
Static Verification of the SCION
Router Implementation

Bachelor’s Thesis

Sascha Forster

Supervised by Marco Eilers, Prof. Dr. Peter Müller
Department of Computer Science

ETH Zurich
Zurich, Switzerland

September 4, 2018

Abstract

The SCION project aims to improve routing in today’s Internet.
The SCION internet architecture consists of path servers, beacon
servers, certificate servers, SIBRA servers and border routers. The
border router is responsible for routing packets between different au-
tonomous systems and has been implemented in Python. In this
project, we verified memory safety, progress and I/O behaviour, for a
part of the code, to guarantee that this implementation does not crash
and that it correctly forwards packets. We used Nagini, a Python
verifier based on the Viper verification framework, to statically verify
the code.

We gathered various interesting statistics about the performance of
the verifier while working on the project. Additionally, we measured
the verification performance of the different backends that Nagini
uses. Furthermore, we gained insight about what it means to use the
Nagini frontend on a larger codebase instead of only small examples.
We identified multiple code and specification patterns that impede
verification performance and we describe how they can be avoided.
One significant insight is that Nagini does not fulfil completeness when
wildcard read permissions are used. Finally, we identified multiple
bugs in Nagini, and as a result, most of them could be fixed.

1

Acknowledgements

I would like to thank my thesis supervisor Marco Eilers for his
significant support during this project. Weekly meetings and regular
discussions via E-Mail helped me overcome any difficulties that I
encountered. I would also like to thank Prof. Dr. Peter Müller for the
opportunity to work on this project.

2

Contents

1 Introduction 5
1.1 Outline of Methodology . 6
1.2 Project Goals . 6

2 Preliminaries 7
2.1 SCION Routing . 7
2.2 Deductive Verification . 7
2.3 Viper . 8
2.4 Nagini . 8
2.5 MyPy . 10
2.6 Permission-based Verification 10
2.7 Predicates & Pure Functions 12
2.8 Obligations . 13
2.9 I/O Specifications . 13

3 Methodology 16
3.1 Verification Goals . 16
3.2 The Codebase . 16
3.3 Python and Types . 18
3.4 Codebase Additions . 18
3.5 Verifying Python Code . 19

4 Verification Process 22
4.1 Memory Safety . 22

4.1.1 Code Overview . 22
4.1.2 Approach and State Predicates 24
4.1.3 SCIONPath.get hof ver 25
4.1.4 SCIONPath.inc hof idx 28

4.2 Progress . 29
4.3 Modelling SCION Packets . 30
4.4 I/O Behaviour . 32

5 Results 38
5.1 Verification . 38
5.2 Verified Properties . 38

5.2.1 Statistics . 39

3

5.3 Nagini . 40
5.3.1 Bugs & Problems in Nagini 41
5.3.2 New Features . 41
5.3.3 Performance . 42

5.4 General Insights . 47

6 Conclusion & Future Work 49

4

1 Introduction

Routing is a central part of the Internet architecture as it allows information
to be sent along its way from the source to the destination. There are,
however, quite a few issues present in the architecture as it is used now. One
big problem is the ability of malicious users to hijack traffic, which is flowing
between two endpoints. This is exacerbated by the fact that a sender has no
real control over which route their data takes.

The SCION [1] project aims to achieve significant improvements in this
area. A major difference between SCION routing and traditional routing is
the ability for the sender to choose the path that they want their data to
follow. This is accomplished by saving the defined route in the data packet as
a list of hop fields. Each hop corresponds to an autonomous system, e.g., an
Internet service provider (ISP). SCION border routers can thus be stateless,
as they do not need to keep a routing table and the routing information is
encoded in the data packets.

As part of the SCION project an example implementation for a border
router has been implemented in Python. The goal of the VerifiedSCION1

project is to ”verify the routing protocol SCION from the high-level design all
the way down to the implementation” [2]. Verification can be performed to
guarantee many different properties, but here we are interested in properties
relevant to reliable operation of a router. As a first property, we chose memory
safety, because we want to guarantee that the router does not crash due to
a runtime error, e.g., an illegal access to heap memory. Then, we chose
progress, such that we can ensure that the code does not get stuck in an
infinite loop. Of course, the main method in a router should never terminate
to ensure availability, but processing of a single packet should be guaranteed
to terminate. The last relevant property is input/output (I/O) behaviour,
because we want to show that the router correctly processes and forwards
any valid packet it receives. Thus far, the router code has not been verified
for these three properties.

In this project, we verified a part of the router implementation using
a static verification tool. More specifically, we focused on the part of the
code which checks if a received packet is well-formed, processes the packet
accordingly and finally forwards it.

1http://www.pm.inf.ethz.ch/research/verifiedscion.html

5

1.1 Outline of Methodology

The verification of the code was performed in a static manner, meaning
without executing the code itself. As the verification tool, we used the Nagini
verifier [3], which is based on the Viper verification framework [4]. Nagini
provides support for writing method contracts, which are used to verify the
code. The router code is written in the Python programming language. We
needed to add type annotations, because Nagini requires knowledge about
types and Python is dynamically typed.

Since this is the first attempt to apply Nagini to a large, real-world
codebase, an additional part of the project was to evaluate the performance
and usability of Nagini. To gain statistics about performance, we measured
the time needed to verify the methods. In the results section, we present
statistics about the performance of Nagini. As a side task, while using the
verifier, we identified bugs in Nagini.

Outline: In Section 2, some important concepts and tools, which are
central to this report, are presented. If the reader is already familiar with
those topics, it can be skipped. Section 3 describes how we approached this
project and how we worked on it. Then, Section 4 continues by giving a
detailed description of the verification of the code. With Section 5, we present
the results of the project. In Section 6 we conclude this report and provide
suggestions for future work.

1.2 Project Goals

The goals of the project were the following:

• Prove memory safety of the router by showing that no illegal memory
accesses can happen.

• Prove absence of unintended infinite loops.

• Create an abstraction of the packet parsing mechanism of the router
and declare a function that maps a SCION packet to the abstraction.

• Write an I/O specification [5] for the SCION router and verify that the
implementation complies with it.

6

2 Preliminaries

This section serves to introduce the topics that are relevant to the project.
If the reader is already familiar with these concepts, they can be skipped as
they only contain general information.

2.1 SCION Routing

In traditional routing, a router keeps a table of prefixes according to which it
forwards packets. This means that ISPs alone have the control over which
routes clients’ data takes. SCION [1] works differently, as it allows a client to
choose their preferred route. To allow this, the route needs to be defined in
every packet. It is stored as a sequence of different segments, which consist
of a list of hop fields. Every hop field corresponds to an autonomous system
(AS), e.g., an ISP. In a hop field, there is information about the ingress and
egress interface of the AS. Essentially, these are the interfaces where the
packet enters and leaves the AS.

SCION introduces a concept called isolation domains (ISD), which are
groups of ASes. An ISD has a core, generally consisting of multiple ASes,
called core ASes. ISDs are interconnected to provide Internet service to every
AS and thus also all clients within an AS. The segments mentioned above
are paths in an ISD or between multiple ISDs. There are three kinds of
segments in SCION routing, up-, down- and core-segments. An up-segment
is a list of hops from a non-core AS to the core. A down-segment is the
opposite and a core segment is between core ASes. For this project, we focus
on verifying parts of the code relevant to forwarding of a packet that only
has one up-segment in its path.

2.2 Deductive Verification

Deductive verification is the concept of formally proving that a program
adheres to a formal specification under all circumstances. A specification
usually consists of contracts, which include preconditions, postconditions and
loop invariants. These contracts are generally assertions and they describe
the states that are allowed at a specific point in the program. Every method,
which we want to verify, requires them, as they serve to specify the method
behaviour. Preconditions need to hold true before the method is called in the
program. Conversely, postconditions need to hold after the method is called.

7

To specify behaviour of loops in a method, we use loop invariants. Invariants
have to be true before the loop executes, between every loop iteration and
after the last iteration. If the loop terminates abnormally, e.g., via a break or
return statement, the invariant does not need to hold, because the invariant
only reasons about normal loop execution.

Evidently, the contracts must be side effect free, because they only serve
to write a program specification. This is also necessary to keep the original
program and its functionality intact.

In modular verification, each method is verified independently from the
other methods. Still, there needs to be a specification, which allows for a
successful verification, for all called methods. Modular verification allows for
a much more efficient workflow, as it makes it easier to limit a verification to
a subset of all methods of a codebase. However, a disadvantage is that all
relevant information about a method’s behaviour needs to be included in its
specification.

More details about verification, which are specific to the verifier used for
this project, follow in Section 2.6.

2.3 Viper

Viper2 [4], which stands for Verification Infrastructure for Permission-based
Reasoning, is a verification framework developed at ETH Zurich. Viper
consists of an intermediate language, the Viper language, and two different
backends, the symbolic execution backend and the verification condition
generation backend. The latter encodes the code in Boogie3 [6], which then
generates a verification condition. In both toolchains, the output is then
passed to the Z34 [7] SMT solver. By using Z3, Viper automates modular,
deductive verification.

2.4 Nagini

Nagini5 [3] is a frontend for Viper that encodes annotated Python code to the
Viper language, so that it can then be verified using a Viper backend. Type

2https://bitbucket.org/viperproject
3https://github.com/boogie-org/boogie
4https://github.com/Z3Prover/z3
5https://github.com/marcoeilers/nagini

8

annotations are required by Nagini, as MyPy6, a static type checker for Python,
is run before the encoding. Furthermore, preconditions, postconditions and
loop invariants need to be added to the original Python source code. In Nagini,
we write pre- and postconditions before the method body and invariants before
the loop body.

We explain general concepts in this and the following sections, but we will
discuss more details about Nagini in relation to this project in Section 3.5.

An example of contracts in Nagini can be seen in Listing 1. The pre-
condition specifies that argument x needs to be greater than 0 when the
method is called. With the postcondition, we enforce that the returned value
is equal to 2*x. Result() is used to denote the returned value. To verify
the postcondition, the verifier needs to know that res stays smaller or equal
to 2*x and to make the connection to k, we also need the condition res ==

2*k.

1 de f foo (x : i n t) −> i n t :
2 Requires (x >= 0)
3 Ensures (Result () == 2∗x)
4 k = 0
5 r e s = 0
6 whi le k < x :
7 Inva r i an t (r e s == 2∗k)
8 Inva r i an t (r e s <= 2∗x)
9 r e s = r e s + 2

10 k = k + 1
11 re turn r e s

Listing 1: Example of Nagini contracts.

Nagini supports modular verification. Additionally, Nagini also has sup-
port for annotations to force a method to be contract-only, this means that the
method does not get verified and its contracts are assumed to be correct. This
is written as a @ContractOnly annotation. Furthermore, Nagini supports
Old expressions, which are used to evaluate an expression in the state before
the method was executed. They can be used in postconditions and in loop
invariants.

6https://github.com/python/mypy

9

2.5 MyPy

Listing 2 shows an example of type annotations for MyPy. As can be seen in
the code, every parameter that is not the receiver needs a type annotation.
The example defines x to be of type int and s to be of type str, which is
the string type in MyPy. Default values for parameters come after the type
annotation. So, parameter b is of type bool and it has default value True.
Additionally, a return type is also required, which in the example is int.

1 de f foo (s e l f , x : int , s : s t r , b : bool = True) −> i n t :

Listing 2: Example of MyPy type annotations in a method definition.

Some class constructors also need type annotations. In Listing 3, you can
see that field x, which is initialised in the constructor with 0, does not need
an annotation, as the type can be inferred by MyPy, which in this case is type
int. If a field is initialised to None, we need a type annotation; otherwise
MyPy will infer the Any type. This will not work, because Nagini requires
every parameter and field to have a type which is not Any. An example of a
type annotation in the constructor can be seen for the field object

1 de f i n i t (s e l f) −> None :
2 s e l f . x = 0
3 s e l f . ob j e c t = None #type : Optional [L i s t [i n t]]

Listing 3: Example of MyPy type annotations in a class constructor.

2.6 Permission-based Verification

Permission-based verification allows us to verify memory safety. For this kind
of verification we need a permission system. Two kinds of permissions are
used, read permissions and write permissions. A permission is the right to
access a memory location in the heap, which, most of the time, means the
right to access a field of an object. Permissions can be held by a method.
When a read permission is held, the method is only allowed to read the
contents of the memory location. With a write permission, the method is
additionally allowed to modify the data stored in the memory location. If a
method does not hold any permission to a memory location, it is not allowed
to read or write. Listing 4 shows an example of a read permission in Nagini,
it states that we have 1/10th permission to access field f of object x. Read

10

permissions are denoted by a permission amount between zero and one in
Nagini.

1 Acc (x . f , 1/10)

Listing 4: Example of a Nagini read permission.

A write permission is denoted by Acc(x.f), which is short for Acc(x.f,
1). This is considered a full permission to x.f, with a permission amount of
exactly one.

Permissions are used to write a specification about memory safety, which
means a specification where every method has enough permissions to perform
its reads and writes. Nagini automatically enforces that only legal reads and
writes of a memory location are allowed in a verified method. This means that
for every location in the method body, where, e.g., a field is written to, the
method also holds a sufficient permission. Furthermore, method calls are only
allowed when all permissions defined in the precondition of the called method
are fulfilled. An example of such a precondition is Requires(Acc(x.f)),
which states that a write permission to x.f is required.

When calling a method, the required permissions need to be passed to
the callee. To pass a permission to a callee, the caller needs to have at least
as high a permission amount as the callee requires. For example, if the callee
requires 1/5th permission, the caller requires at least 1/5th permission. The
caller passes the permission amount required to the callee. If there is a leftover
permission, it is kept by the caller. This means that, if the caller has the
exact same permission amount as the callee, it gives away all its permission
to the corresponding heap location. From this follows, that the caller forgets
any information about the location in heap memory.

In addition to normal permissions, Nagini also features quantified permis-
sions. Listing 5 shows an example of a Forall expression used to assert a
quantified permission.

1 F o r a l l (s e l f . l i s t , lambda e l : Acc (e l . x , 1/10))

Listing 5: Example of a quantified permission using a Forall expression in
Nagini.

By using such expressions, one can express a statically unknown amount
of permissions, since the length and contents of a list are usually not known
in a static context. This is a very useful concept and it is one of two ways

11

how one can express an amount of permissions that is unknown in a static
context in Nagini. The other way is by using recursive predicates, but that
concept is not relevant to this project.

The logic used by Viper for permission-based verification is called implicit
dynamic frames [8].

2.7 Predicates & Pure Functions

A predicate is an abstraction over assertions. In order to make the code more
readable, predicates can be used to group contracts together, since they are
all assertions. An example of a predicate in Nagini can be seen in Listing 6.
In Nagini, a predicate is declared as a function that takes any number of
arguments and returns a boolean value. The body of a predicate must contain
only a single return statement, that returns the contents of the predicate. Any
assertion that is well-defined in the context of the predicate can be included
in the contents.

1 @Predicate
2 de f pred (x : MyClass , i : i n t) −> bool :
3 re turn Acc (x . f) and x . f == i

Listing 6: Example of a predicate in Nagini.

In the example, we have a permission to field x.f and an expression that
says that the field is equivalent to the argument i. A predicate needs to be
self-framing, this means that it needs to include sufficient permissions to all
fields accessed within the predicate.

As with fields, we need permissions to use the predicates, e.g., Acc(pred(x,
2), 1/2), which simply denotes a read permission to the predicate. A write
permission can be written without the fraction or also simply as pred(x,

2). If one has a permission to a predicate, but requires the contents of the
predicate, i.e., the permission to f and the knowledge that x.f == i, once
can unfold the predicate. This means that the predicate gets replaced with its
contents. Unfold(Acc(pred(x, 2), 1/5)) would give us 1/5th permission
to x.f and x.f == 2. The opposite of unfolding is folding, which replaces
the contents with the predicate itself. As with the other expressions using
permissions, folding and unfolding can also be done with a full amount. For
unfolding, the permission amount of the predicate and the permission amount
of a permission assertion within get multiplied. Additionally, there is also an
Unfolding(perm, expr) expression, where perm is a permission assertion

12

and expr is an expression. This unfolding expression evaluates expr in a
context where perm is unfolded.

In Nagini, there are special predicates for lists and dicts, list pred and
dict pred, which denote a permission to a list or a dict and all of its elements.
They can be used like normal predicates, but they do not need to be unfolded.

Another important concept are pure functions. These are functions that
have no side effects, meaning they can be used in contracts. In Nagini they
are marked with a @Pure annotation, so that the verifier knows to check for
purity. Pure functions are only allowed to call other pure functions and they
are not allowed to include loops. Further, no heap allocations, e.g., creating
new objects, are allowed in a pure function. Recursion is allowed as it only
uses the stack.

2.8 Obligations

An obligation is a promise of a method to perform a certain action, that needs
to be fulfilled at some point. To reason about progress, termination obligations
[9] can be used. MustTerminate(n) is an example of a termination obligation
in Nagini. If used in a method precondition, it states that the method promises
to terminate within n steps. A method with MustTerminate(n) is only
allowed to call pure functions and methods with MustTerminate(k), where k

< n. When a method contains a loop, an invariant with a MustTerminate(i)

obligation, where i decreases with every loop iteration, but stays non-negative,
is needed.

2.9 I/O Specifications

I/O specifications can be used to verify the desired I/O behaviour of a program.
Generally, I/O behaviour is how the program interacts with the operating
system. Examples of I/O operations are reading and writing to the console.
For this project, an important I/O operation is the sending of some data via
a network socket.

A simple way of specifying I/O behaviour is using a Petri net. This way
of writing I/O specifications is proposed in [10]. Such a Petri net consists of
places (nodes) and transitions between the places. Places are represented by
circles and transitions are drawn as rectangles. A transition can represent
an I/O operation that is performed. There is also a split operation, which
simply duplicates its input. Sometimes, a no-op is also needed, it corresponds

13

to doing nothing. There are also tokens, which reside in a place and they can
be moved between two places by a transition. A transition can be performed
when there are tokens in all of its input places and it moves the tokens to
its output places In Figure 1, an example of a Petri net specifying the I/O
behaviour of a router can be seen. This Petri net specifies, that some data
bytes are received and stored in bs, then a check is performed on bs. If the
check is successful, the bytes get transformed by some function bs’=f(bs) and
the result is passed to the send operation. If the check fails, the data is not
further processed, this is represented by the drop operation in the figure.

bs = recv() split

drop

otherwise

send(bs′)

wf(bs)

Figure 1: Example of a Petri net with a token in the left most place.

Nagini supports verifying code with respect to such an I/O specifications;
the implementation is described in [5]. First an I/O operation has to declared
in the code, so that it can later be used in method specifications Listing 7
shows an example of an I/O transition written in Nagini syntax. This could
be the code for the transition send in Figure 1. It denotes a transition from
place t pre to t post and it takes one argument data. Terminates(True)

expresses that send is a non-blocking operation, whereas Terminates(False)
would state that the operation is blocking and may not terminate. Since an
I/O operation will be used in contracts, its return type needs to be bool.

14

1 @IOOperation
2 de f send (
3 t p r e : Place ,
4 data : bytes ,
5 t p o s t : Place = Result () ,
6) −> bool :
7 Terminates (True)

Listing 7: Example of an I/O transition in Nagini.

I/O operations can be used like predicates in contracts, e.g., send(t1,
data, t2) in a precondition states that the method will perform the send
operation. To ensure that the token is eventually moved along in the Petri net,
we use an obligation token(t1, n), which states that a token is currently in
place t1 and it will be moved in at most n steps.

15

3 Methodology

3.1 Verification Goals

There are three properties that we verified:

• Memory Safety, i.e., no crashes due to runtime errors, like illegal heap
memory accesses

• Progress, i.e., all methods make progress, meaning they will not get
stuck in an infinite loop

• I/O Behaviour, i.e., the router correctly forwards a valid packet and
discards invalid packets

In order to limit the scope of the project, we chose a specific path in the
code to verify. Namely, we assumed that there is only one up-segment in the
packet path. Furthermore, we assumed that SCION features like peering,
SCION extensions and inter-domain communication are not used. Finally,
we assumed that the router is not the recipient of the packet, i.e., the packet
still needs to be forwarded.

3.2 The Codebase

The SCION Python router code, which can be found at [7], has two folders
which are of interest to us. Namely, infrastructure, which contains the
main files of the router and lib, where SCION library classes and methods
are located. The rest of the folders contain files which are not relevant for
this project.

The most important files are main.py, scion elem.py, scion.py, path.py
and opaque field.py. An overview of the files and folders can be seen in
Figure 2. In the scope of this project, the main method is handle request,
which is located in the class Router in main.py. More on the call structure
and the call graph will be discussed in Section 4.

The Router class inherits from SCIONElement, which is defined in
scion elem.py. Another very important class is SCIONL4Packet, which
is the internal representation of a parsed SCION packet. It is located in

[7]https://github.com/sasjafor/scion

16

scion

infrastructure

router

main.py

scion elem.py

lib

packet

opaque field.py

path.py

scion.py

Figure 2: Overview of the codebase; only the important files and folders are
included.

scion.py and it inherits from SCIONExtPacket, which in turn inherits from
SCIONBasePacket.

A SCION packet contains a field path of type SCIONPath, which con-
tains the forwarding information of the packet. It contains a list of fields
with type OpaqueField, which has two subtypes, InfoOpaqueField and
HopOpaqueField. The list is filled with SCION path segments, which start
with an info field and get followed by a number of hop fields. An info field
contains information about a segment, which includes the number of hops
in the segment and a few flags. A hop field contains information about an
AS, which includes information about the ingress and the egress interface and
also a few flags.

The rest of the classes will not be discussed here, but they will be discussed
where needed.

We selected 31 methods for verification, but we verified 24 of them and
the rest we annotated with @ContractOnly. That constitutes 420 lines of
code (LOC), with 334 LOC actually verified. The reasons why we did not
verify some of the methods are varied. For some, it would simply have been
out of the scope of this project and for others, essential features are not yet

17

supported by Nagini. Of the 24 verified methods, 6 were annotated as @Pure.
More statistics about how much code was verified, will be discussed in detail
in the results section.

The router code uses mainly standard features of the Python language
and built-in types like lists and dicts. As previously mentioned, the code does
not have any type annotations. The code also features callables, which are
essentially function pointers, however, Nagini does not yet fully support the
callable type. This means that we had to rewrite some small parts of the
code to equivalent code which does not use callables.

The SCION router code was not written with verification in mind, which
means that verification was harder than it would have been otherwise. Also,
some features had to be added to Nagini an example is that enumerate

expressions were not supported previously.

3.3 Python and Types

Nagini runs MyPy8 on the code before verifying it; thus, we need type
annotations. Since the existing Python code of the router does not already
have type annotations, we needed to add type annotations. These annotations
are described in Section 2.5.

For Python’s built-in methods, we used typeshed9 stub files. These stub
files simply have type annotations, but they do not have any Nagini contracts.
Nonetheless, using these stub files allows us to assume that those methods are
correctly implemented for the purpose of our verification. There might still
be mistakes in these built-in methods, but this is a necessary simplification
that allows us to only verify the code we are interested in for this project.

3.4 Codebase Additions

For our verification we added a few folders to the codebase. scion-stubs

contains interface files for SCION classes; there most predicates and SCION
methods that only have an interface are located. Those methods were only
annotated with contracts, but their bodies were not verified. It also contains
all contracts for methods, which are part of the SCION code library in lib.
The layout of files and folders in scion-stubs corresponds directly to the

8https://github.com/python/mypy
9https://github.com/python/typeshed

18

locations of the normal files. As an example, the interface file scion.pyi is
located in scion-stubs/lib/packet and it contains annotated versions of
the methods in scion.py.

As discussed in the previous section, we used typeshed stub files for built-
in methods. In stubs, there are stub files that override typeshed’s stub files.
This was necessary to annotate the stubs with Nagini contracts, where it was
needed.

The new adt package contains only the definition of an abstract data
type.

3.5 Verifying Python Code

As mentioned in Section 3.3, we needed to annotate the router code with
types first. For a method which we wanted to verify, we needed preconditions
and postconditions. If there was a loop, we additionally needed to write a
loop invariant.

An example of Nagini contracts can be seen in Listing 8. Acc(obj.x,

1/10) denotes a read permission of 1/10. For a read permission, the value
of the fraction needs to be positive and less than 1 and we always need at
least this permission amount when calling method foo. Nagini also supports
read permissions without using fraction amounts, but for this verification, it
proved to be more reliable and performant to use fractional amounts. Details
and statistics about performance and usability of the verifier will be discussed
in Section 5.

1 de f foo (s e l f , obj : bar) −> i n t :
2 Requires (Acc (obj . x , 1/10))
3 Requires (obj . x >= 0)
4 Ensures (Acc (obj . x , 1/10))
5 Ensures (Result () == 2∗ obj . x)
6 y = 0
7 whi le y < obj . x :
8 Inva r i an t (Acc (obj . x , 1/10))
9 Inva r i an t (obj . x == Old (obj . x))

10 Inva r i an t (y <= obj . x)
11 y = y + 1
12 re turn y + obj . x

Listing 8: Example of Nagini contracts.

As discussed in the preliminaries, Result() is used to denote the value

19

of the return value and the Old expression can be used in invariants and
postconditions to evaluate an expression in the state before the current method
was called.

When a method is allowed to raise an exception, we also need a special
postcondition to handle the exceptional control flow. Listing 9 shows an
example of this. Exsures(Exception, Acc(obj.x, 1/10)) says that foo is
allowed to raise an exception of type Exception. Furthermore, the second
argument to Exsures is like a normal postcondition, but it only needs to hold
when an exception of the corresponding type was raised. When an exception
is raised by a method, the normal postconditions do not need to hold.

1 de f foo (s e l f , obj : bar) −> i n t :
2 Requires (Acc (obj . x , 1/10))
3 Ensures (Acc (obj . x , 1/10))
4 Exsures (Exception , Acc (obj . x , 1/10))
5 i f obj . x == 0 :
6 r a i s e Exception (”x shouldn ’ t be 0”)
7 e l s e :
8 re turn obj . x

Listing 9: Example of a method with an exceptional postcondition.

We used the termination obligations, discussed in Section 2.8, to reason
about progress. Generally, they can simply be added to the precondition,
without the need for any changes in the rest of the contracts. However, some
additional contracts are sometimes needed to guarantee that the obligations
are well-defined. An example would be that the termination measure of
a method depends on the length of a list, so we could have this contract:
Requires(MustTerminate(len(l))), where l is the name of the list. Now,
we need to include an additional precondition that states that the length
of the list is greater than zero, because the argument to the termination
obligation needs to be greater or equal than 1.

For our I/O verification, we used the specification language described in
Section 2.9. An example from our verification can be seen in Listing 10. This
is our main I/O operation that represents the udp send operation of our I/O
specification. It takes two places, t pre and t post, between which it moves
the token. Additionally, it accepts some data, which it sends to a destination
address (dst addr) and port (dst port), but it does not physically send
anything, as this is only specification. By using this I/O operation, we can
abstract the actual functionality of udp send. Once again, this is a necessary

20

step to keep the project in a manageable scope.

1 @IOOperation
2 de f udp send (t p r e : Place , data : bytes , ds t addr : s t r , d s t p o r t :

int , t p o s t : Place = Result ()) −> bool :
3 Terminates (True)

Listing 10: Example of an I/O operation from our verification.

For the real UDPSocket.send method, only the contracts are now regarded
in the verification. Therefore, we annotated it with @ContractOnly. How
the udp send I/O operation is used in the contract of the real send can be
seen in Listing 11.

1 IOExists1 (Place) (lambda t2 : (
2 Requires (MustTerminate (1)) ,
3 Requires (dst i s not None and token (t , 1) and
4 udp send (t , data , dst [0] , dst [1] , t2)) ,
5 Ensures (Result () [1] i s t2 and token (t2))
6))

Listing 11: Example of an IOExists contract.

An IOExists statement starts with a number after the name, which simply
states how many variables we want to quantify over. Then, a list of the types
of the variables follows, and after that, there is an existential quantifier, which
actually introduces the variables. In our example, we have IOExists1, for one
variable, then the type, which is Place. Afterwards, lambda t2: quantifies
over the variable t2. Within the inner brackets, we find the normal pre- and
postconditions, but additionally, there are also the I/O contracts. For the
contract of send, we have the precondition stating that a token resides in
place t and the method promises to perform the udp send I/O operation. In
the postcondition, we ensure that we return the resulting place and that the
token has now been moved there.

The reason why this syntax might seem convoluted, is because MyPy’s
type checker needs to be satisfied.

21

4 Verification Process

This section describes in detail how we worked on the four tasks of the project,
which are described in Section 1.2. Generally, we worked through the tasks in
order, because memory safety verification had to completed before a method
could be verified for progress, and similarly, before starting to write I/O
specifications, all methods had to already be verified for memory safety and
progress. However, the definition of a packet abstraction and a mapping
function for the third task could be written in parallel with the first task. We
started work on the fourth task only once all other tasks were completed.

4.1 Memory Safety

The first task of the project was verifying memory safety for a subset of the
methods in the SCION codebase. We spent at least half of the time on this
task, as a number of issues with the verifier arose. One big problem was one
of performance, this slowed work down in the beginning, since a verification
command could take a long time to terminate. Performance will be discussed
in detail in the results in Section 5.

4.1.1 Code Overview

First, we are going to describe the code that we verified in more detail. The
following figures will show call graphs of some of the verified methods with a
limited depth.

Figure 3 shows the call graph for handle request, which is the topmost
method that we looked at in the call hierarchy. It receives a SCION packet

Router.handle request

SCIONElement. parse packet Router.handle extensions Router. process flags Router. needs local processing SCIONL4Packet.parse payload Router.handle data

Figure 3: Call graph of Router.handle request.

in byte representation and a boolean variable, which says if the packet was
received on a local socket, i.e., if the packet was sent by a client in the same
AS as the router. First, it calls parse packet to parse the packet into
an internal representation and then it calls handle extensions to process
SCION extensions. Then, process flags gets called to process any flags
and it determines if the packet needs local processing. If it does, then

22

parse payload gets called and finally, the packet object that was parsed
is passed to handle data, which performs some additional checks and then
forwards the packet. handle request gets called every time a packet is
received by the router.

We continue with the call graph of handle data (Figure 4), which calls
process data and catches any exceptions that process data might raise

and then writes them as errors to a log. process data calls many methods to
check validity of the packet and also to process the packet and then to forward
it. Specifically, it calls verify hof, which checks validity of the packet, and
calc fwding ingress and inc hof idx, which process the packet by advanc-

ing the hop field index by one. Finally, deliver, send and egress forward

are called to forward the packet, each on a different path in the code of
process data. The call graph for verify hof can be found in Figure 5.
process data also has a call to Router. validate segment switch, which

we also verified, but it later became apparent that this method does not get
called in our path in the code. This time was not wasted, however, as it can
be used for any future verification efforts of the SCION router code.

Router.handle data

Router. process data

Router.verify hof SP.get hof SP.is on last segment Router.deliver SP.get curr if SP.get iof SP.get of idxs Router. calc fwding ingress Router. validate segment switch SP.get fwd if Router.send revocation Router.send SP.inc hof idx Router. egress forward

Figure 4: Call graph of Router.handle data, where SP stands for
SCIONPath.

Router.verify hof

SCIONPath.get iof SCIONPath.get hof SCIONPath.get hof ver SCIONPath.get curr if HopOpaqueField.verify mac

Figure 5: Call graph of Router.verify hof.

Router. validate segment switch

Router. link type SCIONPath.get iof SCIONPath.get hof

Figure 6: Call graph of Router. validate segment switch.

23

4.1.2 Approach and State Predicates

Quickly, after starting work on this first task, it became evident that it
would be most efficient to work in a bottom-up manner. When verifying
a method, it makes sense to first know about all the preconditions of all
called methods, because if this is not the case, a lot of changes might have
to be performed later. Additionally, when we are verifying a method, it will
only definitely fulfil its contract when the contracts of all called methods
stay the same. If a contract of a called method changes, the method will
have to be verified again. On the other hand, there is also a disadvantage to
working bottom-up, which appears when a postcondition of a called method
is insufficient. Insufficient means that a condition which is required after
the method call is not guaranteed by the postcondition of the called method.
A simple example would be that the called method takes a permission and
then does not return it again in the postcondition. This is of course simply a
mistake, but if there are a lot of contracts, it can happen rather quickly that
a required postcondition is forgotten and the mistake is only discovered later,
when the the caller gets verified.

To simplify contracts in our verification, we used state predicates for the
different classes. These predicates shall reflect the invariants which must be
established by the parser of the SCION router. This means that after parsing
a SCION packet successfully, we can rely on these invariants holding at all
times, if we ensure that no method violates them. The largest part of a state
predicate is made up of access permissions to fields and permissions to the
state of child objects.

To write assertions about the state predicates of list elements and other
collections, we used quantified permissions. Here is an example using a Forall

expression: Forall(path. ofs lambda of: of.State()). The example
asserts that for every element of the list ofs, the element’s state predicate
holds. Alternatively, we could have used recursive predicates, but we decided
against it.

For state predicates that are part of the packet classes, these permission
assertions must hold for any successfully parsed packet. Additionally, the
state predicates of the packets contain assertions specific to our assumptions
and they must also be established by a successful parsing. For the state
predicate of the Router class, the assertions have to hold in any instance of a
SCION router as no assumptions about the state of the router were made.

An example of a state predicate from the class SCIONBasePacket can be

24

seen in Listing 12.

1 @Predicate
2 de f State (s e l f) −> bool :
3 re turn (Acc (s e l f . cmn hdr) and
4 Imp l i e s (s e l f . cmn hdr i s not None ,
5 s e l f . cmn hdr . State ()) and
6 Acc (s e l f . addrs) and
7 Imp l i e s (s e l f . addrs i s not None , s e l f . addrs . State ()) and
8 Acc (s e l f . path) and
9 Imp l i e s (s e l f . path i s not None , s e l f . path . State ()))

Listing 12: State predicate of SCIONBasePacket.

In Nagini, classes will inherit predicates declared in the class scope. If a
predicate overwrites the predicate from the super class, the resulting predicate
will be a conjunction of the predicate from the superclass and the class’ own
predicate. Since state predicates are declared within classes, this also holds
for them.

When an object is passed as a parameter to a method, the necessary
permissions to fields and any additional conditions can simply be passed via
the state predicate of the object. We included any conditions which only need
to hold for a certain method, but not at every point in the code after parsing,
in the method’s precondition.

In the following sections, some of the previously mentioned methods will
be looked at in detail. We chose to discuss the methods which were the most
difficult to verify, as to give an insight into what kinds of difficulties can
arise when verifying real-world code. They will, generally, be treated in a
bottom-up manner.

4.1.3 SCIONPath.get hof ver

This method’s purpose is to retrieve a hop field, which will be used for
verification of the current hop field. Put simply, the method either returns the
result of get hof ver normal or calculates an offset and then retrieves the
hop field at that index. As a reminder, hop fields are stored in segments, and
each segment is simply a list of hop fields. The result of get hof ver normal

is also just the hop field at an offset. In our path in the code, the offset for
get hof ver normal is 1, which means that we simply retrieve the next hop

field, if there is one.

25

1 de f g e t h o f v e r (s e l f , i n g r e s s : bool =True) −> Optional [HopOpaqueField] :

Listing 13: Definition of SCIONPath.get hof ver.

The biggest challenge when verifying this method was adapting the State

predicate and writing an appropriate precondition. What made it challenging
was the fact that hop fields are stored in a segment along with info fields. A
segment starts with a field of type InfoOpaqueField, which contains some
flags and other info about the segment, followed by all the hop fields in the
segment, which have type HopOpaqueField. Retrieving a field, hop or info,
from the list of type OpaqueFieldList, is performed with get by idx.

Now, the difficult part was guaranteeing that get by idx returned a
HopOpaqueField in get hof ver. The offset with which get by idx gets
called depends on ingress and two flags of the info field, the up-flag and
the peer-flag. From our assumptions in the state predicate of SCIONPath, we
know that the up-flag is True and the peer-flag is False. So, now the offset
only depends on ingress and is either None or 1.

1 Imp l i e s (not i ng r e s s ,
2 s e l f . g e t h o f i d x () + 1 < s e l f . g e t o f s l e n () and
3 i s i n s t a n c e (s e l f . o f s g e t b y i d x (s e l f . g e t h o f i d x () + 1) ,
4 HopOpaqueField))

Listing 14: Part of the precondition of get hof ver.

Listing 14 shows the relevant part of the precondition. The first part
gives us the necessary condition that we are allowed to call get by idx with
an offset of 1 and the second part states that the returned field is of type
HopOpaqueField. This gives us enough information to guarantee that the
return type of get hof ver is HopOpaqueField.

Listing 15 shows the implementation and contracts of get by idx. Since
we needed this method in contracts, we had two choices, either annotate
it as pure and contract-only, or write a separate function that is pure and
then write a postcondition for get by idx, which states that Result() is

self.get by idx pure(idx). We decided on the first approach, because this
method is quite far down in the call graph and as discussed before, we had
to limit the scope of the project to make the verification viable. This would
also make verification faster, because if there were two versions of the same
method, one for contracts and one for method bodies, the verifier would need
to match them and check the postcondition of get by idx to know that it
yields the same result. The @ContractOnly annotation is needed because the

26

method contains a for-each loop, which is not allowed in a pure function.
Another option might have been to rewrite the method using recursion

and thus making it pure, but the aim of this project was to verify the existing
code and not rewrite whole methods.

1 @Pure
2 @ContractOnly
3 de f g e t by idx (s e l f , idx : i n t) −> OpaqueField :
4 Requires (Acc (s e l f . State () , 1/20))
5 Requires (idx >= 0 and idx < s e l f . g e t l e n ())
6 Ensures (Result () i s
7 Unfolding (Acc (s e l f . State () , 1/20) , s e l f . contents () [idx]))
8 Ensures (Result () in
9 Unfolding (Acc (s e l f . State () , 1/20) , s e l f . contents ()))

10 i f idx < 0 :
11 r a i s e SCIONIndexError (” Requested OF index (%d) i s
12 negat ive ” % idx)
13 o f f s e t = idx
14 f o r l a b e l in s e l f . o rde r :
15 group = s e l f . l a b e l s [l a b e l]
16 i f o f f s e t < l en (group) :
17 re turn group [o f f s e t]
18 o f f s e t −= len (group)
19 r a i s e SCIONIndexError (” Requested OF index (%d) i s out o f
20 range (max %d) ” % (idx , l en (s e l f) − 1))

Listing 15: Code snippet of OpaqueFieldList.get by idx.

The many getter functions, like self.get hof idx(), are used for perfor-
mance reasons. We found out that many Unfolding expressions in a method
contract or a method body cause performance issues that are clearly related to
the amount of unfoldings present, whereas performance would not be affected
if they were hidden in the bodies of pure functions. For this reason, we had
to move as many unfoldings as possible to separate functions, so that every
getter only includes a single unfolding expression. A getter function simply
returns the corresponding field, in this case self. hof idx or calls the corre-
sponding function, self. ofs.get by idx(k) for self.ofs get by idx(k).
In the results section, these getters and the performance improvements they
bring will be discussed in more detail.

27

4.1.4 SCIONPath.inc hof idx

This method actually moves the pointer in a SCION segment by one hop.
It would also handle a segment switch, but because we assumed that there
is only one up-segment in the path and that the router is not the recipient
of the packet, we did not verify this functionality. These assumptions are
partly included in the state predicate of SCIONPath, but the majority is
included in the precondition of inc hof idx, because it is specific to only
this method and not required anywhere else. So, by including it in the
precondition, changes can later be made, without affecting the whole path
class. Initially, the assumptions about the packets we receive are established
as part of the postcondition of the packet parsing. This is a simplification, as
in reality, the assumptions should be established as part of the precondition
of handle request, but there we would have had to to write contracts about
bytes, since we did not yet have an abstraction of the packets, so we decided
to use the postcondition of parse packet.

Since this method actually changes a field of an object, it needs a full
permission. This is the only method, of the ones we verified, that performs a
field write and is as such different from all the other methods. It is evident
that the callers of inc hof idx also need a full permission. In this case,
this means a full permission to the state predicate of the packet and for
inc hof idx a full permission to the state predicate of the SCION path.

1 de f i n c h o f i d x (s e l f) :
2 i o f = s e l f . g e t i o f ()
3 s k i p p e d v e r i f y o n l y = False
4 whi le True :
5 s e l f . h o f i d x += 1
6 i f (s e l f . h o f i d x − s e l f . i o f i d x) > i o f . hops :
7 # Switch to the next segment
8 s e l f . i o f i d x = s e l f . h o f i d x
9 i o f = s e l f . g e t i o f ()

10 # Continue l ook ing f o r a rout ing HOF
11 cont inue
12 hof = s e l f . g e t h o f ()
13 i f not hof . v e r i f y o n l y :
14 break
15 s k i p p e d v e r i f y o n l y = True
16 re turn s k i p p e d v e r i f y o n l y

Listing 16: Implementation of SCIONPath.inc hof idx.

28

The state predicate of the path was already quite complicated, but
some additions had to be made to accommodate the conditions needed
for inc hof idx. The difficult part was to guarantee the state predicate in
the postcondition and for this purpose an extensive loop invariant was needed.

In SCION routing, some segments have a verify-only hop field at the
end of the segment. These hop fields are only used for the purpose of hop
field verification, which we will not explain here. In Listing 16 it can be
seen that the only exit from the loop is via a break statement, which gets
executed when the current hop field is not verify-only. Breaking out of the
loop means that our invariant does not need to hold after the loop. In the
loop, a verify-only hop field gets skipped, but this results in a segment switch,
because the verify-only hop field is the last field in a segment. With our
assumptions, we know that no segment switch can take place and thus, the
loop only gets executed once. So we wrote a precondition for inc hof idx

which asserts that our hop field index is lesser than the second last index and
that the next hop field is not a verify-only hop field. We need to write about
the next hop-field, because in the loop the index always gets incremented
first.

With the addition of some further preconditions, which helped the verifier
prove that the state predicate still holds after the method breaks out of the
loop, we could finally verify that the state predicate also holds after the
execution of inc hof idx.

4.2 Progress

Verification of progress was the simplest task of the four. For most methods a
simple MustTerminate(k) termination obligation had to be added. Here, the
bottom-up approach was quite advantageous, because we could simply start
with the methods in the leaves of the call graph by adding an obligation with
k=1 to their preconditions. Then, we worked our way up through the call
graph by adding preconditions to the callers with k=k+1, i.e., we just added
1, when we went to the parent in the call graph.

The only method where a slightly more elaborate termination obligation
was needed was Router. link type. Here, we wrote a precondition that
includes MustTerminate(self.get topology border routers len() + 4).
This means that the number of steps until termination depends on the
length of the list that stores other border routers, which are in the network
topology. Additionally, we also require that this length is non-negative,

29

because otherwise the argument to the termination obligation might not be
positive. This is guaranteed by the postcondition of the getter function for
the border router list length. The +4 is required for the case when the length
is 0, so that we still have a high enough number of steps to call the methods
in the body of Router. link type.

4.3 Modelling SCION Packets

The ADT, which stands for abstract data type, serves as an abstraction of a
SCION packet. Our ADT has fields like a normal object, but we require no
permissions to access them, since the ADT only appears in contracts and is
immutable. This means that this ADT is only defined in the static context of
our verification. We call the ADT pure or stateless.

An ADT is needed as an abstraction to write I/O contracts for our main
method handle request. Since handle request only receives the SCION
packet as bytes, it is the method which calls the parse method. In order to
write an I/O contract for handle request about the packet without reasoning
directly about bytes, we need to abstract the bytes to an abstract packet, using
a function we call bytes to adt. Then, we use a function called incremented,
which takes an abstract packet and returns a new abstract packet that is
identical to the input except for the hop field index, which is incremented by
one. Finally, we pass the result to a function called adt packed, which maps
the abstraction to a byte representation of a SCION packet.

Figure 7 shows a diagram of the different functions in relation to the
three important objects. packed and adt packed map a SCION packet and
a packet abstraction to bytes, respectively. map scion packet to adt is a
function that maps a SCION packet to our defined abstract packet.

We defined the ADT Packet type in the file adt/adt.py. In Nagini, there
is support for ADTs with a predefined ADT type. Then, we needed to define
the base class for our ADT, which we chose as ADT base(ADT), and this class
then inherits from the Nagini ADT type and all our ADT classes inherit
from ADT base. A class extending ADT base and NamedTuple then defines an
ADT constructor. The arguments to NamedTuple define the arguments of the
constructor, where the first argument to each tuple is the name and the second
argument is the type. Such a constructor is used like a normal constructor,
e.g., ADT Packet(addrs, path). The definition of the ADT Packet type can
be seen in Listing 17.

30

SCIONpacket

bytes

ADT

map scion packet to adt
packed

parse packet

bytes to adt

adt packed

Figure 7: Diagram showing the relation of parsing, mapping to the ADT and
mapping to bytes.

1 c l a s s ADT Packet (ADT base , NamedTuple (’ ADT Packet ’ , [(’ addrs ’ ,
ADT AddrHdr) , (’ path ’ , ADT Path)])) :

2 ”””
3 Constructor f o r ADT packet
4 ”””
5 pass

Listing 17: Definition of ADT Packet type.

We kept the structure of the ADT quite close to the structure of the
SCIONBasePacket type. However, the ADT does not include all the infor-
mation that is included in a packet, it only contains the information which
is necessary in contracts written using the ADT. The only major difference
is that info and hop fields are kept separate, but the rest of the structure
is shared between the ADT and the SCION packet class. Based on our
assumptions, we only need to store one up-segment, so we chose to have a
field for the single info field and a pure (stateless) Nagini sequence to store
the hop fields. We need to use a sequence because our abstract packet has
to be stateless and immutable, so we could not use a normal list, as it has a
state.

For our verification, we used the ADT as the return type of a func-
tion that maps a SCION packet to an abstract packet, which we called
map scion packet to adt. Since we need to iterate through the list of hop
fields when mapping them to the ADT, we had to use recursion to keep our

31

mapping function pure.

4.4 I/O Behaviour

The aim of this task was to verify correctness of the I/O behaviour of
the SCION router implementation. We used a Petri net, as discussed in
Section 2.9, to specify I/O behaviour. Figure 8 shows the Petri net, which is
a representation of the SCION router’s intended I/O behaviour. It specifies
that first, a data string is received and stored in bs. Then, there is a split
operation, to allow a repetition of the recv operation. The first token will be
moved to p1 and the second token from the split operation is moved to p3
in the Petri net and a check is performed. This check tests if the received
data is a well-formed SCION packet; if it is, the packet is processed and then
forwarded with the send operation, represented by send(bs’) in the figure. bs’
is a byte representation of the processed SCION packet and it is the result
of applying the packed function after the packet has been processed. If the
check fails, the data is simply ignored and no further action is performed. In
either case, a token will reach either p4 or p5, which represent the end of the
path. For every received packet, this path is followed again.

p1 p2

p3 p4

p5

bs = recv() split

no op

otherwise

send(bs′)

wf(bs)

Figure 8: Petri net specifying the intended behaviour of the SCION router.

However, the receive operation and the split operation are outside of
the scope of this project and thus only the send operation and the no op
operation are relevant. We decided not to use an explicit no op operation, as
it simply represents not performing any action. So, it was enough to specify
that if the received data is well-formed, the send operation is performed.

In Listing 18 the send operation is displayed. t pre and t post are the
input and the output places. The I/O operation will move a token from

32

the pre place to the post place. Since this I/O operation represents a real
library method from the SCION codebase, namely UDPSocket.send, the
arguments from the real send operation need to be accepted by the I/O
operation as well. Here we have some data to be sent in bytes, and dst addr

and dst port, which represent the destination the packet will be forwarded
to. We assumed that the send operation is non-blocking and so we added the
Terminates(True) contract.

1 @IOOperation
2 de f udp send (t p r e : Place , data : bytes , ds t addr : s t r ,
3 d s t p o r t : int , t p o s t : Place = Result ()) −> bool :
4 Terminates (True)

Listing 18: Definition of the send operation.

Figure 19 shows the actual send method. This method is central to our
I/O specification, as the whole specification is based around it. For the
purpose of the progress verification, we have a termination obligation in the
precondition of send. Then, we also require that the destination tuple, which
contains the address and the port, is not None, so that we can perform the
actual send on a networking socket. Furthermore, we use the previously
described syntax to specify that a token is in the input place and we promise
to move it within one step. In the postcondition, we state that the output
place is returned in the return value and that a token now resides there. The
input place is passed as an argument to send and the output place is returned
together with the normal return value of the method. Finally, we have the
contract of udp send, with which we promise to perform this I/O operation
and where we pass the arguments.

1 @ContractOnly
2 de f send (s e l f , t : Place , data : bytes , dst : Tuple [s t r , i n t]=None)

−> Tuple [bool , Place] :
3 IOExists1 (Place) (lambda t2 : (
4 Requires (MustTerminate (1)) ,
5 Requires (dst i s not None and token (t , 1) and
6 udp send (t , data , dst [0] , dst [1] , t2)) ,
7 Ensures (Result () [1] i s t2 and token (t2))
8))

Listing 19: Contract of UDPSocket.send.

For the I/O specification, we also chose to work in a bottom-up manner, as

33

it appeared to be the best approach. Every method that calls UDPSocket.send
will accumulate a path constraint, which leads to the call of send. This path
constraint will be used in the precondition to state that the udp send operation
will be performed only under these conditions. Evidently, accumulating the
path constraint works best when working from the UDPSocket.send method
upward to the methods calling send and their callers. In the topmost method,
handle request, we accumulate the complete path constraint under which
the send will be performed. There, it can be checked if this path constraint
complies with the SCION protocol.

Figure 20 shows an example of such a path constraint. In addition to
the normal pre- and postcondition about the places and tokens, we have an
implication, with the path constraint on the left side and the I/O operation
on the right side. Generally, the arguments passed to send in the method
body have to be the same as the arguments passed to the I/O operation in
the precondition. Here, send is actually Router.send, a method that itself
calls UDPSocket.send.

34

1 de f d e l i v e r (s e l f , t : Place , spkt : SCIONL4Packet , f o r c e : bool=True) −> Place :
2 IOExists1 (Place) (lambda t2 : (
3 Requires (token (t , 3)) ,
4 Requires (Imp l i e s (
5 not (not f o r c e and
6 not ((spkt . g e t a dd r s d s t i s d a s () i s None and
7 s e l f . g e t a dd r i s d a s () i s None) or
8 (spkt . g e t a dd r s d s t i s d a s () i s not None and
9 s e l f . e q i s d a s (spkt)))) and

10 not (spkt . g e t pa th l en () and
11 ((not f o r c e and
12 spkt . g e t pa th ho f f o rwa rd on ly (spkt . g e t pa th ho f ())))) and
13 not (spkt . g e t pa th l en () and
14 spkt . g e t p a t h h o f v e r i f y o n l y (spkt . g e t pa th ho f ())) ,
15 udp send (t , packed (spkt) ,
16 s t r (s e l f . g e t s r v add r pu r e (
17 SVC TO SERVICE [spkt . g e t add r s d s t ho s t add r ()] ,
18 spkt)
19 i f ((spkt . g e t add r s d s t ho s t () .TYPE i s not None and
20 spkt . g e t add r s d s t ho s t () .TYPE == AddrType .SVC) and
21 spkt . g e t add r s d s t ho s t add r () in SVC TO SERVICE)
22 e l s e spkt . g e t add r s d s t ho s t ()) ,
23 SCION UDP EH DATA PORT, t2))) ,
24 Ensures (Result () i s t2 and token (t2))
25))
26 s p k t i s d a s = spkt . g e t a dd r s d s t i s d a s ()
27 s e l f i s d a s = s e l f . g e t a dd r i s d a s ()
28 i f not f o r c e and not ((s p k t i s d a s i s None and s e l f i s d a s i s None) or
29 (s p k t i s d a s i s not None and s e l f . e q i s d a s (spkt))) :
30 r a i s e SCMPDeliveryNonLocal
31 i f spkt . g e t pa th l en () :
32 hof = spkt . g e t pa th ho f ()
33 i f not f o r c e and spkt . g e t pa th ho f f o rwa rd on ly (hof) :
34 r a i s e SCMPDeliveryFwdOnly
35 i f spkt . g e t p a t h h o f v e r i f y o n l y (hof) :
36 r a i s e SCMPNonRoutingHOF
37 addr = spkt . g e t add r s d s t ho s t ()
38 i f addr .TYPE i s not None and addr .TYPE == AddrType .SVC:
39 i f spkt . g e t add r s d s t ho s t add r () in SVC TO SERVICE :
40 s e r v i c e = SVC TO SERVICE [spkt . g e t add r s d s t ho s t add r ()]
41 addr = s e l f . g e t s r v add r (s e rv i c e , spkt)
42 e l s e :
43 r a i s e SCMPUnknownHost
44 return s e l f . send (t , spkt , addr , SCION UDP EH DATA PORT)

Listing 20: Implementation of Router.deliver; non-I/O contracts,
comments and logging commands have been omitted for brevity.

Once again, we have the data and the information about the destination
as arguments. packed(spkt) is simply the SCION packet converted to bytes
and it is obvious that this conversion is necessary, as udp send takes bytes as
an argument and not SCIONL4Packet.

Initially, we tried to write the contract for the I/O operation in a way
that gives a better overview. We wanted to write separate implications for
different paths in the code of the method body leading to the call to send.
This was not possible, because of a known limitation of the Nagini encoding
of I/O contracts.

Based on this condition:
((spkt.get addrs dst host().TYPE is not None and

spkt.get addrs dst host().TYPE == AddrType.SVC) and

spkt.get addrs dst host addr() in SVC TO SERVICE),

35

we wrote two implications, one where it is True and one where it is False,
with the corresponding I/O operation on the right side, because the address
argument is different. However, this did not work, because Nagini encodes
the first mention of the I/O variable t2 as the definition of this variable and
when the variable is then used subsequently in the code, a getter function is
used to retrieve the variable. This getter function also takes the arguments
of the I/O operation as parameters. In our case, see Listing 21, we had the
first mention of t2 on the right hand side of the first implication, and a part
of one argument, SVC TO SERVICE[spkt.get addrs dst host addr()], was
only well-defined, because of the implication. SVC TO SERVICE is a dict and
Nagini requires that no dict lookup raises an exception, which means that the
key, that is looked up, needs to be contained in the dict. Here, only the first
implication guarantees that this is the case and in the second implication,
where the getter is used for t2 in the encoded Viper code, that condition is
not guaranteed. This is why we had to use a conditional expressions, as can
be seen in Listing 20, to avoid this problem.

1 IOExists1 (Place) (lambda t2 : (
2 Requires (Imp l i e s (
3 some condit ions ,
4 Imp l i e s (((spkt . g e t add r s d s t ho s t () .TYPE i s not None and
5 spkt . g e t add r s d s t ho s t () .TYPE == AddrType .SVC) and
6 spkt . g e t add r s d s t ho s t add r () in SVC TO SERVICE) ,
7 udp send (t , packed (spkt) ,
8 s t r (s e l f . g e t s r v add r pu r e (SVC TO SERVICE [spkt . g e t add r s d s t ho s t add r ()] , spkt) ,
9 SCION UDP EH DATA PORT, t2)))

10 Impl i e s (not ((spkt . g e t add r s d s t ho s t () .TYPE i s not None and
11 spkt . g e t add r s d s t ho s t () .TYPE == AddrType .SVC) and
12 spkt . g e t add r s d s t ho s t add r () in SVC TO SERVICE) ,
13 udp send (t , packed (spkt) , spkt . g e t add r s d s t ho s t ()) , SCION UDP EH DATA PORT, t2))
14))) ,

Listing 21: Original I/O contracts for deliver, where some conditions are the
conditions from the previous listing.

In addition to writing the I/O contracts, we also had to make sure that
other methods could guarantee the conditions needed for these contracts.
One example is that we needed to guarantee that in inc hof idx only the
index for the hop field gets incremented by one. We need this knowledge for
our I/O contracts, specifically, we have a helper method call inc hof idx,
which has this postcondition: Ensures(map scion packet to adt(spkt) is

incremented(Old(map scion packet to adt(spkt)))). As mentioned ear-
lier, incremented simply returns a new abstract packet where the hop field
index is increased before.

We could write those contracts for inc hof idx about either the path
object itself or about the abstract representation. First, we tried to write

36

them using the object itself, but then the verifier could not connect these
postconditions of inc hof idx with the postcondition of call inc hof idx.
So, we decided to write them using the abstract representations of the packet,
by using the mapping functions. The contracts itself were quite simple, as
they only needed to assert that nothing, except for the hop field index had
changed.

37

5 Results

In this section we present the results of the project. This includes detailed
statistics about how much code was verified, details about bugs in Nagini
that we identified and details about some new features that were introduced
to Nagini in the course of this project. Finally, we also present comparisons
of the performance of the different backends and the results of performance
optimisations we performed during the project.

5.1 Verification

5.2 Verified Properties

In the end, we successfully verified 24 methods for memory safety and progress
and we verified 21 of these methods in regards to our I/O specification.
As previously discussed, we performed the verification under the following
assumptions about the router and the received packets:

• The path of a packet only contains one up-segment

• No SCION extensions, peering or inter-domain communication are used

• Nodes are assumed to be available

• The router is not the recipient of the packet

During the verification, we identified conditions under which the verified
code is correct. Some of these conditions, specifically, conditions about the
state of the router itself, are in the precondition of the main method in our
scope. The rest of the conditions concern the received packet and we assume
that the parsing establishes them. These are mainly conditions which say if a
packet is well-formed and additionally, they reflect the above assumptions
that we made.

An additional part of this project was to identify any bugs in the router
code, but since we built up preconditions and invariants and did not yet
verify the parsing implementation, we did not find any. To identify potential
bugs, one has to verify the parsing implementation and increase the scope to
include the methods which call our main method. If all the invariants can be
guaranteed, the router is proven to be correct and otherwise, one can then
identify the bugs. We think that the invariants and preconditions that we

38

built up look reasonable and do not contain any obvious mistakes. Thus, we
can say that the router implementation that we verified does not contain any
definite bugs, but can only contain bugs that results from the interaction
with the parsing.

We could verify only 21 of the 24 methods for I/O behaviour, because we
faced a performance problem. The problem, which caused the verification to
not terminate even after a very long time, could not yet be precisely identified,
but our conjecture is that it may be caused by a matching loop. The problem
does not seem to lie with the specifications written in this project, but rather
in the encoding of the Nagini verifier.

We could not verify two methods, handle data and process data, due to
the performance problem. Additionally, we could not verify handle request,
as there was not enough time to resolve problems concerning the packet
abstraction, but even so, the same performance problem was likely to affect
this method as well, as the I/O contract looks very similar. As a reminder, we
had to write the I/O contract of handle request using the packet abstraction.
Additionally, deliver and needs local processing were also affected by
the performance problem for the symbolic execution backend. However, we
could verify them using the verification condition generation backend.

5.2.1 Statistics

In this section we will discuss statistics about the verified code. The following
lines of code (LOC) statistics do not contain any empty lines or code comments.
They only contain the LOC of the methods that we verified and do not contain
any class declarations, referenced constants or exception constructors, among
others. The SCION router codebase is quite complex and contains many
interdependencies. Therefore, counting exact numbers for LOC statistics
is difficult and the given numbers should be regarded as a lower bound for
the amount of verified code, as we did not count referenced code like, e.g.,
exception constructors.

In summary, we verified 334 LOC of methods of the SCION router code for
memory safety and progress. These LOC consist of 24 methods of the SCION
router code base. This amounts to 334 LOC of verified code versus the 422
LOC initially selected for verification. We chose to assume the correctness
of some selected methods to keep the scope of the project more manageable
and to focus on the methods that are more important to the path of the
code that we wanted to verify. Six of the verified methods we could verify as

39

pure functions; they consist of 32 LOC. Pure means that we verified memory
safety, but assumed functional correctness.

Our declarations of the ADT types comprise 47 LOC and the functions
used to map a SCION packet to the ADT consist of 91 LOC. Naturally, we
also verified the ADT mapping functions.

In total, we wrote about 690 LOC of method and function contracts,
which includes contracts for all methods that were either one of our selected
methods or a method or function that is called by one of our selected methods.
It also includes contracts for methods that we did not verify, which constitute
approximately 130 LOC. This leaves us with about 560 LOC of contracts for
the 24 methods we verified. All these numbers include contracts for memory
safety, progress and for the I/O specification.

For the state predicates we wrote an additional 164 LOC, where the
largest part is the state predicate of SCIONPath with 40 LOC. Additionally,
we required a variety of small helper functions to aid our verification. We wrote
25 of them and they consist of 187 LOC. These are additional helper functions,
which are different from the ones used for performance improvements. The
performance helper functions required an additional 1162 LOC and they will
be discussed in more detail in Section 5.3.3.

To summarise, we wrote 690 LOC of method and function contracts, 164
LOC of predicates, 91 LOC of ADT mapping functions, 47 LOC of ADT
declarations, 187 LOC of small helper functions and 1’162 LOC of performance
helper functions, which is a total of 2’341 If we calculate the specification
overhead ratio for our verification, which is the ratio of LOC of the whole
specification to the LOC of verified methods, which was 334 LOC, the result
is a ratio of 7. Without the performance helper functions, the specification
consists of 1’179 LOC and the ratio is 3.5.

5.3 Nagini

As a result of this project, the Nagini verifier was improved in multiple ways.
Specifically, this project helped identify many bugs in Nagini and also some
in the Viper backends. Furthermore, new features were added to Nagini by
its maintainer, because we required them for this project. Bugs and new
features will be covered in the following two sections.

40

5.3.1 Bugs & Problems in Nagini

As mentioned earlier, a part of the project was to identify any bugs that the
Nagini verifier might have. In the end, we could identify 25 different bugs in
Nagini and Viper and most of them were fixed. The rest of the bugs will be
fixed in the future.

A major problem that we faced when we started to work on this verification
was the fact that currently, wildcard read permissions, i.e., read permissions
without a concrete permission amount, are unreliable. Such a wildcard read
permission is denoted by Rd(obj.x), which is similar to Acc(obj.x, 1/10),
but it foregoes the need for a concrete permissions amount. In theory, this
would be beneficial, because there are only two real kinds of permissions, read
permissions and write permissions, but by using fractional permission amounts
for read permissions, we create arbitrary distinctions between read permissions
and increase the annotation overhead. This is generally not necessary, as
read and write permissions would be enough to perform permission-based
verification. However, we have encountered cases where a method had enough
permissions and should have been verifiable, but the verifier could not verify
the method. So, we found the wildcard read permissions to be too unreliable
as the verifier is incomplete when they are used and we rewrote all wildcard
permissions to permissions using a concrete permission amount. This proved
to be quite a lot of work, since now, the permission amounts also needed to
match for callers and callees.

5.3.2 New Features

Since this project required them, two new features were added to Nagini.
One new feature that was added to Nagini is support for enumerate ex-

pressions. This expression was used in the SCION router code and previously,
Nagini did not support it. enumerate(iterable) indexes the iterable and
returns a new iterable with tuples that contain the index, which by default
starts at zero, and the original element.

However, a much more powerful addition is the newly introduced Let

expression. This expression allows us to declare helper variables in Nagini
contracts. A trivial example can be seen in Listing 22.

1 Let (5 , bool , lambda f i v e : f i v e >= 0)

Listing 22: Example of a Let expression in Nagini.

41

The first argument to Let determines the value of the variable and the
second argument determines the type of the expression, which comes after
the lambda expression. Essentially, the above example is equivalent to this
more commonly used syntax for let-expressions: let five : 5 in five

>= 0. The type of the sub-expression is needed for the type checker.

5.3.3 Performance

Usually, performance of a verifier is known for small and fabricated examples
and possibly for the tests in a test suite, but when a verifier is used with real
code, which was not written with verification in mind, the results can differ.

Unfolding Expressions: In our case, the performance of Nagini was very
reasonable for small examples, most terminating within just a few seconds.
However, when working on this project, we realised that the performance
of Nagini can become very bad, even for smaller methods. The biggest
realisation was that Unfolding expressions of complicated predicates cause
Nagini to have bad performance. In our case, we used state predicates, which
can have a lot of dependencies. This will result in a large verification problem,
which can then take a long time to verify. We discovered that the relation
between performance and the number of Unfolding expressions in a method
was directly related. As a result, methods can take up to multiple hours to
complete verification.

However, we found a workaround for the performance problem concern-
ing unfoldings. As briefly mentioned in Section 4.1.3, performance can be
improved by separating each unfolding into its own function. Extracting an
unfolding leads to completely equivalent code, but nevertheless, the verifica-
tion performance increases greatly. These need to be pure functions, so that
the caller knows the contents of the function. As an example, the expression
Unfolding(Acc(self.State(), 1/10), self.addr) was extracted into a
separate function as in Listing 23.

1 @Pure
2 de f get addr (s e l f) −> SCIONAddr :
3 Requires (Acc (s e l f . State () , 1/10))
4 re turn Unfo ld ing (Acc (s e l f . State () , 1/10) , s e l f . addr)

Listing 23: Example of a getter function used to improve performance.

42

This small example shows that the original expression is now simply re-
turned in the new function. Additionally, the function requires a precondition
for the permission to the state predicate that is used in the unfolding.

If an expression included two or more unfoldings, it had to be split into
multiple functions, where each function only included one unfolding. This was
necessary to maximise the performance benefit. For some expressions, a more
complicated precondition was necessary to allow for successful verification.
An example would be a function call within an unfolding expression. We need
to then write preconditions to pass the necessary conditions to the called
functions, but this also means that this transformation can not be performed
automatically, as different expressions in an unfolding might require more
than just permission to the predicate that is unfolded. The more complicated
such a getter function or helper function becomes, the smaller the performance
benefit becomes as well, as more contracts need to be checked when calling
such a function. Thus, no performance could be gained by extracting an
unfolding in some cases.

All performance measurements that follow were measured using the sym-
bolic execution backend if not stated otherwise.

As a small example of the performance improvements, we will look at
the state predicate of SCIONPath. These measurements were made with a
previous version of the state predicate, but nonetheless, they can serve as
an example of the performance benefits. Table 1 shows the verification time
for the state predicate with all unfoldings, with three of them replaced with
functions and with four of them replaced.

State Predicate Verification Time
without changes 32s
three unfoldings replaced
with functions

26s

four unfoldings replaced
with functions

23s

Table 1: Table showing performance improvements of using separate
functions for unfoldings.

However, these measurements of the state predicate do not show how
significant the performance improvement was for the verification times of the
methods. Table 2 shows the difference in performance of method verification

43

for four methods in SCIONPath. These measurements were all made before we
started to work on the I/O verification. In addition to the above optimisations
in the state predicate, we also extracted any unfolding expressions that were
included in the contracts and the bodies of these methods.

Method Without Optimisation With Optimisation
get curr if 41m6s 1m11s
get hof ver 72m36s 1m36s
get fwd if 125m14s 1m22s
get hof ver normal 22m54s 1m9s

Table 2: Table showing performance improvement of method verification
times.

On average, that is a performance improvement of 4691%, which is a very
significant change.

After performing these optimisations wherever we could, we achieved
somewhat acceptable performance for almost all methods. Ten methods took
less than a minute to verify, but 12 took between one and ten minutes. The
only outlier is process data, which still took around 43 minutes to verify.
A part of the reason why some methods are still slow to verify could be
that there are still some unfolding expressions that we could not extract to a
separate function.

With some unfolding expressions, there is a problem that prevents them
from easily being separated into functions. The problem concerns function
calls which require certain preconditions that might depend on the context
of where they get called. Now, in order to successfully separate them into
a function, all preconditions need to be passed to the new function. How-
ever, these preconditions could get too complicated, such that there was no
performance benefit of using a separate function any more.

Experimental Type System Encoding: During the project, we tested
an experimental type system encoding in Nagini. We did not have a lot of
time to test the performance differences, but we did test it for one method.
For SCIONPath.get hof, we measured a verification time of 4m38s with the
old type system encoding. With the new experimental type system encoding,
we measured a time of 3m38s, which is a performance improvement of 27%.
As soon as we measured a performance improvement, we used the new type

44

system encoding as often as possible, but there were cases where there were
still some problems, which had to be fixed. Now, the new encoding proves to
be quite reliable as we encountered no further errors.

Comparing Nagini Backends: We were also interested in comparing the
performance of the two backends that Viper uses. One is the verification
condition generation (VCG) backend and the the other is the symbolic
execution (SE) backend. In Table 3, there is a comparison of the verification
runtimes of both backends for the majority of the verified methods. These
times are measurements taken after all contracts were written, including the
I/O contracts.

Method VCG backend SE backend
handle extensions 1m7s 1m43s
process flags 50s 55s

verify hof 55s 3m12s
calc fwding ingress 119m30s 34m39s
validate segment switch 55s 2m2s

send 16m29s 87m15s
egress forward 2m12s 87m53s
link type 57s 1m17s

get all border routers 11m28s 55s
is on last segment 49s 1m16s
get curr if 50s 1m52s
get fwd if 50s 1m54s
get iof 49s 1m20s
get hof 48s 1m19s
get of idxs 48s 1m10s
inc hof idx 1m5s 4m5s
get hof ver 54s 2m16s
get hof ver normal 51s 1m59s

verify mac 49s 44s

Table 3: Table showing the performance differences between the two Viper
backends.

The table shows that the VCG backend is faster in most cases, but for
three method, it is slower. We could not determine why the performance

45

was so bad for calc fwding ingress. This method is not very complicated,
but even with the SE backend it takes a long time to verify. Even more
puzzling is the fact that get all border routers took almost 12 minutes
using the VCG backend. The method simply takes four lists and adds them
to a resulting list. For verify mac the performance difference is not big
enough to be significant, as we tested the performance on a normal system
with other processes, like a web browser running in the background. Thus, a
small difference of a few seconds can also be caused by some other process
using more resources in one test, but not the other. We consider such a small
difference to be around five seconds.

Using these statistics, we can calculate some interesting percentages.
Overall, the VCG backend was 286% faster than the SE backend; this was
calculated including the cases where the VCG backend was actually slower.
However, this number is skewed, because for egress forward, the VCG
backend was 3667% faster. If we exclude this method, then the VCG backend
was still 98% faster.

Generally, we can say that the SE backend has more reliable performance,
because it is more directly related to how complicated a method is, whereas
the VCG backend can seemingly randomly take a long time to verify a simple
method like get all border routers. For a majority of our methods, the
VCG backend did perform significantly faster. In conclusion, we cannot say
that one backend is objectively better, so we recommend working with both,
as to be able to take advantage of the strengths of both and to try and avoid
the weaknesses of either.

Symbolic Execution Backend: For the SE backend we looked at how
much of the verification time was spent on verifying pure functions and
predicates, which get referenced by a method, and how much time was spent
on verifying the method itself. Table 4 shows the measures times for a
majority of the methods that we verified.

For all the simpler methods, like getters, the time spent on verifying the
functions and predicates dominates the time used to verify the method itself.
When looking at more complicated methods, like send and egress forward,
the time spent on both parts is comparable, but calc fwding ingress is
an outlier, as it requires about three times the amount of time to verify the
method itself.

46

Method Function + Predicate Method
handle extensions 16s 24s
process flags 1s 1s

verify hof 103s 26s
calc fwding ingress 492s 1518s
validate segment switch 63s 4s

send 2360s 2810s
egress forward 3041s 2056s
link type 20s 6s

get all border routers 4s 3s
inc hof idx 78s 111s
get hof ver 66s 19s
get hof ver normal 60s 6s

Table 4: Table showing the verification times for functions & predicates
referenced by the method and the method itself.

5.4 General Insights

Finally, we will talk about some more general insights that we gained when
working on this project. We always worked in a bottom-up manner and we
can say that it worked very well, as we rarely had to go back to already verified
methods to change a contract. Furthermore, collecting the path constraint
for the I/O verification only worked well when working bottom-up and might
have been quite difficult to gather when working top-down.

First, we verified memory safety, then progress and finally I/O behaviour
and we believe that this was the only way, as any other way might have
proven to be impossible or overly complicated, as we first need to have the
contracts about permissions to even get a successful verification. It could be
argued that progress could be verified after I/O behaviour, but we believe
that it makes sense to first know that all methods make progress, so that we
know that a packet eventually gets forwarded.

The state predicates we used became more complicated than anticipated.
We think that it would have been better to use multiple smaller predicates
to keep the contracts more readily comprehensible. Additionally, that might
have improved the performance for unfolding expressions of these predicates.
However, there is an advantage to the way we used state predicates as
permission assertions are generally only included in one state predicate and

47

it was easy to keep them self-framing. If multiple smaller predicates are used,
one needs to carefully separate them, to avoid having a permission to the
same field in multiple predicates, as this could make the verification more
complicated when permissions amounts are used. When a permission to the
same field is included in multiple predicates, then a fraction needs to be used
in each one and a method is only allowed to use all these predicates in a
contract if the total permission amount to the field is lesser or equal than one.
As an example, two predicates have a permission to field x.f in their contents.
If a method then has a full permission to each predicate in its precondition,
the permission amount to the field in both predicates must at most add up
to one, e.g., Acc(x.f, 1/4) and Acc(x.f, 1/6).

In our experience, the Nagini verifier has proved to fulfil completeness as
long as wildcard read permissions are not used. While we had encountered
a case where Nagini could not prove a condition, we later rewrote those
contracts and no further issues appeared.

48

6 Conclusion & Future Work

In conclusion, we can say that we successfully verified almost all of the methods
that we initially selected for verification. We completed the verification for
memory safety and progress for all methods that we aimed for, but we
could not finish the I/O verification, because of an extensive performance
problem in the verifier. We identified 25 bugs in Nagini and Silicon and we
determined that the verification condition generation backend is generally
faster. Furthermore, we discovered that Nagini is incomplete when wildcard
read permissions are used and we realised that verification performance can
be improved greatly when unfolding expressions are separated into their own
functions.

Once the performance problem of Nagini has been fixed, the I/O verifica-
tion can be completed. Most of the groundwork is already laid out, even for
the methods whose verification did not terminate. We wrote the contracts as
well as we could, given that we could not actually get feedback on whether
they are correct and sufficient.

Furthermore, the verification of the SCION router code can continue with
the verification of the parsing methods. Currently, the specification expects
certain invariants to be established by a successful parsing of a SCION packet
and we simply assumed that the parsing could guarantee them. Now, one
could verify the parsing implementation and actually write contracts which
show that the parsing can guarantee these invariants. In the process of
verifying the parsing implementation, one would find any bugs that result
from the interaction between the parser and the rest of the code. If there are
no bugs, then the router is correct for our scenario.

Another possibility to continue the verification effort of the SCION router
code is to drop some or all of the assumptions that we made about the kinds
of SCION packets that are received. Specifically, it would be of interest to
verify the Router implementation with regards to an arbitrary path in the
received packet. Furthermore, one could also drop the assumptions that no
SCION extensions are used and verify the code for packets which are using
one or more SCION extensions.

In terms of I/O behaviour, further verification could be performed by
fully checking compliance of the I/O behaviour of the router with the SCION
protocol.

49

List of Figures

1 Example of a Petri net with a token in the left most place. . . 14
2 Overview of the codebase; only the important files and folders

are included. 17
3 Call graph of Router.handle request. 22
4 Call graph of Router.handle data 23
5 Call graph of Router.verify hof. 23
6 Call graph of Router. validate segment switch. 23
7 Diagram showing the relation of parsing, mapping to the ADT

and mapping to bytes. 31
8 Petri net specifying the intended behaviour of the SCION router. 32

Listings

1 Example of Nagini contracts. 9
2 Example of MyPy type annotations in a method definition. . . 10
3 Example of MyPy type annotations in a class constructor. . . 10
4 Example of a Nagini read permission. 11
5 Example of a quantified permission using a Forall expression

in Nagini. 11
6 Example of a predicate in Nagini. 12
7 Example of an I/O transition in Nagini. 15
8 Example of Nagini contracts. 19
9 Example of a method with an exceptional postcondition. . . . 20
10 Example of an I/O operation from our verification. 21
11 Example of an IOExists contract. 21
12 State predicate of SCIONBasePacket. 25
13 Definition of SCIONPath.get hof ver. 26
14 Part of the precondition of get hof ver. 26
15 Code snippet of OpaqueFieldList.get by idx. 27
16 Implementation of SCIONPath.inc hof idx. 28
17 Definition of ADT Packet type. 31
18 Definition of the send operation. 33
19 Contract of UDPSocket.send. 33
20 Implementation of Router.deliver; non-I/O contracts, com-

ments and logging commands have been omitted for brevity. . 35

50

21 Original I/O contracts for deliver, where some conditions are
the conditions from the previous listing. 36

22 Example of a Let expression in Nagini. 41
23 Example of a getter function used to improve performance. . . 42

List of Tables

1 Table showing performance improvements of using separate
functions for unfoldings. 43

2 Table showing performance improvement of method verification
times. 44

3 Table showing the performance differences between the two
Viper backends. 45

4 Table showing the verification times for functions & predicates
referenced by the method and the method itself. 47

51

References

[1] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION: A
Secure Internet Architecture. Springer International Publishing AG, 2017.

[2] Chair of Programming Methodology, ETH Zurich, “VerifiedSCION.”
http://www.pm.inf.ethz.ch/research/verifiedscion.html. Ac-
cessed: 22.08.2018.

[3] M. Eilers and P. Müller, “Nagini: a static verifier for python,” in In-
ternational Conference on Computer Aided Verification, pp. 596–603,
Springer, 2018.

[4] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in Proceedings of the 17th
International Conference on Verification, Model Checking, and Abstract
Interpretation - Volume 9583, VMCAI 2016, (New York, NY, USA),
pp. 41–62, Springer-Verlag New York, Inc., 2016.

[5] V. Astrauskas, “Input-output verification in viper,” Master’s thesis,
Department of Computer Science, ETH Zürich, 2016.

[6] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “Boogie: A modular reusable verifier for object-oriented programs,”
in International Symposium on Formal Methods for Components and
Objects, pp. 364–387, Springer, 2005.

[7] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 337–340, Springer, 2008.

[8] J. Smans, B. Jacobs, and F. Piessens, “Implicit dynamic frames,” ACM
Trans. Program. Lang. Syst., vol. 34, pp. 2:1–2:58, May 2012.

[9] P. Boström and P. Müller, “Modular Verification of Finite Blocking in
Non-terminating Programs,” in 29th European Conference on Object-
Oriented Programming (ECOOP 2015) (J. T. Boyland, ed.), vol. 37 of
Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl,
Germany), pp. 639–663, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2015.

52

http://www.pm.inf.ethz.ch/research/verifiedscion.html

[10] W. Penninckx, B. Jacobs, and F. Piessens, “Sound, modular and com-
positional verification of the input/output behavior of programs,” in
European Symposium on Programming Languages and Systems, pp. 158–
182, Springer, 2015.

53

	Introduction
	Outline of Methodology
	Project Goals

	Preliminaries
	SCION Routing
	Deductive Verification
	Viper
	Nagini
	MyPy
	Permission-based Verification
	Predicates & Pure Functions
	Obligations
	I/O Specifications

	Methodology
	Verification Goals
	The Codebase
	Python and Types
	Codebase Additions
	Verifying Python Code

	Verification Process
	Memory Safety
	Code Overview
	Approach and State Predicates
	SCIONPath.get_hof_ver
	SCIONPath.inc_hof_idx

	Progress
	Modelling SCION Packets
	I/O Behaviour

	Results
	Verification
	Verified Properties
	Statistics

	Nagini
	Bugs & Problems in Nagini
	New Features
	Performance

	General Insights

	Conclusion & Future Work

