
Verification of Information Flow
Security for Python Programs

Master Thesis

Severin Meier

September 14, 2018

Advisors: Prof. Dr. Peter Müller, Marco Eilers

Department of Computer Science, ETH Zürich

Abstract

Ensuring that no confidential data is leaked is a major concern in
the software industry. One way to guarantee this is to formally prove
that a program has secure information flow. This property can be ex-
pressed as noninterference, which requires relating two executions of
the program in order to prove it, making it a hyperproperty. Modu-
lar product programs provide a method to prove hyperproperties us-
ing off-the-shelf verifiers, however, their original definition is only for
a small language. In this thesis, we extend the definition of modu-
lar product programs to make it suitable for encoding a wide range
of object-oriented languages, as well as verification constructs such
as predicates and pure functions. We present encodings to prove the
absence of termination channels and a way to ensure that concurrent
programs cannot leak any secrets. In order to prove information flow
security of Python programs, we extend the specification language of
Nagini, a Python verifier, and provide an implementation of the en-
coding based on Nagini and the Viper verification infrastructure. The
resulting implementation can encode the same subset of Python pro-
grams that Nagini supports as modular product programs, and the
transformation does not impact completeness for almost all examples.
Our evaluation shows that it allows us to verify secure information
flow properties with a reasonably small overhead compared to stan-
dard Nagini verification.

i

Acknowledgements

I would like to thank my supervisor Marco Eilers for his invaluable
inputs and fruitful discussions throughout the project, as well as his
useful feedback. I would also like to thank Prof. Dr. Peter Müller and
his group for giving me the opportunity to work on this fascinating
topic. Last but not least, I want to thank my family for their endless
support.

ii

Contents

Contents iii

1 Introduction 1

2 Background 5
2.1 Hyperproperties . 5
2.2 Information Flow Security . 7
2.3 Modular Product Programs . 8
2.4 Viper and Nagini . 9

3 Modular Product Program Extensions 11
3.1 Return Statements . 12
3.2 Loops . 15
3.3 Exception Handling . 18
3.4 Dynamically Bound Calls . 21
3.5 Heap Memory . 24
3.6 Verification Constructs . 25

3.6.1 Pure Functions . 25
3.6.2 Predicates . 26

4 Secure Information Flow 31
4.1 Specifications . 31

4.1.1 Expressions . 31
4.1.2 Declassify Statement . 33
4.1.3 Method Decorators . 34

4.2 Obligations and Termination Channels 36
4.2.1 Obligations . 37
4.2.2 Termination Channels 39

4.3 Possibilistic Noninterference 42
4.3.1 Locks . 43

iii

Contents

4.3.2 fork/join . 44

5 Implementation 47
5.1 Existing Infrastructure . 47
5.2 Design . 48
5.3 Optimizations . 50

5.3.1 Control Flow Optimizations 50
5.3.2 Sequential Composition 51
5.3.3 Activation Variables . 52
5.3.4 Avoiding Duplicate Checks 52

6 Evaluation 53
6.1 SIF Verification . 53
6.2 Encoding Python Programs . 55
6.3 MPP Verification Performance 56

6.3.1 Performance Impact of MPPs in General 58
6.3.2 Performance Impact of Optimizations 59

7 Conclusion and Future Work 61
7.1 Conclusion . 61
7.2 Future Work . 62

A Extended MPP Encoding 63

Bibliography 71

iv

Chapter 1

Introduction

Writing correct software is challenging, especially with the high degree of
complexity that modern programs typically display. With software govern-
ing more and more parts of our lives, it is a serious concern that confidential
data might be leaked. Unfortunately, it happens fairly frequently that soft-
ware contains weaknesses, which can be exploited to gain access to this
secret data. It is therefore desirable to have mathematically rigorous proofs
that a program does not inadvertently reveal any of its secrets.

Information flow security, the program property expressing that no infor-
mation about secret data is revealed, addresses this issue. We can express
it as a noninterference property: If the program is executed multiple times
with the same public inputs, but potentially different secret values, the pub-
lic output should always be the same. If this is the case we know that the
secret values did not affect the public outputs and an observer cannot draw
any conclusions about the secrets. Since one has to relate multiple execu-
tions of the program to show this, noninterference is called a hyperproperty.

Figure 1.1 shows a motivating example of a program that does not ex-
hibit secure information flow, as it can leak secret information. The method
sum foo takes a list of integers as an input and sums up the values obtained
by calling a method foo on each element in the list. If that method raises
an exception, a message is printed to notify the user. This is a problem in
a situation where the values in the list are secret, and whether or not foo
raises an exception depends on its input. In that case, an observer can learn
information about the values from whether or not the message was printed.

Deductive program verification is the discipline of verifying programs
with respect to a specification supplied by the user. This can be automated
in verifiers that try to construct a formal proof that the program fulfills the
specification or raise an error if it does not. Such verifiers have developed
into a state where one can prove a wide variety of program properties effi-

1

1. Introduction

1 def sum_foo(l: List[int]) -> int:
2 f_sum = 0
3 try:
4 for element in l:
5 f_sum += foo(element)
6 except SomeException:
7 print("Error: foo raised exception")
8 finally:
9 return f_sum

Figure 1.1: Example program which might leak secrets (Python).

ciently, but hyperproperties remain a challenge, as most tools only reason
about single executions.

Barthe, D’Argenio and Rezk [5] proposed self-composition as a way to
be able to use these tools for the verification of hyperproperties, such as
secure information flow. The idea is to reduce the hyperproperty in the
source program to a normal trace property of a newly generated program.
A single execution of this generated program models multiple executions
of the source program. The same principle is applied in modular product
programs [12], which, unlike self-composition, also allow for modular veri-
fication of the generated program.

The goal of this thesis is modular verification of secure information flow
for Python programs using Nagini [11], a Python verifier based on the
Viper verification infrastructure [18]. We present a framework for providing
Python programs with relational specifications to prove secure information
flow, as well as the absence of termination channels and possibilistic nonin-
terference of concurrent programs. Reusing as much of the existing infras-
tructure as possible, we provide an implementation to encode the Python
programs and their specifications as modular product programs.

Modular product programs are only defined for a small language origi-
nally, which does not allow us to encode the range of programs we aim to
verify. The example in Figure 1.1 uses some more sophisticated language
constructs, such as try/catch/finally blocks, which are used frequently in
real world programs and should therefore be supported. To that effect, we
extend the definition of modular product programs by common language
constructs, such that it is suitable for encoding a wide range of object-
oriented programming languages. We also add support for predicates and
pure functions, which are verification constructs used for expressing specifi-
cations, to the modular product program encoding.

The contributions of this thesis are the following:

• We extend the definition of modular product programs to allow for

2

the verification of object-oriented programming languages.

• We define a modular product program encoding for predicates and
pure functions.

• We implement the modular product program encoding in the Viper
framework, in such a way that it remains independent of the source
language.

• We complement the Nagini specification language with contracts ex-
pressing secure information flow properties, including a convenient
way to specify defaults.

• We extend Nagini such that it can encode Python programs into mod-
ular product programs and verify secure information flow.

• We adapt the methodology for proving absence of termination chan-
nels presented in the MPP paper to work with our implementation,
and we provide a way to prove possibilistic noninterference for con-
current Python programs.

• We evaluate our implementation with respect to expressiveness and
completeness, as well as performance.

Chapter 2 provides the necessary background knowledge needed in this
thesis. In Chapter 3 we describe the extensions we made to modular prod-
uct programs. How we make use of them to prove secure information flow
security, as well as absence of termination channels and possibilistic nonin-
terference, is covered in Chapter 4. In Chapter 5 we document the implemen-
tation in Nagini and Viper, which we evaluate in Chapter 6. We conclude in
Chapter 7.

3

Chapter 2

Background

This chapter covers the required background knowledge of topics needed
in this thesis. We begin with some general notes about hyperproperties, in-
cluding some related work. Next we discuss noninterference and specifically
Information Flow Security, as the example of a hyperproperty we are going
to focus on in this thesis. We then give a summary of modular product pro-
grams, the basis for our extensions covered in Chapter 3. We also provide a
short overview of Viper and Nagini, the tools on which the implementation
of this project is based.

2.1 Hyperproperties

A hyperproperty is a program property which relates multiple executions. An
example of a 2-hyperproperty, a property relating two executions, would be
determinism. A program is deterministic, if running it twice with the same
inputs always gives the same output. A 3-hyperproperty is, for example,
transitivity, because proving it requires three executions to relate. In general
a k-hyperproperty is a program property relating k executions. Hyperprop-
erties can be expressed in specifications which relate multiple executions,
which is why they are called relational specifications, as opposed to unary
specifications, which only concern a single execution (e.g., functional specifi-
cations).

Proving hyperproperties of a program is challenging, since usually pro-
gram verifiers consider a single execution of a program, and aim to prove
functional specifications. One way to reason about hyperproperties is us-
ing relational program logics [6, 21, 23], but they are hard to automate and
require dedicated tools for verification.

Another way is self-composition [5], where one creates a new composite
program, which simulates running the source program multiple times. Fig-

5

2. Background

0 method m(x: Int) returns (res: Int)
1 relational x1 == x2 ==> m(x1) == m(x2)
2 {
3 res := x + 1
4 }
5

6 method wrapper(x1: Int , x2: Int)
7 /*self -composition of m, generated automatically */
8 {
9 var tmp1 := x1 + 1 // inlined m(x1)

10 var tmp2 := x2 + 1 // inlined m(x2)
11 assert x1 == x2 ==> tmp1 == tmp2
12 }

Figure 2.1: Example of relational specification and self-composition. Method m gets a relational
specification, wrapper shows the self-composition of m.

ure 2.1 shows an example how to prove determinism of a method m. We
relate two calls to m with the same input, i.e., we add the relational spec-
ification x1 == x2 ⇒ m(x1) == m(x2) to the specifications of m. To verify
this, we create a new wrapper method, where all the calls in the specification
are inlined, so in our example we have the body of m twice, first with input
x1 substituted for the argument, then with input x2. We can then use the
results of the inlined calls to assert the relational specification.

The advantage of this approach is that a standard program verifier can
be used to run the verification. The downside on the other hand is that
since all the code of the method is duplicated, verification becomes non-
modular, as there is no one place where a specification of a call that m makes
could be applied. If, for example, m calls another method g, which itself is
deterministic, it is not clear how to convey this information to the inlined m in
the wrapper, except to again inline the full body of g, because at the point in
the inlining of m where we call g, there are no two executions the specification
of g could relate. A way of making it modular would be to require exact
functional specifications, but in many cases this is not desirable, as we want
to allow for abstraction between code and specification. An example of a tool
which implements self-composition for a real-world programming language
is the Frama-C plugin RPP [7].

A third approach to verifying hyperproperties are product programs
[3, 4]. They use a similar idea of modelling multiple executions of the source
program in a new composite program, now called the product. In particular,
we will focus on modular product programs (or MPPs) [12], which we will
cover in more detail in Section 2.3. MPPs provide a modular way to ver-
ify programs with respect to hyperproperties, without requiring dedicated
tools; instead, they allow for using off-the-shelf tools for functional verifica-

6

2.2. Information Flow Security

0 method main(val: Int , secret: Int) returns (res: Int)
1 requires low(val)
2 ensures low(res) // must fail: res depends on secret
3 {
4 if (secret > 0) {
5 res := val + 1
6 } else {
7 res := val
8 }
9 }

Figure 2.2: Example program that leaks secret information. A secret input affects the result.

tion same as self-composition.

2.2 Information Flow Security

Information flow security (also secure information flow or SIF) is a program
property expressing that a program does not leak any secret information,
such as passwords or encryption keys. We can express this as a noninter-
ference property as follows: If we execute the program multiple times using
the same public inputs, but different secret values, the public outputs should
be the same each time. If that is the case we know that no secret informa-
tion can influence the public outputs, and therefore there is no leak. Since
noninterference relates two executions, it is a 2-hyperproperty.

For verification of secure information flow, we require specifications
which classify data into public and secret. We call public information low, as
opposed to secret information being high. With this we can formulate SIF as
follows: Let x(i) be the value of variable x in execution i, Lowin the set of all
low input variables and Lowout the set of low outputs. Now we have secure
information flow if (∀x ∈ Lowin.x(1) = x(2)) ⇒ (∀y ∈ Lowout.y(1) = y(2)).
In other words, this means that we have to prove that given the low inputs
are equal in both executions, the low outputs are equal in both executions.
Then we know that no high inputs had an effect on the low outputs, which
means that no information about them could have leaked. We will assume
that everything that is not explicitly specified to be low is high.

Figure 2.2 shows a small example program on which we try to verify
secure information flow. The method main takes two arguments, a public
val and a secret. We try to prove that the result res is low, which has to
fail, since it will differ depending on the value of secret being positive or
not. An observer, who would know the value val because it is public, could
see from the result of the method (also public) whether or not secret > 0,

7

2. Background

which is a leak of secret information. We will show in the next section how
to verify this code using modular product programs.

2.3 Modular Product Programs

In this section we provide a summary of modular product programs (or
MPPs) as presented originally [12]. As mentioned before, the general idea
of MPPs is to model multiple executions of the source program in a sin-
gle composite program. MPPs do this in such a way that every loop and
function call in the source program corresponds to one loop or call in the
product. This is desirable, as loops and calls come with their own speci-
fications, so when they are not duplicated there is exactly one point in the
product at which their relational specifications can be applied, making verifi-
cation modular and removing the limitations of self-composition mentioned
in Section 2.1

MPPs are defined such that they can relate k executions of a program for
arbitrary k, such that they enable us to prove k-safety hyperproperties. An
MPP creates k copies of all the variables of the source program, and adds
k activation variables. An activation variable is a Boolean variable represent-
ing whether or not a specific execution is active. For example, an assignment
statement in the source program is transformed to k conditional assignments
in the product, each one expressing that if execution i is active, the assign-
ment on the i-th version of the variables is executed. A conditional state-
ment is encoded as creating new versions of the activation variables, such
that each branch gets its own activation variable to be used in its encoding.
The value of the new variable is the value of the current activation variable
conjoined with the condition of the corresponding branch.

Figure 2.3 shows the MPP for k = 2 of the example in Figure 2.2. All in-
puts and outputs are duplicated, to have one version per modelled execution,
and we added two activation variables p1 and p2. The low specifications are
translated as mentioned above, the two versions of the low expression have
to be equal. Note that the relational specifications (such as low) are condi-
tional on both executions being active, as otherwise it would not make sense
to compare the values. As mentioned above, the if conditional is encoded as
new versions for the activation variables, for example, execution 1 is active
inside the then block (p1 t), iff it was active before reaching the if statement
(p1) and the condition is true (secret1 > 0).

We can now use a standard functional code verifier to try and verify this
code, and, as expected, it will report an error because it cannot prove the
postcondition. If we instead made the secret input public (by specifying it
as low), we could verify the example, since we would know both executions

8

2.4. Viper and Nagini

0 method main(p1: Bool , p2: Bool ,
1 val1: Int , val2: Int ,
2 secret1: Int , secret2: Int)
3 returns (res1: Int , res2: Int)
4 requires p1 && p1 ==> val1 == val2
5 ensures p1 && p1 ==> res1 == res2 // fails
6 {
7 p1_t := p1 && secret1 > 0
8 p2_t := p2 && secret2 > 0
9 p1_e := p1 && !(secret1 > 0)

10 p2_e := p2 && !(secret2 > 0)
11 if (p1_t) { res1 := val1 + 1 }
12 if (p2_t) { res2 := val2 + 1 }
13 if (p1_e) { res1 := val1 }
14 if (p2_e) { res2 := val2 }
15 }

Figure 2.3: Modular product program of the example in Figure 2.2.

always take the same branch of the conditional, and therefore the results can
be proven to be equal in both executions.

For the formal definition of the encoding, which we will extend in Chap-
ter 3, including loops and method calls, refer to the MPP paper [12].

2.4 Viper and Nagini

This section gives a quick overview of the Viper verification infrastructure
[18], as well as Nagini [11], a Python frontend for Viper.

Viper is a verification infrastructure based on modular deductive verifica-
tion and permission-based reasoning. The modular verification is based on
specifications such as pre- and postconditions for methods and loop invari-
ants. To reason about heap memory, Viper makes use of Implicit Dynamic
Frames [4], i.e., each location in memory is associated with a permission. A
method needs some positive permission amount to be able to read a mem-
ory location, or a full permission to modify it.

Viper defines its own intermediate verification language, called the Viper
language. Frontends can encode higher-level languages into the Viper lan-
guage, and Viper will use its backends for the verification. For the actual
verification Viper provides two backends, one based on verification condi-
tion generation and one based on symbolic execution. The former encodes
the Viper program into Boogie [15] for verification.

Viper supports verification constructs, such as predicates [19], an abstrac-
tion over assertions, and pure functions, which can be used in specifications.

9

2. Background

A predicate can be exchanged for its body by using fold and unfold state-
ments. Predicates can be defined recursively and need to be self-framing,
meaning that only heap accesses are allowed where the assertion carries the
permissions (e.g., acc(x.f) ==> x.f == 0 is fine, but x.f == 0 alone is not).
They provide an intuitive way of expressing abstraction, e.g., for modelling
abstract data types and objects, and can be transferred between methods via
pre- and postconditions. Pure functions in Viper can have pre- and postcon-
ditions and a body which has to be an expression. This means they can, for
example, contain calls to other functions or recursively call themselves, but
cannot contain loops. A pure function can therefore not modify the state and
is deterministic. If a function depends on the heap it needs to get all neces-
sary permissions in the precondition, and if the permissions are wrapped in
predicates, it needs to use an unfolding expression to access the predicates
body.

Nagini is a frontend for encoding Python programs to Viper. It requires
static type annotations on all method signatures, and enforces typing rules
before doing an encoding. It defines a specification language for writing
contracts in Python, which are used to verify functional correctness.

To manage Python’s dynamically bound calls, Nagini enforces behav-
ioral subtyping [17], meaning that an overriding method can only have
weaker preconditions and stronger postconditions. It enforces this by in-
troducing a new method for each overriding method, which has the specifi-
cation of the overridden method, and in its body calls the overriding method.
If this passes the verification we can be sure that behavioral subtyping is ad-
hered to. A dynamically bound call is then translated to a statically bound
call to the method of the static type of the receiver.

10

Chapter 3

Modular Product Program Extensions

In this chapter we discuss the extensions we made to the original defini-
tion of modular product programs [12]. The reason why we have to extend
MPP’s is that they were originally only defined for a very small language.
This language supports method calls, if statements, assignments and while
loops. Since our goal is to apply them to programs written in a subset of
Python programs, these will not suffice. Note, however, that this chapter is
not specific to Python programs, but a more general definition of the MPP
encoding, which should be suitable for many common object-oriented lan-
guages. The challenge in extending the MPP definition are statements that
influence the program’s control flow. This is non-trivial and needs special
handling in the MPP. In particular the extensions we made concern the fol-
lowing features:

Return statements The challenge in encoding return statements is that they
are jumps, which do not mix well with interleaved executions. We discuss
how to encode the control flow in Section 3.1.

Loops The original definition of MPPs already defines an encoding for
while loops, however, we will have to adapt it to support more complex
control flow, i.e., return statements in the loop, break and continue, as
well as raising of exceptions. We consider only while loops, since for
loops can be rewritten as while loops quite easily. The encoding of loops
and related control flow is defined in Section 3.2.

Exceptions We define an encoding for raising exceptions, as well as try/
catch blocks in Section 3.3.

Dynamically bound calls Dynamic method binding introduces some chal-
lenges for the MPP, as a call can reference different implementations in
different executions. We discuss how we handle these in Section 3.4.

Verification Constructs We add support for pure functions and predicates
in Section 3.6.

For all of these extensions we adhere to two principles:

11

3. Modular Product Program Extensions

• We do not rely on any additional specifications from the user which
would not make sense on the source program level. This means we
only require the functional specifications and the relational ones, e.g.,
specifying which values are low. The user should not be asked for
additional information, for example under which conditions we break
out of a loop.

• The encoding is not required to produce an operationally equivalent
program, rather is is enough that the product produces the same veri-
fication result.

In Section 3.5 we show how we deal with fields of objects, which is not
an extension but rather making explicit how the original implementation of
MPPs handles these.

Even though we are mostly interested in secure information flow, a 2-
relational property, we define the encoding for an arbitrary number of ex-
ecutions, so that k-relational properties can be verified. In the subsequent
chapters we will only consider the special case of k = 2.

There are some adjustments we made to the original encoding which
do not merit their own section in this chapter. These adjustments mostly
address the new way we encode control flow. The complete extended MPP
encoding can be found in Appendix A.

3.1 Return Statements

The obvious way to encode a return statement is to assign the result vari-
able, followed by a goto to the very end of the method body. Unfortunately,
in an MPP this cannot work, as we have two interleaved executions which
are simulated in one, such that if one simulated execution jumps, the simu-
lation skips the other execution as well. This means we could not express
a situation where only one of the simulated executions returns. For this
reason, we will not use any goto’s in the encoding.

Another idea would be that after assigning to the result variable, we
assert the postcondition, followed by an assume false. The idea here is
that after the return statement the postcondition has to hold, and with the
assume false we ensure that the trace which returned is ignored afterwards.
The problem with this is that it will not work for relational postconditions
where the control flow is not low. For example consider the code in Fig-
ure 3.1.

We expect this example to verify since we always get the same result, but
in the encoding of line 4 we cannot prove that the result values are equal in
both executions. In the product we could have that, e.g., secret(1) is true,
but not secret(2), in which case res(2) is not yet defined at that point. Using

12

3.1. Return Statements

0 method test(secret: Bool) returns (res: Int)
1 ensures low(res)
2 {
3 if (secret) {
4 return 1
5 } else {
6 return 1
7 }
8 }

Figure 3.1: Return example.

this approach would in this case report an error, which means we would
introduce an incompleteness in the encoding. We only have all the necessary
information after considering all possible ways the method can return a
result. Another reason why this approach does not work is that a return
can happen inside a try/finally statement, such that we have to consider
what happens in the finally block before asserting the postcondition.

Therefore, we introduce Boolean control variables to model the control
flow. There are several reasons why a program execution could not reach
a certain point in the program, namely because it already returned, it skips
a section after a break or continue statement, or because an exception was
raised and not yet caught. For each of these reasons we introduce a set of
variables, one per execution, representing whether or not the corresponding
execution skips a part of the program for this reason. We set them to false at
the beginning of the method body, which gives us the new encoding of a
procedure, shown in Figure 3.2.

The
⊙

symbol represents sequential composition, x(i) is the renamed
version of variable x from the source program for execution i, where the
new name must not clash with any other name in the product. JsKp̊

k denotes
the MPP of statement s for k executions, with p̊ being the activation variables.
We use e̊ as an abbreviation of e(1), . . . , e(k). f resh(x1, x2, . . .) denotes that
the variable names x1, x2, . . . are fresh, meaning they have not been used
before and do not occur in the program.

Note that unlike the original definition we only support methods with
two return values, namely a result and an error. The result variable is
used for the method’s returned value, the error variable will hold any ex-
ceptions raised by the method.

We only execute statements of an execution if all of its control variables
are false. This means that where in the original encoding we used the
activation variables as guards for executing statements, we now use the ac-
tivation variables conjoined with the negations of all its control variables.

13

3. Modular Product Program Extensions

Jprocedure m(x1, . . . , xm) returns (result, error){s}Kk

= procedure m(p(1), . . . , p(k), args) returns (rets){⊙k
i=1 ret

(i):= false; // true iff returned⊙k
i=1 break

(i):= false; // true iff after break⊙k
i=1 cont

(i):= false; // true iff after continue⊙k
i=1 except

(i):= false; // true iff uncaught exception⊙k
i=1 error

(i):= null; // store exception

JsKp̊
k

}
where

f resh(˚ret) ∧ f resh(˚break) ∧ f resh(˚cont) ∧ f resh(˚except)∧
f resh(˚error)

args = x1
(1), . . . , x1(k), . . . , xm(1), . . . , xm(k)

rets = result(1), . . . , result(k), error(1), . . . , error(k)

Figure 3.2: Procedure encoding.

Jx:=eKp̊
k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
x(i):=e(i)

}
Jreturn zKp̊

k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
result(i):=z(i);

ret(i):=true

}

Figure 3.3: Encoding of assignments and return statements.

The return statement is encoded as an assignment to the method’s result
variable, plus setting the ret flag to true. The new encoding of assignments
and return statements is shown in Figure 3.3.

The introduction of control flow variables also has an impact on the
encoding of specifications. In the MPP paper the encoding of specifications

14

3.2. Loops

0 i := 0
1 sum := 0
2 while (true)
3 invariant sum <= x
4 {
5 sum := sum + i
6 if (sum > x) {
7 return sum
8 }
9 i := i + 1

10 }

Figure 3.4: Loop with return statement.

is denoted as bac p̊
k , where a is the assertion to be encoded and p̊ represents

all the activation variables. The activation variables are used to ensure that
an assertion is only relevant when the corresponding execution is active. In
our case what we want to express for assertions in the method body is that
they are relevant when the execution is active and all the control flow flags
are false. To make the distinction clearer we will denote the encoding of
specifications as bac ˚act

k , which is the same encoding but makes more explicit
that act are not just the activation variables but can be any expression. In
particular in pre- and postconditions, where the control flow flags are not
defined, we will encode assertions with act(i) = p(i), but in the method body
we will use act(i) = p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i).

3.2 Loops

We consider a verification methodology where a loop is handled such that
outside the loop only the invariants are known, not the loop body. The loop
body is only relevant for proving the invariants. Additionally, we assume
that all the loop targets, the locations that get assigned to in the loop, get
havoced. This means that after a loop we lose all information about modified
locations, and we only learn the invariants and the negation of the loop
condition.

The original MPP encoding defines how to encode while loops, however,
there it is assumed that a loop can only be exited when the loop condition is
false. We can no longer make this assumption, as the fact that we can have
return statements, breaks, and exceptions means that we can in principle
exit the loop at any point. As a consequence, we cannot assume that the
loop condition is false immediately after the loop, and the loop invariant
might be violated.

Figure 3.4 shows an example illustrating these problems. In a loop we

15

3. Modular Product Program Extensions

increment the sum variable until it is larger than some value x. After the loop
the loop condition will still be true, and the invariant will not hold. We still
expect to be able to verify this code, because the invariant has to hold at the
end of each iteration which is the case here, since when sum is greater than x
we return and, therefore, do not reach the end of this iteration. Additionally,
we expect to be able to prove the postcondition that sum is greater than x.

The desired behavior is difficult to encode using just the control flow vari-
ables, but fortunately, as mentioned at the beginning of the chapter, we do
not need to get an equivalent program, rather it is enough to have one with
equivalent verification result. The idea is that we treat the traces which exit
the loop normally, meaning via the loop condition being false, separately
from those traces which exit the loop via return, break or an exception. The
former traces are covered in the while loop, with modified loop condition
and invariants, as explained in the following paragraphs. The latter traces
will be treated in what we call the loop reconstruction. The idea here is that
after the loop we artificially reconstruct the verification state as it was before
reaching the loop, then execute the loop body once to collect information for
all traces. At the end of the reconstruction we remove all the traces which
did actually exit the loop normally, using an inhale statement.

To inhale an assertion a means to assume that it holds, as well as gaining
all the permissions of any heap access expressions in a. If a does not contain
any heap accesses inhale a is the same as assume a. The counterpart to
inhaling is exhaling an assertion a, which means to assert that a holds and all
permissions a contains are held, followed by removing all these permissions.
Exhaling a pure assertion is the same as an assert.

We conjoin the loop condition with the negation of the ret, break and
except control variables, since these three represent a way we could exit the
loop. This way the verifier does not know that the original loop condition is
false after exiting the loop.

Since we have to allow the invariant to be violated in case that we exit
the loop before the end of an iteration, we encode it such that it is condi-
tional on the control flow flags not being set. As a consequence, we lose
all information for traces which exit the loop other than via the condition
being false (e.g., via returning, where one flag will be set). To learn what
happened for these traces, we later add the loop reconstruction.

The complete loop encoding is shown in Figure 3.5. Before the loop we
create a pair of variables called bypass, which encode whether an execu-
tion will not execute the loop. In that case we would lose all information
about variables which are assigned inside the loop body as they get havoced.
To keep that information we add invariants that those variables remain un-
changed if the loop is bypassed. Note that this includes control variables
which get assigned in the loop.

16

3.2. Loops

Jwhile (c) invariant inv do {s}Kp̊
k

=
⊙k

i=1 bypass
(i):=¬p(i) ∨ ret(i) ∨ break(i) ∨ cont(i) ∨ except(i);⊙k

i=1(if (bypass(i)) then {⊙t∈Targets tmpt
(i):=t};⊙k

i=1 {oldret(i):=ret(i); oldbreak(i):=break(i);

oldcont(i):=cont(i); oldexcept(i):=except(i); }
while (

∨k
i=1(p

(i) ∧ ¬bypass(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ∧ c(i)))

invariant binvc
˚

p(i)∧¬ret(i)∧¬break(i)∧¬except(i)
k

invariant
∧k

i=1(
⊙

t∈Targets bypass
(i) ⇒ tmpt

(i) = t)

do {⊙k
i=1 cont

(i):=false;⊙k
i=1 p1

(i):=p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ∧ c(i);

JsKp̊1
k⊙k

i=1 inhale ¬p(i) ∨ (¬ret(i) ∧ ¬break(i) ∧ ¬except(i))
}
if (

∨k
i=1(¬bypass(i) ∧ (ret(i) ∨ break(i) ∨ except(i)))) then {⊙k
i=1 {ret(i):=oldret(i); break(i):=oldbreak(i);

cont(i):=oldcont(i); except(i):=oldexcept(i); }
inhale

∧k
i=1(p

(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ⇒ inv(i))

inhale
∧k

i=1(p
(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ⇒ c(i))⊙k

i=1 cont
(i):=false;⊙k

i=1 p1
(i):=p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ∧ c(i);

JsKp̊1
k ;⊙k

i=1 inhale ¬p1(i) ∨ ret(i) ∨ break(i) ∨ except(i)

}⊙k
i=1 if (¬bypass(i)) then {break(i):=false; cont(i):=false}

where

Targets are all variables assigned to in loop (including control flow flags),

f resh(p̊1) ∧ f resh(˚bypass) ∧ ∀t ∈ Targets. f resh(˚tmpt)

Figure 3.5: Encoding of loops.

17

3. Modular Product Program Extensions

We conjoin the loop condition with the negation of the bypass variable
and all the control flow variables, except the one for continue. This one is
special in the sense that it is the only one which can be set inside the loop
without causing the execution to exit the loop. This is also why we set it to
false at the beginning of the loop body.

After the loop we add the loop reconstruction. It is wrapped in a condi-
tional statement, since we only have to do a reconstruction for those traces
where the loop was not bypassed and which exited the loop other than via
the loop condition being false. To get into the same verification state from
before reaching the loop, we first set the control flow variables to the values
they had there. If, for example, an execution returned before reaching the
loop, then we set the ret flag of this execution to true here and thus, as
expected, nothing is executed in the reconstruction. Alternatively, if an exe-
cution returned inside the loop body, we set the corresponding ret flag to
false (we know the old value to be false, otherwise it could not have returned
in the loop body), so that in the reconstruction the statements preceding the
return are executed. Finally, if it did not return at all, we also set the ret
flag to false and execute the loop body in the reconstruction as expected.

We then inhale all the loop invariants and add the loop body once more.
After the body we inhale that some control flow flag is set, to remove all
those traces which did exit the loop normally (we already have all the infor-
mation for those from the loop invariants).

In the last line we reset the break and continue control variables, in case
the loop was not bypassed. If it was bypassed, maybe because this is a
nested loop and the outer one already hit a break or continue, we have to
leave them as they are, since in this case this loop was not executed and
thus we could not have changed the flags. If it was not bypassed on the
other hand, we set them to false, because if they are true at this point, it
means they were set in this loop (if they were true before we would have
bypassed the loop) and the execution is no longer inactive after the loop. We
do this for these two variables only here, because their effect is local to the
loop, whereas, for example, a return statement will affect control flow on
the method level.

The encoding of break and continue is now straightforward (see Fig-
ure 3.6). In both cases it is simply an assignment to the corresponding
control flow variable.

3.3 Exception Handling

In this section we add an encoding for raising exceptions, as well as try/
catch/finally blocks, two features which are absent in the original encoding,
but very important for real programming languages.

18

3.3. Exception Handling

JbreakKp̊
k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
break(i):=true

}
JcontinueKp̊

k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
cont(i):=true

}

Figure 3.6: Encoding of break and continue statements.

Jraise eKp̊
k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
error(i):= new ();

inhale typeof(error(i)) = typeof(e)

except(i):=true

}

Figure 3.7: Encoding of raise statements.

Figure 3.7 shows the encoding of a raise statement. It is very similar
to the encoding of return statements, except that instead of assigning the
result variable we assign to the error variable, and instead of setting the ret
flag we set the except flag. Additionally we have to remember the type
of the error variable to be the type of the exception raised. We do this by
inhaling the type, using a helper function typeof that maps references to
types. We can then use the same function in the catch blocks to match the
error variable against caught exception types.

The try/catch statement encoding is shown in Figure 3.8. We support
try/catch blocks with any number of except clauses, as well as an else and
a finally block. The else block—as supported by Python—is executed iff
there was no exception raised inside the try block.

Similar to the while loop we first define bypass variables, to express that
the whole block is skipped by an execution. We then save the values of the
control flow flags, which we will need later for the finally block. After the
encoded try body, we store into new thisexcept variables whether or not

19

3. Modular Product Program Extensions

Jtry {s} except e1 : {s1} . . . except em : {sm} else:{se} finally:{s f }K
p̊
k

=
⊙k

i=1 bypass
(i):=¬p(i) ∨ ret(i) ∨ break(i) ∨ cont(i) ∨ except(i);⊙k

i=1 {oldret(i):=ret(i); oldbreak(i):=break(i);

oldcont(i):=cont(i); oldexcept(i):=except(i); }
JsKp̊

k ;⊙k
i=1 thisexcept1

(i):=except(i) ∧ ¬bypass(i)⊙k
i=1 p1

(i):=p(i) ∧ thisexcept(i) ∧ issubtype(typeof(error(i)), e1);⊙k
i=1 if (p1

(i)) then {except(i):=false};
Js1K

p̊1
k ;

. . .⊙k
i=1 pm

(i):=p(i) ∧ thisexcept(i) ∧ issubtype(typeof(error(i)), em);⊙k
i=1 if (pm

(i)) then {except(i):=false};
JsmKp̊m

k⊙k
i=1 pm + 1

(i):=p(i) ∧ ¬thisexcept(i);
JseK

˚pm+1
k⊙k

i=1 if (p(i)) then {
tmpret

(i) := ret(i); ret(i) := oldret(i);

tmpbreak
(i) := break(i); break(i) := oldbreak(i);

tmpcont
(i) := cont(i); cont(i) := oldcont(i);

tmpexcept
(i) := except(i); except(i) := oldexcept(i);

}
Js f K

p̊
k ;⊙k

i=1 if (p(i)) then {
ret(i) := ret(i) ∨ tmpret

(i);

break(i) := break(i) ∨ tmpbreak
(i);

cont(i) := cont(i) ∨ tmpcont
(i);

except(i) := except(i) ∨ tmpexcept
(i);

}
where

∀i ∈ [1, m + 1]. f resh(pi)∧
∀x ∈ { ˚bypass, ˚oldret, ˚oldbreak, ˚oldcont, ˚oldexcept

˚tmpret, ˚tmpbreak, ˚tmpcont, ˚tmpexcept}. f resh(x)

Figure 3.8: Encoding of try/except/else/finally blocks.

20

3.4. Dynamically Bound Calls

there is an uncaught exception which happened inside this try block. For
every exception handler h we then add a sequence of statements:

• We create a new activation variable ph
(i), which expresses whether we

execute this handler or not. This is the case iff execution i is active,
there is an uncaught exception from this try block and the type of the
error which was raised is a subtype of the error handler h accepts.

The reason we have to use a thisexcept variable, instead of just rely-
ing on the except flag, is that it is possible that a handler i raises an
exception of a type which handler j, where j > i, would catch. In that
case we do not want to execute handler j, because of the semantics
of try/catch statements. For checking if the handler accepts the error
type, we use an issubtype function.

• We set the except flag to false, because at that moment there no longer
is an uncaught exception around. We have to do this before we execute
the handler, because the encoding of the handler will again use the
same flags, so if we leave it true the handler will not do anything. Also,
this way we have the flag available for raising an exception inside the
handler.

• We encode the handler using the activation variables ph
(i).

After the handlers we add the else block. It is encoded using new acti-
vation variables pm+1

(i), which express that the execution is active and there
was no exception inside the try body.

The finally block is special, since it gets executed whenever the try/
catch statement was not completely bypassed, no matter what happened in
the try block, the handlers or the else block. If, however, the execution was
inactive before the try/catch statement, such that we never entered it, the
finally block will not be executed. We can encode this by setting the values
of the control flow variables to what they were before the statement. After
the finally block, we then disjoin the control flow flags with what they were
before the finally and assign this disjunction to the flags. This way they will
be set if, e.g., a return happened in the try block or a handler or the finally
block.

3.4 Dynamically Bound Calls

In this section we discuss the issue of dealing with dynamically bound calls.
As a fundamental feature of many object-oriented languages, we need to
support this. We will require programs to adhere to behavioral subtyping,
meaning that an overriding method can only have weaker preconditions
and stronger postconditions than the overridden method. This property
can be verified as follows: For every method Sub::foo which overrides a

21

3. Modular Product Program Extensions

1 class A:
2 def foo(self) -> int:
3 Requires(LowEvent ())
4 Ensures(Low(Result ()))
5 print("A")
6 return 0
7

8 class B(A):
9 def foo(self) -> int:

10 """ Overrides A::foo. """
11 Requires(LowEvent ())
12 Ensures(Low(Result ()))
13 print("B")
14 return 1
15

16 def test(secret: bool) -> None:
17 Requires(LowEvent ())
18 if secret:
19 a = A()
20 else:
21 a = B()
22 x = a.foo() # has to fail , print reveals 'secret '
23 Assert(Low(x)) # has to fail , could be 0 or 1

Figure 3.9: Example of dynamically bound methods (Python with Nagini contracts).

method Super::foo, a new method is created with pre- and postconditions
of Super::foo and in the body calls Sub::foo. If we can verify this new
method we know that the preconditions of Super::foo imply the ones of
Sub::foo, and the postconditions of Sub::foo imply the postconditions of
Super::foo. At the call site, a dynamically bound call to the method foo is
now encoded as a statically bound call to Super::foo. This is sound, because
we showed the contracts of Sub::foo to be compatible.

Unfortunately, this is not enough to ensure secure information flow, as is
shown in the example in Figure 3.9. We have a class B inheriting from class
A and overriding the method foo. foo requires lowEvent, which expresses
that a call to the method happens in either all or none of the executions. The
standard encoding of lowEvent is that the values of the activation variables
are equal across executions. Here it is needed for calling print, which will
reveal information on public outputs and, therefore, must not happen in
only one execution. In both classes foo has exactly the same specification,
so behavioral subtyping is adhered to. In method test we then create an
object such that the type depends on a secret and call foo on it. Clearly
the verification of the call should fail, because from observing the output
we learn the value of secret (depending on whether we see “A” or “B”).

22

3.4. Dynamically Bound Calls

blowEventc ˚act
2 = act(1) = act(2)

blowEventc ˚act
2,dyn = (act(1) = act(2))∧

(act(1) ∧ act(2) ⇒ typeof(self(1)) = typeof(self(2)))

blow(exp)c ˚act
2 = act(1) = act(2) ⇒ e(1) = e(2)

blow(e)c ˚act
2,dyn,post

= [act(1) ∧ act(2) ⇒ (typeof(self(1)) = typeof(self(2))⇒ e(1) = e(2)),

act(1) ∧ act(2) ⇒ e(1) = e(2)]

Figure 3.10: Encoding of lowEvent and low both standard and in dynamically bound methods.

Additionally, in line 23 we should not be able to assert that the result is
low, even though both implementations promise this. The value will again
depend on the value of secret, being 0 or 1. We now discuss the measures
we take to make the encoding of relational assertions sound again, on the
examples of lowEvent and low().

If we look at the precondition of foo, what we want to express is that
either both executions make the call or none do. In this setting this not guar-
anteed with the aforementioned encoding of lowEvent, namely that both
activation variables must be equal, since the actual method we call depends
on the type of the receiver. What we do to solve this is change the encoding
of lowEvent in methods which can be the target of dynamically bound calls
to also require the types of self to be equal, see Figure 3.10. Now we can
guarantee that in both executions the same method will be called, because
the receiver types are equal, making the encoding of lowEvent sound.

The issue with low is similar. When a client calls x.foo() they will as-
sume that the result is low, which again depends on the type of the receiver
x. To make our implementation sound we change the encoding of low() in
postconditions of dynamically bound methods as defined in Figure 3.10. We
make use of an InhaleExhale expression, a construct where the first expres-
sion is inhaled, the second exhaled. In this case this means that the method
which has the postcondition has to prove the second part, which is the stan-
dard encoding of low(), but the caller only inhales the first part, which says
that the two expressions are equal in both executions under the condition
that the type of the receiver variable is low.

Note that in both cases we are more restrictive than strictly necessary.
Our encoding is sound, but there are correct programs which we will reject
with this encoding. For example, if in the program in Figure 3.9 we add an-
other method to class A which we do not override in B, then we would ask a
client to show that receiver types are low, even though the same method will

23

3. Modular Product Program Extensions

0 method main(secret: Int) returns (res: Ref)
1 ensures low(res)
2 ensures acc(res.f) && low(res.f) // low(res.f) must fail
3 {
4 res := new(f) // create reference with field f
5 res.f := secret
6 }

Figure 3.11: Example of why fields are duplicated (Viper).

be called no matter what. This shows that the requirement of types being
equal is incomplete, however, we argue that in practice this would hardly be
a problem, as situations where types of variables depend on secrets are rare.

In order to be more precise we could add the information which version
of a method an object calls to the encoding. Then we would change the
requirement such that the method versions must be equal on both receivers.
This would allow for more correct programs to be verified, but would still
be incomplete. We could, for example, override a method with an equiva-
lent one, in which case the code would be correct, but the called method
would be different and we still raise an error. In order to support this we
would have to prove relational specifications of two different implementa-
tions, which our version of MPPs cannot do.

3.5 Heap Memory

This section explains how we encode heap memory, in particular fields of
objects. This is the same as the original MPP implementation handles them,
but we state it explicitly here as it will be important in the next section.

In the encoding all fields get k copies, so that each execution gets its own
version. The reason is that we want to be able to express that both references
and fields of references are low. An illustrating example can be found in
Figure 3.11, we consider the case for k = 2. The method main creates a new
object and assigns its (secret) argument to the field f. Since we want to prove
that the returned reference is low, we need to encode new in such a way that
both executions get the same reference. We can then prove that the result
is low, because the creation of the object does not depend on any secret
data, but the value of the field will be secret, so the second postcondition
must fail. If we only had one field f, in the encoding we would first assign
res(1).f := secret(1) and then res(2).f := secret(2). Since we know res
is low, we would override the same location with the second assignment,
so both would be equal and we could erroneously prove the postcondition.
Using copies of the fields solves this issue.

24

3.6. Verification Constructs

3.6 Verification Constructs

In this section we discuss the encoding of verification constructs as used
in verifiers based on implicit dynamic frames. In particular we look at pure
functions and predicates, as they are supported by the Viper framework and
Nagini. Unlike what we looked at so far, these constructs are not common
object-oriented language features, but rather tools to help the verification.

3.6.1 Pure Functions

Pure functions are free of side effects, i.e., they cannot change the state of
the heap. A function can have pre- and postconditions, and a body which
is an expression. Statements (e.g., loops) are not allowed, but functions may
be recursive and call other pure functions. The purpose of pure functions
in verification is to be used in specifications, which should not have side
effects.

We made a design decision that functions can never have any relational
specifications. The main reason is that the verifier can inspect a function
body where it is called, as opposed to methods which are abstracted via
pre- and postconditions. This is equivalent to having a precise functional
specification, which makes relational specifications obsolete. If we know ex-
actly what is happening in each execution, there is no need to specify how
executions behave relative to one another. Additionally, encoding relational
functions would be messy, since a function can only have one value. Thus,
if we want to encode them similar to procedures where return values are
duplicated, we would need to make the values tuples and encode each func-
tion evaluation as tuple accesses. Together with duplicating all arguments
it would get rather convoluted, and we see no advantage of supporting rela-
tional functions.

Nonetheless, even with functions being unary, there is a need for an
encoding, because functions can contain expressions depending on the heap,
i.e., heap-dependent predicates (see next section), field accesses or calls to
other heap-dependent functions.

As mentioned in Section 3.5, all fields get k copies in the product, and
as a result of this we need to create copies of all those functions which in
any way depend on the heap. The process is straightforward: the function
version for the i-th execution references all the i-th versions of fields, heap-
dependent functions and predicates. A function call is then encoded the
same in all executions if the function was not duplicated, or uses the respec-
tive version if it was. The complete encoding can be found in Appendix A.

25

3. Modular Product Program Extensions

0 predicate P(x: Ref) {
1 acc(x.f) && low(x.f)
2 }
3

4 method main(x: Ref , secret: Bool)
5 requires P(x)
6 {
7 if (secret) {
8 unfold P(x)
9 val = x.f

10 }
11 }

Figure 3.12: Example of a predicate (Viper, simplified).

3.6.2 Predicates

A Viper predicate is an abstraction over an assertion and can be used in
specifications. A predicate can be exchanged for its content by using an
unfold statement, and when the assertion holds it can be exchanged for the
predicate using a fold statement.

Contrary to functions, we want to be able to express relational assertions
with predicates. Figure 3.12 shows a simple example of a predicate P, which
expresses having access to a field f and that said field is low. It also shows
a possible way of using P in the method main: We get access to x.f from the
predicate and use it to read the value into the val variable. As with pure
functions, one might try to encode them similarly to how we encode proce-
dures, namely adding activation variables and duplicating everything. This
would result in an encoding as shown in Figure 3.13. As we see, encoding
the predicate is no problem, but when we try to use it we run into an issue.
Since if-statements create new versions of activation variables, and we then
use them in the respective branches, we try to unfold the predicate in line
11 with the new version of these variables. Even assuming we knew both
p1 and p2 are true, we do not know about the values of p1’ and p2’. There-
fore, we cannot unfold P in line 11, as we might not have permission to an
instance of the predicate with these arguments, and we do not get access to
the field f for either execution.

From this example we can see that we want an encoding which allows
us to fold and unfold predicates for each execution independently. Similar
to functions, we will therefore duplicate predicates to make one version
for each execution. These k predicates only contain the unary parts of the
predicate, as they are only meaningful for one execution each. To express
the relational part of the predicate we create a pure function of Boolean type
in addition to the k predicates. This relational function requires access to all

26

3.6. Verification Constructs

0 predicate P(p1: Bool , p2: Bool , x1: Ref , x2: Ref) {
1 (p1 ==> acc(x1.f1)) && (p2 ==> acc(x2.f2)) &&
2 (p1 && p2 ==> x1.f1 == x2.f2)
3 }
4

5 method main(p1: Bool , p2: Bool ,
6 x1: Ref , x2: Ref , secret1: Bool , secret2: Bool)
7 requires P(p1, p2, x1, x2)
8 {
9 p1' := p1 && secret1

10 p2' := p2 && secret2
11 unfold P(p1', p2 ', x1, x2) // fails: insufficient

permission
12 if (p1 ') {val1 := x1.f1}
13 if (p2 ') {val2 := x2.f2}
14 }

Figure 3.13: Possible encoding of Figure 3.12 (Viper, simplified).

versions of the predicate in its precondition, so that it can unfold them to get
all required permissions for the relational expressions. A predicate access, as
it would occur in a pre- or postcondition, is then encoded as the conjunction
of the predicate accesses and the relational function. The resulting encoding
is shown in Figure 3.14

Note that we again need a special encoding for the case that the predi-
cate access is in the postcondition of a method to which calls are dynamically
bound. This is for the same reasons discussed in Section 3.4, as a predicate
can contain relational assertions. The measures we take to make the encod-
ing sound are analogous, except that here we have to consider the general
case for arbitrary k, whereas in Section 3.4 we only considered the case of
k = 2 for the information flow assertions.

In the case that the predicate we encode is unary, meaning that it does
not contain relational assertions in the body and any other predicates it
references are unary as well, we do not have to create the relational function.
This is because its body would either just be true, in which case it always
holds trivially, or it contains function calls to the relational function of the
referenced predicates. In the latter case, we know that since all reachable
predicates are unary (by our assumption), the other function calls will never
contain meaningful assertions. Therefore, we only generate the relational
function where necessary, and where we do not generate it, the conjuncts in
the encoding (Figure 3.14) which contain it are not included, and in folding
and unfolding the additional checks explained below are not generated.

We can now define encodings for unfold and fold statements. Since
we separated the predicate, we can unfold or fold the predicates for each

27

3. Modular Product Program Extensions

Jpredicate P(x1, . . . ,xm) {a}Kk

=
⊙k

i=1 predicate P(i)(x1
(i), . . . ,xm

(i)) {a(i)};
function P(rel) (x1

(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k)) : Bool

requires
∧k

i=1 P
(i)(x1

(i), . . . , xm
(i))

{
unfolding

∧k
i=1 P

(i)(x1
(i), . . . , xm

(i)) in {arel}
}
where

a(i) = a without the rel expressions, using field versions i

arel = relational expressions from a, as well as P(rel)

if P is recursive

JP(x1, . . . , xm)K
p̊
k

=
∧k

i=1(act(i) ⇒ P(i)(x1
(i), . . . , xm

(i)))∧
(
∧k

i=1(act(i))⇒ P(rel)(x1
(1), . . . , x1

(k), . . . , xm
(1), . . . , xm

(k)))

where

act(i) =

p(i) ∧ ¬ret(i) ∧ ¬break(i)∧
¬cont(i) ∧ ¬except(i), in method body

p(i), otherwise

JP(x1, . . . , xm)K
p̊
k,post

=
∧k

i=1(act(i) ⇒ P(i)(x1
(i), . . . , xm

(i)))∧
[
∧k

i=1(act(i))⇒ (
∧k−1

i=1 (typeof(self
(i)) = typeof(self(i + 1)))⇒

P(rel)(x1
(1), . . . , xm

(1), x1
(2), . . . , xm

(2))),

(
∧k

i=1(act(i))⇒ P(rel)(x1
(1), . . . , x1

(k), . . . , xm
(1), . . . , xm

(k)))]

where

act(i) =

p(i) ∧ ¬ret(i) ∧ ¬break(i)∧
¬cont(i) ∧ ¬except(i), in method body

p(i), otherwise

Figure 3.14: Encoding of predicate definitions and accesses.

28

3.6. Verification Constructs

Junfold P(x1,. . . ,xm)K
p̊
k

= assert
∧k

i=1(act(i))⇒ (
∧k

i=1(perm(P
(i)(x1

(i), . . . , xm
(i))) = write)⇒

P(rel)(x1(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k));⊙k

i=1 if (act(i)) then {unfold P(i)(x1
(i), . . . , xm

(i))}
where

act(i) = p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)

Jfold P(x1,. . . ,xm)K
p̊
k

=
⊙k

i=1 if (act(i)) then {fold P(i)(x1
(i), . . . , xm

(i))}
assert

∧k
i=1(act(i))⇒ P(rel)(x1

(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k));

where

act(i) = p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)

Figure 3.15: Encoding of Unfold and Fold statements.

execution under the condition that the execution is active, including not
having any control flow flag set. Additionally, before we unfold we check
that the relational parts of the predicate hold if both executions are active,
by asserting that if we have permissions to all predicates the function value
is true. We have to add the condition that we have permission here to make
the expression consistent, as the relational function requires access to all
predicates. In the case of fold, we assert the relational function after the two
folds. This way we ensure that we have access to the predicates required in
the function’s precondition.

Note that in the case of unfold the assertion is not strictly necessary for
soundness. If the relational parts of the predicates do not hold here, we
will never assume them and, therefore, can never use them to prove any
wrong assertions. The reason we still put the assertion there is because we
want the unfold to fail when the relational parts do not hold. A user who
writes unfold P(. . .) expects that afterwards all the contents of P are true,
and if we do not put the assertion there, the verification might give an error
later on because relational parts of the predicate do not hold, which can be
difficult to debug.

29

Chapter 4

Secure Information Flow

In this chapter we discuss how we can use MPPs in verification of secure
information flow in Nagini. We show how we extended the specification
language of Nagini and how these specifications are encoded. We then look
at obligations [8] and how we complement them to prove the absence of ter-
mination channels. Finally, we describe what additional checks are needed
to guarantee possibilistic noninterference in a concurrent setting.

4.1 Specifications

To express the relational specifications we need in order to verify secure
information flow, we need to extend the specification language of Nagini by
adding new functions to Nagini’s contract library. We now list all the new
assertion expressions, statements and decorators we added and explain how
to use them and how they are encoded.

4.1.1 Expressions

The following expressions can only be used in assertions, i.e., method speci-
fications, loop invariants and in arguments of the Assert contract statement.

LowEvent()

LowEvent() expresses that a certain point in the program must be reached
by either both executions or none of them.

The user is only allowed to write this in the precondition of a method, to
express that whether or not a call to the function happens must not depend
on a secret. This is, for example, needed if a method prints something to
public outputs. The encoding is as discussed in Section 3.4, namely that the
two activation variables must be equal, and in the case of dynamic binding

31

4. Secure Information Flow

1 def bool_int(secret: bool) -> int:
2 Ensures(flow(Result ()))
3 if secret:
4 return 1
5 return True

1 def unchanged(secret: int , x: int) -> int:
2 Ensures(Implies(Low(x), flow(Result ())))
3 if secret == 0:
4 return x + secret
5 return x

Figure 4.1: Two examples illustrating the difference between Low and LowVal (Nagini). Both
verify successfully with flow = LowVal, but fail with flow = Low.

we additionally require the types of the receiver objects to be equal (see
Figure 3.10).

Low(exp)

With this we express that an expression exp is low. Note that not only vari-
ables can be specified to be low, but any expression, e.g., whether a value is
even.

The encoding is again as shown in Section 3.4 and Figure 3.10. This spec-
ification makes use of references to compare the values across executions,
meaning that, e.g., the encoding of Low(v), for some variable v in the source
program, compares the references stored in the two versions v(1) and v(2).

LowVal(exp)

This is the same as Low, except that we compare the values of the expression,
not the references. In Python the two comparison methods are “==” for val-
ues and “is” for references. The distinction is important when we compare
expressions between different executions in the MPP.

The difference is illustrated in two examples in Figure 4.1. Method
bool int returns 1 or True depending on a high input secret. In Python,
those expressions are considered to be equal values, but the references are
not the same (“1 == True” is true, but “1 is True” is not). Since the two exe-
cutions we model in the MPP might take different paths depending on secret
data, we cannot prove that the result is low when we compare the references
of the two results. Method unchanged shows a similar issue: it will always
return an int, but if a secret value is zero we add it to the result. Obviously,
the value will remain unchanged either way, and in Python even the refer-
ences will be equal because of the way ints are represented (“x + 0 is x” is

32

4.1. Specifications

true in Python), but because of an incompleteness in Nagini’s encoding we
may be unable to prove this reference equality. Therefore, we cannot prove
the postcondition in both examples when we use Low for the contract flow.

To solve the problem, we introduce the LowVal contract function, which
makes the comparison based on Python’s eq method. This method is
defined on all Python objects (including primitives) and is used for the value
comparison (“==” is syntactic sugar for calling the eq method). This
gives us the following encoding:

bLowVal(exp)c ˚act
2 = T eq (act(1), act(2), exp(1), exp(2)),

where T is the type of exp and T eq is the encoding of T’s eq method.
Substituting LowVal for flow in Figure 4.1 allows us to verify both examples
successfully.

In theory we can apply this encoding for any type T, where the user can
define a custom eq method by overriding the one of the object class.
However, because of technical reasons LowVal does not yet support arbitrary
objects. The types for which we can use a value comparison are: int, bool,
float, string, as well as tuples, sequences and sets, which have a custom
equality function defined by Nagini which we can use to make the compar-
ison in the product. For all other objects LowVal uses the eq method of
Python’s object class which compares references, and thus makes LowVal
equivalent to Low in these cases.

Note that it is still useful to have the standard version of Low for the
supported types, because we might want to use reference comparison across
executions.

4.1.2 Declassify Statement

Declassify(exp) provides the ability to declassify an expression exp, as de-
fined in the MPP paper.

Declassifying an expression means to make it low, if it was high to begin
with. This is useful as often a program should be allowed to leak some
amount of secret data, for example, to tell a user if a password was correct
(without revealing the correct password). Without declassifying the result
of a password check, SIF would not allow us to reveal it, as it depends on
secret data.

Again the encoding is very similar to the definition in the original paper:

bDeclassify(exp)c ˚act
2 = assume act(1) ∧ act(2) ⇒ exp(1) = exp(2).

The declassification translates into an assume statement, stating that exp is
equal in both executions. The assumption is conditional on both executions
being active and all control flow variables being false.

33

4. Secure Information Flow

4.1.3 Method Decorators

We believe that in the majority of code in real-world code bases the data
that is worked with is not secret. Still, in order to verify secure information
flow because some parts of the code are security critical, using the contract
functions shown so far, one would have to annotate the whole code base,
specifying all low data as such, so that the MPP can be built and verified.
This would lead to a large amount of boilerplate annotations, saying that all
arguments and results of a method are low. For convenience, we therefore
provide two method decorators, which automatically add SIF specifications
where no secret data is involved.

@AllLow is used to express that all inputs and outputs of the method are low,
and it never operates with any secret data.

In particular, if A is the set of all arguments of an all low method, H
is the set of all heap-dependent expressions to which the method gets
access in the precondition and R is the set of results (return value and
raised exceptions), we add the preconditions

LowEvent() and ∀e ∈ A ∪ H. Low(e).

The reason we add the LowEvent() is to be able to, for example, call
print or other methods which reveal information. Additionally we add
the postcondition

∀e ∈ R ∪ H. Low(e).

For each loop in the method body, we add the loop invariant

∀t ∈ T. Low(t),

where T is the set of targets in the loop.

Finally, we have to treat all predicates that the decorated method has
access to as if they specified all variables and accessible heap locations
to be low. This is because, for example, if a method requires access to
some predicate P, we also have to require that P does not give access to
secret values. For this purpose we generate a function for each pred-
icate P, called P(allLow), that contains the assertion that all accessible
variables and heap locations are low, as well as requiring the Q(allLow)

function to be true for all predicates Q to which P has access. We then
generate

∀P ∈ PApre.p(1) ∧ p(2) ⇒ P(allLow) and

∀P ∈ PApost.p(1) ∧ p(2) ⇒ P(allLow)

as additional pre- and postconditions respectively, where PApre are
all predicate accesses in the preconditions and PApost the ones in the

34

4.1. Specifications

postconditions. In the decorated method, we then encode predicate
accesses, fold and unfold statements the same as defined for relational
predicates, except using P(allLow) instead of P(rel) (see Figure 3.14 and
Figure 3.15).

@PreservesLow is used to express that the method preserves lowness. This
decorator is very similar to the @AllLow decorator, except that it does
not require all inputs to be low, it just promises that if the inputs are
low, the results will be, too. This is useful, for example, for an in-
crement method. If we put an @AllLow decorator on the increment
method, it could not be used to increment a secret value, because it
would require the input to be low. Since we want to be able to use the
same method for secret and public inputs, we added the @PreservesLow
decorator.

If we again assume that A is the set of arguments of a method which
is decorated with @PreservesLow, H the set of heap-dependent expres-
sions the method has access to and PApre the set of predicate accesses
in the precondition, we can express that all accessible state is low as
follows:

allStateLow =(∀e ∈ A ∪ H. Old(Low(e)))∧
(∀P ∈ PApre.p(1) ∧ p(2) ⇒ Old(P(allLow))).

Old(exp) is a contract function indicating that exp should be evaluated
in the state before the execution of the method. With R being the set
of results of the method and PApost the set of predicate accesses in the
postcondition, we add the postcondition

allStateLow⇒
(∀e ∈ R∪H. Low(e)) ∧ (∀P ∈ PApost.p(1) ∧ p(2) ⇒ P(allLow))

to the decorated method. The loop invariant we add to each loop is

allStateLow⇒ (∀t ∈ T. Low(t)),

where again T is the set of loop targets.

Note that here we do not add LowEvent() to the preconditions, as we
want to allow the methods to be called depending on secrets. This is
another reason for the distinction between @AllLow and @PreservesLow.

Similar to the @AllLow decorator, we have to change the encoding of
predicate access, fold and unfold such that they use the predicates
allLow-function. Again we use similar encodings to the ones shown
in Figure 3.14 and Figure 3.15, with P(allLow) instead of P(rel), but here
we make an additional change. Namely the function has to be true not

35

4. Secure Information Flow

only on the condition that both executions are active at this point, but
also only when all state was low when the method was called. This
means we use

∧k
i=1(act(i)) ∧ allStateLow on the left hand side of the

implications instead of just
∧k

i=1(act(i)).

In both decorators we have the option to exempt certain variables from
being added to the low variables. For example, obligations (see next section)
add more arguments to methods in order to carry information which is only
needed for the verification of obligations. For these variables we cannot
prove that they are low, but it is not necessary as they can not affect secure
information flow. Therefore, we can set up the generation of additional spec-
ifications to ignore these variables, and be able to verify decorated methods
with obligations active.

The decorators @AllLow and @PreservesLow could be further optimized
in a way that we do not have to create the MPP of decorated methods, which
adds complexity and therefore takes longer to verify. We did not implement
this optimization but describe how it can be done and leave it for future
work.

The way we described the decorators we encode all methods as an MPP,
so consequently we verify that the decorators are justified, as the additional
specifications could not be proven to hold otherwise. Note that it is impor-
tant to check that the decorators are justified, as we do not want to trust
the user to exempt methods completely from the SIF verification. When we
optimize the encoding such that the decorated methods are not encoded as
MPPs but only as single executions for the functional verification, we need
to add some additional checks that they can only call methods which them-
selves do not leak secrets and if they access any global variables assert that
they are low.

As a consequence of only selectively encoding methods into MPPs, we
have to create stubs for the decorated methods, such that those methods we
did encode could still call those methods, because they expect another sig-
nature with activation variables and duplicated arguments. These stubs can
be body-less methods with the encoded method signature and specification.
There is no need to add stubs for the encoded methods, as the decorated
methods are not allowed to call undecorated ones.

4.2 Obligations and Termination Channels

One way a program can leak secret information is via termination channels,
which means that whether or not a program terminates depends on a secret.
Figure 4.2 shows two examples of programs with a termination channel.
On the left there is a loop which will never terminate if the (high) input

36

4.2. Obligations and Termination Channels

1 def loop(h: int) -> None:
2 while h != 0:
3 h = h - 1

1 def recursive(h: int) -> None:
2 if h == 0:
3 return
4 recursive(h - 1)

Figure 4.2: Examples of termination channels: A loop which terminates iff h ≥ 0 (left), a
recursive function which terminates iff h ≥ 0 (right). In both examples h is high.

is negative, on the right a negative input will cause an infinite recursion.
If an observer sees that the program does not terminate, they can learn
information about the secret.

The MPP paper defines a method to verify absence of termination chan-
nels in loops. We will use the same approach and apply it to both the infinite
loop and recursion scenario. We rely on the additional checks defined in
the MPP paper to verify the relational aspects of termination channels, and
for verification of termination itself we make use of obligations, which we
briefly summarize in Section 4.2.1. In Section 4.2.2 we combine obligations
with the termination channel verification.

4.2.1 Obligations

Obligations [8] are constructs which allow for verifying that a program even-
tually performs some action. In this section we present them as they are
implemented in Nagini [1], since that is what we use in our own imple-
mentation. Obligations can be used to prove a variety of properties; for our
purpose we will focus on the part which allows for proving termination, and
we only provide a minimal explanation required to understand our steps to
incorporate them in the MPP encoding.

To express that a method or loop terminates, Nagini provides a contract
function MustTerminate(measure). The measure argument is an integer ex-
pression describing an upper bound of the number of steps the method or
loop is allowed to make before terminating. Steps means the maximum
height of the call stack in the case of methods, or the number of iterations
in a loop.

Figure 4.3 shows an example program with an obligation to terminate.
In the precondition the method is required to terminate with measure = 1,
which means that the method is not allowed to call any other methods. Be-
cause we want to show that the method terminates, we must give the loop
a specification which guarantees that the loop will terminate. In the loop
invariant we therefore specify that it terminates in 5 - i steps. The measure
in the loop invariant must decrease after each iteration, and never become
negative.

37

4. Secure Information Flow

1 def main() -> None:
2 Requires(MustTerminate (1))
3 i = 0
4 while i < 5:
5 Invariant(MustTerminate (5 - i))
6 i += 1

Figure 4.3: Example program with obligation to terminate (Nagini).

The way obligations are expressed is via permissions to predicates, for ex-
ample, having access permission to a MustTerminate predicate means there
is an obligation to terminate. In the Viper encoding of the example this
means a precondition is added, requiring access to said predicate. To prove
that the method terminates an assertion is generated, which is conditional
on an expression called the guard, and uses the measure integer expression
provided by the user. The assertion checks that the measure is always non-
negative and decreases over time. Besides this assertion there is what is
called a leak check, which checks that no obligations are dropped without
being fulfilled. This is done by asserting that the method has no remaining
access permissions to any of the obligation predicates.

There are two places an obligation can be specified:

(a) In a method precondition. In this case the assertion that the measure
decreases is placed in the precondition and uses an additional argu-
ment, called the caller measures, of the method representing mea-
sures which have to be passed by the caller. This ensures that if a
method has an obligation to terminate, calling other methods is only
allowed if the called method promises to terminate in fewer steps, and
the callee will take over the obligation.

In our example this means that in the precondition it is checked that
a caller has no obligation to terminate in one step or less, because the
main method could not fulfill that obligation. The guard in this case is
True, as the obligation is not conditional.

The leak check is placed in the postcondition.

(b) In a loop invariant. Here the assertion that the measure decreases is
placed at the end of the loop body. In the example this means that at
the beginning of the loop body the measure 5 - i is stored, and at the
end of the body it is asserted that 5 - i evaluates to a smaller number
than what was stored at the beginning.

The leak check is placed in the invariant, inside InhaleExhale expres-
sions, such that they only get exhaled but never inhaled.

38

4.2. Obligations and Termination Channels

Since the obligation implementation makes use of InhaleExhale expres-
sions in loop invariants, we need to make an adjustment to our loop encod-
ing to be able to verify obligations. The issue is that when the exhaled part
in a loop invariant is stronger than the inhaled part (which is the case here),
it is possible that the invariant inhaled at the beginning of an iteration does
not imply the invariant is preserved even with an empty loop body. Un-
fortunately, this is exactly the scenario we have in the MPP in the case that
one execution exits the loop earlier than the other or if only one execution
skips the loop entirely. Recall that in our MPP encoding a loop in the source
maps to one loop in the product, which is executed as long as either of the
executions is active, and the inactive one keeps on iterating without doing
anything in the body. It follows that we cannot prove that the loop invariant
is preserved.

The adjustment we made to solve this problem is to introduce new
Boolean variables which we call idle, to represent that an execution is iterat-
ing but only because of the other execution, and is therefore not making any
changes. We set both idle variables to false before the loop, and at the be-
ginning of the loop we assign idle(i):=p(i) ∧¬ret(i) ∧¬break(i) ∧¬cont(i) ∧
¬except(i) ∧ ¬c(i). Now we can define the translation of InhaleExhale as

b[in, ex]c ˚act
k = [binc ˚act

k , b¬idle⇒ exc ˚act
k].

This translation ensures that we only need to show the exhale part of the
invariant at the end of an iteration for executions which are not idling.

We can now encode obligations into the MPP as expected and use them
for proving absence of termination channels.

4.2.2 Termination Channels

To prove the absence of termination channels we require a specification in
the loop invariant or the method precondition, which tells us under which
condition the loop or method will terminate, called the termination condition
or ec. Additionally we require a ranking function er, an integer expression
with which we can express the obligation that after every loop iteration
or call to a method, er must decrease but never become negative. To specify
this we introduce the contract function TerminatesSif(cond: bool, rank: int),
with inputs cond for ec and rank for er. The contract can appear in method
preconditions, which allows for verification of the scenario with infinite re-
cursion, or as a loop invariant, for the infinite loop case.

In both cases we create an obligation with guard ec, to prove that if ec
evaluates to true the method or loop really terminates. Other than this we
need three more assertions, namely:

1. low(ec). This ensures that whether or not the method terminates does
not depend on secrets.

39

4. Secure Information Flow

0 method recursive(p1: Bool , p2: Bool ,
1 h1: Int , h2: Int , /* obligation args*/)
2 requires p1 && p2 ==> (h1 >= 0 == h2 >= 0) // assertion 1
3 requires !(h1 >= 0) && !(h2 >= 0) ==>
4 p1 == p2 // assertion 2
5 requires /* obligation measure check */
6 ensures /* obligation leak check */
7 ensures old(p1 ==> h1 >= 0)
8 && old(p2 ==> h2 >= 0) // assertion 3
9 {

10 /* conditional return */
11 /* call recursive with new _caller_measures */
12 }

Figure 4.4: Encoding of recursive example from Figure 4.2, with the precondition
TerminatesSif(h >= 0, h + 1) (Viper, simplified).

2. ¬ec ⇒ lowEvent. This assertion is to prove that whether or not an
execution calls a method or reaches a loop which does not terminate,
does not depend on high data.

3. A check ensuring that ec is exact, meaning that ¬ec implies that the
method or loop does not terminate.

Where we place these assertions differs between methods and loops, we
will show each case on the examples from Figure 4.2.

Methods

When the TerminatesSif contract appears in a method precondition in the
source program, we add the assertions 1 and 2 to the precondition of the
product. The third assertion is checked in an additional postcondition in
the product, expressing old(ec). This ensures that the end of the method is
only reached if the termination condition, evaluated in the state before the
method was executed, was true.

Figure 4.4 shows the simplified Viper encoding of the recursive method
from Figure 4.2, which results when we add the precondition

Requires(TerminatesSif(h >= 0, h + 1)).

The measure needs to be h + 1, because it has to be positive even when we
have h == 0. In lines 2–4 of the encoding we have the additional precondi-
tions, the first one expressing that h is non-negative in either both or none
of the executions, the second one that if h is negative then both executions
must make the call and, therefore, not terminate. Note that it is not possible
that only one execution has a negative h because of assertion 1. Lines 4 and

40

4.2. Obligations and Termination Channels

0 method loop(p1: Bool , p2: Bool ,
1 h1: Int , h2: Int , /* obligation args*/)
2 {
3 assert p1 && p2 ==> (h1 >= 0 == h2 >= 0) // assertion 1
4 assert (!h1 >= 0 && !h2 >= 0) ==> p1 == p2 // assertion 2
5 cond1 := h1 >= 0
6 cond2 := h2 >= 0
7 while(p1 && h1 != 0 || p2 && h2 != 0)
8 invariant /* obligation leak check*/
9 invariant p1 && !cond1 ==> h1 != 0 // assertion 3

10 invariant p2 && !cond2 ==> h2 != 0 // assertion 3
11 {
12 p1' := p1 && h1 != 0
13 p2' := p2 && h2 != 0
14 /* store obligation measures */
15 if (p1 ') {h1 := h1 - 1}
16 if (p2 ') {h2 := h2 - 1}
17 /* check obligation measures decreased */
18 }
19 }

Figure 4.5: MPP encoding of loop example from Figure 4.2, with loop invariant
TerminatesSif(h >= 0, h) (Viper, simplified).

5 are pre- and postconditions added by the obligation. Line 6 is assertion 3,
ensuring that any trace where h was originally negative does not reach the
end, as for those traces we cannot prove the assertion. In the body there are
no additional assertions.

With these specifications we can prove that the method terminates iff
h >= 0. We can now guarantee that there is no termination channel, as
callers have to prove that the termination condition is low and that both
executions make the call if it does not hold.

Loops

When the contract is in a loop invariant, we add assertions 1 and 2 before the
loop and ensure assertion 3 by showing that ¬ec implies the loop condition
is always true and thus the loop does not terminate.

Figure 4.5 shows this on the loop example from Figure 4.2. Lines 3
and 4 contain assertions 1 and 2, in line 5 and 6 we store the value of the
termination condition, because the value might change in the loop and we
need the value from before the loop to check assertion 3. This happens in
lines 9–10, ensuring that if ec did not hold before the loop, the loop condition
can never be false and thus the loop will not terminate.

41

4. Secure Information Flow

1 def m(val: int , wait: bool) -> None:
2 if wait:
3 i = 10_000
4 while i > 0:
5 i = i - 1
6 print(val)
7

8 def main(secret: bool) -> None:
9 t1 = Thread(target=m, args=(1, secret))

10 t2 = Thread(target=m, args=(2, !secret))
11 t1.start(m)
12 t2.start(m)

Figure 4.6: Example satisfying possibilistic (but not probabilistic) noninterference (Python).

All these additions allow us to detect the termination channels in the
examples from Figure 4.2.

4.3 Possibilistic Noninterference

Leino and Müller [16] propose a methodology for verification of advanced
concurrency patterns. This methodology is implemented in Nagini, and in
this section we will present how we can extend it to guarantee possibilistic
noninterference in a concurrent setting, in particular we look at locks and
forking and joining threads.

Possibilistic noninterference is a property which states that given two runs
of a program with the same public inputs (and possibly different secret in-
puts), it is possible that the observed outputs are the same. In other words
for any observed result(1) of execution 1, there exists a schedule for exe-
cution 2 such that result(1) = result(2). In verifying possibilistic noninter-
ference we assume that the scheduler is non-deterministic and unrestricted
(i.e., it can choose to switch to any thread at any time). Figure 4.6 shows
an example to illustrate this: Method m takes an integer argument val and
a Boolean wait. If wait is true it executes a large amount of iterations and
then prints val, otherwise it prints val immediately. In method main we
fork two threads, both of which execute m, one with val == 1 and the other
with val == 2 and the value of wait will be true in one thread and false in
the other, but which is which depends on a Boolean secret. Now obviously
when someone observes the output to be “12” or “21” they can be rather
confident that they know the value of secret, because the thread where
wait was true is much more likely to reach the print statement later than the
other one. In the setting of possibilistic noninterference the example does
not violate secure information flow however, since it is still possible that
the scheduler has allowed all the iterations to happen before switching to

42

4.3. Possibilistic Noninterference

1 class Cell:
2 def __init__(self , val: int) -> None:
3 self.value = val
4 Ensures(Acc(self.value) and self.value == val)
5

6 class CellLock(Lock[Cell]):
7 @Predicate
8 def invariant(self) -> bool:
9 return Acc(self.locked ().value) and

10 Low(self.locked ().value)
11

12 def main(secret: bool) -> None:
13 c = Cell (1)
14 l = CellLock(c)
15 l.acquire ()
16 c.value = 4
17 if secret:
18 l.release () # has to fail
19 l.acquire ()
20 c.value = 5
21 l.release ()

Figure 4.7: Example program leaking a secret via locking (Nagini, simplified). If an observer
ever sees the value 4 in the Cell object they know the value of secret.

the other thread, so the observer has no guarantee that their conclusion is
correct.

An alternative property, which the example in Figure 4.6 does not have,
is probabilistic noninterference, where one verifies that the probabilities of dif-
ferent outputs are the same given that all public inputs are equal. In order
to verify this property one would have to make stronger assumptions about
the scheduler and model the runtime, e.g. via step counting, which is why
we focus on possibilistic noninterference.

4.3.1 Locks

In the methodology we consider, a lock is associated with a lock invariant.
Without considering secure information flow, we encode acquiring a lock as
inhaling the lock invariant, and releasing corresponds to exhaling the lock
invariant. We want to support relational lock invariants, such that we can
express, e.g., a lock invariant that gives access to some field and specifies
this field to be low. The inhaling and exhaling of the lock invariant alone is
not sound with respect to SIF, as we illustrate in Figure 4.7.

In the example we have a Cell object with a value field, and a CellLock
object locking a Cell object. The lock invariant gives access to the field and

43

4. Secure Information Flow

specifies it to be low. In the main method we create a Cell and a lock and
we acquire it. We set the value to 4, then depending on a secret we release
the lock and acquire it again, to then set the value to 5 and finally release it.
Now if an observer ever sees the value 4 in the cell they know that secret
must be true, because otherwise no thread can ever have access before the
value is set to 5.

To make the encoding sound we will ensure that whether or not a thread
holds a lock does not depend on a secret. We can achieve this by adding two
preconditions, lowEvent and low(self), to both the acquire and release
methods. The first one guarantees that the action happens in both execu-
tions, which is enough to get the expected result in the example: the call to
release in line 18 will fail, because it is not a lowEvent. The second precon-
dition requires that the lock on which the acquiring or releasing happens is
the same in both executions. This is necessary for situations where we have
multiple locks and which one we lock or unlock depends on secret informa-
tion. For example, when we have two locked Cells holding different values,
releasing only one lock could reveal the secret.

4.3.2 fork/join

We consider a methodology in which forking a thread corresponds to exhal-
ing the preconditions of the method the thread executes, whereas joining a
thread means inhaling the postconditions of the method.

For fork we do not need any additional specifications, as everything
the thread could require (e.g. lowEvent) must be in the precondition of the
method the thread executes. However, we must consider that the method
which a thread executes is not static and thus can depend on secrets. Conse-
quently, we need to differentiate between executions when looking up which
method’s specifications to in- or exhale. In Nagini’s existing encoding this
lookup happens via a lookup function. To ensure this differentiation, we use
two different versions of this function in the Viper encoding, even though
it is not heap-dependent and thus we would not do this for the reasons
discussed in Section 3.6.1.

Figure 4.8 shows an example where the method the thread executes de-
pends on a secret, and since the methods print to the public output they
require lowEvent. Note that in Nagini the start method takes as argu-
ments a list of methods which could be executed (which one it actually
is is determined in the creation of the Thread object). Obviously the exam-
ple has to fail, as the output will immediately tell an observer the value of
secret. The way the fork is currently encoded by Nagini (before the MPP
encoding) is with one conditional statement per method the thread could
run, e.g., if (getMethod(t) == print1) then {. . .} would be the first condi-
tional, and in the then block of this conditional the corresponding method

44

4.3. Possibilistic Noninterference

1 def print1 () -> None:
2 Requires(LowEvent ())
3 print (1)
4

5 def print2 () -> None:
6 Requires(LowEvent ())
7 print (2)
8

9 def main(secret: bool) -> None:
10 if secret:
11 t = Thread(print1)
12 else:
13 t = Thread(print2)
14 t.start(print1 , print2) # fork: has to fail

Figure 4.8: Example of a program where the method a thread executes depends on a secret and
can not be forked safely (Nagini).

precondition is exhaled, in this case print1. When we create the MPP of
this encoding this will create a new version of the activation variables for
each of these if blocks, and since we do not know that both executions en-
ter the same branch (the method depends on a secret and we duplicated the
getMethod function), the exhale of the precondition lowEvent will fail, which
is the behavior we expect.

The same argument holds analogously for join, except that here we in-
hale the postconditions instead of exhaling preconditions. The inhaling hap-
pens in the same way as the exhaling, namely in a series of conditionals
where the thread’s method is compared with each possibility. In the exam-
ple in Figure 4.9, where we have two methods that are both promising that
the value they assign to a field is low, but depending on a secret the thread’s
method will be different, we expect not to inhale that the value is low. This
is actually the case, since the postconditions of one and two will be inhaled
using the new activation variables, so what we inhale is that given both ex-
ecutions take the same branch, c.val is low. This means that, as expected,
we cannot prove the assertion in line 19.

Therefore, the fork/join scenario does not require any additional checks
in order to guarantee possibilistic noninterference.

45

4. Secure Information Flow

1 def one(c: Cell) -> None:
2 Requires(Acc(c.val))
3 Ensures(Low(c.val))
4 c.val = 1
5

6 def two(c: Cell) -> None:
7 Requires(Acc(c.val))
8 Ensures(Low(c.val))
9 c.val = 2

10

11 def main(secret: bool) -> None:
12 c = Cell()
13 if secret:
14 t = Thread(one , args=(c,))
15 else:
16 t = Thread(two , args=(c,))
17 t.start(one , two) # fork
18 t.join(one , two)
19 Assert(Low(c.val)) # has to fail

Figure 4.9: Example of a program where the method a thread executes depends on a secret
(Nagini, simplified).

46

Chapter 5

Implementation

This chapter concerns the implementation of the MPP extensions and SIF
specifications discussed in Chapters 3 and 4. We first give an overview of
existing infrastructure that we used, then we discuss how we designed the
implementation of the extended MPP. Finally, we discuss some optimiza-
tions we made to the encoding to improve verification performance.

5.1 Existing Infrastructure

The infrastructure we based our implementation on consists mainly of two
parts. On one hand this is the existing implementation of the MPP transfor-
mation [12], which encodes Viper programs to Viper MPPs. On the other
hand there is Nagini, which encodes Python programs into Viper.

As mentioned in Chapter 2, Viper defines an intermediate language and
provides two backends, one based on verification condition generation and
one based on symbolic execution. Viper is implemented in Scala, and it
defines an abstract syntax tree (AST) for all the supported statements and
expressions. The existing MPP transformation, also implemented in Scala,
takes such an AST as input and transforms it into another Viper AST. The
backends are also Scala programs, and they work directly with a Viper AST.

Nagini is implemented in Python, it takes a Python program file as input,
parses and type checks it using mypy1, and transforms it into a Viper AST.
The creation of the Viper AST happens with the help of jpype2, a library that
allows Python programs to interact with a JVM, which is what Scala, and
therefore Viper, runs on. This allows it to directly create Viper AST nodes
as JVM objects. It then invokes the backends via jpype with the generated
Viper AST as argument.

1http://mypy-lang.org
2http://jpype.sourceforge.net

47

http://mypy-lang.org
http://jpype.sourceforge.net

5. Implementation

5.2 Design

An important aim in designing the implementation was to be able to reuse
as much of the existing infrastructure as possible. Another goal was to make
the extended MPP transformation as general as possible, such that it could
be reused by a frontend for another object-oriented language. If we did the
MPP transformation directly in Nagini on the Python level, one would have
to implement it again to do SIF verification of, e.g., Java programs. Our
design decision is therefore to keep the extended MPP transformation on
the level of the Viper AST, which makes it reusable for other frontends and
it can be based on the original MPP implementation. It also allows us to
reuse most of Nagini’s Python to Viper encoding, which is quite involved
and would require a lot of effort to rebuild for SIF.

The Viper language does not support some common language features
that we want to support in Python programs. For example, return state-
ments do not exist in Viper, which is why Nagini translates them into gotos.
Since return requires a special encoding in the extended MPP, we want to
have a special representation for it in the AST. For that reason we decided
to extend the Viper AST.

The Viper AST is not built to be extensible and we do not want to add
nodes directly in the Viper core, as our new nodes are not meant to extend
the Viper language, but only as a way to represent an intermediate AST.
Furthermore, if we added nodes directly to the AST, the Viper backends
would have to be adapted to be able to cope with the new nodes, or at least
to throw a meaningful error when they encounter one. This would have to
be done every time someone wants to extend the AST, making this approach
non-modular. What we do instead is to create two new Scala traits that
extend the traits for statements and expressions, respectively. These new
traits define an interface which all our extension nodes need to have, for
example, they need to define a subnodes method, which can be used in the
AST’s infrastructure. This way we only have to adapt the infrastructure once,
to allow it to handle the new traits. We can then use the same infrastructure
of the original AST to, e.g., traverse or transform an AST containing new
nodes. Since the AST which is given to the backends for verification must
not contain any of the new nodes, the backends can remain unchanged and
oblivious to the new AST nodes.

The MPP transformation rewrites all extension nodes to standard Viper
AST nodes as described in Chapter 3. Here is the list of the AST statement
nodes we add:

Return(res, resVar) res is the expression which is returned and resVar
the result variable, such that we can assign the former to the latter in
the encoding. We add the result variable as a field in the AST node,

48

5.2. Design

because a Viper method can have several return variables and we need
the information from Nagini which one to assign the result to.

Break(), Continue() These require no subnodes, as we only need to know
the location of these statements.

Raise(assignment) assignment is the assignment statement of the thrown
error to the error variable.

ExceptionHandler(errVar, exception, body) This represents a catch block,
with errVar being the error variable to be compared to exception in
order to generate the condition under which the body of this handler
should be executed.

TryCatch(body, catchBlocks, elseBlock, finallyBlock) This represent a
try/catch statement. body represents the body of the try block, catch-
Blocks is a sequence of ExceptionHandlers. Both the elseBlock and
finallyBlock are optional sequential compositions.

Declassify(exp) exp represents the expression to be declassified.
InlinedCall(body) This is a wrapper around an inlined method call. It

is necessary because the inlined method needs its own set of control
flow flags. If, for example, the method body which is inlined contains
a return statement, we do not want to set the ret flag of the caller
method. With this wrapper we can create new control flow variables
to be used in the encoding of the inlined method’s body.

The following list describes the expression nodes we add:

Low(exp, cmp) exp represents the expression which is specified to be low,
and cmp is optional for a comparator to represent LowVal.

LowEvent() This represents the lowEvent assertion.
Terminates(cond) cond represents the termination condition. We do not re-

quire the termination measure, as that is handled by the obligation,
but we need the condition to generate the additional assertions as de-
scribed in Section 4.2.2.

With these new nodes we can implement the MPP transformation as de-
scribed in Chapter 3, such that the resulting Viper program consists entirely
of standard Viper AST nodes and can be verified using the backends. We
can do this reusing large parts of the original MPP transformation, where
we add support for the new nodes and adapt others to do the changed en-
coding. Our implementation is restricted to generating MPPs with k = 2.

To create the extended Viper AST from a Python program, we extend
Nagini. Nagini translates Python programs in two phases: in the analyzing
phase it collects information needed for the creation of the Viper AST nodes,
which happens in the second phase. Nagini defines translator classes which
handle different types of Python AST nodes, to traverse the Python AST and
generate a Viper AST.

49

5. Implementation

method main(p1, p2) returns (res1, res2):
if (p1) {res1 := 0; ret := true}
if (p2) {res2 := 0; ret := true}

Viper backend

method main() returns (res):
res := 0
goto _end
label _end Viper AST

method main() returns (res):
return 0

Extended Viper AST

Viper AST

Nagini Nagini SIF

Viper MPP

def main():
return 0 Python

Figure 5.1: Design of the implementation on an example program.

We extend these translators in subclasses, such that we can largely use
the same code but override the translation of some parts to create an ex-
tended Viper AST. For example, in the statement translator there is a method
which translates a return statement into a goto. We override this in the new
SIF statement translator to create a new Viper return node.

The design of the implementation is illustrated in Figure 5.1. It shows
a small example program which returns 0 and how Nagini encodes it in a
Viper AST that is sent to a Viper backend for verification. On the right side
is shown what we do when running Nagini with the SIF option. The first
step in the translation reuses much of the standard Nagini encoding, e.g., the
creation of the method node with the arguments and result variables, but the
return node is transformed into an extended Viper AST node (highlighted
red in the figure). To get a Viper AST which we can hand to the backend, we
do the MPP transformation which is entirely on the Viper level. The MPP is
then verified using the unmodified backends.

5.3 Optimizations

In this section we discuss four optimizations we made in the implementation
to improve verification performance. For the evaluation of their effectiveness
we refer to Chapter 6.

5.3.1 Control Flow Optimizations

Many methods do not contain return, break, continue and raise statements
all at once. It is therefore unnecessary to always create all the control vari-
ables and conjoin the activation variables with four others. Each variable we

50

5.3. Optimizations

have makes the formula we hand to the underlying solver more complex,
which is not only bad for performance, but makes the code much harder to
read when looking at the MPP, e.g., for debugging purposes.

With this optimization, when encoding a method we first traverse the
method’s AST to find out which language features there are and only create
the control variables which are needed for the method. In the encoding this
means that we conjoin the activation variables with all those control flow
flags which exist in the method.

The other control flow construct we do not have to generate every time is
the loop reconstruction. The reconstruction is there to gather information in
cases of control flow in the loop which involves the control flow flags. Thus,
when a loop never modifies any of those flags we can omit it entirely.

5.3.2 Sequential Composition

When we encode, for example, the sequential composition of two assign-
ment statements, what we get according to the MPP definition (for k = 2)
are four consecutive conditionals, one for the first assignment in the first ex-
ecution, then one for the first assignment in the second execution and so on.
We could get the same result with just two conditionals, one per execution,
with both assignments happening in the same conditional block.

This simplification is sound, because between two assignments the two
executions can not influence each other, i.e., the assignment does not have
any effect on the other execution. Therefore, it does not matter when we
change the order such that we put the assignments of one execution first
and the ones from the second execution after. In contrast, for example, a
method call which takes two activation variables as arguments and can in-
clude the exhaling and inhaling of relational assertions does influence both
executions, so the executions cross paths. This means that a call creates a
barrier across which we must not reorder statements of different executions,
i.e., everything which happens before the call in the source program, must
happen before the call in the product for all executions.

In general, this optimization is looking for sequential compositions of
statements which can be executed in sequence without affecting any rela-
tional aspects of the program, and compress them to use a single conditional,
instead of creating one conditional for each statement. In particular the
statements we can compress are assignments, return, break and continue
statements as well as inhaling and exhaling unary assertions. For some of
those statements, namely the ones which set control flow flags, we have
to be aware that they introduce a barrier between themselves and the next
statement. This means that, for example, we can optimize a return statement
to be put into a conditional with previous statements, but any subsequent

51

5. Implementation

statement has to be after a new barrier, since the setting of the ret flag might
have changed the condition under which that statement gets executed.

This optimization is not only great for readability of the product, it also
decreases the number of paths a trace can take through the program. This is
especially important for verifiers based on symbolic execution, as they pay
a cost in verification time for every path through a program.

5.3.3 Activation Variables

In this optimization we make use of the following observation: Program
traces in which both activation variables are false never execute anything
and all assertions are trivially true. Thus, it is unnecessary to include those
traces in our verification. We can avoid some verification effort by assuming
at the very beginning of each method body that at least one of the activation
variable is true.

5.3.4 Avoiding Duplicate Checks

Python does not require from the user to declare all the variables used, and
the mypy type checker does not enforce variables to be defined before being
accessed. This is why it is possible to write a program that type checks,
but at runtime tries to read an undefined variable (e.g., only define a vari-
able in the then part of an if statement and read it afterwards). To ensure
that this is never the case, Nagini introduces two pure functions, isDefined
and checkDefined. Wherever a variable is assigned to, Nagini generates an
inhale isDefined(id) statement, where id is an identifier which is created
uniquely for each variable. Then, wherever a variable v is accessed, v is
replaced with checkDefined(v, id), to ensure that the variable has been de-
fined previously. checkDefined returns the first argument, so it does not
affect the semantics of the expression in any way, but in its precondition it
requires isDefined(id).

These checks add some complexity to all assignments and variable reads,
and we can convince ourselves that it is enough to have them in one execu-
tion only, as the possible paths through the program are the same for both,
so if we have a potentially undefined variable access, we can find it in either
execution. This optimization allows us to avoid needlessly duplicating these
checks. The extended MPP transformation can be configured with a list of
function calls and an alternative, such that when we encode a function call,
in the first execution it is kept as is, but in the second execution we replace
the call according to the selected alternative.

In the case of isDefined we replace it by true, the calls to checkDefined
get replaced by their first argument.

52

Chapter 6

Evaluation

In this chapter we evaluate our implementation with regard to expressive-
ness and completeness, as well as performance. First, to evaluate the SIF
verification we encode examples from the literature in Python and use them
to test our implementation. Next we look at the subset of Python programs
we can encode and verify. Then we evaluate the performance impact the
MPP transformation has on verification. To do this we make use of Nagini’s
test suite, which we run without creating the MPP and compare the run-
time to the one we get when verifying the MPP. We do this using differ-
ent combinations of the optimizations on the MPP transformation discussed
in Section 5.3 to assess their effect. All tests were run on a Lenovo Yoga
910-13IKB laptop with an Intel i7-7500U dual core CPU and 16 GB RAM,
running Windows 10.

6.1 SIF Verification

To evaluate the expressiveness of the SIF verification, we encoded a number
of examples from the literature in Python and run the verification. The ex-
amples are mostly the same as used to evaluate the original implementation
[12], so we can also compare the performance to the results observed there.
The examples we did not encode are the three that verify the absence of
timing channels, which our tool does not support, as well as one which we
cannot encode effectively in Nagini. This is because of technical reasons and
some incompleteness in the verifier itself, which are unrelated to this thesis.
We ran the SIF verification in Nagini with all optimizations discussed in Sec-
tion 5.3 enabled and measured the performance. All the times are averaged
over ten runs.

In Table 6.1 we list the translation and verification runtimes for both
Viper backends. The translation times Ttrans include both the transformation
to an extended Viper AST and the transformation to the MPP. Here the

53

6. Evaluation

File Ttrans[s] TVCG[s] TSE[s]
TVCG
T′VCG

TSE
T′SE

banerjee [2] 1.06 8.05 5.68 1.07 0.98
constanzo [9] 0.87 5.35 5.84 1.06 1.35
darvas [10] 0.82 5.65 2.13 0.91 0.96
example [12] 0.74 6.00 8.02 1.10 1.96
example-decl [12] 0.92 7.18 6.22 1.09 0.98
example-term [12] 0.70 4.96 1.04 0.97 0.95
joana-1-tl [13] 0.71 4.85 1.28 0.89 0.69
joana-2-bl [13] 0.95 5.02 1.30 0.95 1.08
joana-2-t [13] 0.67 5.14 1.24 0.99 0.91
joana-3-bl [13] 0.82 5.92 2.48 0.92 1.78
joana-3-br [13] 0.90 6.24 3.06 1.12 2.13
joana-3-tl [13] 0.81 5.40 2.03 0.90 1.03
joana-3-tr [13] 1.22 5.83 2.67 0.91 1.73
joana-13-l [13] 0.68 5.02 1.30 0.97 0.97
kusters [14] 0.75 5.81 1.75 1.00 0.97
product [3] 0.87 29.68 37.40 0.81 0.87
smith [20] 0.84 7.59 12.44 1.13 1.08
terauchi1 [22] 1.22 5.00 1.12 1.04 0.94
terauchi3 [22] 0.69 5.09 1.31 0.94 0.98
terauchi4 [22] 0.69 5.27 2.02 0.99 0.81

Table 6.1: Evaluation of example programs: Ttrans is the time for translation from Python to
Viper including the MPP transformation, TVCG shows the verification runtime for the backend
based on verification condition generation, TSE for the one based on symbolic execution. All
times are given in seconds. T′VCG is the verification time with all SIF specifications disabled for
the VCG backend, T′SE the same for the SE backend. We give the slowdown factors of the SIF
verification compared to the same examples encoded as MPP without the SIF specifications.

largest part of the runtime is due to Nagini’s encoding from Python to Viper,
presumably because Nagini makes a large number of calls to the JVM, which
are not very efficient. The MPP transformation on the other hand is only a
single call to the JVM, and in all examples it contributes less than one tenth
of a second. In most examples the complete translation takes less than one
second, with a few exceptions slightly over one second. This means that the
MPP transformation process does not have a big impact on the runtime, but
we can already see that the translation often takes longer than the complete
verification time in the original implementation, which were in many cases
under a second.

The runtimes are given as TVCG for the backend based on verification
condition generation (VCG) and TSE for the one based on symbolic execution
(SE) respectively. We also measured the runtimes of the same examples
with relational specifications disabled, to examine their performance impact.
These times are denoted as T′VCG and T′SE respectively, we only give the

54

6.2. Encoding Python Programs

slowdown factors for both executions. A factor greater than one means the
addition of relational specifications slowed the verification down, whereas
one below one means better performance with relational specifications.

We can see that the performance impact of relational specifications is
fairly small in general, with most slowdown factors being close to one.
In many instances they sped up the verification, presumably because the
lowEvent precondition decreases the number of possible states to consider.
The two examples with the highest slowdown are “example” and “joana-3-
br”, which take about twice as long with SIF specifications. In the former
there is a low() expression in a quantifier, which means the quantifier is
trivial where we do not encode the expression, which we believe leads to
the big difference. The latter example consists of a series of body-less loops
annotated with termination conditions. Again this makes verification trivial
without the SIF specifications, as there are no unary ones.

The runtimes of the verification show similar patterns as observed in in
the MPP paper, albeit on a different scale. In general it is much slower than
the original MPP encoding, which is to be expected, as Nagini generates a
large amount of overhead in the translation from Python to Viper, which is
necessary since Python is a much larger language than that supported by
the original implementation.

We can see that most examples still verify in under 8 seconds, the ex-
ception being an example using unbounded heap data structures (lists) that
verifies in 30 seconds and more. Between the backends there is no clear ad-
vantage for either one, on average the symbolic execution backend seems to
be faster, but there are examples where verification condition generation ver-
ifies more quickly. VCG seems to be more consistent, with most examples
taking around 5 seconds. We think the reason for VCG often being slower
is that it has a larger constant overhead than the SE backend. The VCG
backend encodes the Viper program into Boogie, and for each example it
starts a .NET runtime. However, once this overhead is paid, it seems to scale
better than the SE backend, which creates different path conditions working
directly on the Viper AST and invoking the SMT solver for each one.

6.2 Encoding Python Programs

In this section we discuss the range of programs we can verify with our im-
plementation and its limitations. For this purpose we made use of Nagini’s
test suites of which there currently are four: functional, I/O, obligations and
our own SIF suite we used to test the implementation. Our implementation
can encode all those tests into MPPs, and, except for three test cases, yield
the same verification results.

55

6. Evaluation

The three exceptions are from the functional test suite, and we could
not verify them in reasonable time. This means that we stopped them after
running for longer than 30 minutes, without getting a result. They are ex-
amples that use a lot of quantifiers, which, we believe, caused matching loops.
In Viper, quantifiers are associated with trigger expressions, such that when
an expression in the program matches a trigger, the quantifier is instanti-
ated and the corresponding expression is added to the verification state. A
matching loop occurs when the triggering of one quantifier adds an expres-
sion which in turn triggers another quantifier instantiation and so on. We
believe that the three examples in question already displayed this issue, but
SMT solvers can often get around this by applying heuristics and instanti-
ating the quantifiers which lead to a solution quickly. We think the MPP
encoding has amplified the problem, because we duplicate expressions in
the MPP, such that it is possible that expressions from both executions trig-
ger the same quantifiers, instead of treating them separately per execution.
This increases the chances of obtaining matching loops. We cannot, how-
ever, treat quantifiers separately in general, as they could contain relational
expressions.

The consequence is that in MPPs it is even more important to choose
triggers carefully. In earlier test runs we observed average slowdown fac-
tors over one hundred, with some extreme cases being several thousand
times slower to verify as MPP than as a standard encoding. The much bet-
ter results we present in this section we observed after Nagini’s encoding
of Python constructs was updated to use more efficient triggers. Note that
many of the examples we can verify in reasonable time do contain quanti-
fiers (often many, as Nagini uses them in encoding Python’s built-in types),
it is only these few cases where the problem is so severe.

In summary, we support the same Python subset as Nagini does, with
the exceptions mentioned above, where we do not know the verification
result.

6.3 MPP Verification Performance

To analyze the performance of our implementation and MPPs in general,
we compare the verification times of MPPs with the functional verification
times of the same programs. For this we need to encode programs with
only unary functional specifications into MPPs, such that we can verify the
same programs without encoding them as MPPs. The examples we use for
this we take from Nagini’s functional test set, which consists of 96 Python
programs. As mentioned in the previous section we cannot efficiently verify
three tests as MPPs, which is why the following analysis is based on 93 test
cases.

56

6.3. MPP Verification Performance

T a
vg

[s
]

A
vg

.s
lo

w
do

w
n

M
ed

ia
n

sl
ow

do
w

n

C
on

tr
ol

Fl
ow

Se
qu

en
ti

al

A
ct

iv
at

io
n

V
ar

ia
bl

es

D
up

lic
at

e
C

he
ck

s

VCG 8.96 1.54 1.26
SE 15.79 6.26 3.51

× × × ×

VCG 8.27 1.44 1.20
SE 10.15 3.85 2.24

X × × ×

VCG 8.53 1.48 1.21
SE 13.80 5.18 2.70

× X × ×

VCG 8.70 1.52 1.21
SE 12.93 5.28 2.97

× × X ×

VCG 8.42 1.46 1.20
SE 14.47 6.13 3.28

× × × X

VCG 8.29 1.44 1.18
SE 8.61 3.40 2.04

X X X X

Table 6.2: Verification times and slowdown factors of MPP programs compared to Nagini without
MPP transformation for different combinations of optimizations. Tavg is the average verification
time in seconds. The optimizations are the ones described in Section 5.3. Each optimization
configuration was run using the Viper backend based on verification condition generation (VCG)
and the one based on symbolic execution (SE).

The test setup is such that we first run two examples to give the JVM time
to JIT compile, then for each of the 93 examples from Nagini’s functional test
set we perform the following steps:

1. Standard Nagini translation from Python to Viper programs.

2. Verification of the Viper program with the VCG backend (→ TVCG)
and the SE backend (→ TSE).

3. Nagini translation from Python to Viper MPP.

4. Verification of the MPP with the VCG backend (→ TMPP
VCG) and the SE

backend (→ TMPP
SE).

We averaged the measured times for each test file over five runs, and
computed the average verification time of the MPPs (→ Tavg) and the av-
erage and median slowdown factors across all test files for each backend,
where the slowdown factors are TMPP

VCG /TVCG and TMPP
SE /TSE respectively. We

repeated this process for different configurations of the optimizations from
Section 5.3, the results are listed in Table 6.2.

57

6. Evaluation

6.3.1 Performance Impact of MPPs in General

In this section we look at how the MPP encoding affects the verification
performance in general. This means we will only consider the last two rows
of Table 6.2 where all optimizations are enabled.

Since the MPP duplicates most parts of the source program, one might
expect a slowdown in verification time of around two. When we look at the
last two rows in Table 6.2 we can see that the verifier based on verification
condition generation performs even better than this, with an average slow-
down factor of under 1.5. We suspect the reasons for this are that the veri-
fication effort is not really doubled, as a certain overhead is only included
once. We have mentioned in the last section how the VCG backend has a sig-
nificant overhead to start the verification, which presumably contributes to
the slowdown factor being so low. Also, since the additions to the code are
duplications, the SMT solver can use the similarities for more efficient ver-
ification. This is possible because VCG generates one formula per method
that is handed to the SMT solver, which can therefore see all parts at once
and exploit the similarities.

The backend based on symbolic execution on the other hand shows a
slowdown more than twice as big on average. Different from VCG, the
SE backend creates an SMT formula for each path through the program and
invokes the SMT solver on each one separately. This is why the solver cannot
exploit the similarities from the duplications here. We believe that this and
the fact that the overhead is lower to begin with lead to the bigger slowdown
factor.

The average verification times are fairly similar, both backends being
within 0.32 seconds of each other. This means that without the MPP en-
coding, SE performed better on average than VCG. That they perform the
same here, we think, again shows that although VCG has a higher constant
overhead it scales better with more complex programs.

Another observation we can make, is that the mean of slowdowns is
significantly lower than the average. When we look at the distribution of
slowdowns per example program (see Figure 6.1), we can see that the ma-
jority of examples display close to no slowdown, and only a few show large
slowdowns. The figure shows the slowdown factors on the x axis, and the
number of tests displaying a given slowdown on the y axis, collected into
20 bins of size 0.54. The figure includes one data point per test program per
backend, so there is a total of 186 data points, one of which is not shown
in the figure because it has a slowdown factor of almost 64, which would
make the figure hard to read. This extreme slowdown was measured with
the SE backend. One can see that with the VCG backend over fifty tests
are less than 1.4 times slower, another 24 take less than twice the amount of

58

6.3. MPP Verification Performance

0 1 2 3 4 5 6 7 8 9 10 11 12
Slowdown factor

0

10

20

30

40

50

Nu
m

be
r o

f t
es

ts

bin width: 0.54

VCG
SE

Figure 6.1: Histogram of slowdowns of MPP verification with all optimizations enabled compared
to functional verification across 93 test cases in both backends (186 data points total). For better
readability one example with slowdown factor 64 is omitted (SE).

time and it tapers off quickly. With the SE backend the same pattern can be
observed, albeit less pronounced. Here there are a number of tests which
slow down five times and more, with an extreme case of slowdown factor
64. This shows that the MPP encoding, with its additional execution paths,
affects SE more strongly than VCG.

6.3.2 Performance Impact of Optimizations

We now analyze the impacts of the different optimizations on the verification
performance, using the measurements in Table 6.2.

First of all, with the VCG backend we can observe that the runtimes
barely change with different optimizations active. This is not entirely sur-
prising, as all the optimizations generate an equivalent program, so the
formula generated by the backend should be equivalent too. The only opti-
mization which does improve performance of the VCG backend, by almost
8 percent, is the one addressing control flow. We believe that the biggest
difference here comes from only generating the loop reconstruction where
necessary, namely where a return, break or continue might happen. We
think the removing of unnecessary control variables should not affect ver-
ification too much, as those variables we can remove are assigned to only

59

6. Evaluation

once, namely at the beginning of the method where they are set to false.
Therefore, they should not complicate the generated formula by much. The
loop reconstruction on the other hand introduces a large amount of com-
plexity, as the whole loop body is duplicated and the number of possible
paths through the program is increased. This is even worse for nested loops,
when both the inner and outer loop are reconstructed. In the reconstruction
of the outer loop, where we include the loop body, we again have the in-
ner loop together with its reconstruction. Therefore, the complexity grows
exponentially with each nesting level, and the optimization where we only
generate them where necessary can improve this greatly.

Looking at the numbers for the SE backend we can see that without any
optimizations the average runtime is about 80 percent higher than with all
optimizations active. The optimization where we create only the necessary
control variables is the one with the biggest impact, bringing the average
runtime down to about ten seconds from over 15.5 with no optimizations,
an improvement of over 35 percent. Again we assume that the large improve-
ment comes from removing the loop reconstruction where it is not necessary.
The impact of this is even higher here than with VCG, as SE is much more
sensitive to the number of paths through a program.

The removing of duplicate checks of defined variables has the smallest
impact. Even though this affects many function calls, each one we remove
means only a small improvement as the checks themselves do not affect the
runtime by much in the first place.

Both of the other optimizations bring some improvement, in the case of
compressing sequential compositions such that we can minimize the number
of conditionals it is over 12 percent. Compared to the high impact of the
control flow optimization one might expect more here, as this one should
decrease the number of paths significantly. However, we believe that since
the conditions of those statements we can compress are the same, the price
of having the additional paths is not that high, leading to this respectable
but not overwhelming improvement.

As for the last one, where we assume that at least one activation variable
is true, we observe a performance improvement of over 18 percent. One
might think this optimization halves the number of possibilities to consider,
as there are four possible combinations of two Boolean values and fixing
one leaves only two options. However, the possibility where both activation
variables are false can be verified at very little cost, since nothing happens
in the method body and all the specifications are trivially true. Therefore,
the impact is not quite as high.

Overall combining all the optimization we measured a speedup of over
45 percent for the SE backend, which is quite significant. The effectiveness
of the optimizations on VCG on the other hand is far less pronounced.

60

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Modular product programs allow for modular verification of hyperprop-
erties using off-the-shelf verification tools. In this thesis we extended the
definition of MPPs by introducing encodings for return statements, break
and continue statements and try/catch blocks, in order to make them suit-
able for encoding a wide range of object-oriented languages. We have pre-
sented a way to soundly verify relational programs containing dynamically
bound calls, and added support for relational predicates and pure functions
to MPPs.

We extended Nagini’s specification language to enable expressing infor-
mation flow security assertions, where in comparing variables of different
executions we make a distinction between reference and value equality. For
convenience, we added a way to specify whole methods as being low, while
still verifying that those methods cannot leak secrets. This makes the tool
easier to use and reduces the need for boilerplate specifications in larger
code bases.

We adapted the methodology for proving absence of termination chan-
nels presented in the MPP paper to be used in Nagini. This involved in-
tegrating existing mechanisms of Nagini for proving termination, as well
as the generation of additional assertions. We addressed verification of se-
cure information flow for concurrent programs, which entails additional
challenges as opposed to sequential programs, by adapting existing method-
ologies. In particular, we enable verifying possibilistic noninterference, the
property that given two runs of a concurrent program using the same low
inputs it is possible that we observe the same low outputs.

We have implemented the extended MPP transformation, for the special
case of modeling k = 2 executions, in Viper, reusing much of the already

61

7. Conclusion and Future Work

existing infrastructure. We designed the implementation such that the MPP
encoding can easily be reused for encoding other languages. To prove secure
information flow of Python programs, we extended Nagini to make use of
this transformation. The complete subset of Python that is supported by
Nagini can be encoded into MPPs by our implementation.

To evaluate the implementation we encoded example programs from
the literature in Python. We showed that with our extensions we can ex-
press most of them in Nagini, and get the expected verification result. We
assessed the general performance impact of the MPP transformation by com-
paring the runtimes of tests from Nagini’s test suite with and without the
encoding. The results showed an acceptable overhead in the majority of test
cases, with some exceptions we attributed to the triggering of quantifiers
in the MPP. We proposed some optimizations for the MPP encoding and
evaluated their performance impact, showing significant improvements for
Viper’s symbolic execution verifier.

7.2 Future Work

For future work there is a multitude of relational properties which could be
proven using modular product programs. For one, there are more secure
information flow properties, e.g., the absence of timing side channels, for
which a methodology is already introduced in the MPP paper and could be
adapted to work with Nagini. For another, there are more hyperproperties
unrelated to secure information flow which can be shown using MPPs. For
example, one could extend Nagini to prove reflexivity and transitivity of
Python’s eq method.

To prove, for example, transitivity, a 3-hyperproperty, our implementa-
tion could be adapted to support the more general MPP encoding for mod-
elling k > 2 executions, to enable expressing k-hyperproperties.

Besides this, one could further optimize the MPP encoding. For exam-
ple, currently in a nested loop the body of the inner loop is included a
second time in the reconstruction of the outer loop. Since in the verification
methodology we consider the loop body has no effect outside the loop (only
the loop invariants and condition matter to the outside), it is not necessary
to verify the loop body again. Another optimization, affecting the @AllLow
and @PreservesLow decorators, we already described in Section 4.1.3.

62

Appendix A

Extended MPP Encoding

Jprocedure m(x1, . . . , xm) returns (result, error){s}Kk

= procedure m(p(1), . . . , p(k), args) returns (rets){⊙k
i=1 ret

(i):= false; // true iff returned⊙k
i=1 break

(i):= false; // true iff after break⊙k
i=1 cont

(i):= false; // true iff after continue⊙k
i=1 except

(i):= false; // true iff uncaught exception⊙k
i=1 error

(i):= null; // store exception

JsKp̊
k

}
where

f resh(˚ret) ∧ f resh(˚break) ∧ f resh(˚cont) ∧ f resh(˚except)∧
f resh(˚error)

args = x1
(1), . . . , x1(k), . . . , xm(1), . . . , xm(k)

rets = result(1), . . . , result(k), error(1), . . . , error(k)

Js1; s2K
p̊
k = Js1K

p̊
k ; Js2K

p̊
k

JskipKp̊
k = skip

Jif (e) then {s1} else {s2}Kp̊
k

=
⊙k

i=1(p1
(i):=p(i) ∧ e(i));⊙k

i=1(p2
(i):=p(i) ∧ ¬e(i));

Js1K
p̊1
k ; Js2K

p̊2
k

where

f resh(p̊1) ∧ f resh(p̊2)

63

A. Extended MPP Encoding

Jx1, . . . , xn:= call m(e1, . . . , em)K
p̊
k

= if (
∨k

i=1 p
(i)) then {⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {⊙m
j=1(aj

(i):=ej
(i));

}
ts:= call m(p(1), . . . , p(k), as);⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {⊙n
j=1(xj

(i):=tj
(i));

}
}
where

f resh(å2, . . . , å2) ∧ f resh(t̊2, . . . , t̊2)

as = [a1(1), . . . , a1(k), . . . , am(1), . . . , am(k)]

ts = [t1(1), . . . , t1(k), . . . , tm(1), . . . , tm(k)]

Jfield fKp̊
k = field f(1); . . . ; field f(k)

Jx:= new (f1, . . . , fm)K
p̊
k

= tmpx:= new (f1(1), . . . , f1(k), . . . , fm(1), . . . , fm(k));⊙k
i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {

x(i):=tmpx;

}
where

f resh(tmpx)

Jx:=eKp̊
k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
x(i):=e(i)

}
Jreturn zKp̊

k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
result(i):=z(i);

ret(i):=true

}

64

JbreakKp̊
k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
break(i):=true

}
JcontinueKp̊

k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
cont(i):=true

}
Jraise eKp̊

k

=
⊙k

i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)) then {
error(i):= new ();

inhale typeof(error(i)) = typeof(e)

except(i):=true

}
Jpredicate P(x1, . . . ,xm) {a}Kk

=
⊙k

i=1 predicate P(i)(x1
(i), . . . ,xm

(i)) {a(i)};
function P(rel) (x1

(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k)) : Bool

requires
∧k

i=1 P
(i)(x1

(i), . . . , xm
(i))

{
unfolding

∧k
i=1 P

(i)(x1
(i), . . . , xm

(i)) in {arel}
}
where

a(i) = a without the rel expressions, using field versions i

arel = relational expressions from a, as well as P(rel)

if P is recursive

JP(x1, . . . , xm)K
p̊
k

=
∧k

i=1(act(i) ⇒ P(i)(x1
(i), . . . , xm

(i)))∧
(
∧k

i=1(act(i))⇒ P(rel)(x1
(1), . . . , x1

(k), . . . , xm
(1), . . . , xm

(k)))

where

act(i) =

p(i) ∧ ¬ret(i) ∧ ¬break(i)∧
¬cont(i) ∧ ¬except(i), in method body

p(i), otherwise

65

A. Extended MPP Encoding

JP(x1, . . . , xm)K
p̊
k,post

=
∧k

i=1(act(i) ⇒ P(i)(x1
(i), . . . , xm

(i)))∧
[
∧k

i=1(act(i))⇒ (
∧k−1

i=1 (typeof(self
(i)) = typeof(self(i + 1)))⇒

P(rel)(x1
(1), . . . , xm

(1), x1
(2), . . . , xm

(2))),

(
∧k

i=1(act(i))⇒ P(rel)(x1
(1), . . . , x1

(k), . . . , xm
(1), . . . , xm

(k)))]

where

act(i) =

p(i) ∧ ¬ret(i) ∧ ¬break(i)∧
¬cont(i) ∧ ¬except(i), in method body

p(i), otherwise

Junfold P(x1,. . . ,xm)K
p̊
k

= assert
∧k

i=1(act(i))⇒ (
∧k

i=1(perm(P
(i)(x1

(i), . . . , xm
(i))) = write)⇒

P(rel)(x1(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k));⊙k

i=1 if (act(i)) then {unfold P(i)(x1
(i), . . . , xm

(i))}
where

act(i) = p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)

Jfold P(x1,. . . ,xm)K
p̊
k

=
⊙k

i=1 if (act(i)) then {fold P(i)(x1
(i), . . . , xm

(i))}
assert

∧k
i=1(act(i))⇒ P(rel)(x1

(1), . . . , x1
(k), . . . , xm

(1), . . . , xm
(k));

where

act(i) = p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬cont(i) ∧ ¬except(i)

Jfunction f(x1, . . . , xm) : T requires pre ensures post {s}K

=

⊙k
i=1 function f(i)(x1, . . . , xm) : T

requires pre(i) ensures post(i) {s(i)}

}
, if pre/post/s de-
pend on the heap,

function f(x1, . . . , xm) : T

requires pre ensures post {s}

}
, otherwise.

66

Jy:=f(x1, . . . , xm)K
p̊
k

=

⊙k
i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i)∧

¬cont(i) ∧ ¬except(i)) then {
y(i):=f(i)(x1(i), . . . , xm(i))

}

, if f depends on heap,

⊙k
i=1 if (p(i) ∧ ¬ret(i) ∧ ¬break(i)∧

¬cont(i) ∧ ¬except(i)) then {
y(i):=f(x1(i), . . . , xm(i))

}

, otherwise

67

A. Extended MPP Encoding

Jwhile (c) invariant inv do {s}Kp̊
k

=
⊙k

i=1 bypass
(i):=¬p(i) ∨ ret(i) ∨ break(i) ∨ cont(i) ∨ except(i);⊙k

i=1(if (bypass(i)) then {⊙t∈Targets tmpt
(i):=t};⊙k

i=1 {oldret(i):=ret(i); oldbreak(i):=break(i);

oldcont(i):=cont(i); oldexcept(i):=except(i); }
while (

∨k
i=1(p

(i) ∧ ¬bypass(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ∧ c(i)))

invariant binvc
˚

p(i)∧¬ret(i)∧¬break(i)∧¬except(i)
k

invariant
∧k

i=1(
⊙

t∈Targets bypass
(i) ⇒ tmpt

(i) = t)

do {⊙k
i=1 cont

(i):=false;⊙k
i=1 p1

(i):=p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ∧ c(i);

JsKp̊1
k⊙k

i=1 inhale ¬p(i) ∨ (¬ret(i) ∧ ¬break(i) ∧ ¬except(i))
}
if (

∨k
i=1(¬bypass(i) ∧ (ret(i) ∨ break(i) ∨ except(i)))) then {⊙k
i=1 {ret(i):=oldret(i); break(i):=oldbreak(i);

cont(i):=oldcont(i); except(i):=oldexcept(i); }
inhale

∧k
i=1(p

(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ⇒ inv(i))

inhale
∧k

i=1(p
(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ⇒ c(i))⊙k

i=1 cont
(i):=false;⊙k

i=1 p1
(i):=p(i) ∧ ¬ret(i) ∧ ¬break(i) ∧ ¬except(i) ∧ c(i);

JsKp̊1
k ;⊙k

i=1 inhale ¬p1(i) ∨ ret(i) ∨ break(i) ∨ except(i)

}⊙k
i=1 if (¬bypass(i)) then {break(i):=false; cont(i):=false}

where

Targets are all variables assigned to in loop (including control flow flags),

f resh(p̊1) ∧ f resh(˚bypass) ∧ ∀t ∈ Targets. f resh(˚tmpt)

68

Jtry {s} except e1 : {s1} . . . except em : {sm} else:{se} finally:{s f }K
p̊
k

=
⊙k

i=1 bypass
(i):=¬p(i) ∨ ret(i) ∨ break(i) ∨ cont(i) ∨ except(i);⊙k

i=1 {oldret(i):=ret(i); oldbreak(i):=break(i);

oldcont(i):=cont(i); oldexcept(i):=except(i); }
JsKp̊

k ;⊙k
i=1 thisexcept1

(i):=except(i) ∧ ¬bypass(i)⊙k
i=1 p1

(i):=p(i) ∧ thisexcept(i) ∧ issubtype(typeof(error(i)), e1);⊙k
i=1 if (p1

(i)) then {except(i):=false};
Js1K

p̊1
k ;

. . .⊙k
i=1 pm

(i):=p(i) ∧ thisexcept(i) ∧ issubtype(typeof(error(i)), em);⊙k
i=1 if (pm

(i)) then {except(i):=false};
JsmKp̊m

k⊙k
i=1 pm + 1

(i):=p(i) ∧ ¬thisexcept(i);
JseK

˚pm+1
k⊙k

i=1 if (p(i)) then {
tmpret

(i) := ret(i); ret(i) := oldret(i);

tmpbreak
(i) := break(i); break(i) := oldbreak(i);

tmpcont
(i) := cont(i); cont(i) := oldcont(i);

tmpexcept
(i) := except(i); except(i) := oldexcept(i);

}
Js f K

p̊
k ;⊙k

i=1 if (p(i)) then {
ret(i) := ret(i) ∨ tmpret

(i);

break(i) := break(i) ∨ tmpbreak
(i);

cont(i) := cont(i) ∨ tmpcont
(i);

except(i) := except(i) ∨ tmpexcept
(i);

}
where

∀i ∈ [1, m + 1]. f resh(pi)∧
∀x ∈ { ˚bypass, ˚oldret, ˚oldbreak, ˚oldcont, ˚oldexcept

˚tmpret, ˚tmpbreak, ˚tmpcont, ˚tmpexcept}. f resh(x)

69

A. Extended MPP Encoding

blowEventc ˚act
2 = act(1) = act(2)

blowEventc ˚act
2,dyn = (act(1) = act(2))∧

(act(1) ∧ act(2) ⇒ typeof(self(1)) = typeof(self(2)))

blow(exp)c ˚act
2 = act(1) = act(2) ⇒ e(1) = e(2)

blow(e)c ˚act
2,dyn,post

= [act(1) ∧ act(2) ⇒ (typeof(self(1)) = typeof(self(2))⇒ e(1) = e(2)),

act(1) ∧ act(2) ⇒ e(1) = e(2)]

70

Bibliography

[1] V. Astrauskas. Input-Output Verification in Viper. PhD thesis, Master’s
thesis, Department of Computer Science, ETH Zürich, 2016.

[2] A. Banerjee and D. A. Naumann. Secure information flow and pointer
confinement in a java-like language. In Computer Security Foundations
Workshop, IEEE(CSFW), page 253. IEEE, 2002.

[3] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using
product programs. In International Symposium on Formal Methods, pages
200–214. Springer, 2011.

[4] G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmet-
ric product programs for relational program verification. In Interna-
tional Symposium on Logical Foundations of Computer Science, pages 29–43.
Springer, 2013.

[5] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–
1252, 2011.

[6] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In ACM SIGPLAN Notices, volume 39, pages
14–25. ACM, 2004.

[7] L. Blatter, N. Kosmatov, P. Le Gall, and V. Prevosto. RPP: Automatic
proof of relational properties by self-composition. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 391–397. Springer, 2017.

[8] P. Boström and P. Müller. Modular Verification of Finite Blocking in
Non-terminating Programs. In John Tang Boyland, editor, 29th European

71

Bibliography

Conference on Object-Oriented Programming (ECOOP 2015), volume 37
of Leibniz International Proceedings in Informatics (LIPIcs), pages 639–663,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

[9] D. Costanzo and Z. Shao. A separation logic for enforcing declarative
information flow control policies. In International Conference on Princi-
ples of Security and Trust, pages 179–198. Springer, 2014.

[10] Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach
to analysis of secure information flow. In International Conference on
Security in Pervasive Computing, pages 193–209. Springer, 2005.

[11] M. Eilers and P. Müller. Nagini: A static verifier for Python. In Hana
Chockler and Georg Weissenbacher, editors, Computer Aided Verification
(CAV), LNCS, pages 596–603. Springer International Publishing, 2018.

[12] M. Eilers, P. Müller, and S. Hitz. Modular product programs. In
A. Ahmed, editor, European Symposium on Programming (ESOP), LNCS,
pages 502–529. Springer International Publishing, 2018.

[13] D. Giffhorn and G. Snelting. A new algorithm for low-deterministic
security. International Journal of Information Security, 14(3):263–287, 2015.

[14] R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr.
A hybrid approach for proving noninterference of java programs. In
Computer Security Foundations Symposium (CSF), 2015 IEEE 28th, pages
305–319. IEEE, 2015.

[15] K. R. M. Leino. This is Boogie 2. Manuscript KRML, 178(131), 2008.

[16] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded pro-
grams. In European Symposium on Programming, pages 378–393. Springer,
2009.

[17] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(6):1811–1841, 1994.

[18] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation, pages 41–62, Berlin, Heidelberg, 2016. Springer Berlin Heidel-
berg.

[19] M. Parkinson and G. Bierman. Separation logic and abstraction. In
ACM SIGPLAN Notices, volume 40, pages 247–258. ACM, 2005.

72

Bibliography

[20] G. Smith. Principles of secure information flow analysis. In Malware
Detection, pages 291–307. Springer, 2007.

[21] M. Sousa and I. Dillig. Cartesian hoare logic for verifying k-safety
properties. In ACM SIGPLAN Notices, volume 51, pages 57–69. ACM,
2016.

[22] T. Terauchi and A. Aiken. Secure information flow as a safety problem.
In International Static Analysis Symposium, pages 352–367. Springer, 2005.

[23] H. Yang. Relational separation logic. Theoretical Computer Science, 375(1-
3):308–334, 2007.

73

	Contents
	Introduction
	Background
	Hyperproperties
	Information Flow Security
	Modular Product Programs
	Viper and Nagini

	Modular Product Program Extensions
	Return Statements
	Loops
	Exception Handling
	Dynamically Bound Calls
	Heap Memory
	Verification Constructs
	Pure Functions
	Predicates

	Secure Information Flow
	Specifications
	Expressions
	Declassify Statement
	Method Decorators

	Obligations and Termination Channels
	Obligations
	Termination Channels

	Possibilistic Noninterference
	Locks
	fork/join

	Implementation
	Existing Infrastructure
	Design
	Optimizations
	Control Flow Optimizations
	Sequential Composition
	Activation Variables
	Avoiding Duplicate Checks

	Evaluation
	SIF Verification
	Encoding Python Programs
	MPP Verification Performance
	Performance Impact of MPPs in General
	Performance Impact of Optimizations

	Conclusion and Future Work
	Conclusion
	Future Work

	Extended MPP Encoding
	Bibliography

