material presented here is based on

Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas
Rodriguez, Kenneth Russell, David Cox:

Design of the Java HotSpot™ client compiler for Java 6.

[TACO 5(1) (2008)]

3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

HotSpot: Multi-language virtual machine

Hotspot VM

Java JavaScript Scala Ruby

Windows Mac OS X Linux

x86

Solaris

SPARC PPC ARM

4

Programming
languages:

Platforms:

Virtual machine:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Outline

• Overview of the HotSpot Java VM

• Compilation in HotSpot
– Just-in-time compilation

– Optimizations

– Tiered compilation

– C1 compiler

– C2 compiler

• OpenJDK project

• Future of HotSpot

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Stages of a Java method’s lifetime

Java source code

int i = 0;
do {
 i++;
} while (i < f());

Java bytecodes

 0: iconst_0
 1: istore_1
 2: iinc
 5: iload_1
 6: invokestatic f
 9: if_icmplt 2
12: return

Java VM
compile execute

Compilation:
• Ahead-of-time
• Tool: javac

Bytecodes:
• Instructions…
• …for an abstract machine

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

HotSpot Java Virtual Machine

HotSpot’s components

Java source code

Bytecodes

Client compiler (C1)

Server compiler (C2)

Mark & Sweep

G1

Interpreter

Just-in-time compilers Native method Garbage collectors

Young generation

Old generation

Heap

…

Thread N

Thread 1

Stack

Ahead-of-time
compiler (javac)

accesses collects

accesses

accesses

Machine code

Debug information

Object maps

7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Major components of HotSpot

• Runtime
– Interpreter(s)

– Thread management

– Synchronization

– Class loading

– and many others…

• Heap management
– Garbage collectors

• Just-in-time compilation system

8

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

AOT compilation

• Before program execution

• Time-consuming optimizations

• Good startup/warmup behavior

• Offline profiling

• Conservative optimizations

JIT compilation

• During program execution

• Limited time budget

• Time is needed to compile “hot” methods

• Profiling at runtime

• Optimistic optimizations

9

Ahead-of-time vs. just-in-time compilation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Compilers in HotSpot

• Tradeoff: resource usage vs. performance of generated code

• C1 compiler
– Fast compilation

– Small footprint

– Code could be better

• C2 compiler
– High resource demands

– High-performance code

• Graal
– Experimental compiler

– Not part of HotSpot

10

Client VM

Server VM

Tiered compilation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Stages of a method’s lifetime (cont’d)

Interpreter

C1

C2

Code cache

Gather profiling information

Compile bytecode
to native code

Store machine code

method invocations > THRESHOLD1 or
method backbranches > THRESHOLD2

Deoptimization

Compiler’s optimistic assumptions
proven wrong

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Virtual call inlining

class A {
 void bar() { … }
}

A create() {
 if (…) {
 return new A()
 } else {
 return new B();
 }
}

void foo() {
 A a = create();
 a.bar();
}

inline?

Inline if only A is loaded
• Record foo’s dependence on class hierarchy
• Check dependence when new class is loaded
• Deoptimize if assumed target is wrong

12

class B extends A {
 void bar() { … }
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Control flow graph Generated code

Hot path compilation

S1;
S2;
S3;
if (x > 3)

S4; S5;
S6;
S7;

S8;
S9;

10’000 0

guard(x > 3)
S1;
S2;
S3;
S4;
S5;

Uncommon trap

13

F T

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Deoptimization

• Compiler’s optimistic assumption proven wrong

• Switch execution from compiled code to interpreter
– Reconstruct state of interpreter

– Complex implementation

• Compiled code
– Possibly thrown away

– Possibly recompiled

14

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Outline

• Overview of the HotSpot Java VM

• Compilation in HotSpot
– Just-in-time compilation

– Optimizations

– Tiered compilation

– C1 compiler

– C2 compiler

• OpenJDK project

• Future of HotSpot

15

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tiered compilation

• Combine the benefits of
– Interpreter: Fast startup

– C1: Fast warmup

– C2: High peak performance

16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Benefits of tiered compilation (artist’s concept)

17

Performance

Time VM Startup VM Teardown

Interpreted C1-compiled

Method
warm-up

time

Client VM (C1 only)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Benefits of tiered compilation (artist’s concept)

18

Performance

Time VM Startup VM Teardown

Interpreted C2-compiled

Method warm-up time

Server VM (C2 only)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Benefits of tiered compilation (artist’s concept)

19

Performance

Time VM Startup VM Teardown

Interpreted C1-compiled

Method warm-
up time

Tiered compilation

C2-compiled

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tiered compilation

• Combine the benefits of
– Interpreter: Fast startup

– C1: Fast warmup

– C2: High peak performance

• Additional benefits
– More accurate profiling information

• Drawbacks
– Complex implementation

– Careful tuning of compilation thresholds needed

– More pressure on code cache – Tobias will tell you more about that

 20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

A method’s lifetime (w/ tiered compilation)

Interpreter C1 C2

Code cache

Collect profiling
information

Generate code quickly
Continue collecting
profiling information

Generate high-quality code
Use profiling information

Deoptimization

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tiered compilation in detail

Interpreter

C1: no profiling

C1: limited profiling

C1: full profiling

C2

0

1

2

3

4
C

o
m

p
ila

ti
o

n
 le

ve
l

Ty
p

ic
al

 c
o

m
p

ila
ti

o
n

 s
e

q
u

en
ce

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

More accurate profiling

time

Interpreter C1 profiled C2 non-profiled

Interpreter

Profiling without tiered compilation

Profiling with tiered compilation

C2 un-profiled

300 samples

100 samples 1000 samples

100 samples 200 samples

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Outline

• Overview of the HotSpot Java VM

• Compilation in HotSpot
– Just-in-time compilation

– Optimizations

– Tiered compilation

– C1 compiler

– C2 compiler

• OpenJDK project

• Future of HotSpot

24

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Design of the C1 compiler

Bytecodes
High-Level IR

(HIR)
Low-Level IR

(LIR)
Machine code

optimization register allocation

25

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

High-Level Intermediate Representation

• Platform independent

• SSA form
– One assignment for every variable

26

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Static Single Assignment Form (SSA)

a = b + c
a = a + 1

Java code

a1 = b1 + c1
a2 = a1 + 1

SSA form

27

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Static Single Assignment Form (SSA)

• More about SSA in the Advanced Compiler Design lecture

Java code SSA form

if (x == 1) {
 a = 1
} else {
 a = 2
}
b = a + 1

if (x1 == 1) {
 a1 = 1
} else {
 a2 = 2
}
a3 = phi(a1, a2)
b1 = a3 + 1

28

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

High-Level Intermediate Representation

• Platform independent

• SSA form
– One assignment for every variable

• Requires two passes over the bytecodes
– Pass 1: Detect boundaries of basic blocks

 Simple loop analysis

– Pass 2: Create instructions by abstract interpretation of bytecodes
 Link basic blocks to control flow graph

• HIR instruction: represents an operation and its result

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

HIR Example

• Time for a demo…

• Command line to obtain C1 graph
java -XX:+PrintCompilation
-XX:CompileCommand=compileonly,AClass::main
-Xcomp
-XX:TieredStopAtLevel=1
-XX:+PrintCFGToFile AClass # The method of interest
is AClass::main

• Remember: you need a fastdebug build

30

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Low-Level Intermediate Representation (LIR)

• Similar to machine code

• Does not use SSA forms
– Phi functions of HIR are resolved by register moves

• Use explicit operands
– Virtual registers, physical registers, memory addresses, constants

• Input to Linear Scan Register Allocator (LSRA)
– Maps virtual registers to physical registers

31

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Machine code generation

• Emit appropriate machine instruction(s) for every LIR instruction

• Generate object maps

• Generate debugging information

32

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

GC support

• GC can only happen at safepoints
– Loop back branches

– Before method return

• Object maps
– Information which registers contain references to objects

• Implementation
– Access a specific page

– Access successful: no safepoint request

– Access throws an exception: enter safepoint routine

test %eax,0x163eae66(%rip) # 0x00007f2c07760000

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Exception handling

• Instructions that throw an exception do not end a basic block

• Exception in machine code
– Runtime searches for exception handler

• Example: Null check

34

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Implicit null check
{method} {0x00007f2bed4e8330} 'foo' '(LDummy;)I' in 'Test'
 # parm0: rsi:rsi = 'Dummy'
 # [sp+0x40] (sp of caller)
 ;; block B1 [0, 0]

 0x00007f2bf1375180: mov %eax,-0x16000(%rsp)
 0x00007f2bf1375187: push %rbp
 0x00007f2bf1375188: sub $0x30,%rsp ;*aload_0
 ; - Test::foo@0 (line 12)

 ;; block B0 [0, 4]

 0x00007f2bf137518c: mov 0xc(%rsi),%eax ;*getfield x
 ; - Test::foo@1 (line 12)
 ; implicit exception: dispatches to 0x00007f2bf137519b
 0x00007f2bf137518f: add $0x30,%rsp
 0x00007f2bf1375193: pop %rbp
 0x00007f2bf1375194: test %eax,0x163eae66(%rip) # 0x00007f2c07760000
 ; {poll_return}
 0x00007f2bf137519a: retq
 ;; ImplicitNullCheckStub slow case
 0x00007f2bf137519b: callq 0x00007f2bf0fd8420 ; OopMap{off=32}
 ;*getfield x
 ; - Test::foo@1 (line 12)
 ; {runtime_call}
 0x00007f2bf13751a0: mov %rsp,-0x28(%rsp)

int foo(Dummy d) {
 return d.x;
}

35

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

HIR Optimizations

• Constant folding
– Simplify arithmetic instructions with constant operands

• Local value numbering
– Eliminate common sub-expressions within a basic block

• Method inlining
– Replace method call by a copy of the method body

• Global value numbering
– Two instructions are equivalent if they perform the same operation on the same operands

• Null-check elimination

36

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Outline

• Overview of the HotSpot Java VM

• Compilation in HotSpot
– Just-in-time compilation

– Optimizations

– Tiered compilation

– C1 compiler

– C2 compiler

• OpenJDK project

• Future of HotSpot

37

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

C2 server compiler overview

• Highly optimizing compiler

• SSA form

• IR: Program dependence graph “Sea of nodes”
– No basic blocks, instructions can “float” in the graph

– Explicit control/data dependency

– Allows many optimizations with little effort

– Hard to understand and debug

• Many optimizations during parsing

• Graph coloring register allocator

38

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

OpenJDK

• HotSpot is part of OpenJDK

• Open-source project

• Well-defined reviewing process
– Statuses: Author, Committer, Reviewer

– Each change requires least two Reviewer’s reviews

– Advantage: Feedback, changes are traceable

– Disadvantage: No moderation

• OpenJDK is a good research vehicle
– Example: profile caching Bachelor’s thesis by M Mohler

39

T

Eternity?

of lines of code

0 10 102 …

Review time

1 day

1 week

…

1 month

103 104

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tiered compilation

40

Performance

Time VM Startup VM Teardown

Interpreted C1-compiled C2-compiled

Collecting profiling information

Tiered compilation

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Profile caching

41

Performance

Time VM Startup VM Teardown

Interpreted C1-compiled C2-compiled

Collecting profiling
information

Tiered compilation

Profile caching

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Future

• Multi-language VM

• AOT compilation to native code (not to bytecodes)

42

Hotspot VM

Java JavaScript Scala Ruby

Windows Mac OS X Linux

x86

Solaris

SPARC PPC ARM

Programming
languages:

Platforms:

Virtual machine:
Bytecodes

Graal compiler

Graal IR

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Thank you for your attention!

43

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Backup slides

44

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

• foo() executes for a long time

• Compile hot code in foo()

• Execute compiled code instead of using
the interpreter

On-Stack Replacement

void foo() {
 while (condition) {
 // Do work in this block
 }
}

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

JDK 9 Projects

Oracle
HotSpot Compiler Team
Tobias Hartmann

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described for Oracle’s products remains at the sole discretion of
Oracle.

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Outline
● Segmented Code Cache

● Background and history
● Challenges
● Design and Implementation
● Evaluation

● Compact Strings
● Java String encoding
● Analysis of Strings
● Design and Implementation
● Evaluation

3

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Segmented
Code Cache

Oracle
HotSpot Compiler Team
Tobias Hartmann

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Code cache
● Central component

● Continuous chunk of memory
● Fixed size
● Bump pointer allocation with free list

5

Code
Cache

Compiler
threads

GC

Sweeper

Runtime

Serviceability Debugging

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

History
● JDK 6

6

compiled code

VM internals

non-profiled code

profiled code

GPU code

… ?

Code
Cache

...

...

Code
Cache

sweeper AOT code

Code
Cache

● JDK 7/8 ● JDK 9

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Challenges
● Tiered compilation increases amount of code

● 2 - 4 X

● All code in one cache
● Different types with different characteristics
● Access to specific code requires full iteration

● Code cache fragmentation

7

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Challenges
● Tiered compilation increases amount of code

● 2 - 4 X

● All code in one cache
● Different types with different characteristics
● Access to specific code requires full iteration

● Code cache fragmentation

● Solution: Segmented Code Cache

8

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Properties of compiled code
● Lifetime
● Size
● Cost of generation
● Level of optimization

9

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Types of compiled code
● Non-method code
● Profiled method code

● Instrumented (C1)
● Limited lifetime

● Non-profiled method code
● Highly optimized code (C2)
● Long lifetime

10

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Code cache fragmentation

11

Code
Cache

profiled

non-profiled
free

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Design
● Split code cache into segments

12

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Fragmentation

13

profiled code

non-profiled code

free

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Hotness

14

non-profiled codeprofiled code

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

iTLB

15

profiled code

non-profiled code

targets[0].amount()

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

iTLB

16

targets[0].amount()

profiled code

non-profiled code

targets[0].amount()

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

iTLB

17

profiled code

non-profiled code

targets[0].amount()

targets[0].amount()

targets[1].amount()

targets[1].amount()

targets[2].amount()

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

iTLB

18

profiled code

non-profiled code

targets[0].amount()

targets[1].amount()

targets[2].amount()

targets[0].amount()

targets[1].amount()

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

iTLB

19

128 256 512 1024 2048 4096
0

1

2

3

4

5

6

7

8

9

10

Number of targets

Speedup in %

L1 ITLB L2 STLB

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Code cache sweeper

20

Full sweeps Flushed methods Sweep time
-5

0

5

10

15

20

25

30

35

40

Improvement in %

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Safepoint pause time

21

Mark nmethods Update ICs Total
-5

0

5

10

15

20

Safepoint cleanup task

Improvement in %

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Runtime

22

SPECjbb2005 SPECjbb2013 JMH-Javac Octane (Typescript) Octane (Gbemu)
0

2

4

6

8

10

12

14

Benchmark

Speedup in %

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Conclusion
● Code layout has significant impact on performance

● code locality reduces iTLB misses
● less iteration overhead

● Will be released with JDK 9
● openjdk.java.net/jeps/197

23

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Compact Strings

Oracle
HotSpot Compiler Team
Tobias Hartmann

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Goals
● Memory footprint reduction

● Improve space efficiency of Strings

● Meet or beat throughput performance of baseline JDK 9
● Full compatibility with related Java and native interfaces
● Full platform support

● x86/x64, SPARC, ARM 32/64
● Linux, Solaris, Windows, Mac OS X

25

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Java String encoding
● String.value is a char array
● Uses UTF-16 encoding: 2 byte per character

26

H
0x0048 0x0045

E
0x004C

L
0x004C

L
0x004F

O
char value[] =

2 byte

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Analysis: char[] footprint
● 950 heap dumps from a variety of applications

● char[] footprint makes up 10% - 45% of live data
● Majority of characters are single byte

27

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Design
● UTF-16 characters always occupy two bytes

● Lots of wasted memory

● Changed String class to use byte array

28

H
0x0048 0x0045

0x48

E

0x00

0x004C

L
0x004C

L
0x004F

O

0x450x00 0x4C0x00 0x4C0x00 0x4F0x00

char value[] =

byte value[] =

1 byte

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Design
● String either encoded as UTF-16 or Latin-1
● Encoding field indicates which encoding is used

29

H
0x48

E
0x00

L L O
0x450x00 0x4C0x00 0x4C0x00 0x4F0x00UTF-16

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Design
● String either encoded as UTF-16 or Latin-1
● Encoding field indicates which encoding is used

30

H
0x48

E
0x00

L L O
0x450x00 0x4C0x00 0x4C0x00 0x4F0x00

0x480x00 0x450x00 0x4C0x00 0x4C0x00 0x4F0x00

UTF-16

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Design
● String either encoded as UTF-16 or Latin-1
● Encoding field indicates which encoding is used

31

H
0x48

E
0x00

L L O
0x450x00 0x4C0x00 0x4C0x00 0x4F0x00

0x480x00 0x450x00 0x4C0x00 0x4C0x00 0x4F0x00

0x48 0x45 0x4C 0x4C 0x4F

UTF-16

Latin-1

H E L L O

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Design
● Strings containing a character with non-zero upper byte

● Cannot be compressed
● Stored as 2 byte characters using UTF-16 encoding

● Strings containing only characters with zero upper byte
● Can be compressed to Latin-1
● High-order zero bytes are stripped off

● Invariant
● A UTF-16 String has at least one non-compressible character
● Allows O(1) fastpath for String.equals() and String.indexOf()

32

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Analysis: String size distribution
● 75% of Strings are smaller

than 35 characters

33

String frequency per size

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Analysis: String size distribution
● 75% of Strings are smaller

than 35 characters
● 75% of charactes are in

Strings of length < 250

● Predicted footprint
reduction of 5% - 15%

34

Space consumed by Strings of given size

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Implementation
● Hotspot support in addition to library changes

● JIT compilers: Intrinsics and String concatenation optimization
● Runtime: String object constructors, JNI, JVMTI
● GC: String deduplication

● Compression: char[] → byte[]
● On String construction

● Inflation: byte[] → char[]
● Whenever we need a char[] representation

35

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Implementation
● String construction

● Allocate byte[], try to compress input char[], bailout if it fails
● Alternative: look at first character(s) and then decide (JDK-8139814)

● New compiler intrinsics for most important methods
● Adapted existing intrinsics and C2 optimizations

● String.equals, String.compareTo, String.indexOf

● Enable or disable via -XX:CompactStrings flag
● Enabled by default on x86 and SPARC

36

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Evaluation
● Micro-benchmarks* at the String API level

● Compare throughput performance to baseline JDK 9

● Larger workloads / benchmarks
● For evaluating footprint, throughput and latency

37

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Performance on x86 (Haswell)
● SpecJbb2005

● 21% footprint reduction
● 27% less GCs
● 5% throughput improvement

● SpecJbb2015
● 7% footprint reduction
● 11% critical-jOps improvement

38

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Performance on SPARC (T5)
● SpecJbb2005

● 19% footprint reduction
● 21% less GCs
● 2% throughput improvement

● SpecJbb2015
● 4% critical-jOps improvement

● WLS startup
● 10% footprint reduction
● 5% cold startup improvement
● 3% warm startup improvement

39

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Conclusion
● String density matters

● Footprint reduction of up to 21%
● Performance improvements due to less GC pressure

● Will be released with JDK 9
● openjdk.java.net/jeps/254

40

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

Questions?
tobias.hartmann@oracle.com

41

Copyright © 2014-2015, Oracle and/or its affiliates. All rights reserved. |

	2015-12-16-compiler-design-zmajo.pdf
	2015-12-15_JDK9_Projects
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

