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Abstract

While the Internet becomes more and more pervasive, it gets increas-
ingly important to guarantee that server software works correctly. A
possible way to ensure this is to formally verify that the server software
implementation satisfies the desired properties. Two examples of prop-
erties that are important for servers are that an implementation per-
forms only the allowed input-output (IO) operations and that it even-
tually performs the required ones. In this report, we present a method-
ology that allows verifying the IO behaviour of non-terminating pro-
cesses such as servers. Our methodology is a combination of the work
by Penninckx, Jacobs, and Piessens on IO verification with Petri nets [8],
which allows verifying IO behaviour of terminating processes, and
of the work by Boström and Müller on ensuring finite blocking in
non-terminating processes [2]. We have designed an encoding of our
methodology in the Viper [7] verification infrastructure’s intermediate
verification language, implemented it in Nagini, a Python front-end for
Viper, and tested it on a large number of examples.
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Chapter 1

Introduction

While the Internet becomes more and more pervasive, it becomes increas-
ingly important that its implementation provides strong security guaran-
tees. The SCION (Scalability, Control, and Isolation on Next-Generation Net-
works) project aims to provide a network architecture that solves the main
security issues of the current Internet implementation [1]. At the SCION
core, are the protocols that describe how different nodes in a network should
communicate. An important part of the project is a verification of the pro-
tocols and their implementation. To verify the server implementation, we
need a methodology that allows specifying and verifying input-output (IO)
behaviour. Moreover, the methodology must be scalable enough to handle
the SCION code base.

A common approach to handling the scalability issue is to perform a modu-
lar verification where, for example, each procedure is verified independently
of others. To verify each procedure separately, one needs to abstract the be-
haviour of each procedure by its precondition and postcondition. In this
setup, the precondition usually denotes what the procedure is allowed to
assume, and the postcondition specifies what it has to achieve. For example,
a methodology for verifying IO behaviour proposed by Penninckx, Jacobs,
and Piessens [8] uses preconditions to specify what IO operations the pro-
cedure is allowed to perform and postconditions to specify what state it
has to reach. However, this approach does not work with non-terminating
procedures, which can often be found in server code, because the execu-
tion never reaches the end of the procedure and, as a result, the postcon-
dition does not get evaluated. In this thesis, we, therefore, explore how IO
behaviour can be verified without relying on the postcondition being eventu-
ally reached. The solution presented in this thesis is a combination of work
by Penninckx, Jacobs, and Piessens [8] on using Petri nets for verifying IO be-
haviour and of work by Boström and Müller [2] on ensuring finite blocking
in non-terminating programs. The final methodology allows verifying the
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1. Introduction

IO behaviour of potentially non-terminating processes and is implemented
in Nagini, a Python front-end for the Viper verification infrastructure.

1.1 Motivating Example

1 class Server(Thread):

2 def run():

3 server_socket = create_server_socket()

4 while True:

5 client_socket = server_socket.accept()

6 data = client_socket.read_all(timeout=1)

7 if data:

8 print(client_socket.address)

9 client_socket.send("Hello!")

10 client_socket.send(data)

11 client_socket.close()

Listing 1: Echo server.

A simple example in Python of a non-terminating process that illustrates
the properties we want to verify is the echo server that is given in Listing 1.
When started, the server thread creates a server socket and enters an infinite
loop. At the beginning of the loop, it calls accept() on the socket and blocks
(potentially forever) until some client opens a connection. If the accept()

call returns, then the server thread performs the needed communication
with a client and then calls accept() again. On a high level, we would like
to verify that the server continues to accept incoming requests. It should
be possible to verify such property because all calls in this example except
accept() can be assumed to be terminating in a finite number of steps. We,
therefore, would like to be able to verify that if accept() terminates, then
the server thread performs all needed communication with the client in a
finite number of steps and calls accept() again.

More precisely, we would like to have a methodology that allows expressing
the following five properties:

progress
An operation will be performed in a finite number of steps.

For example, server_socket.accept() will be called after a finite
number of steps and if it terminates, then it will be called again af-
ter a finite number of steps.

IO obligation
A program is allowed to and has to to perform an IO operation with
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1.2. Contributions and Outline

arguments that satisfy the given requirements expressed in terms of a
program state and result values of other IO operations. The IO opera-
tion may return a value.

For example, if the implementation managed to receive the data suc-
cessfully, it has to send it back.

IO credit
A program is allowed to perform an IO operation with arguments that
satisfy the given requirements expressed in terms of a program state
and result values of other IO operations. The IO operation may return
a value.

For example, the implementation is allowed to print the client address
to the standard output, but is not required to do so.

strict order
IO operations have to be performed in the specified order.

For example, the implementation has to send "Hello!" before it sends
data.

arbitrary order
IO operations can be performed in an arbitrary order.

For example, the implementation is allowed to print a client address
before or after it sends a reply.

Moreover, we would like to verify these properties under the assumptions
that:

1. create_server_socket, read_all, send, print, and close are guaran-
teed to terminate.

2. The scheduler is fair.

1.2 Contributions and Outline

The contributions of this thesis are:

1. It presents a methodology that allows verifying all five properties
given in the previous section, and which is a combination of the method-
ologies presented in [8] and [2].

2. It describes an implementation of the methodology in Nagini (a Python
front-end for the Viper verification infrastructure [7]) that is based on
ideas in [6] and [4].

3. It shows how obligations encoding from [2] implemented by Meier [6]
in Chalice2Viper, a Chalice front-end for Viper, could be improved.

3



1. Introduction

Obligations ensure that some specific action is eventually performed
and together with deadlock freedom ensure finite blocking [2]. This
thesis shows how the encoding can be made more expressive and
presents a way to fix a discovered unsoundness. It also provides a
performance evaluation of the encoding.

4. It presents how work on obligations [2] can be extended to allow trans-
ferring obligations between threads via channels, which would allow
modeling a common server implementation pattern where one listener
thread accepts incoming connections and gives them to the worker
thread pull that handles them.

5. It also presents how the finite blocking encoding in Chalice2Viper [6]
can be extended to add support for the technique from [2] that guar-
antees deadlock freedom to fully support finite blocking in Viper.

Chapter 2 presents the existing work on verifying IO [8] and progress [2],
and presents our final methodology that is combination of the presented
work and that allows verifying IO behaviour of non-terminating processes.
Chapter 3 gives a brief introduction to Viper, presents existing ideas from [4]
and [6] for encoding VeriFast predicates and obligations into Viper respec-
tively, and describes what was implemented differently in Nagini. Chapter 4
evaluates the final methodology and its implementation in Nagini. Chap-
ter 5 presents obligation channels and how a technique from [2] for ensur-
ing deadlock freedom can be encoded into Viper. The last chapter concludes
and presents possible future work.
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Chapter 2

Methodology

This chapter describes the methodology that can be used to verify IO be-
haviour of non-terminating processes. The first section presents existing
work: a methodology for verifying the IO behaviour by using Petri nets [8]
and a methodology for verifying finite blocking in non-terminating pro-
cesses [2]. Then, the second section explains how this work can be com-
bined into a methodology that allows verifying the IO behaviour of non-
terminating processes.

2.1 Existing work

This section presents the existing work on IO verification with Petri nets
by Penninckx, Jacobs, and Piessens [8] and on ensuring finite blocking in
non-terminating processes by Boström and Müller [2].

2.1.1 Verification of Input-Output with Petri Nets

This subsection aims to provide an intuition of using Petri nets for IO be-
haviour specification and verification from [8]. For a more detailed discus-
sion, we refer the reader to [8].

t1 t2 t3 t4 t5

open("test"; fp) write(fp,1) write(fp,2) close(fp)

Figure 2.1: A Petri net that denotes a specification of opening a file "test",
writing the numbers 1 and 2 into it and closing it. Arguments are separated
from results by a semicolon.
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2. Methodology

Figure 2.1 shows a simple Petri net that specifies that a program is allowed
to write the numbers 1 and 2 into the file "test". Transitions denoted by
squares model IO operations while places denoted by circles mark states
between IO operations. IO operations can have parameters such as the string
"test" and results such as the file object fp. IO operation results can be used
as arguments in subsequent operations. The black dot in the place t1 is a
token. Tokens represent at which execution state the program currently is.
An IO operation can be executed only if each place in its preset (the set of
places from which there is a connection to the transition) has at least one
token. Therefore, in Figure 2.1 only the open operation could be executed.

Executing an IO operation removes a token from each place in its preset and
adds a token to each place in its postset (the set of places to which there is a
connection from the transition). In addition, executing a transition removes
it from the Petri net. Removing executed transitions from the Petri net ef-
fectively prevents one from defining loops that otherwise could be defined
by connecting transition’s in and out edges to the same place. Instead, the
presented approach allows defining composite transitions that can contain
arbitrary Petri net fragments, which can include even the transition that is
being defined, thus enabling recursion. For example, one could define an IO
operation write_12_to_test() that contains the Petri net from Figure 2.1.
Such composite IO operations are called non-basic while the primitive ones
are called basic. An implementation can execute a composite IO operation
by opening it and executing the Petri net fragment that defines the IO oper-
ation.

t1

t2 t3split()

do_io1()

join()

t2' t3'

do_io2()

t4 t5

do_io()

no_op()

Figure 2.2: A Petri net that demonstrates a parallel execution of the oper-
ations do_io1 and do_io2, as well as a non-deterministic choice between
performing do_io and no_op.

Petri nets allow specifying interesting behavioural patterns such as a non-
deterministic choice and parallel execution. Figure 2.2 shows an example
Petri net that allows executing do_io1 and do_io2 in any order. After execut-
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2.1. Existing work

ing a ghost IO operation split, both places t2 and t2’ have tokens. There-
fore, the implementation is allowed to execute both IO operations do_io1

and do_io2 and is free to decide which one to execute first. However, the
ghost operation join can be executed only when both places t3 and t3’

have tokens. This ensures that both do_io1 and do_io2 are executed before
join, as well as before all operations that come after join. Figure 2.2 also
shows an example of a non-deterministic choice. When place t4 has a token
both do_io and no_op could be executed, and, as a result, an implementa-
tion if free to decide which operation to execute. In this example, one of
the choices is a ghost operation no_op that means no-operation. Therefore,
the specification essentially allows an implementation to choose to perform
do_io or not.

This methodology for verifying IO behaviour was implemented in VeriFast,
a verifier based on symbolic execution that supports C and Java program-
ming languages. Listing 2 shows the contract of a C procedure that promises
to perform the IO operation write_12_to_test(), whose contents are given
in Figure 2.1, in VeriFast syntax. The authors of [8] model Petri net transi-
tions by using VeriFast precise predicates, which, unlike regular predicates,
have output parameters that are uniquely determined by the input parame-
ters. The input places are modeled as explicit arguments and output places
as explicit results of the predicate. Basic IO operations are modeled by using
abstract predicates while predicates representing non-basic IO operations
have the Petri net fragment as their body. The procedure that implements a
non-basic IO can access its contents by opening the predicate. It is important
to note that the correctness of the procedure that implements a basic IO op-
eration cannot be verified and, therefore, the procedure’s contract has to be
assumed correct. Tokens are also modeled by using a predicate token that
takes a place as its argument. The ghost IO operations (shown in Listing 3)
are modeled in the same way as regular IO operations. However, they are
implemented not by regular, but by ghost procedures.

2.1.2 Verification of Finite Blocking

This section aims to briefly explain the technique proposed by Boström and
Müller in [2] that allows verifying finite blocking of non-terminating pro-
cesses. For a more detailed discussion about finite blocking, we refer the
reader to [2].

Finite blocking is the property that no thread is blocked forever [2, 6]. The
verification technique from [2] that ensures finite blocking is based on two
main ingredients: deadlock freedom and obligations. The former is ensured
by establishing a global order among threads that guarantees that threads
are not waiting for each other in a cycle and is discussed in more detail in
Section 5.2.
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2. Methodology

1 /*@

2 predicate open(place t1, char *filename; FILE *file, place t2);

3 predicate write(place t1, FILE *file, int number; place t2);

4 predicate close(place t1, FILE *file; place t2);

5 predicate write_12_to_test(place t1; place t2) =

6 open(t1, "test", ?fp, ?t2) &*&

7 write(t2, fp, 1, ?t3) &*&

8 write(t3, fp, 2, ?t4) &*&

9 close(t4, fp, ?t5);

10 @*/

11 void write_two_ints()

12 //@ requires token(?t1) &*& write_12_to_test(t1, ?t2)

13 //@ ensures token(t2)

14 {

15 //@ open write_12_to_test(t1, t2)

16 // Rest of the body omitted.

17 }

Listing 2: The VeriFast encoding of the IO operation write_12_to_test

whose contents are given in Figure 2.1, and the procedure that implements
it. ?x is VeriFast syntax for expressing that there exists an x that satisfies
the given conditions. For example, token(?t1) means that there exists a
predicate token in the heap and we can use t1 to refer to its argument.

Deadlock freedom is not enough to ensure finite blocking in non-terminating
programs because a thread can try to acquire a lock that is held by a non-
terminating thread that never releases that lock. In this case, the thread that
tries to acquire the lock would be blocked forever. The key idea of [2, 3] is to
associate an obligation with each action a thread must perform. The authors
of [2] focus on using obligations for guaranteeing finite blocking, that is, for
ensuring that each blocked thread will be eventually unblocked, for exam-
ple, by releasing a lock. However, obligations are not limited to unblocking
actions as we will see in the next section. The obligation types presented
in [2] are:

MustTerminate: An obligation for a method or loop to terminate.

MustRelease: An obligation to release a lock.

MustSend: An obligation to send a message over a channel. It has a dual: a
credit MayReceive that denotes a permission to receive from the chan-
nel. Each time a credit is created, a corresponding obligation is created,
too. We do not cover credits in detail because our work does not need
them.

The proposed verification technique guarantees that each obligation is even-
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2.1. Existing work

1 /*@

2 predicate split(place t1; place t2, place t3);

3 lemma void split();

4 requires split(?t1, ?t2, ?t3) &*& token(t1);

5 ensures token(t2) &*& token(t3);

6

7 predicate join(place t1, place t2; place t3);

8 lemma void join();

9 requires join(?t1, ?t2, ?t3) &*& token(t1) &*& token(t2);

10 ensures token(t3);

11

12 predicate no_op(place t1, place t2;);

13 lemma void no_op();

14 requires no_op(?t1, ?t2) &*& token(t1);

15 ensures token(t2);

16 @*/

Listing 3: The ghost operations from [8] and ghost procedures that imple-
ment them.

tually satisfied, which implies that:

1. Obligations are not kept forever – ensured by using a lifetime measure
that must decrease with each procedure call and loop iteration.

2. Obligations cannot be leaked – ensured by leak checks.

The property that some action will be eventually performed is a liveness
property. A liveness property can be converted into a correctness property
by specifying a moment in time until when something good must happen.
Therefore, it can be guaranteed that each obligation is eventually satisfied
by associating a lifetime measure with each obligation and ensuring with a
lifetime check that it always decreases. A measure can be any expression that
evaluates to a member of a well-founded set. In this report, we use natural
numbers for measures.

Listing 4 shows a Python procedure that recursively prints a sequence from
1 to n by using the built-in procedure print. Here Requires and Invariant

are special Nagini functions used to specify preconditions and invariants, re-
spectively. Nagini syntax is covered in detail in Section 3.1. MustTerminate
in the precondition indicates that a procedure takes an obligation to ter-
minate. The lifetime measure expression is provided as an argument to
MustTerminate. To guarantee that the obligation to terminate is eventually
satisfied we require that the measure decreases with each call level and
that it is always positive. For example, if print_seq had MustTerminate(n)

instead of MustTerminate(n+1), it would not be able to call print when
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2. Methodology

n == 1 because the measure would not be decreasing.

1 def print(value: int) -> None:

2 Requires(MustTerminate(1)) # An obligation to terminate.

3 # Implementation is assumed to be correct.

4

5 def print_seq(n: int) -> None:

6 Requires(n > 0)

7 Requires(MustTerminate(n+1)) # An obligation to terminate.

8 if n > 1:

9 print_seq(n - 1)

10 print(n)

Listing 4: A procedure that prints a sequence of integers from 1 to n.
MustTerminate in its precondition means that procedure takes an obligation
to terminate.

Loops are handled in a similar way to method calls: with each loop itera-
tion a measure must decrease. Note, however, that a lifetime measure men-
tioned in a loop invariant is independent of the lifetime measure of the same
obligation mentioned in a precondition or the invariant of a different loop.
Therefore, the procedure in Listing 5 can have MustTerminate(2) in its pre-
condition.

1 def print_seq(n: int) -> None:

2 Requires(n > 0)

3 Requires(MustTerminate(2))

4 i = 0

5 while i < n:

6 # Loop and method measures are not compared.

7 Invariant(MustTerminate(n-i))

8 i += 1

9 print(i)

Listing 5: A procedure that prints a sequence of integers from 1 to n (like
Listing 4), and which illustrates that loop and call measures are not com-
pared.

What we presented so far would not allow verifying the example shown
in Listing 6 because the lifetime measure of the MustRelease obligation is
not decreasing with each iteration. However, the loop body releases the lock,
thus allowing other threads to make progress. To account for cases like this,
the authors introduced a concept of a fresh obligation [2, 5]. A fresh obli-
gation is an obligation that was acquired in the current method execution

10
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or loop iteration. Fresh obligations are excepted from the lifetime checks,
and they can be used everywhere where bounded (non-fresh) obligations
are required. In Listing 6, after reacquiring a lock, a thread holds a fresh
MustRelease obligation, therefore, the check in the invariant succeeds and
the example can be successfully verified.

1 def watch(l: Lock) -> None:

2 Requires(MustRelease(l, 1))

3 while True:

4 Invariant(MustRelease(l, 1))

5 old_value = get_value(l)

6 l.release()

7 l.acquire()

8 new_value = get_value(l)

9 if old_value != new_value:

10 signal(l, old_value, new_value)

Listing 6: A simple watch dog implementation that calls a procedure signal

when the value guarded by lock l changes. To allow other threads to change
the value, it reacquires the lock in each loop iteration. Deadlock prevention
specifications were omitted.

As was already mentioned, it is guaranteed that obligations are not leaked
by performing leak checks. Leak checks can be grouped into two groups:

1. The leak checks that guarantee that a procedure / loop body either sat-
isfies or transfers all obligations it has. For procedures, the leak check
is performed after its postcondition was evaluated and all obligations
mentioned in the postcondition were removed from the current con-
text. Similarly, for loops, the leak check is performed after the loop
invariant was evaluated after the loop body.

2. The leak checks that guarantee that the caller of a procedure or the
procedure / loop body that contains a loop either transfers all obliga-
tions to the callee / loop, or is guaranteed to have a chance to satisfy
them because the callee / loop promises to terminate. For procedure
calls, the leak check is performed after the callee’s precondition was
evaluated and all obligations mentioned in the precondition were re-
moved from the current context. Similarly, for loops, the leak check is
performed after the loop invariant was evaluated before the loop.

Obligations are a mechanism to ensure that some action will be eventually
performed. The next section discusses how they can be used for ensuring
progress in the context of IO verification.
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2. Methodology

2.2 Verification of Input-Output in Non-Terminating
Processes

This section explains why the Petri net approach ([8]) cannot handle the
progress property and shows how obligations ([2]) can be used to improve
it.

As exemplified in Listing 7, the Petri net approach from [8] handles four out
of five properties we would like to verify:

IO credit: an implementation is allowed, but not obliged to perform output,
because it can perform no_op instead of perform_output_io (lines 12
and 13).

IO obligation: an implementation has to read all data from the socket be-
cause there is no alternative operation for read_all_io (line 11).

arbitrary order: an implementation can either first print the data, or send it
back to the client, because the operations are not ordered (lines 4-8).

strict order: an implementation has to send "hello" before data because
send_io with "hello" precedes the one with data (lines 5 and 6).

However, the presented approach cannot ensure the progress property. An
example that shows why progress is not guaranteed is given in Listing 8.
Both loops are indistinguishable and successfully verify, even though the left
one performs the desired IO and the right one does nothing. The following
subsections present how the Petri net approach can be extended with ideas
from [2] to also verify the progress property.

2.2.1 Combining Petri Nets with Obligations

The challenge in reasoning about progress of IO operations is that often the
IO operation’s termination depends on the environment. For example, the
procedure read in Listing 9 terminates only if a user provides input. write,
however, is not dependent on a user input and as a result it is safe to assume
that it always terminates. We would, therefore, like to verify that if read

terminates, then write is eventually called and it eventually terminates.

Our verification approach is an extension of the Petri net approach from [8]
and is based on the idea of splitting progress into two parts:

1. Operation invocation: verify that if there is a token at some place t,
then some IO operation, which has t in its preset, is eventually in-
voked.

2. Operation termination: keep track precisely of which IO operations
are guaranteed to terminate under which conditions.

12
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1 /*@

2 predicate perform_output_io(place t1, SOCKET *client_socket,

3 char *data; place t_end) =

4 split(t1, ?t2, ?t6) &*&

5 send_io(t2, client_socket, "hello", ?t3) &*&

6 send_io(t4, client_socket, data, ?t5) &*&

7 print_str_io(t6, data, ?t7) &*&

8 join(t5, t7, t_end);

9 predicate handle_client_io(place t_pre, SOCKET *client_socket;

10 place t_end) =

11 read_all_io(t_pre, client_socket, ?data, ?t2) &*&

12 perform_output_io(t2, client_socket, data, ?t3) &*&

13 no_op(t2, t3) &*&

14 close_io(t3, client_socket, t_end);

15 @*/

16 void handle_client(SOCKET *client_socket)

17 /*@ requires token(?t1) &*& client_socket != NULL &*&

18 handle_client_io(t1, client_socket, ?t_end)

19 @*/

20 //@ ensures token(t_end)

21 {

22 //@ open handle_client_io(t1, client_socket, t_end);

23 char *data = read_all(client_socket);

24 //@ open perform_output_io(_, _, _, _);

25 //@ split();

26 print_str("hello");

27 send(client_socket, data);

28 print_str(data);

29 //@ join();

30 close(client_socket);

31 //@ leak no_op(_, _);

32 }

Listing 7: The example that demonstrates the four properties that can be
verified with the Petri net approach ([8]).

These two parts together allow reasoning about procedure’s progress from
its top-level contract. The following subsections cover each part in more
detail.

2.2.2 Operation Invocation

A token leaves its place only when some Petri net transition is taken. There-
fore, the requirement that the token leaves its current place is equivalent to

13
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1 while true

2 /*@

3 invariant token(?t) &*&

4 loop(t, fp)

5 @*/

6 {

7 //@ open loop(t, fp)

8 write(fp, 1)

9 }

(a) Loop that writes 1 in each iteration.

1 while true

2 /*@

3 invariant token(?t) &*&

4 loop(t, fp)

5 @*/

6 {

7 // Do nothing.

8

9 }

(b) Loop that does nothing.

Listing 8: An example where approach from [8] does not guarantee progress.

1 void echo_number()

2 {

3 int x = read();

4 write(x);

5 }

Listing 9: A procedure that terminates only if a user provides input.

the requirement to invoke an IO operation (take a transition) that has the
token’s current place in its preset. If we make a token an obligation to leave
a place, then the methodology presented in [2] would ensure that the obliga-
tion is eventually satisfied and that some IO operation that has the token’s
current place in its preset is eventually invoked.

An alternative to making a token an obligation would be to have an obli-
gation to invoke an operation. Then, however, it is not clear how to model
the case shown in Figure 2.3 when we want to allow the implementation
to choose which operation to perform. Our approach handles this situation
trivially because invoking either operation would satisfy the obligation for
the token to leave its place.

Always requiring to make progress is sometimes too restrictive. For example,
Listing 10 shows a C program that checks if some other program always
terminates. Halting problem is undecidable, therefore, we cannot guarantee
that the program will eventually print the result if it successfully read the
input. However, we would like to be sure that it will eventually print the
result if the call to check_if_halts terminated. For this case we introduce a
credit token ctoken that can be used everywhere where an obligation token
token can be used but is not an obligation. However, we note that the term
“credit” could be misunderstood here: ctoken is a token that can be used
instead of the obligation token while a credit like MayReceive that is a dual
of the obligation cannot be used instead of an obligation. We, also, introduce

14
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t1 t2

do_io()

no_op()

Figure 2.3: A choice between do_io and no_op operations.

a new ghost IO operation gap that allows converting an obligation token into
a credit token as shown in Listing 10.

1 int main()

2 /*@ requires token(?t1, 2) &*&

3 read_program_io(t1, ?p, ?t2) &*& gap(t2, ?t3) &*&

4 write_int_io(t3, (halts(p) ? 1 : 0), ?t4)

5 ensures token(t4)

6 @*/

7 {

8 // At this point we have an obligation token.

9 program p = read_program();

10 //@ gap()

11 // At this point we have a credit token, no requirement

12 // to make progress.

13 result = check_if_halts(p);

14 if (result)

15 write_int(1)

16 else

17 write_int(0)

18 return 0;

19 }

Listing 10: A program that checks if a given program always halts.
token(?t1, 1) is an obligation token at place t1 with a lifetime measure
1.

2.2.3 Operation Termination

To keep track of which IO operations are terminating and which are not, we
require a programmer to annotate each IO operation with two attributes:

15
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1. A termination condition – a condition under which the IO operation
is guaranteed to terminate.

2. A termination measure – an integer expression (similar to an obliga-
tion’s call measure).

As was already mentioned, our approach is an extension of the Petri net
approach from [8]. As a result, we also have basic and non-basic IO oper-
ations. For basic IO operations we assume that the information provided
by a programmer is correct while for non-basic operations we perform well-
formedness checks that ensure that the termination condition implies that:

1. The termination measure is always positive.

2. The termination measure of each IO operation mentioned in the defi-
nition is strictly smaller than the termination measure of the enclosing
operation or the condition that guards that IO operation is equivalent
to false.

3. The termination condition of each IO operation mentioned in the defi-
nition is equivalent to true or the condition that guards that IO opera-
tion is equivalent to false.

4. The condition that guards each gap operation mentioned in the defini-
tion is equivalent to false.

The guarding condition here is the condition under which the IO operation
can be executed. For example, in Listing 11, the operation read_int_io can
be executed only if number < 0.

1 /*@

2 predicate terminating_io(place t_pre, int number; place t_post) =

3 write_int_io(t_pre, number, t_post) &*&

4 number < 0 ?

5 read_int_io(t_pre, ?value, ?t2) &*&

6 write_int_io(t2, value, t_post)

7 : true;

8 @*/

Listing 11: An example where an IO operation is guarded by a condition.

This check covers all three sources of non-termination:

1. Non-terminating basic IO operations: with a termination condition
check.

2. Infinite sequence of IO operations: with a termination measure checks.

3. Infinite computation, which is represented by the gap operation: with
the gap check.

16



2.2. Verification of Input-Output in Non-Terminating Processes

It is, therefore, guaranteed that if the execution context satisfies the IO oper-
ation’s termination condition, the IO operation is guaranteed to terminate,
assuming that the assumptions about basic IO operations and contracts of
the procedures that implement them are correct.

2.2.4 Summary

The presented methodology guarantees that:

1. If there is a token at some place, then some IO operation that has it in
its preset will be eventually invoked.

2. If the context satisfies the termination condition of the invoked opera-
tion, then the operation is guaranteed to eventually terminate.

Together they guarantee that if there is a path over a Petri net that terminates
under some condition b, then the procedure that implements it is guaranteed
to eventually reach the final place assuming that this condition b holds at
the procedure call time.

17





Chapter 3

Implementation

This chapter presents the implementation of the combined methodology for
verifying IO of non-terminating processes in Nagini, a Python front-end
for the Viper verification infrastructure [7]. The first section describes the
extensions to the Nagini contract language that are required to specify IO
behaviour and obligations. The next section covers the features of the Viper
intermediate verification language that are used in our methodology encod-
ing. Section 3.3 describes the encoding of IO operations, and the last section
covers the encoding of obligations.

3.1 Syntax

One of the goals of this project was to implement the methodology in Nagini,
a Python front-end for the Viper verification infrastructure. We, therefore,
had to extend the Nagini specification language to support obligations and
IO operations. Nagini currently supports a subset of the Python language,
which beside other things includes procedures, classes, single inheritance,
methods, and fields. Listing 12 shows a Python procedure that computes a
factorial. Preconditions, postconditions and loop invariants are defined by
calling the special functions Requires, Ensures, and Invariant. Ghost code,
such as unfolding a predicate, is written like regular Python code. Predi-
cates and pure functions are defined by using Python functions annotated
with the @Predicate and @Pure decorators, respectively. In order to verify a
Python program, Nagini encodes it into the Viper intermediate verification
language and invokes one of the Viper back-end verifiers.

The existing Nagini specification language had the following properties:

1. All contracts were specified in valid Python syntax.

2. All special constructs like Requires, Invariant and Implies were de-
fined in a Python library as regular Python functions and decorators.
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1 @Predicate

2 def valid(n: int) -> bool:

3 return n >= 1

4

5 @Pure

6 def fac(n: int) -> int:

7 Requires(n >= 1)

8 return n * fac(n-1) if n > 1 else 1

9

10 def factorial(n: int) -> int:

11 Requires(valid(n))

12 Ensures(valid(n) and Unfolding(valid(n), Result() == fac(n)))

13 Unfold(valid(n))

14 i = 1

15 res = 1

16 while i != n:

17 Invariant(i >= 1 and i <= n)

18 Invariant(res == fac(i))

19 i += 1

20 res *= i

21 Fold(valid(n))

22 return res

Listing 12: A Python procedure that computes a factorial. Specifications are
written in syntax supported by Nagini.

3. The verified program had to be well-typed in a nominal type system
based on PEP 4841. Nagini uses unmodified Mypy2 to type-check the
program and to infer all missing types.

We, therefore, aimed that the extended specification language preserves
these properties.

Listing 13 and Listing 14 show a small example that illustrates the final syn-
tax. Most elements have a straightforward syntax with the exception of the
IOExists construct that is explained in detail below. Listing 14 shows a veri-
fied implementation of the echo procedure that uses a library to perform IO.
The library code is not verified and in Listing 13 only the contracts are pro-
vided that are assumed to be correct (this is indicated by the @ContractOnly

decorator). IO operations are defined in a similar way to predicates: by using
a Python function annotated with the @IOOperation decorator. IO operation
input and output parameters are specified as Python function parameters.
The output parameters are distinguished from the input parameters by the

1https://www.python.org/dev/peps/pep-0484/
2http://mypy-lang.org/
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use of Result() as a default value. IO operation attributes can be specified
by using the functions Terminates and TerminationMeasure. The default
value for Terminates is False, and the default value for TerminationMeasure
is 1. The body of a non-basic IO operation (like echo_io in Listing 14) is pro-
vided as a single expression in the return statement. In order to access the
contents of a non-basic IO operation, it has to be opened, which can be done
by using the Open operation.

As mentioned before, a token in Nagini is an obligation. It, therefore, takes
a measure as an additional optional argument. Omitting the measure in-
dicates that the obligation is fresh. Another obligation type shown in the
example is the MustTerminate obligation. A MustTerminate obligation is
always bounded, therefore, the measure is a mandatory argument.

1 @IOOperation

2 def read_str_io(t1: Place, val: str = Result(),

3 t2: Place = Result()) -> bool:

4 Terminates(False)

5 @ContractOnly

6 def read_str(t1: Place) -> Tuple[Place, str]:

7 IOExists2(Place, str)(

8 lambda t2, val: (

9 Requires(token(t1, 1) and read_str_io(t1, val, t2)),

10 Ensures(token(t2) and Result()[0] == t2 and

11 Result()[1] is val)))

12 @IOOperation

13 def write_str_io(t1: Place, val: str, t2: Place = Result()) -> bool:

14 Terminates(True)

15 TerminationMeasure(1)

16 @ContractOnly

17 def write_str(t1: Place, val: str) -> Place:

18 IOExists1(Place)(

19 lambda t2: (

20 Requires(token(t1, 1) and write_str_io(t1, val, t2) and

21 MustTerminate(1)),

22 Ensures(token(t2) and Result() == t2)))

Listing 13: Unverified library (stubs) that are used in Listing 14.

The main problem with designing a syntax was finding a way to represent
Petri nets. The syntax used by VeriFast is intuitive; however, it uses the con-
struct ?x that serves two use cases in our context:

1. Existential matching of predicates: token(?t) means that there exists
a predicate token in the current heap and t is its argument.
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1 @IOOperation

2 def echo_io(t1: Place, t3: Place = Result()) -> bool:

3 Terminates(False)

4 return IOExists2(Place, str)(lambda t2, val:

5 read_str_io(t1, val, t2) and write_str_io(t2, val, t3))

6 def echo(t1: Place) -> Place:

7 IOExists1(Place)(

8 lambda t3: (

9 Requires(token(t1, 2) and echo_io(t1, t3)),

10 Ensures(token(t3) and Result() == t3)))

11 Open(echo_io(t1))

12 t2, value = read_str(t1)

13 t3 = write_str(t2, value)

14 return t3

Listing 14: A verified procedure echo that uses the library stubs shown in
Listing 13.

2. Getting IO operation’s result: no_op(t1, ?t2) means that t2 is the
output of the operation no_op.

Viper does not allow existentially matching predicates. Therefore, in Nagini,
a programmer has to provide concrete values as predicate arguments. As a
result, Nagini requires that all ghost arguments and results are also normal
arguments and results of the Python procedure. For example, instead of exis-
tentially matching t1 in the read_str procedure’s precondition in Listing 13,
t1 is a formal argument of the procedure.

Supporting ?x for getting IO operation’s result is more complicated because
?t2 in no_op(t1, ?t2) is essentially an assignment expression and Python
has only assignment statements. If Python had assignment expressions, we
could use them for getting an IO operation’s result as follows:

1 (t2 = no_op(t1))

Prof. Dr. Peter Müller proposed to use the trick shown in Listing 15. Here
t2 and value are existential variables. While the code shown in Listing 15
is valid Python syntax, Mypy fails to infer types of existential variables and,
as a result, does not perform the type checking. Moreover, Mypy does not
have syntax for specifying types of lambda function arguments. On the other
hand, it successfully infers argument types if the type of the whole lambda
is given, which includes argument and result types. We, therefore, used a
class shown in Listing 16 whose constructor __init__ takes a sequence of
types and whose __call__ method, which is called when object is called
as a function, takes a lambda that takes a sequence of arguments of the
provided types. This leads to the final syntax that is shown in Listing 17.
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This approach has two drawbacks:

1. We need to define a new class for each number of existential variables.

2. Existential variables are defined only within a lambda body, whereas
in VeriFast they can be used in the entire procedure. We, therefore,
introduced a ghost function GetGhostOutput that allows binding the
IO operation result to a variable as shown in Listing 18. This is needed
in cases where we need to preserve the place which we are trying to
reach in the loop invariant.

1 IOExists(

2 lambda value, t2: (

3 Requires(

4 read_int_io(t1, value, t2) and

5 write_int_io(t2, value, t3)),

6 )

7 )

Listing 15: An initial idea of IOExists.

1 class IOExists1(Generic[T1]):

2 """‘‘IOExists‘‘ for defining 1 IO existential variable."""

3

4 def __init__(

5 self,

6 t1: Type[T1]) -> None:

7 pass

8

9 def __call__(

10 self,

11 expr: Callable[[T1], Any]) -> bool:

12 pass

Listing 16: A definition of IOExists that allows defining one existential vari-
able. The method __init__ is a constructor, and the method __call__ is a
method that is called when a class instance is called as a function.

3.2 Viper

Viper is a verification infrastructure for permission-based reasoning [7]. It
consists of an intermediate verification language and two back-end verifiers.
One verifier is based on symbolic execution and uses Z3 from Microsoft Re-
search as a theorem prover. The other verifier verifies Viper programs by
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1 IOExists2(int, Place)(

2 lambda value, t2: (

3 Requires(

4 read_int_io(t1, value, t2) and

5 write_int_io(t2, value, t3)),

6 )

7 )

Listing 17: The final IOExists syntax.

1 def print_sequence(t1: Place, n: int) -> Place:

2 IOExists1(Place)(

3 lambda t2: (

4 Requires(

5 n > 0 and token(t1, 2) and

6 print_sequence_io(t1, n, t2) and MustTerminate(2)),

7 Ensures(

8 token(t2) and t2 == Result())))

9 t = t1

10 t2 = GetGhostOutput(print_sequence_io(t, n), ’t_post’) # type: Place

11 while n > 1:

12 Invariant(

13 token(t, 1) and print_sequence_io(t, n, t2) and

14 MustTerminate(n)

15 )

16 Open(print_sequence_io(t, n))

17 t = print_int(t, n)

18 n -= 1

19 Open(print_sequence_io(t, n))

20 t = print_int(t, 1)

21 return t

Listing 18: An example usage of GetGhostOutput. Variable t2 is assigned
the output value t_post of the operation print_sequence_io. Without this
the verifier would not be able to show that the place we reached in the loop
is the place we had to reach.

encoding them into Boogie, a verifier from Microsoft Research based on ver-
ification condition generation. Both back-end verifiers perform verification
in a method modular way. This section presents the Viper language features
that are later used for the implementation of the methodology. For a more
in depth description of Viper, we refer the reader to [7].

The Viper language is object based, however, it does not support classes.
Methods, pure functions, fields, predicates, and mathematical domains are
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top level language constructs. A method in the Viper language is essentially
an impure procedure: it is neither associated with a class or an object, nor
does it have an implicit parameter. Also, each object in Viper has all fields
defined in the program. However, a method or function is allowed to access
only the fields to which it has a permission. Permissions are explained in
more detail in the following subsection.

3.2.1 Permissions

As was already mentioned, Viper is a verification infrastructure for permission-
based reasoning. Therefore, permissions is a core concept in Viper and they
are used to address two problems:

1. Framing: if a method has an access permission to a memory location,
then it can be sure that the value stored in that location will not be
changed by other methods as long as it keeps the permission.

2. Data race freedom: a thread is allowed to write to a memory location
only if it has a full permission to it, and having a partial permission al-
lows reading the memory location. The underlying logic in Viper relies
on the property that the sum of all permissions to a memory location
is equal to at most one full permission. Therefore, it is guaranteed that
a thread can write to a memory location only when it has an exclusive
access to it, which implies the data race freedom.

As already mentioned, fields in Viper are defined globally and permissions
are used for denoting which fields can be accessed by using a reference. In
the example in Listing 19, two fields f and g are defined, both of type integer.
The method get_f has a parameter arg of the reference type and requires
access to its field f. The verifier guarantees that the program accesses only
the memory locations to which it has permission. As a result, the assignment
to the return value res2 on line 8 cannot be verified because the permission
to access arg.g is missing. For it to pass, one would have to add the assertion
acc(arg.g) to the precondition.

The assertion acc(arg.f) denotes a full permission to arg.f and is syntactic
sugar for acc(arg.f, write). A full permission gives write access to a field
while any positive amount of permission gives read access. Our encoding
uses only full permissions, therefore, we will not cover read permissions in
more detail.

3.2.2 Inhale and Exhale

inhale and exhale are two basic statements for manipulating permissions.
The following inhale statement:

inhale acc(x.f, p)
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1 field f: Int

2 field g: Int

3 method get_f(arg: Ref) returns (res1: Int, res2: Int)

4 requires acc(arg.f)

5 ensures acc(arg.f) && res1 == arg.f

6 {

7 res1 := arg.f

8 //res2 := arg.g // Verification error: might not have

9 // permission to access arg.g.

10 }

Listing 19: A simple getter method. The assignment to the result variable
res2 fails to verify because the method does not have a permission to access
field arg.g.

increases the currently held permission amount to x.f by the amount p.
Similarly, the exhale statement:

exhale acc(x.f, p)

checks that the current permission amount to x.f is at least p. If the check
fails, a verification error is reported. Otherwise, the current permission amount
to x.f is reduced by p. If after the exhale the context holds no permission
to x.f, all assumptions about the value stored in this memory location are
havocked. For pure assertions, inhale and exhale behave in the same way
as assume and assert, respectively. inhale and exhale statements are prim-
itive in the sense that they can be used to encode preconditions, postcondi-
tions, and loop invariants. For example, calling a method is equivalent to
exhaling its precondition and inhaling its postcondition.

Related to inhale and exhale statements is the inhale-exhale expression:

[inhale_part, exhale_part]

When an inhale-exhale expression is inhaled, only the inhale_part is in-
haled. Similarly, when it is exhaled, only the exhale_part is exhaled. The
inhale-exhale expression is, for example, useful for adding assertions to the
method precondition that should be checked on the caller side, but should
not be assumed on the method definition side.

3.2.3 Predicates

A predicate in Viper [7, 4] is a language construct that:

1. Allows abstracting over a concrete assertion like equality:

predicate Equal(x: Int, y: Int) { x == y }
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2. Allows writing recursive specifications of heap data structures such as
a linked list:

predicate ListNode(ref: Ref, tail: Seq[Int]) {

ref != null ==> (

acc(ref.value) && ref.value == tail[0] &&

acc(ref.next) && ListNode(ref.next, tail[1..]

)}

Similarly to VeriFast predicates, Viper predicates can be abstract:

predicate A(r: Ref, v: Int)

However, Viper does not have equivalents for VeriFast precise predicates that
can have output parameters and coinductive predicates that can be infinitely
recursive. An important property of Viper predicates is that we can have
more than a full permission to a predicate (which is not possible with fields).

In order to the get permissions and other assertions stored in the predi-
cate body, the predicate must be unfolded, which can be done by using the
unfold statement:

unfold acc(ListNode(x, Seq(3, 2, 1)))

To put permissions back into a predicate instance it can be folded by using
the fold statement:

fold acc(ListNode(x, Seq(3, 2, 1)))

The unfold statement is essentially an exhale of the predicate followed by
an inhale of its body, while fold is an exhale of the body followed by an
inhale of the predicate, except that the verifier does not perform havocking.

3.2.4 perm and forperm

The permission amount that is currently held to a field f can be retrieved by
using a perm expression:

permission_amount := perm(x.f)

An interesting property of the perm expression is that in an exhale it is evalu-
ated in a non-standard way. All pure expressions, except perm and forperm

(presented below), are evaluated in the heap before the exhale, while perm

and forperm are evaluated in the current heap. As a result, the following
exhale would verify in a context that has a full permission to x.f:

exhale perm(x.f) == write && acc(x.f) && perm(x.f) == none

Here write denotes a full permission and none denotes no permission.
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Another expression that allows reasoning about the currently held permis-
sion amount is forperm. It allows quantifying over all references that have
access to the specified field. For example, the following assertion:

assert forperm[f] r :: r.f > 0

checks that for all references r for which we have some positive permission
amount to the field f, r.f > 0 holds. In addition to fields, forperm also
supports predicates that take exactly one argument of type Ref.

3.2.5 Functions

Unlike methods, Viper functions are pure. That is, they have no side effects
and can be used in expressions. Viper functions can be:

1. Abstract:

function get_measure(r: Ref): Int

2. Concrete:

function add(x: Int, y: Int): Int { x + y }

3. As well as heap dependent:

function add(x: Ref, y: Ref): Int

requires acc(x.value) && acc(y.value)

ensures result == x.value + y.value

{ x.value + y.value }

3.2.6 Custom Domains

Viper has a built-in support for sequences, sets, and multisets. It also allows
declaring mathematical theories by using a domain construct. Listing 20
shows a domain that defines a new type Pair – a pair of references. The dec-
laration uses three uninterpreted functions, one constructor and two getters,
whose meaning is defined by two axioms.

3.3 IO Operation Encoding

This section explains how IO operation definitions and their uses are en-
coded in Viper.

As already mentioned, an IO operation in VeriFast is modeled by using a
precise predicate where the input places and the IO operation’s input pa-
rameters are the input parameters of the predicate, and the output places
together with the IO operation’s output parameters are the output parame-
ters of the predicate. Modeling IO operations with predicates has the benefit
that all bookkeeping is done automatically by the verifier. Viper predicates
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1 domain Pair {

2 function Pair$create(first: Ref, second: Ref): Pair

3 function Pair$first(pair: Pair): Ref

4 function Pair$second(pair: Pair): Ref

5 axiom Pair$create_first {

6 (forall f: Ref, s: Ref ::

7 Pair$first(Pair$create(f, s)) == f)

8 }

9 axiom Pair$create_second {

10 (forall f: Ref, s: Ref ::

11 Pair$second(Pair$create(f, s)) == s)

12 }

13 }

Listing 20: A custom domain that defines a pair of references.

are very similar to VeriFast ones, we, therefore, chose to also model IO opera-
tions by using them. However, Viper predicates, unlike VeriFast ones, cannot
have output parameters. This raises the question how to translate IOExists

shown in Listing 21, where t2 and data are existential variables that are
assigned the result values of the operation read_io.

1 def echo(t1: Place, t3: Place) -> None:

2 IOExists2(Place, str)(

3 lambda t2, data: (

4 Requires(read_io(t1, data, t2) and

5 write_io(t2, data, t3))

6 )

7 )

8 # Method body.

Listing 21: Example use of IOExists.

The authors of [4] investigated how VeriFast predicates can be encoded in
Chalice, a simple object oriented verification language, which also has a
Viper front-end. Chalice predicates, unlike Viper and VeriFast ones, support
only the implicit this parameter. The authors’ idea was to model the pa-
rameters of a VeriFast predicate with a heap dependent getter functions that
take the predicate in their precondition. In our encoding we use a slightly
simplified approach because Viper predicates, unlike Chalice ones, can have
input parameters. The following subsections provide a detailed description
of how we encode various constructs.
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3.3.1 IO Operation Definition

Listing 22 shows an example of a non-basic IO operation and Listing 23
shows its encoding in Viper. As can be seen in Listing 23, an IO operation
definition encoding has three parts:

1. An abstract predicate.

2. A getter function for each output parameter.

3. A method that performs the termination check (only for non-basic op-
erations).

Viper has no equivalent to VeriFast’s coinductive predicate and Viper pred-
icates have inductive semantics. As a result, we cannot use regular Viper
predicates to model non-basic IO operations and use unfold statement for
opening them. Therefore, we decided to encode non-basic IO operations as
bodyless predicates. Bodyless predicates cannot be unfolded, therefore, we
exhale the predicate corresponding to the IO operation and inhale IO oper-
ation’s contents. We will explain the reason why havoc does not cause any
problems later. As was mentioned before, Viper predicates do not support
output parameters (unlike VeriFast ones). Therefore, the emitted predicate
has only the input parameters of the IO operation, and output parameters
are modeled by using getter functions. Unlike in [4] where the authors are
translating arbitrary VeriFast predicates, in our case we do not need a get-
ter function to have a predicate in its precondition. The reason is that the
predicate denotes a permission to execute an IO operation once, and, as a
result, the IO operation can have only one result. The advantage of having
heap independent getters is that a predicate exhale does not havoc knowl-
edge about them. This is the reason why we can translate an IO operation
open as an exhale of the predicate and an inhale of its contents. In addition
to predicates and getter functions, for non-basic IO operations we also emit
a method that has an assertion for each termination check. For example, in
Listing 23 on line 6 we check that the termination condition implies that the
termination measure is positive.

3.3.2 IO Operation Use in a Contract

The translation of the IO operation use is the same as the translation de-
scribed in [4] of the VeriFast predicate use: we emit a predicate access and
equalities between all getters representing output parameters and actual re-
sult expressions. An example of an IO operation use encoding is shown in
Listing 24.
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1 @IOOperation

2 def read_write_io(

3 t_pre: Place,

4 number: int,

5 t_post: Place = Result(),

6 ) -> bool:

7 Terminates(number >= 0)

8 TerminationMeasure(2)

9 return IOExists2(Place, int)(

10 lambda t2, value: (

11 (

12 read_int_io(t_pre, value, t2)

13 if number < 0 else

14 (value == number and no_op_io(t_pre, t2)))

15 and write_int_io(t2, value, t_post)

16 )

17 )

Listing 22: A non-basic IO operation that writes the given number if it is
non-negative. Otherwise, it reads a number and writes it.

3.3.3 IOExists

As presented in Section 3.1, IOExists is a construct that allows defining
existential variables that can be used to link inputs and outputs of different
IO operations. One possibility to encode existential variables would be to
use exists expressions. These, however, have a poor support in SMT solvers.
We, therefore, decided to follow the VeriFast approach3 and make the first
use of the existential variable defining. More precisely, when translating an
occurrence of an existential variable we perform the following steps:

1. Check if we already know the variable’s definition. If yes, emit the
definition and stop.

2. If the variable is mentioned in a result position of an IO operation,
then remember the corresponding getter as its definition and stop.

3. If variable is mentioned on the left side of an equality, then set its
definition to the right side of the equality and stop.

4. Report an error that the used existential variable is undefined.

An example encoding of existential variables is shown in Listing 25.

3In VeriFast, unlike in Nagini, the defining use is indicated syntactically with a question
mark preceding the variable name. For example, in no_op(t1, ?t2), t2 is defined as no_op

output.
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1 predicate read_write_io(t_pre: Ref, number: Int)

2 function get__read_write_io__t_post(t_pre: Ref, number: Int): Ref

3 method read_write_io__termination_check(t_pre: Ref, number: Int)

4 {

5 // Termination measure must be positive.

6 assert (number >= 0) ==> (2 > 0)

7 // Termination condition of read_int_io.

8 assert ((number >= 0) && (number < 0)) ==> false

9 // Termination measure of read_int_io.

10 assert ((number >= 0) && (number < 0)) ==> (2 > 1)

11 // Termination condition of no_op_io.

12 assert ((number >= 0) && !(number < 0)) ==> true

13 // Termination measure of no_op_io.

14 assert ((number >= 0) && !(number < 0)) ==> (2 > 1)

15 // Termination condition of write_int_io.

16 assert (number >= 0) ==> true

17 // Termination measure of write_int_io.

18 assert (number >= 0) ==> (2 > 1)

19 }

Listing 23: An encoding of the definition of the IO operation from Listing 22.

1 def do_no_op(t1: Place, t2: Place) -> None:

2 Requires(no_op_io(t1, t2))

(a) A method contract that requires an operation that leads to a specific place.
1 method do_no_op(t1: Ref, t2: Ref)

2 requires acc(no_op_io(t1)) &&

3 get__no_op_io__t2(t1) == t2

4 {

5 }

(b) The do_no_op procedure translated into Viper. The argument in the output pa-
rameter position was replaced by an equality between the argument and getter.

Listing 24: Encoding of the IO operation use in the method precondition.
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1 def write_1_twice(t1: Place) -> Place:

2 IOExists3(Place, Place, int)(

3 lambda t2, t3, value: (

4 Requires(value == 1 and

5 write_io(t1, value, t2) and

6 write_io(t2, value, t3)),

7 Ensures(t3 == Result())))

(a) An example use of existential variables.
1 method write_1_twice(t1: Ref) returns (_res: Ref)

2 requires acc(write_io(t1, 1)) &&

3 acc(write_io(get__write_io__t2(t1, 1), 1))

4 ensures get__write_io__t2(get__write_io__t2(t1, 1), 1) == _res

(b) The write_1_twice method contract translated into Viper. The use of the exis-
tential variable value was replaced with its definition 1, and the uses of existential
variables t2 and t3 were replaced with defining getters.

Listing 25: Encoding of existential variables.
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3.4 Obligation Encoding

This section describes the main ideas of the obligation encoding in Chal-
ice2Viper [6], a Chalice front-end for the Viper verification infrastructure,
and explains the places where we chose a different encoding. For a more
detailed discussion on obligation encoding we refer the interested reader
to [6].

3.4.1 Modeling Obligations

We model obligations in the same way as described in [6, 29].

The authors of [6, 29] distinguish two types of obligations:

Boolean – we either have, or we do not have an obligation. An example
would be an obligation to release a lock (assuming that locks are not
reentrant). A boolean obligation is modeled by using permissions to a
special field where a full permission denotes having and no permission
denotes not having an obligation.

Numeric – we can have zero or more obligations. For example, we can have
more than one token at the same place. A numeric obligation is en-
coded by using permissions to a special predicate where the amount
of full permissions denotes the number of obligations.

The following table shows all three obligation types supported in Nagini
together with the Python syntax and the Viper field or predicate that is used
for modeling the obligation:

Type Nagini Obligation Viper Field / Predicate

Termination numeric MustTerminate(m) MustTerminate
IO numeric token(t, m) MustInvokeBounded

token(t) MustInvokeUnbounded
ctoken(t) MustInvokeCredit

Locks boolean MustRelease(l, m) MustReleaseBounded
MustRelease(l) MustReleaseUnbounded

Even though an obligation to terminate is boolean in nature, we model it as a
numeric one to simplify the encoding in the case where a procedure or loop
needs several termination measures that are used in different conditions. For
example, the procedure in Listing 26 terminates in no more than 5 if the pa-
rameter a is True, and in no more than 3 if the parameter b is True. As a
result, if both a and b are True, then the procedure would require more than
one full access to the MustTerminate predicate. We could model MustTermi-
nate as a field and add a check that guarantees that we do not inhale more
than one full permission, but we decided that it is nicer to omit the check.
Note, however, that even though the example for motivating a numeric type
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is taken from [6, 39], the underlying reason is different – in our case it is
motivated only by a nicer encoding. We use a different encoding for the
termination obligation because the one implemented in Chalice2Viper [6]
turned out to be unsound. Section 3.4.4 discusses the problem in detail and
explains the new encoding.

1 def potentially_terminating(a: bool, b: bool) -> None:

2 Requires(Implies(a, MustTerminate(5)))

3 Requires(Implies(b, MustTerminate(3)))

4 # Method body.

Listing 26: An example method from [6, 39] that requires more than one full
access to MustTerminate in its precondition.

3.4.2 Obligation Transfer

When one procedure calls another, or when we enter a loop, the obligations
mentioned in the called procedure precondition or the entered loop invari-
ant have to be transfered from one context to another. The encoding of the
obligation transfer (except of the termination obligation) is almost the same
as described in [6, 30]. The encoding used in Nagini is slightly simpler be-
cause we do not support obligation types that have a dual of credit. An
example of such an obligation would be an obligation to send a message
over a channel with a dual of a credit to receive over the channel. Note that
in this sense, the ctoken is not a dual of token.

As was mentioned in Section 3.2, inhale and exhale are primitives that can
be used to encode preconditions, postconditions and loop invariants. We,
therefore, explain the obligation transfer in terms of inhale and exhale. The
obligation inhale is encoded by simply inhaling a full permission to the field
or predicate that represents an obligation. This is true for all obligation types,
including the termination obligation.

We encode the exhale of a bounded obligation to release a lock as follows:

1. If we have a bounded obligation and the lifetime check succeeds, we
exhale it and stop. Note that sometimes the lifetime check is not per-
formed, for example, when we are exhaling a method postcondition.

2. We exhale an unbounded obligation. Note that if the context does not
have the unbounded obligation, then the exhale will fail, which will
result in a verification error.

The encoding of the transfer of the token is almost the same, but if the
second step fails, we do not report an error, but instead try to exhale a
credit token ctoken. Only if this step fails, we report a verification error. The
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presented exhale order ensures that at the beginning we try to give away the
obligations that have to be satisfied earlier. If the exhaled obligation (either
token or MustRelease) is fresh, we just skip the first step.

In Chalice2Viper [6] all obligation types, including the termination obliga-
tion, are encoded in a uniform way. In our case, the termination obligation
is treated in a special way: we encode the exhale of a MustTerminate as true,
which means that the exhale has no effect. Our MustTerminate encoding is
discussed in detail in Section 3.4.4.

The problem with encoding obligation inhale and exhale differently is that
contracts such as preconditions, postconditions, and loop invariants can be
both inhaled and exhaled. Therefore, as described in [6, 44], we use an inhale-
exhale expression – a Viper construct that allows specifying a different be-
haviour for inhale and exhale. Listing 27 shows the contract of a procedure
that takes an obligation to release a lock and returns it. Its simplified encod-
ing is shown in Listing 28.

In addition, we do not have to perform the lifetime check before entering a
loop, but we have to perform it after the loop body. We solve this problem by
introducing a local variable that is set to true before the loop and to false

at the end of the loop body [6, 48].

Unlike [6], we do support fresh obligations in method preconditions and
loop invariants. We, therefore, need to perform an additional step: convert
these fresh obligations to bounded ones. We do that by exhaling the field /
predicate corresponding to a fresh obligation and inhaling the bounded one
at the beginning of a method / loop body.

1 def must_release_example(l: Lock) -> None:

2 Requires(MustRelease(l, 1))

3 Ensures(MustRelease(l, 1))

Listing 27: The contract of the procedure that takes an obligation to release
a lock and returns it.

3.4.3 Lifetime

This subsection explains the incompleteness in the obligation lifetime encod-
ing from [6, 48] and presents an improved version.

Original Encoding Incompleteness

In the finite blocking encoding into Boogie that was presented in [2], the de-
fault lifetime measure of an obligation that is used when no concrete lifetime
measure is provided is >, a value that is larger than any concrete measure.
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1 method must_release_example(l: Ref)

2 requires [

3 acc(l.MustReleaseBounded),

4 (perm(l.MustReleaseBounded) > none && /* lifetime check for l */ ) ?

5 acc(l.MustReleaseBounded) : acc(l.MustReleaseUnbounded)]

6 ensures [

7 acc(l.MustReleaseBounded),

8 perm(l.MustReleaseBounded) > none ?

9 acc(l.MustReleaseBounded) : acc(l.MustReleaseUnbounded)]

Listing 28: A simplified encoding of the procedure’s must_release_example
contract from Listing 31 that shows only the parts relevant for the MustRe-
lease obligation transfer.

However, in the encoding implemented in Chalice2Viper that was presented
in [6, 48], the default lifetime measure is unknown because the lifetime is
modeled by using an uninterpreted function from a reference, to which an
obligation is attached, to a lifetime measure, which is not known unless ex-
plicitly specified. This has the consequence that a fresh obligation can be
converted into a bounded one only when a concrete measure is provided.
An example would be calling a procedure while holding a fresh obligation
as shown in Listing 29. However, not allowing to convert a fresh obligation
to a bounded one without an explicit measure prevents at least two impor-
tant use cases:

1. It is not possible to have fresh obligations in method preconditions and
loop invariants.

2. If an obligation was created in a procedure and bounded by a loop, it
cannot be transferred to a callee. An example is given in Listing 30.

Our new encoding fixes both issues.

1 def callee(l: Lock) -> None:

2 Requires(MustRelease(l, 1))

3 # ...

4 def caller() -> None:

5 l = Lock()

6 l.acquire() # We get a fresh obligation.

7 callee(l) # Fresh obligation is converted to a bounded

8 # one with measure 1.

Listing 29: An example where a fresh obligation is converted to a bounded
one with an explicit lifetime measure.
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1 def check(l: Lock) -> bool:

2 Requires(MustRelease(l, 1))

3 # ...

4 def await() -> None:

5 l = Lock()

6 l.acquire() # We get a fresh obligation.

7 while True:

8 Invariant(MustRelease(l, 1))

9 # Here the obligation is bounded, but it has only the loop

10 # measure. As a result, the following call fails with an

11 # error that the measure is not decreased.

12 b = check(l)

Listing 30: An example where a call fails because the call measure is un-
known.

New Encoding

One approach to keep track of lifetime measures would be to follow the en-
coding of finite blocking in Boogie presented in [2]. Boogie supports mutable
maps and the authors modeled lifetime by using a map from obligations to
lifetime measures. When verifying a procedure’s body, at first all values in
the map are initialized to >. Then, the precondition is evaluated and the
map is updated with the minimum of the measure specified in the obliga-
tion instance and the value currently stored in the map for that obligation.
When a procedure is called, it is checked that each obligation’s lifetime mea-
sure specified in the called procedure’s precondition is strictly smaller than
the one stored in the map for that obligation.

Viper supports user defined domains that can be used to axiomatize a map
from references to which obligations are attached to measures. However,
we would need to also axiomatize our own integers, or use a special value
to support >. We can avoid this by observing that in [2], the measure map
(either Pmethod, or Ploop) has > for all obligations, except for the bounded ones
that are explicitly mentioned in the method precondition / loop invariant.
We therefore can model > as an absence of a key in the map. Then, the check
if the measure of some obligation o decreased could be:

li f etime check(o, map) := o ∈ map.keys⇒ o.measure < map(o)

Here, o is an obligation mentioned in the contract and o.measure is its life-
time measure.

However, the problem with directly modeling the approach from [2] is per-
formance. We need to axiomatize a map that is mutable and always returns
the smallest value from all values that were assigned to the specific key. Such
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an axiomatization would involve many complex quantifiers that are likely
to cause performance problems. However, we can observe that the measure
map in [2] is initialized at the beginning of the method / loop body, and
never changed afterward. Therefore, instead of a map, we can have a local
variable, an immutable sequence, that contains all measures mentioned in
the contract, which is initialized at the beginning of the method / loop body.
Then, the lifetime check would be:

li f etime check(o, measures) :=
(∀m ∈ measures : (m.guard ∧m.obl == o)⇒ m.value > o.measure)

Here, measures is a sequence of all measures mentioned in the contract,
m.guard is a boolean expression that is true iff the obligation is going to
be inhaled / exhaled, m.obl is the obligation to which this measure belongs
to, and m.value is the actual value.

Viper has native support for sequences, but it does not support tuples. We,
therefore, use a custom domain to define a new type M that is a triple
< re f erence : Re f , guard : Bool, measure : Int > and use it as the type pa-
rameter for the measure sequence. Listing 32 shows a simplified encoding
of the procedure caller from Listing 31. In the method precondition, we
cannot access local variables, therefore, each procedure has an additional
ghost parameter _caller_measures that is the measure sequence of its caller.
This parameter is used only on the caller side to check if the measure has
decreased and is ignored on the method definition side. The method’s mea-
sure sequence is constructed by the front-end and stored in a local variable,
which is never modified afterward, as shown on line 10 in Listing 32. Storing
the sequence in a local variable that is never modified has the advantage that
its value can be read inside a loop body. This is not the case, for example,
for heap locations: to access the information stored in the field we would
have to add a permission to that field to the loop invariant. The measure
sequence used in a loop invariant is initialized in exactly the same way. The
only difference is that we use a different variable for each loop.

1 def callee(l: Lock) -> None:

2 Requires(MustRelease(l, 1))

3 l.release()

4 def caller(l: Lock) -> None:

5 Requires(MustRelease(l, 2))

6 callee(l)

Listing 31: An example call that takes an obligation.
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1 method caller(_caller_measures: Seq[M], l: Ref)

2 // ...

3 requires [/* ... */ ,

4 /* ... */

5 lifetime_check(_caller_measures, l, 2)

6 /* ... */ ]

7 // ...

8 {

9 var _method_measures: Seq[M]

10 _method_measures := Seq(M(l, true, 2))

11 callee(_method_measures, l)

12 }

Listing 32: A simplified encoding of procedure caller from Listing 31.

One interesting difference between our encoding and the one presented in [6,
48] is that in the former, all references can be aliases and the verifier needs to
be able to show that they are not aliases, while in the latter, possible aliasing
combinations have to be explicitly encoded.

3.4.4 The Termination Obligation and Leak Checks

This subsection explains the unsoundness of the termination obligation en-
coding from [6] and presents the fixed encoding together with the obligation
leak check encoding.

One consequence of modeling obligations as access permissions to either
fields or predicates is that we need to have a reference to which they be-
long. In Chalice2Viper, a termination obligation is associated with the this

reference. However, Python unlike Chalice allows procedures that are not
declared inside a class. We therefore cannot assume that we always have a
self reference, which is always bound and accessible by both the caller and
receiver. As a result, we decided to add an additional argument _cthread
– the reference to a current thread – to all procedures and methods, and
associate the termination obligation with it.

Unsoundness of the Original Encoding

The encoding of the termination obligation implemented in Chalice2Viper [6]
turned out to be unsound. Listing 33 shows an example that verifies, but
should not.

The problem is that the termination check is performed after the method’s
postcondition was inhaled. So, if the postcondition is false, then this check
succeeds.
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1 def non_terminating() -> None:

2 Ensures(False)

3 while True:

4 pass

5 def terminating_caller() -> None:

6 Requires(MustTerminate(2))

7 non_terminating()

Listing 33: An example illustrating the unsoundness in the termination obli-
gation encoding implemented in [6]. Procedure terminating_caller should
not verify because it has an obligation to terminate and calls a procedure that
does not promise to terminate. However, it verifies.

Promise to Terminate

As mentioned in Section 3.4.2, we only inhale permissions to MustTerminate,
but never exhale. We, therefore, use a different mechanism for detecting
if a method call / loop promised to terminate. The idea is to generate a
boolean expression that yields true iff the called method / loop promises to
terminate, that is, if there is at least one MustTerminate on the Python level
that should be exhaled in the current context. More precisely, we define the
termination condition as:

tcond := ∨ {guard(o) ∧ li f etime check(o) : o ∈ term obligations}

where:

guard(o) is a condition that needs to be true for the specific obligation in-
stance to be inhaled / exhaled (on the Python level);

li f etime check(o) is a lifetime check for the specific obligation instance;

term obligations is all MustTerminate mentions in the analysed method pre-
condition / loop invariant.

Here we implicitly assume that guarding conditions do not include elements
such as forperm and perm that can yield different values depending on their
location in the assertion. This assumption holds for all contracts currently
expressible in Nagini.

We also define a variation of the termination condition that ignores the life-
time check:

tcond ignore li f etime := ∨ {guard(o) : o ∈ term obligations}

In the following subsections, tcond and tcond ignore li f etime are used as
macros. That is, their uses are replaced with their definitions.
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Leak Check

We define the leak check for all obligations except termination in the same
way as [6, 40]:

λ1 := forperm [MustInvokeBounded] r1 :: false

λ2 := forperm [MustInvokeUnbounded] r2 :: false

λ3 := forperm [MustReleaseBounded] r3 :: false

λ4 := forperm [MustReleaseUnbounded] r4 :: false

λ = λ1 ∧ λ2 ∧ λ3 ∧ λ4

We also define a leak check for the termination obligation:

λt := perm(MustTerminate(_cthread)) == none

Here, we use perm instead of forperm because the termination obligation
can be associated only with _cthread, and perm should have a better perfor-
mance.

Method Encoding

We encode methods in almost the same way as described in [6, 45]:

1. We add a leak check at the end of the precondition that checks that
either the called procedure promises to terminate, or the caller has no
obligations left:

[true, tcond ∨ (λt ∧ λ)]

The check is wrapped in an inhale-exhale expression to make sure that
it only applies to the call site.

The main differences from the encoding described in [6, 45] are that
we also check for the leak of the termination obligation and have a
different way of checking if the method terminates.

2. We also add a leak check (identical to the one described in [6, 45]) at
the end of the postcondition that ensures that a method body does not
leak obligations:

[true, λ]

The method definition encoding is summarized in Listing 34. Unlike [6, 46],
we do not perform any special actions when translating a method call.

Loop Encoding

We encode loops in a similar way to [6, 47]:
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1 method m(_cthread: Ref, _caller_measures: Seq[M], /* ... */ )

2 requires /* Method precondition. */

3 requires [true, /* tcond ∨ (λt ∧ λ) */ ]

4 ensures /* Method postcondition. */

5 ensures [true, /* λ */ ]

6 {

7 // Method body.

8 }

Listing 34: Summary of the method definition encoding.

1. Similarly to the loop encoding in Chalice2Viper [6, 47], we save the cur-
rent amount of MustTerminate permission before the loop and restore
it after the loop. This is needed to prevent a loop from generating ter-
mination obligations. The problem is that after the loop, a loop invari-
ant is inhaled together with all obligations mentioned in it. Listing 35
shows a problematic example.

2. Just before the loop, we save the loop’s promise to terminate into a
local variable:

termination f lag := tcond ignore li f etime.

Using a local variable that is not assigned to inside a loop, has the
benefit that the variable’s value is known inside the loop.

3. Like in [6, 47], to distinguish if we are exhaling before the loop or after
the loop, we use a boolean local variable exhale_before_loop. We set
its value to true before the loop, and to false at the end of the loop
body.

4. At the end of the loop invariant (similarly to [6, 47]), we add two leak
checks:

a) One guarantees that either the loop promised to terminate, or that
the context does not have any obligations:

[true, exhale be f ore loop⇒
¬loop condition ∨ termination f lag ∨ (λt ∧ λ)]

b) The other guarantees that the loop body does not leak obligations:

[true,¬exhale be f ore loop⇒ λ]

Both leak checks are wrapped into inhale-exhale pairs to ensure that
they are only exhaled.
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5. At the end of the loop body, we add a check that the loop upholds its
promise to terminate:

termination f lag⇒ (tcond ∨ ¬loop condition)

The loop encoding is summarized in Listing 36.

1 def non_terminating() -> None:

2 b = True

3 while b:

4 Invariant(Implies(not b, MustTerminate(1)))

5 b = False

6 # If MustTerminate was not reset, the verification would

7 # fail because the following loop does not promise to

8 # terminate and we inhaled the obligation to terminate from

9 # the previous invariant.

10 while True:

11 pass

Listing 35: An example that illustrates why we need to reset the MustTermi-
nate obligation to its previous level.

1 org_amount := perm(MustTerminate(_cthread))

2 termination_flag := /* tcond ignore li f etime */

3 exhale_before_loop := true

4 while (b)

5 invariant /* Loop invariant. */

6 invariant [true,

7 exhale_before_loop ==>

8 !b || termination_flag || /* λt ∧ λ */ ]

9 invariant [true, !exhale_before_loop ==> /* λ */ ]

10 {

11 // Loop body.

12 exhale_before_loop := false

13 assert termination_flag ==> /* tcond */ || !b

14 }

15 exhale acc(MustTerminate(_cthread),

16 perm(MustTerminate(_cthread)) - org_amount)

Listing 36: Summary of the loop encoding.
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3.4.5 Acquire and Release

In Python, unlike in Chalice, acquire and release are not statements, but
method calls on the Lock object. We, therefore, translate them as normal
calls. The contracts that we attached to the acquire and release methods
are shown in Listing 37. The postcondition of the method acquire returns a
fresh MustRelease obligation, and the precondition of the method release

takes either a fresh, or a bounded MustRelease obligation. Like [6, 50], we
allow the precondition of release to have a non-positive measure 0, so that
releasing a lock is always possible. The specified contracts are assumed to
be correct – the bodies of acquire and release are not verified. Like [6, 50],
Nagini currently does not support deadlock prevention. Therefore, if some
thread tries to acquire a lock twice, it will deadlock. However, a possible
encoding of the deadlock prevention from [2] is described in Section 5.2.

1 class Lock:

2 def acquire() -> None:

3 Ensures(MustRelease(self))

4 def release() -> None:

5 Requires(MustRelease(self, 0))

Listing 37: Contracts of the acquire and release methods.
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Chapter 4

Evaluation

This chapter presents the evaluation of our work. The main goal of this
thesis was to create a methodology that allows verifying the IO behaviour
of non-terminating processes. We succeeded in creating such a methodol-
ogy and successfully verified all five properties of the motivational example
presented in Section 1.1 with Nagini. The following sections evaluates the
methodology and the implementation in Nagini in more detail.

4.1 Methodology

Our approach for verifying Input-Output of non-terminating programs is
a combination of the methodologies described in [2] and [8]. As a result,
it inherits all assumptions that are required for each of these techniques.
From [2, 20] it inherits the assumptions that:

1. The thread scheduler ensures strong fairness.

2. Locks are fair.

3. The number of threads is finite.

From [8] we get the assumptions that:

1. Basic IO specifications are correct.

2. The contract provided at the program’s entry point is not contradic-
tory.

Our combined approach does not require any additional assumptions, but
it has two interesting limitations:

1. It is not possible to verify IO properties without dealing with progress.
This is the case because token is an obligation to leave a place, which
must be eventually satisfied. As a result, once the implementation has
a token, it is forced to make progress and invoke an IO operation.
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2. The combined approach is not expressive enough to capture thread
communication via IO. As a result, it cannot ensure their progress.
All IO therefore must be modeled as communication with the envi-
ronment. This limitation in relevant neither for VeriFast, nor for Chal-
ice2Viper, because the former does not guarantee progress and the
latter does not support IO.

To summarize, with our methodology that combines finite-blocking with IO
it should be possible to verify:

1. All programs that can be verified with [2].

2. All programs that can be verified with [8] and for which it is possible
to ensure progress.

4.2 Implementation

This section evaluates the implementation of our approach in Nagini from
the perspectives of annotation convenience, completeness, and performance.

4.2.1 Syntax

The syntax for obligations used in Nagini is almost identical to the one
used in Chalice2Viper. The two main differences are different capitalization
(MustTerminate in Nagini and mustTerminate in Chalice2Viper) and that in
Nagini MustTerminate is a special function while in Chalice2Viper it is a
keyword.

On the other hand, the syntax used in Nagini for IO specifications is con-
siderably different from the one that is used in VeriFast. As was mentioned
in Section 3.1, the main reasons for this are that Python does not support
assignment expressions and that Viper does not allow existentially match-
ing predicates. Nagini, therefore, requires more verbose annotations. As can
be seen in Listing 39 and Listing 38, Nagini requires to use the IOExists1

construct to express that there exists such variable t2 that is the output of
the write_io operation while VeriFast supports the more elegant syntax ?t2.
Moreover, in Nagini, the input place is an explicit parameter of the proce-
dure while in VeriFast it is not required. However, the Nagini specifications
are valid Python code which can be type-checked by unmodified Mypy.

1 void write_int(FILE *fp, int number)

2 //@ requires token(?t1) &*& write_io(t1, fp, number, ?t2)

3 //@ ensures token(t2)

Listing 38: An example contract in VeriFast of a procedure that implements
a write operation.

48



4.2. Implementation

1 def write_int(fp: File, number: int, t1: Place) -> Place:

2 IOExists1(Place)(

3 lambda t2: (

4 Requires(

5 token(t1) and write_io(t1, fp, number, t2)

6 ),

7 Ensures(

8 token(t2) and t2 == Result()

9 )

10 )

11 )

Listing 39: An example contract in Nagini of a procedure that implements a
write operation.

4.2.2 Completeness

This subsection discusses the completeness of our IO verification methodol-
ogy implementation in Nagini. The implementation of both obligations and
IO works with all features supported by Nagini like while and for loops,
classes and behavioural subtyping, exceptions, and Viper level error transla-
tion back to Python level errors. There are, however, some inconveniences.
For example, it is a common pattern that the procedure that implements an
IO operation returns the reached place with a token to a caller. However, if
the procedure throws an exception, then the exception object must have the
reached place as its field. As a result, if the raised exception is not defined
by a user, it has to be wrapped as shown in Listing 40. Below follows a more
detailed comparison between each original implementation and Nagini.

Obligations: Chalice2Viper

To evaluate the completeness of the obligation encoding, we tried to encode
all Chalice2Viper [6] obligation tests to Nagini. We managed to successfully
transfer all Chalice2Viper termination and lock tests that do not use any
fork statements. We had to skip tests with fork statements because cur-
rently Nagini does not support any mechanism for creating threads.

As was mentioned in Subsection 3.4.4 and Subsection 3.4.3, the Chalice2Viper [6]
implementation has known soundness and completeness issues. We fixed all
of them, and we are not aware of any soundness or completeness issues in
the current obligation implementation.
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1 class OSErrorWrapper(Exception):

2 def __init__(self, exception: OSError, place: Place) -> None:

3 # ...

4 self.exception = exception # type: OSError

5 self.place = place # type: Place

6 def mkdir(t1: Place, path: str) -> Place:

7 IOExists2(Place, OSErrorWrapper)(

8 lambda t2, ex: (

9 Requires(

10 path is not None and

11 token(t1, 1) and

12 mkdir_io(t1, path, ex, t2) and

13 MustTerminate(1)

14 ),

15 Ensures(

16 token(t2) and

17 t2 == Result() and

18 ex is None

19 ),

20 Exsures(OSErrorWrapper,

21 ex == RaisedException() and

22 Acc(ex.place) and ex.place == t2 and token(t2) and

23 Acc(ex.exception) and

24 isinstance(ex.exception, OSError)

25 ),

26 )

27 )

28 #...

Listing 40: An example that shows why we need to wrap exceptions thrown
by procedures that perform IO. If the thrown exception does not have the
field place, the caller would not know in which place the token is and
would not be able to satisfy an obligation to move from that place.

IO: VeriFast

Similarly to the obligation implementation evaluation, we tried to encode
all examples from the examples/io folder of the VeriFast distribution1 into
Nagini. We omitted examples from the work-in-progress and template_method

folders from our comparison. Table 4.1 and Table 4.2 summarize the status of
the encoding. As can be seen from the tables, the 8 (out of 18) tests we failed
to encode are using VeriFast features not related to IO that are currently not

1Downloaded from https://people.cs.kuleuven.be/~bart.jacobs/verifast/

verifast-15.11-x64.tar.gz.
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4.2. Implementation

supported in Nagini.

Encoded Comment

buffering_in_library/putchar_with_buffer.c

Yes Additionally verified that the program terminates.
hello_world/hello_world.c

Yes Additionally verified that the program terminates.
matching_brackets/matching_brackets_checker.c

Yes Additionally verified that the program will make progress as
long as reading succeeds.

matching_brackets/matching_brackets_input.c

No Uses an unsupported feature: lemmas.
matching_brackets/matching_brackets_output.c

Yes Additionally verified that the program terminates.
never_ending_program/infinite_counter.c

Yes Additionally verified that the program will print numbers con-
tinuously.

never_ending_program/yes.c

Yes Additionally verified that the program will print “yes” contin-
uously.

output_anything/output_any_char.c

Yes The Nagini encoding uses a user defined IO operation instead
of BigStar. Additionally verified that the program terminates.

output_anything/output_any_string.c

No Uses an unsupported feature: lists.
read_files_of_file/read_files_of_file.c

No Uses an unsupported feature: lists.

Table 4.1: The list of VeriFast IO tests and the status of their encoding in
Nagini (Part 1).

4.2.3 Performance

This subsection describes how we evaluated the implementation’s perfor-
mance. We decided not to compare Nagini’s performance neither with Chal-
ice2Viper, nor with VeriFast. The reason is that most tests are verified in less
than 5 seconds and runtime state such as a cold or warm JVM can cause a
significant difference in verification time. We instead focused on comparing
different Nagini configurations with these goals in mind:

1. Measure the overhead of supporting obligations, which is important
to know because even methods that do not use obligations on the
Python level still can suffer from the performance degradation. This
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Encoded Comment

tee/tee_buffered_recursive.c

No Uses an unsupported feature: lists.
tee/tee_buffered_while.c

No Uses an unsupported feature: lists. However, this test was en-
coded manually into Viper.

tee/tee_out.c

Yes Additionally verified termination.
tee/tee_unbuffered.c

Yes Changed specification to not use lists. Additionally verified
that the program will make progress as long as reading suc-
ceeds.

turing_complete/turing_complete.c

No Uses an unsupported features: inductive data types, lists.
turing_complete/turing_complete_lowtech.c

No Uses an unsupported features: lists.
turing_complete/turing_complete_underspec_lowtech.c

No Uses an unsupported features: lists.
user_sets_contract/untrusted_implementation.c

Yes Implemented by using Python inheritance. Additionally veri-
fied that the program terminates.

Table 4.2: The list of VeriFast IO tests and the status of their encoding in
Nagini (Part 2).

can happen because code for handling termination and obligation leak
checks are always emitted. Moreover, such a performance test was not
performed as part of the obligations’ implementation in Chalice2Viper
[6].

2. Measure how well the new termination obligation encoding that fixes
an unsoundness performs compared to the one described in [6]. We do
not compare the old lifetime encoding with the new one because the
old one cannot handle most IO tests and we have not implemented it.

For experiments, we used the platform described in Table 4.3 and the con-
figurations shown in Table 4.4. The NO configuration uses the same code
as the NEW configuration, we just pass an additional flag to Nagini that
instructs to:

1. Remove all obligation related elements such as leak checks and lifetime
handling from the encoding.

2. Translate all uses of MustTerminate as true.

3. Translate all uses of token as uses of ctoken.
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Property Value

Processor Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz

Memory 16 GB

OS Ubuntu 16.04.1 LTS

Java OpenJDK 64-Bit 1.8.0_91

Mono 4.2.1

Z3 4.4.0

Boogie commit 56916c9d12f608dc580f4da03ef3dcbe35f42ef8

SE Project name: Silicon
Changeset: bf63c344c47a

VCG Project name: Carbon
Changeset: 63e01a20b4f5

Language Project name: Silver
Changeset: f49a3481e780

Table 4.3: Platform used for performance evaluation. SE is a Viper back-end
verifier based on symbolic execution, and VCG is a back-end verifier based
on verification condition generation.

ID Description Translation
Changeset

Contracts
Changeset

NO Disabled obligations. 9f6cb4449d2a 0c7917661ab2

OLD Implementation with termi-
nation handling from [6].

2bfd4df21cb3 0c7917661ab2

NEW The final obligation imple-
mentation with fixed termi-
nation handling.

9f6cb4449d2a 0c7917661ab2

Table 4.4: Three configurations used in the performance evaluation.

We conducted two experiments:

1. Run Nagini with each configuration on a subset of its test suite and
measure the overall running time.

2. Run Nagini with each configuration on a subset of its test suite and
measure the running time of each test. We used almost the same test
suite as in the first experiment, we just inserted four large tests at the
beginning of the test suite to warm up the JVM.

We used the tests from the changeset 9f6cb4449d2a, from which we omitted:

1. Translation tests because they do not test verification.

2. Obligation tests (folder obligations) because almost all of them would
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NO OLD NEW

Verifier T (s) σ (s) T (s) σ (s) S (%) T (s) σ (s) S (%)

SE 152 3.47 180 6.72 19 169 2.67 11
VCG 251 0.98 406 1.32 61 294 1.06 17

Table 4.5: Results of the first experiment: run time of the test suite with differ-
ent configurations. T – average run time in seconds, σ – standard deviation,
S – slowdown in percent compared to NO configuration.

fail with the NO configuration.

3. Tests that were failing in the OLD configuration (five in total) because
they relied on bug fixes that were made between the OLD and NEW
configurations.

We also modified four tests to work in all configurations. The final test set
had 83 tests. In both experiments we ran Nagini 10 times with each con-
figuration. For measuring time, we used a built-in feature of the py.test2

framework, which is used for testing Nagini.

Table 4.5 shows the results of the first experiment. As can be seen from the ta-
ble, obligations cause a moderate overhead with the back-end verifier based
on symbolic execution (SE). The slowdown with the OLD configuration is
19%, with NEW only 11%. However, the back-end verifier based on verifi-
cation condition generation (VCG) is more sensitive to obligations: with the
NEW configuration it has 17% overhead, and with OLD 61%. To sum up,
the performance decrease with the NEW configuration over the entire test
suite does not seem to be worrisome and is significantly better compared to
OLD configuration.

The second experiment results for SE verifier also do not show any potential
problems. Table 4.6 shows the five tests that experienced the largest slow-
down with the NEW configuration compared to the NO configuration when
using a SE back-end verifier. As expected from the first experiment results,
the NEW configuration performed slightly better than the OLD one. The
increase in verification time of these five tests can be explained by two rea-
sons. The test terminating.py, as its name indicates, tests termination and
uses MustTerminate a lot. It is, therefore, expected that such a test would
perform worse with enabled obligations. The other four tests contain many
small methods and, as a result, the additional obligation handling code con-
stitutes a larger proportion of the emitted code. This additional code there-
fore causes a more significant growth in verification time. Moreover, this
increase should be a constant factor per method and should not cause prob-

2http://docs.pytest.org/en/latest/
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NO OLD NEW

Test T (s) σ (s) T (s) σ (s) S (%) T (s) σ (s) S (%)

.../test_behavioural_subtyping.py

4.45 0.06 8.21 0.08 84 6.70 0.07 51
.../io/master/terminating.py

1.64 0.02 2.36 0.03 44 2.04 0.02 25
.../test_while.py

1.18 0.02 1.47 0.01 25 1.45 0.01 23
.../issues/00001.py

0.95 0.01 1.32 0.02 40 1.16 0.01 23
.../test_super.py

1.03 0.06 1.45 0.01 41 1.24 0.01 21

Table 4.6: Results of the second experiment with the Viper back-end verifier
based on symbolic execution: five tests that had the largest slowdown in
configuration NEW compared to configuration NO. T – average run time in
seconds, σ – standard deviation, S – slowdown in percent compared to NO
configuration.

lems for using Nagini with the SE back-end verifier for verification of larger
pieces of code.

However, the second experiment results reveal some performance problems
with the VCG back-end verifier. Similarly to Table 4.6, Table 4.7 shows the
five tests that had the largest slowdown when using the VCG back-end.
Unlike the SE verifiers’s five tests with the most significant performance
degradation, the VCG verifiers’s ones are the tests that have only a few, but
very large methods. Moreover, most tests were significantly slower with the
OLD configuration (the slowest test was almost 5 times slower with the
OLD than the with NEW configuration) that emits additional statements
for handling termination. It therefore seems that VCG verifier has problems
with handling methods that inhale and exhale permissions many times. This
is likely to be a problem for using Nagini with the VCG back-end verifier in
larger projects, even though, it performs significantly better with the NEW
configuration.

4.2.4 Conclusion

In this section, we evaluated the implementation of our methodology for
verifying IO of non-terminating processes in Nagini. We discovered several
issues, from which the most notable is that the verification condition genera-
tion (VCG) back-end verifier does not scale well with our encoding, despite
a significant performance improvement between the old and the fixed ter-
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NO OLD NEW

Test T (s) σ (s) T (s) σ (s) S (%) T (s) σ (s) S (%)

.../io/master/example1.py

5.04 0.05 70.92 1.35 1308 14.65 0.09 191
.../io/master/example1_fork.py

4.86 0.04 30.78 0.29 534 9.56 0.30 97
.../io/test_builtins.py

3.41 0.05 9.97 0.05 193 5.88 0.05 72
.../io/verifast/never_ending_program/infinite_counter.py

4.26 0.07 5.82 0.07 37 6.38 0.07 50
.../io/verifast/matching_brackets/matching_brackets_output.py

4.22 0.09 8.21 0.08 94 5.70 0.06 35

Table 4.7: Results of the second experiment with the Viper back-end veri-
fier based on verification condition generation: five tests that had the largest
slowdown in configuration NEW compared to configuration NO. T – aver-
age run time in seconds, σ – standard deviation, S – slowdown in percent
compared to NO configuration.

mination obligation encoding. We, nevertheless, believe that Nagini, as it
becomes more mature, could be used for verifying complex programs with
IO when used with the symbolic execution back-end verifier.

56



Chapter 5

Extensions

This chapter presents two extensions to the work on which our work is
based. The first one is an extension to the finite blocking technique [2] that
allows sending an obligation over a channel. If this extension was imple-
mented in Nagini, it would be possible to verify a common server imple-
mentation pattern where one listener thread accepts incoming connections
and forwards them to the pool of worker threads that handle them. The
second one is an extension to the encoding of finite blocking in Viper [6]
that describes how the technique that guarantees deadlock freedom can be
encoded into Viper. Implementing deadlock freedom in Nagini would allow
completely verifying the finite blocking property.

5.1 Obligation Channels

This section describes an extension to [2] that allows sending obligations
over a channel.

5.1.1 Motivation

A common pattern for writing servers is to have one listener thread that
accepts incoming connections and puts them into a queue from which they
are picked by worker threads. This allows having a larger throughput on
the server because several clients can be handled simultaneously. Listing 41
shows a variation of the echo server example (Listing 1), which we would
like to verify. The main problem here is how to transfer an obligation from
one thread to another in such a way that it is still guaranteed that the obli-
gation will eventually be satisfied.
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1 def main():

2 queue = ConcurrentQueue()

3 worker = Worker()

4 worker.start(queue)

5 listener = Listener()

6 listener.start(queue)

7 class Listener(Thread):

8 def run(self, queue):

9 server_socket = create_server_socket()

10 while True:

11 client_socket = server_socket.accept()

12 queue.put(client_socket)

13 class Worker(Thread):

14 def run(self, queue):

15 while True:

16 client_socket = queue.pop()

17 handle_client(client_socket)

Listing 41: A modified version of the echo server example from Listing 1,
where a client is handled in a separate thread. Here, handle_client is a
procedure that performs all required communication with a client.

5.1.2 Credit Channels

Chalice [5] has a channel construct (which we will call a credit channel) that
can be used for sending data from one thread to another. A credit channel
has an invariant which is exhaled on the sender side and inhaled on the re-
ceiver side, and which can contain pure assertions, permissions, and credits.
An example of a credit channel in possible Python syntax is shown in List-
ing 42. The channel transfers a reference to a data object with permission to
access its field x and guarantee that this field’s value is larger than five. The
channel type is defined by inheriting from the generic class Channel that
takes the type of the transfered object as a parameter. A channel invariant
can be specified by overriding a ghost method Invariant and providing the
actual invariant in the return statement. The receive operation blocks the
receiving thread until there is a message on the channel. To prevent dead-
locking, it is therefore required for the thread to have a credit to receive
from the channel, which means that some thread has an obligation to send
a message over that channel.

5.1.3 Obligations in Channel Invariants

A channel that allows obligations in its invariant could be used instead of the
queue in Listing 41. However, it is unsound to allow obligations in the credit

58



5.1. Obligation Channels

1 class Data:

2 def __init__(self) -> None:

3 Requires(MustTerminate(1))

4 Ensures(Acc(self.x))

5 self.x = 0 # type: int

6 class C(Channel[Data]):

7 def Invariant(self, value: Data) -> bool:

8 return Acc(value.x) and value.x > 5

9 def receiver(c: C) -> Data:

10 Requires(MayReceive(c, 1)) # 1 credit to receive from

11 # channel.

12 Ensures(Acc(Result().x) and Result().x > 5)

13 return c.receive()

14 def sender(c: C) -> None:

15 Requires(MustSend(c, 1, 1)) # 1 obligation to send over a

16 # channel.

17 d = Data()

18 d.x = 6

19 c.send(d)

20 def main() -> None:

21 c = C()

22 sender(c)

23 receiver(c)

Listing 42: A credit channel example in possible Python syntax.

channel invariants because there is no guarantee that any thread will ever
read from the channel. Therefore, there is no guarantee that an obligation
sent over a credit channel would be eventually satisfied. As a result, in order
to be able to send obligations over a channel, we must guarantee that some
thread will eventually read from it. However, requiring that some thread will
eventually send a message over a channel and that some thread will eventu-
ally read from it is in many cases too restrictive. For example, it would not
allow verifying our motivating example because server_socket.accept()

is not guaranteed to terminate. We, therefore, define a new type of channel:
an obligation channel that allows transferring obligations and has send as
a credit (MaySend) and receive as an obligation (MustReceive). As a result,
the method receive of the obligation channel, unlike the one of the credit
channel, is not guaranteed to terminate. The receiver must not, therefore,
have any obligations except the one to receive from the channel when it is
calling the receive method.

To allow a sound sending of obligations over the channel, it is not enough to
guarantee that a message is always received. We also need to make sure that

59



5. Extensions

the obligation lifetime cannot be interpreted as larger on the receiver side
than on the sender side, and that the obligation cannot be sent indefinitely,
otherwise it might never get satisfied. The problem with ensuring the former
is that the lifetime measures in different loops are not related. We therefore
only allow transferring fresh obligations. In order to guarantee the latter,
we associate each fresh obligation with a lifetime measure in the same way
as we do for bounded obligations. Then, each time the sender exhales the
channel invariant, we check that the measure decreases.

For simplicity, we use a boolean lifetime measure, which indicates if a fresh
obligation was already transfered, or not. However, one could use any well-
founded set as for the regular obligations’ lifetime. Of the three obligation
types supported by Nagini, only an obligation to leave a place can be trans-
fered to another thread, for which we encode the lifetime in Viper by re-
placing MustInvokeUnbounded with MustInvokeUnboundedTransferred and
MustInvokeUnboundedNotTransferred. To differentiate between the two on
the Python level, we allow passing NotTransfered() as a lifetime measure,
which would indicate that the obligation was not yet transfered. The default
value for an obligation measure would be fresh and transfered.

Listing 43 shows a modified version of the example from Listing 41 that
uses an obligation channel to transfer a client socket and an obligation to
handle it. The obligation channel is defined in a similar way to the credit
channel – by inheriting from the generic class ObligationChannel and by
providing a channel invariant in the body of the method Invariant. The
invariant is written from the receiver’s perspective; therefore, the obligation
token(value[0]) has a measure fresh and transfered and the invariant has a
MustReceive obligation. When the listener exhales the invariant (line 32 in
Listing 43), it exhales the token with a fresh and not-transfered lifetime mea-
sure (because the measure has to decrease) and inhales a MaySend obligation.

5.1.4 Conclusion and Future Work

This section presented a simple modification of Chalice channels that al-
lows transferring obligations between threads by dealing with all three cases
where an obligation that was sent over a channel might be never satisfied:

1. A MustReceive obligation guarantees that the message is going to be
eventually received.

2. Allowing to send only fresh obligations guarantees that the bounded
obligation lifetime cannot be interpreted as larger on the receiver side.

3. Associating each fresh obligation with a measure and checking that
each transfer decreases it prevents the obligation from being transfered
forever.
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Like Chalice, we also assume that the send operation always succeeds, which
implies that the execution environment has an infinite memory. Nagini does
not support threads yet, therefore, we checked our approach by manually
encoding the example in Listing 43 in Viper. An advantage of the presented
obligation channels is that it is possible to have multiple worker threads
that listen on the same channel because additional MaySend credits can
be leaked. The main limitation we are aware of is the requirement for the
transfered obligation to be fresh. Due to this requirement it is not possible
to transfer an obligation in a called method. We leave lifting this restriction
to future work.
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1 class EchoChannel(ObligationChannel[Tuple[Place, ClientSocket]]):

2 def Invariant(self, value: Tuple[Place, ClientSocket]) -> bool:

3 return (

4 token(value[0]) and # Default value for the

5 # lifetime measure is fresh

6 # and transfered.

7 handle_client_io(value[0], value[1]) and

8 MustReceive(self, count=1)

9 )

10 def main(t1: Place) -> None:

11 Requires(token(t1, 3) and listener_io(t1))

12 channel = EchoChannel()

13 worker = Worker()

14 worker.start(channel)

15 listener = Listener()

16 listener.start(channel)

17 class Listener(Thread):

18 def run(self, channel: EchoChannel):

19 Requires(

20 token(t1, 2) and listener_io(t1) and

21 MaySend(channel, count=1)

22 )

23 Open(listener_io(t1))

24 server_socket, t_loop = create_server_socket(t1)

25 while True:

26 Invariant(

27 token(t_loop, 1) and

28 listener_loop_io(t_loop, server_socket) and

29 MaySend(channel, count=1)

30 )

31 Open(listener_loop_io(t_loop, server_socket))

32 client_socket, t3 = accept(t_loop, server_socket)

33 t4, t_loop = Split(t3)

34 channel.send((t4, client_socket))

35 class Worker(Thread):

36 def run(self, channel: EchoChannel):

37 Requires(

38 MustReceive(channel, count=1, lifetime=1)

39 )

40 while True:

41 Invariant(MustReceive(channel, count=1, lifetime=1))

42 t1, client_socket = channel.receive()

43 handle_client(t1, client_socket)

Listing 43: An example from Listing 41 with obligation channels.
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5.2 Deadlock Freedom

The methodology for proving finite blocking that was presented in [2] is a
combination of two techniques: obligations ensure that a thread will eventu-
ally execute an unblocking operation and the global wait order guarantees
deadlock freedom. While [6] showed how to encode the former in Viper, it
did not show how to do it for the latter. This section, therefore, describes a
possible encoding of the global wait order from [2] in Viper.

5.2.1 Global Wait Order

[2, 6] introduced a global fixed strict partial order on obligations and used
it to establish a global order on threads. A global strict partial order on
threads together with the property that a thread can have an obligation to
unblock another thread only if that thread is below it in the order guarantees
deadlock freedom. A thread’s position in the global order is not fixed and is
equal to the “largest” obligation it holds.

Listing 44 shows an example that creates a lock at a specific position in the
order. We associate the order not with an obligation, but with a reference
with which the obligation is associated. This works as long as the same
reference cannot have two types of obligations associated with it (this is the
case with all obligations supported by Nagini). [2, 8] encodes the obligation’s
position in the global order by assigning a wait level to it, which is a value in
a dense lattice with a strict order and a bottom element. Similarly, we assign
a wait level to each reference, which can be referred to on the Python level
by calling a Level function. The function WaitLevel can be used to refer to
the thread’s wait level, which is the maximum level of all references that are
associated with obligations it has. When creating a lock, a programmer can
pass two optional parameters above and below that indicate that the new
lock’s level should be between above and below. Deadlocks are prevented
by requiring that an acquired lock’s level is strictly above the thread’s wait
level (WaitLevel() < Level(l)). This is not the case for the created lock,
therefore, the l.acquire() on line 13 would fail to verify.

5.2.2 Encoding in Viper

This subsection presents the encoding in Viper. The encoding of Level is
straightforward, we model it as an uninterpreted function from references
to rationals:

function Level(r: Ref): Rational

This allows us to compare levels of two locks by using the less than operator
on the Viper level:

Level(l1) < Level(l2)
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1 def create_lock_between(l1: Lock, l2: Lock) -> Lock:

2 Requires(

3 Level(l1) < Level(l2) and # l1 is below l2.

4 WaitLevel() < Level(l2) # l2 level is above any

5 # obligation this thread

6 # currently has.

7 )

8 Ensures(

9 Level(l1) < Level(Result()) and

10 Level(Result()) < Level(l2)

11 )

12 l = Lock(above=Level(l1), below=Level(l2))

13 # l.acquire() # should fail because it is not know if

14 # WaitLevel() < Level(l).

15 return l

Listing 44: A procedure that creates a lock, which is in the order between l1

and l2. The commented out statement l.acquire() on line 13 would fail to
verify because it is not known if created lock is above any obligation that is
currently held by a thread.

WaitLevel() < e in [2, 13] is encoded by using a levelBelow(Residue, ev)
macro, which can be translated into Viper as:

levelBelow(Residue, ev) :=
forperm [MustReleaseBounded] r1 :: Level(r1) < ev∧
forperm [MustReleaseUnbounded] r2 :: Level(r2) < ev∧
Residue < ev

Here:

1. Residue corresponds to the maximum level of all obligations that are
held by the current thread, but not in the current method execution or
loop iteration [2, 13].

2. ev is e translated into Viper.

The are two problems with using this levelBelow macro in method precon-
ditions and postconditions:

1. The macro has to be exhaled after all other expressions and inhaled
before them [2, 13]. The problem with inhale is that we cannot move
the macro to the beginning of the contract because ev would become
non-framed if it is heap-dependent.

2. For encoding Residue, [2, 13] used a fresh variable for each method
and loop body. We, however, cannot refer to local variables in method
preconditions and postconditions.
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1 def m(l: Lock) -> Lock:

2 Requires(WaitLevel() < Level(l))

3 Ensures(WaitLevel() < Level(Result))

4 return Lock()

Listing 45: The procedure whose first parameter is a lock above the wait
level and that returns a new lock, which is also above the wait level.

1 method m(l: Ref, methodResidue: Rational, callerResidue: Rational)

2 returns (_res: Ref, currentWaitLevel: Rational)

3 requires [methodResidue < Level(l), true]

4 requires [true, levelBelow(callerResidue, Level(l))]

5 ensures [levelBelowEqual(callerResidue, currentWaitLevel), true]

6 ensures [true, levelBelow(methodResidue, Level(_res))]

7 {

8 _res := new()

9 Lock__init__(_res, methodResidue)

10 }

Listing 46: Encoding of the procedure m from Listing 45.

Listing 45 contains an example procedure that uses the WaitLevel in its pre-
condition and postcondition. Its encoding is shown in Listing 46. We solve
the local variable problem on the method definition side by introducing a
ghost parameter methodResidue. This parameter is used only for encoding
the method body and a caller is, therefore, allowed to pass any value. On
the definition side, the precondition is inhaled and the postcondition is ex-
haled. We observe that the macro levelBelow(Residue, ev) when evaluated at
the beginning of the precondition is equivalent to Residue < ev because no
obligations have been inhaled yet. We, therefore, avoid the need to move
the WaitLevel() < e to the beginning of the inhale and encode it for the
method precondition inhale as:

[methodResidue < e_v, true]

When exhaling the postcondition, we have no problem of moving the
WaitLevel() < e to the end of the contract. We, therefore, encode it by
extracting the guard, a condition under which the WaitLevel() < e is go-
ing to be exhaled, and adding the following expression to the end of the
contract:

[true, guard ==> levelBelow(methodResidue, e_v)]

On the method call side, the precondition is exhaled and the postcon-
dition is inhaled. When the precondition is exhaled, the Residue in
the levelBelow(Residue, ev) macro refers to the residue level variable of
the enclosing context, which is either a loop or a method. We, there-
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fore, add a ghost parameter callerResidue to each method and encode
WaitLevel() < e in the same way as in the exhale of the method post-
condition, just by using callerResidue instead of the methodResidue. The
caller passes a residue level variable of the enclosing context, which is ei-
ther methodResidue or loopResidue (described later), as a callerResidue

argument. Note that methodResidue and callerResidue uses do not over-
lap. Therefore, it would be sufficient to have only one additional parameter.
However, we describe the encoding with two variables because it is clearer.

When the postcondition is inhaled on the call side, we might already have
some obligations. As a result, we cannot simplify the levelBelow(Residue, ev)
macro into Residue < ev. We note, however, that all assertions of the
form WaitLevel() < e in the postcondition are evaluated in the same
context [2, 14]. As a result, levelBelow will yield the same set of lower
bounds for all its uses in the postcondition. We can, therefore, encode
WaitLevel() < e as l < ev where l is the largest lower bound that can
be found by using a levelBelowEqual(Residue, l) macro that is identical to
the levelBelow(Residue, ev) macro, but uses ≤ instead of <:

levelBelowEqual(Residue, u) :=
forperm [MustReleaseBounded] r1 :: Level(r1) ≤ u∧
forperm [MustReleaseUnbounded] r2 :: Level(r2) ≤ u∧
Residue ≤ u

As was already mentioned, we cannot refer to a local variable in-
side a method postcondition. We, therefore, add a ghost return value
currentWaitLevel to each method and use it as l. More concretely, at the
beginning of the postcondition, we add this assertion:

[levelBelowEqual(callerResidue, currentWaitLevel), true]

and encode WaitLevel() < e as currentWaitLevel < ev.

1 l = Lock()

2 i = 0

3 while i < 5:

4 Invariant(WaitLevel() < Level(l))

5 l = Lock()

6 i += 1

Listing 47: The loop that creates a new lock above its wait level in each
iteration.

The encoding of WaitLevel() < e in loop invariants combines ideas from
both method definition and method call encodings. Listing 47 shows an
example loop, which has a WaitLevel() in its invariant. The encoding of
the loop is given in Listing 48. The main difference between the WaitLevel()
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1 l := new()

2 Lock__init__(l, methodResidue)

3 i := 0

4 exhale_before_loop := true

5 while (i < 5)

6 invariant [

7 levelBelowEqual(methodResidue, loopCurrentWaitLevel), true]

8 invariant exhale_before_loop ==>

9 [true, levelBelow(methodResidue, Level(l))]

10 invariant !exhale_before_loop ==>

11 [true, levelBelow(loopResidue, Level(l))]

12 {

13 inhale loopResidue < Level(l)

14 l := new()

15 Lock__init__(l, loopResidue)

16 i := i + 1

17 exhale_before_loop := false

18 }

19 inhale loopCurrentWaitLevel < Level(l)

Listing 48: Encoding of the loop from Listing 47.

encoding in method contracts and loop invariants is that we can use local
variables in loop invariants. We, therefore, define two variables for each loop:

1. loopResidue is used as the residue level variable of the loop body in
the same way as methodResidue is used in the method body.

2. loopCurrentWaitLevel is used for inhaling the loop invariant after
the loop in the same way as currentWaitLevel is used for inhaling
the method postcondition.

We encode the exhale of WaitLevel() < e before the loop and after the loop
body in the same way as for the method postcondition exhale. However,
instead of callerResidue in the exhale before the loop we use the residue
level variable of the context that encloses the loop, and in the exhale after
the loop body we use loopResidue. To differentiate between the two exhales
we reuse a boolean local variable exhale_before_loop (from Section 3.4.4)
that is set to true before the loop and to false at the end of the loop body.

When inhaling the loop invariant at the beginning of a loop body, we need to
use a different value for Residue than when we inhale it after the loop. Un-
fortunately, we cannot use the same trick for differentiating inhales, which
we use for differentiating exhales. We therefore take out expressions from in-
variants and put them into explicit inhale statements before the loop body
and immediately after the loop. Then, similarly to the method precondition
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inhale, we use loopResidue as an encoding for WaitLevel() in the inhale
before the loop body. For the inhale after the loop, we use the same trick as
for the method postcondition inhale by adding an assertion at the beginning
of the loop invariant:

[levelBelowEqual(contextResidue, loopCurrentWaitLevel), true]

where contextResidue is the residue level variable of the enclosing context.
Then, we use loopCurrentWaitLevel as an encoding of WaitLevel() in the
inhale statements after the loop.

5.2.3 Conclusion

We presented the possible encoding of the technique from [2] that guaran-
tees deadlock freedom. If this encoding were implemented in Nagini, then
Nagini would fully support finite blocking. However, due to lack of time,
we leave the implementation to future work.
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Chapter 6

Conclusion

Penninckx, Jacobs, and Piessens [8] presented a methodology for verify-
ing IO behaviour based on the idea to model IO operations as Petri net
transitions. However, the presented approach guarantees that a program
had performed the specified IO only if it terminated. In this report, we
showed how the work can be combined with a technique for ensuring fi-
nite blocking in non-terminating programs by Boström and Müller [2]. The
final methodology allows expressing and verifying all five properties men-
tioned in Section 1.1 that together allow reasoning about the IO behaviour
of non-terminating programs such as servers. We achieved this by making
the Petri net token an obligation to leave the place, which guarantees that
some IO operation will be eventually invoked, and explicitly tracking the
conditions under which each IO operation terminates, which makes it clear
which parts of the Petri net are guaranteed to make progress.

The combined methodology, in addition to non-terminating programs that
perform IO such as servers, can handle all programs that can be handled by
the combined methodologies under joined assumptions with only one ad-
ditional requirement: a programmer is forced to specify the progress guar-
antees. We implemented the methodology in Nagini, a Python front-end
for the Viper verification infrastructure [7]. Our implementation is based on
ideas from Meier work [6] on encoding obligations in Viper and from Jost
and Summers work [4] on encoding VeriFast predicates into Chalice. How-
ever, our obligations’ implementation is more expressive and has no known
soundness issues. Our methodology implementation works with all Python
constructs that are currently supported by Nagini. We evaluated it by trying
to encode all related tests from the Chalice2Viper [6] and VeriFast [8] test
suites. We successfully encoded all related tests from Chalice2Viper, and all
tests from VeriFast that we failed to encode use some VeriFast features not re-
lated to IO that currently have no equivalents in Nagini. We also successfully
verified the motivating example with all five properties from Section 1.1 and
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several other challenging examples. The performance evaluation revealed
that the implementation has performance problems with the back-end veri-
fier based on verification condition generation. However, the evaluation re-
sults of the back-end verifier based on symbolic execution look promising
and do not indicate any potential scalability issues. We, therefore, believe
that our work will be usable for verifying the SCION [1] implementation as
soon as Nagini becomes expressive enough to handle its code.

In addition, the report describes two extensions to the work on which our
methodology is based. The first one is obligation channels: a modification of
channels presented in [2] that allows to transfer obligations between threads.
The second one is an encoding of deadlock freedom verification from [2] into
Viper. Both extensions were only designed, but not implemented in Nagini
because of the lack of time.

6.1 Future Work

This section presents possible future work.

6.1.1 Well-Formedness Checks

Similarly to [8], we just assume that the information provided by a program-
mer about a basic IO operation behaviour, as well as the contract provided
at the program’s entry point, are correct. However, to make Nagini more
usable for programmers who are not experts in verification, it is desirable to
catch problems as early as possible.

One likely source of errors is the termination specification. Currently, the
termination of a basic IO operation is not linked to the termination of the
procedure that implements it. For example, it can happen that an IO op-
eration is marked as terminating, but the procedure implementing it does
not take a termination obligation, or vice-versa. If the procedure has only
a single IO operation in its precondition, then checking that termination
annotations are consistent is trivial. However, it is not clear how to ensure
termination consistency when the procedure takes an arbitrary Petri net in
its precondition.

Another likely source of errors is place comparison and reuse. Listing 49
shows a possible way to write an IO operation for reading an infinite se-
quence of integers. However, such a specification implies that all read_int_io
operations read the same integer because in our encoding (as well as in Ver-
iFast) IO operations have the semantics that their outputs are uniquely de-
termined by their inputs and all instances of the read_int_io operation get
the same t as input. In our encoding, such semantics is a result of encoding
IO operation output by getter functions that depend only on input param-
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eters. A possible solution would be to forbid reusing / comparing places
in certain situations, but it is not clear when doing so would not impede
completeness.

1 @IOOperation

2 def loop_io(t: Place) -> bool:

3 return IOExists1(int)(

4 lambda x: read_int_io(t, x, t) and loop_io(t)

5 )

Listing 49: An IO operation that denotes an infinite sequence of IO opera-
tions that read the same integer.

6.1.2 Contract Inference

Modular verifiers scale better than non-modular ones, but at the same time
they have a significantly larger annotation overhead. One possible way to
reduce the overhead for the programmer is to use contract inference. Viper
already has a component based on abstract interpretation for the contract in-
ference that can infer missing permissions. Moreover, we model obligations
by using permissions. The inference, therefore, might successfully infer the
missing permissions that represent obligations. However, the problem is that
the inference is not aware of the obligation semantics, and the inferred per-
missions would not be the correct encoding of the respective obligations.
For example, the inferred obligations would not have lifetime checks, which
is unsound. It would, therefore, be interesting to investigate if the existing
inference component could be used in Nagini, for example, by adding the
missing lifetime checks after the inference.

6.1.3 Reducing Ghost Code

Nagini, unlike VeriFast, requires that the procedure that implements an IO
operation takes the input place as an explicit argument and returns the out-
put place as an explicit return value as shown in Listing 50. As a result,
the caller has to use many ghost variables to link procedures together (List-
ing 51). However, often a procedure performs a sequence of operations (like
the one in Listing 51) where each subsequent operation takes its immedi-
ate predecesor’s return value as its input. In this case, it should be possible
to reduce the ghost code the programmer needs to write by automatically
chaining places. One posibility would be to introduce a Python level func-
tion LastPlace() that would refer to the last returned value of the type
Place and allow using this new function as a default value for procedure
parameters. As shown in Listing 52, this would also work nicely with Python
constructs such as with blocks that might perform some IO implicitly.
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1 def write_int(fp: File, number: int, t1: Place) -> Place:

2 IOExists1(Place)(

3 lambda t2: (

4 Requires(

5 token(t1, 1) and write_io(t1, fp, number, t2)

6 ),

7 Ensures(

8 token(t2) and t2 == Result()

9 )

10 )

11 )

12 # Body omitted.

Listing 50: A procedure that writes an integer into a file.

1 def main(t1: Place) -> Place:

2 IOExists4(Place, Place, Place, File)(

3 lambda t2, t3, t4, fp: (

4 Requires(

5 token(t1, 2) and

6 open_io(t1, ’test’, fp, t2) and

7 write_io(t2, fp, 5, t3) and

8 close_io(t3, fp, t4)

9 ),

10 Ensures(

11 token(t4) and t4 == Result()

12 )

13 )

14 )

15 fp, t2 = open(t1, ’test’)

16 t3 = write_int(fp, 5, t2)

17 t4 = close(fp, t3)

18 return t4

Listing 51: A procedure that writes an integer 5 to a file "test".

6.1.4 Verification of Protocols

In our work we assumed that the process that we are trying to verify commu-
nicates only with the environment. However, in the context of computer net-
works, one might want to verify the behaviour of several processes that com-
municate via the environment by using some protocol. Moreover, it would
be good to take into account a Dolev-Yao adversary [3] who has the capabil-
ity of blocking, reordering and creating messages. Our methodology has the
property that it is possible to reason about the implementation’s behaviour
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1 def open(path: str,

2 t1: Place = LastPlace()) -> Tuple[File, Place]:

3 # The procedure’s contract and body were omitted.

4 def write_int(fp: File, number: int,

5 t1: Place = LastPlace()) -> t2: Place:

6 # The procedure’s contract and body were omitted.

7 def close(fp: File, t1: Place = LastPlace()) -> Place:

8 # The procedure’s contract and body were omitted.

9 def main(t1: Place) -> Place:

10 IOExists4(Place, Place, Place, File)(

11 lambda t2, t3, t4, fp: (

12 Requires(

13 token(t1, 2) and

14 open_io(t1, ’test’, fp, t2) and

15 write_io(t2, fp, 5, t3) and

16 close_io(t3, fp, t4)

17 ),

18 Ensures(

19 token(t4) and t4 == Result()

20 )

21 )

22 )

23 with open(’test’) as (fp, _):

24 write_int(fp, 5)

25 return LastPlace() # Here LastPlace() refers to the place

26 # returned by close.

Listing 52: An example how LastPlace() can be used to get hold of the
place that was returned by an implicitly executed procedure close.

solely from the top level contract. Therefore, it should be possible to convert
each process’s Petri net into the role specification that can be used by a pro-
tocol verifier. In this way, it would be possible to verify the correctness of
the protocol and its implementation.

73





Bibliography

[1] David Barrera, Raphael M Reischuk, Pawel Szalachowski, and Adrian
Perrig. The scion internet architecture. 2016.

[2] P. Boström and P. Müller. Modular Verification of Finite Blocking in Non-
terminating Programs. In J. T. Boyland, editor, European Conference on
Object-Oriented Programming (ECOOP), volume 37 of LIPIcs, pages 639–
663. Schloss Dagstuhl, 2015.

[3] Danny Dolev and Andrew Yao. On the security of public key protocols.
IEEE Transactions on information theory, 29(2):198–208, 1983.

[4] D. Jost and A. J. Summers. An automatic encoding from verifast pred-
icates into implicit dynamic frames. In E. Cohen and A. Rybalchenko,
editors, Verified Software: Theories, Tools and Experiments (VSTTE), volume
8164 of Lecture Notes in Computer Science, pages 202–221. Springer, 2013.

[5] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and
locks. In A. D. Gordon, editor, European Symposium on Programming
(ESOP), volume 6012 of Lecture Notes in Computer Science, pages 407–426.
Springer-Verlag, 2010.

[6] Robert Meier. Verification of finite blocking in chalice. Master’s thesis,
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