
Serializability Checking for
MongoDB Clients

Master Thesis

Johannes Baum

May 04, 2017

Advisors: Lucas Brutschy, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich

Abstract

Replicated data stores have become an important mechanism to achieve
scalability and availability of modern distributed systems. While strong
consistency is desired, replicated data stores often only provide weak
consistency, which can lead to non-serializable behaviors. We formalize
the MongoDB consistency model and present a dynamic analysis for
MongoDB clients that detects serializability violations applying an ex-
isting serializability criterion that only demands eventual consistency.
We evaluate the method by analyzing a set of open source applications
and detecting previously unknown errors.

i

Contents

Contents iii

1 Introduction 1
1.1 Contributions . 2
1.2 Overview . 2

2 Preliminaries 3
2.1 Serializability Criterion . 3

2.1.1 Basic Definitions . 3
2.1.2 Relations . 4

2.2 Related Work . 6

3 MongoDB 7
3.1 Document Structure . 7
3.2 Operations . 8

3.2.1 Inserts . 9
3.2.2 Queries . 9
3.2.3 Updates . 9
3.2.4 Deletes . 10

3.3 Replication . 10
3.3.1 Automatic Failover . 10
3.3.2 Oplog . 11
3.3.3 Read Preference . 11
3.3.4 Read Concern . 11
3.3.5 Write Concern . 12
3.3.6 Consistency Model . 12
3.3.7 Consistent Prefix . 15
3.3.8 Possible Sequential Consistency Violations 15
3.3.9 Atomicity Violations . 18

iii

Contents

4 Dynamic Analysis for MongoDB 19
4.1 Instrumentation . 19

4.1.1 Program Order . 19
4.1.2 Arbitration Order . 20
4.1.3 Visibility . 20
4.1.4 Transactions . 22
4.1.5 Special Cases . 22

4.2 Transformation of Driver Operations 23
4.2.1 updateMany . 23
4.2.2 updateOne . 25
4.2.3 update . 25
4.2.4 insertMany . 26
4.2.5 insertOne . 27
4.2.6 deleteOne . 27
4.2.7 deleteMany . 28
4.2.8 findOneAndUpdate . 29
4.2.9 findOneAndDelete . 29
4.2.10 find . 29
4.2.11 findOne . 31
4.2.12 count . 31
4.2.13 Index operations . 31

4.3 Performance . 33
4.4 Limitations . 34

5 Analysis 37
5.1 Commutativity Specifications 37

5.1.1 Basic definitions . 38
5.1.2 Insert and Query . 40
5.1.3 Insert and Insert . 40
5.1.4 Query and Query . 40
5.1.5 Insert and Update . 41
5.1.6 Query and Update . 41
5.1.7 Update and Update . 43

5.2 Absorption Specifications . 45
5.2.1 Basic definitions . 45
5.2.2 Insert and Delete . 45
5.2.3 Update/Delete and Delete 45
5.2.4 Update and Update . 46

5.3 Extension of ECRacer . 48
5.3.1 Relation Construction 48

5.4 Runtime Analysis . 49
5.5 Pattern-Matching Extension . 50

5.5.1 Patterns . 51
5.5.2 Pattern Filtering . 52

iv

Contents

5.5.3 Algorithms . 53
5.5.4 Monotonic-Reads . 54

6 Stress Testing 57
6.1 Strategy . 57
6.2 Discussion . 58

7 Implementation 61
7.1 MongoRacer . 61

7.1.1 Architecture . 61
7.1.2 Composer . 62
7.1.3 Instrumentation . 63
7.1.4 Network Partitions . 66

7.2 Extension of ECRacer . 66
7.2.1 Commutativity and Absorption 66
7.2.2 Document Matching . 66

8 Evaluation 69
8.1 Experimental Set-Up . 69
8.2 Results . 71

8.2.1 Session Violations . 72
8.2.2 Harmless Data Violations 73
8.2.3 Harmful Register Violations 74

8.3 Fixing Violations . 74

9 Conclusion 77

A Serializability Violations 79

Bibliography 85

v

Chapter 1

Introduction

Replicated data stores have become an important mechanism to achieve scal-
ability and availability of modern distributed systems and internet services
([9], [10] [11], [15], [16]). While strong consistency is desired, consistency,
availability and partition-tolerance cannot be provided simultaneously, as
stated by the CAP theorem [19]. Therefore, replicated data stores often only
provide weak consistency guarantees like eventual consistency. However,
this relaxation of consistency can lead to non-serializable [12] behaviors,
called serializability violations. An execution is non-serializable if there
does not exist a serial schedule of the execution’s operations that leads to the
same outcome. This complicates application development using these data
stores, because parts of the application that require strong consistency are
now responsible for providing that guarantee. Serializability allows to es-
tablish desired correctness properties easily without considering the effects
of weak consistency. Because deciding serializability on concurrent execu-
tions is NP-hard in general, many stronger serializability criteria have been
explored ([12], [13], [23]).

As a motivating example for a serializability violation consider the following
piece of code:

1 setSecurityLevel(TOP_SECRET);

2 if (getSecurityLevel () == PUBLIC) {

3 releaseInformation ();

4 }

A serializability violation can now lead to the situation, that the classifica-
tion of information as top secret in line 1 is not observed by the security
level check in line 2 and therefore top secret information is released. This
constructed example shows that serializability violations can cause serious
bugs in applications.

1

1. Introduction

Brutschy et al. [13] propose a serializability criterion that generalizes conflict
serializability to eventually consistent semantics and further supports high-
level operations, allowing precise reasoning about replicated data types. Be-
cause the criterion has previously only been evaluated on key-value stores
and cloud platforms, this work applies this criterion to the popular dis-
tributed database MongoDB and shows that the criterion is feasible to dis-
cover serializability violations in real-world applications by performing and
evaluating a dynamic analysis on a set of open source Node.js applications
that use MongoDB as a replicated data store.

1.1 Contributions

The main contributions of this work are:

• Formalizing the consistency model of MongoDB and giving a com-
plete list of serializability violation classes that can occur

• Providing an instrumentation method to apply the criterion of Brutschy
et al. to the replicated database MongoDB

• Demonstrating the usefulness of the approach by providing an imple-
mentation that performs a dynamic analysis on a set of open source
Node.js applications and discovers previously undetected errors

1.2 Overview

We start by explaining the serializability criterion of Brutschy et al. in Chap-
ter 2. Chapter 3 gives an introduction into MongoDB and formalizes its
consistency model. We further present all possible classes of serializability
violations that can occur under this model and prove their completeness.
We introduce our instrumentation method in Chapter 4 and describe how
to instrument a MongoDB client application in order to perform the serializ-
ability checking based on the introduced serializability criterion. Chapter 5
covers how to use the data collected by the instrumented clients during the
dynamic analysis to apply the proposed algorithm from [13]. We further in-
crease the frequency of occurring serializability violations by triggering net-
work partitions as described in Chapter 6. Chapter 7 covers the implemen-
tation of the instrumentation and the analysis. We perform the described
dynamic analysis on a set of open source Node.js applications that use Mon-
goDB as a data store and evaluate the detected serializability violations in
Chapter 8.

2

Chapter 2

Preliminaries

This chapter covers basic definitions and the serializability criterion used in
this work. We further cover related work in this field of research.

2.1 Serializability Criterion

Brutschy et al. [13] propose a criterion that can be applied to a dynamic
execution of database operations of a replicated data store that provides
eventual consistency, which is defined later in this section.

2.1.1 Basic Definitions

To describe the criterion we need to specify the terminology and give some
basic definitions.

Actions and Events: A primitive operation that is performed by the data
store is called an action. An action is a database operation with concrete
arguments and return values. In MongoDB these are insert, delete, update
and find. If an action occurs in an execution it is called an event. Chapter 3
gives detailed explanations of the possible MongoDB events. If we assume
that we have a data store that provides the operations get and set on a record
r, examples for actions are r.get():3, where 3 is the return value and r.set(4),
where 4 is the value to be set.

Updates and Queries: Each action is assumed to be either an update or a
query. Updates modify the data store but return no values while queries
do not modify the data store but return values. This assumption is non-
restrictive because every action can be converted into a sequence of updates
and queries. We refer to the MongoDB operations insert, delete and update
as updates and to MongoDB find operations as queries.

3

2. Preliminaries

Commutativity: Two events e1 and e2 are called commutative if and only if
e1e2 ≡ e2e1, where ≡ denotes equivalence between two sequences of traces
and states that the two sequences produce the same final state for any ini-
tial state. Intuitively, commutativity means that swapping two neighboring
commuting elements in a sequence of actions produces an equivalent one.
Consider for example a data store that supports the simple operation set on
a record and let r1 and r2 be two database records. Then the two events
r1.set(1) and r2.set(4) commute because they operate on different records.

Absorption: An event e2 absorbs another event e1 if and only if e1e2 ≡ e2.
Intuitively, e2 absorbs any effect of e1. Let r be a database record. Then
r.set(3) absorbs r.set(5) because they both affect the same record and the
later event simply overwrites the effect of the former one.

A far-reaching absorption relation I is defined by: u I v ⇔ ∀χ ∈ U∗ :
uχv ≡ χv, where U∗ is the set of update sequences. Intuitively, far-reaching
absorption is an absorption that is not influenced by events that occur in
between the absorbing and the absorbed event.

A trace is a sequence of events that relaxes the total order of a sequence to a
partial order by omitting ordering commutative events.

Processes and Transactions: Let E be the set of events. A process is a
partition of the set E, while a transaction is a partition of the processes into
transactions t1, t2, ... ⊆ E.

Eventual Consistency: A data store is strongly eventual consistent if it sat-
isfies the following conditions:

1. Processes observing the same set of events observe the same state

2. Updates are eventually observed by all processes

2.1.2 Relations

The criterion by Brutschy et al. provides an algorithm that works on a set
of relations on events and constructs a graph from it. A cycle in that graph
represents a serializability violation.

This section introduces the relations that are used by the criterion. Let E =
U∪Q be a set of events, while U contains the update events and Q the query
events.

Program Order: The program order relation po ⊆ (E × E) partitions E
into processes. Intuitively, it reflects the order of event executions on a client
process.

4

2.1. Serializability Criterion

r.inc(1) r.inc(1)

r.get():1 r.get():1

po,vi po,vi

ar

(a) Visibility graph

r.inc(1) r.inc(1)

r.get():1 r.get():1

⊕ ⊕
	

ar

(b) DSG

Figure 2.1: Example of a DSG containing a serializability violation, indicated by a cycle in
the graph. inc is assumed to be an operation that increments a record r of the data store.

Arbitration Order: The arbitration order relation ar ⊆ (U×U) orders non-
commuting updates and is determined by the semantics of the data store.
Intuitively, it gives an order of execution on update events.

Visibility: The visibility relation vi ⊆ (U × Q) states whether a query can
observe the effects of an update or not. An update event is visible to a query
event if it was executed on the queried replica before the execution of the
query.

Program order, arbitration order and visibility form a schedule of events.

Dependency: The dependency relation ⊕ ⊆ vi ⊆ (U × Q) reduces the
visibility relation by expressing that a query depends on a visible update if
the result of the query would change if the update becomes invisible.

Anti-Dependency: The anti-dependency relation 	 ⊆ (Q ×U) expresses
that an update u anti-depends on a query q if (u, q) /∈ vi but making the
update visible to the query implies (u, q) ∈ ⊕.

Both, ⊕ and	 can be derived from the relations ar and vi and corresponding
commutativity and absorption specifications for the events as described in
[13].

Dependency Serialization Graph: The dependency serialization graph
(DSG) is defined as po∪ ar∪⊕∪	. Each cycle in the DSG of an event trace
represents a serializability violation.

Figure 2.1 shows a simple example of a visibility graph (po ∪ ar ∪ vi) and
the corresponding DSG.

5

2. Preliminaries

2.2 Related Work

Burckhardt [14] defines a model for specifying consistency models by decon-
structing them into several consistency guarantees and building a hierachy
of different consistency models giving the foundation of the model used by
[13]. This work also uses the proposed ordering guarantees in a modified
shape to specify the consistency model of MongoDB.

There exist models for the detection of consistency anomalies of cloud data
stores using cycle detection on a dependency graph [28].

In [29] Zellag et al. further propose an approach for detecting consistency
anomalies in multi-tier architectures and automatically reducing their occur-
rence. Their approach is completely independent of the used data store,
which is treated as a black box. Because [28] considered cloud applications,
only an approximated graph could be provided, which can lead to false pos-
itives during cycle detection. Furthermore, cloud applications do not allow
to take isolation levels into account. [29] tackles both shortcomings.

Other works consider Snapshot Isolation (SI) as a consistency guarantee and
propose methods to determine whether applications under SI are free of
serializability violations by using cycle detection in a dependency graph
([17], [20]).

Bernardi et al. give a criterion to detect serializability violations on causally
consistent data stores [11].

The mentioned works differ from the criterion of Brutschy et al. by expect-
ing the guarantee of stronger consistencies than strong eventual consistency
from the data store. Further, these approaches use low-level read and write
reasoning, while Brutschy et al. use algebraic reasoning, which makes the
criterion applicable to a broader class of systems.

Additionally to the already described serializability criterion, Brutschy et
al. also provide a polynomial-time algorithm that checks whether a given
program execution satisfies the criterion. Further, they provide an imple-
mentation of the algorithm for the cloud platform TouchDevelop and the
key-value-store Riak and evaluate the usefulness of the criterion on open
source projects by reporting previously undetected errors. This work further
proves the usefulness of the criterion by applying it to a replicated database
and evaluating it on a set of open source applications.

6

Chapter 3

MongoDB

MongoDB is a replicated multiplatform NoSQL database developed in C++
in 2007 by 10gen. It is a document store database, which groups documents
with a structure as described in 3.1 into collections. A collection can keep
documents with a differing structure in the same collection, but this leads to
a less efficient data management of MongoDB [8]. Furthermore, MongoDB
does not support transactions.

MongoDB databases support replication and sharding. Replication means
replicating the same data on different MongoDB instances. Usually these in-
stances are located on different physical machines, which increases availabil-
ity of the data. The set of MongoDB instances that are part of this replication
is called replica set and each instance is called replica node.

Sharded sets consist of MongoDB instances that each keep one part of the
whole data, so the data is not replicated but distributed over the nodes. This
work focuses on replica sets and will not further discuss sharded sets.

We use the following terminology within this work:

Operation: A MongoDB operation can either be an insert, update, delete or
find. We refer to find as query, because this avoids confusion with the
find-method of the MongoDB Shell. An operation can contain several
operators.

Operator: A MongoDB operator is either a query operator or an update
operator and starts with a $ sign.

3.1 Document Structure

A document is a set of key-value pairs. A key-value pair is also called an
attribute, where the key is the attribute name and the value is the attribute

7

3. MongoDB

{
"_id": "507 f191e810c19729de860ea",

"type": "book",

"title": "Science for Scientists",

"authors": [

{"name": "Clara", "age": 46},
{"name": "Josh", "age": 23}

]

}

Figure 3.1: Example of a MongoDB document

value. Values can have different data types as listed in the MongoDB docu-
mentation and can also contain other documents.

Figure 3.1 shows an example of a valid MongoDB document.

Each stored document in MongoDB has an object-ID, which uniquely identi-
fies a single document within a single collection and is represented by the
key id. Relational databases have a similar concept using a so called pri-
mary key. The name of the object-ID (id) cannot be changed and every
document needs to have an attribute with the name id and a unique value.
Furthermore, the value of the object-ID is immutable and can therefore not
be deleted or changed.

It is also possible to define indexes on MongoDB collections. Like in Rela-
tional Database Management Systems (RDMS), indexes speed up searching
the table/collection when only indexed attributes are used in the search
query. Furthermore, indexes guarantee uniqueness of the corresponding
values within a collection. It is possible to define compound indexes, which
consist of two or more keys and guarantee uniqueness of the combination of
all involved values. As an example, consider we define a compound index
on the keys name and age on a collection users. The compound index guar-
antees that there is only one document in the collection users having name
John and age 30. But there can exist many documents with name John and
many documents with age 30.

3.2 Operations

In this section we cover the different low level operations of MongoDB.
There are interfaces like the MongoDB Shell or certain drivers that provide
higher level operations. We explain some of these higher level operations
in Section 4.1, but they are transformed into low level operations on the

8

3.2. Operations

server. We have insert, update, delete and query operations. Each operation
is executed on a specific database collection.

3.2.1 Inserts

An insert operation consists of an insert document, which needs to have the
MongoDB document structure but can lack the object-ID. When the server
receives an insert, it will add the object-ID if it is not contained in the doc-
ument. If the document contains an object-ID that is already present in the
corresponding collection, the server throws an error. We ignore failed up-
dates in our analysis, because the serializability criterion demands updates
not to have pre-conditions. An example for an insert document is {"name":
"John","age":30, "lastName":"Doe"}.

3.2.2 Queries

A query operation consists of a selector, which is a MongoDB document
that can contain MongoDB query operators or normal key-value pairs. The
following examples demonstrate the syntax and semantics of MongoDB se-
lectors:

• {"name":"Sarah","age":26}: matches all documents with name equal-
ing Sarah and age equaling 26.

• {"name":"Bob", "age": {"$gt":40}}: matches all documents with name
equal to Bob and age greater than 40.

• {"$or":[{"name":"Bob"},{"name":"Sarah"}]}: matches all documents
with name equaling Bob or Sarah.

We use the query operators $or for disjunction and $gt, which demands that
a value has to be greater than the given value.

3.2.3 Updates

An update operation consists of a selector and a modifier. Selectors are de-
scribed with query operations. A modifier is a MongoDB document that
can contain MongoDB update operators or normal key-value pairs. If the
update modifier only consists of key-value pairs that do not contain any
operators, the modifier is called replacement modifier or replacement docu-
ment. Examples of modifiers are:

• {"name":"Sarah","age":26}: replacement modifier that is used to
completely replace a document.

• {"$set":{"title":"newTitle","price":200}}: sets the attribute ti-
tle to newTitle and price to 200 and leaves all other attributes un-
touched.

9

3. MongoDB

• {"$inc":{"age":1, "yearsToLive":-1}}: increments attribute age and
decrements attribute yearsToLive by 1 and leaves all other attributes
untouched.

3.2.4 Deletes

A delete operations consists of a selector, specifying which documents to
delete.

3.3 Replication

Replication can increase redundancy and availability. It can further increase
the read capacity as clients can read from more than one server. A replica
set in MongoDB is defined as a group of MongoDB instances that maintain
the same data set. Each MongoDB instance is called a replica node that can
be either a primary or a secondary node. A replica set can only have one
primary node, which receives all write operations and keeps an operations
log (see Section 3.3.2), which contains all changes to the primary’s data set.
Secondary nodes replicate the primary’s data by replicating its operations
log and applying the contained operations to their local data set.

3.3.1 Automatic Failover

If the primary node becomes unavailable the secondary nodes will hold an
election to determine a new primary node. Only if a majority of all nodes
(including unreachable ones) of the replica set vote for a specific node it
becomes the new primary node. The other way around, a primary steps
down as a primary if it loses contact to the majority of nodes. To allow
a majority in the elections it is necessary that the replica set contains an
odd number of nodes. This method assures that a primary node is always
connected to a majority (including itself) of nodes from the set.

It is possible that a replica set transiently contains two primary nodes, as
shown in Figure 3.2. This is the case if a primary is not reachable by a
majority of nodes and a new primary is elected. The old primary might
take some time to realize that it must step down because it cannot reach a
majority of nodes anymore.

Arbiter nodes do not replicate data. Their only purpose is to ensure an
odd number of replica nodes. This is useful in cases where only an even
number of replicating nodes are possible or affordable. The arbiter solves
the problem of tied votes in an election, but uses less resources than a data
bearing node.

10

3.3. Replication

3.3.2 Oplog

The oplog (operations log) is a special MongoDB collection that stores all
executed operations that changed the data of the corresponding MongoDB
instance. As already mentioned, secondary nodes copy the oplog from the
primary and apply the contained operations to replicate the primary’s data
set. Each secondary has a local copy of the primary’s oplog that represents
the database state of a secondary node.

The oplog only contains idempotent operations. That means that every in-
sert, update or delete operation is converted into one or many idempotent
operations that have an equivalent effect. This has consequences for the
atomicity of MongoDB operations. All update operations are only atomic
on a per document basis. Upsert operations for example are special update
operations that insert a document if the corresponding selector does not
match any document of the collection. However, because an upsert is not
idempotent it is split up into a query and an update or an insert. Multi-
updates, which are defined as updates that update multiple documents, are
split up into a query and multiple single updates. To guarantee idempo-
tency, the selector of each update in the oplog only contains the object-ID.
This guarantees that the document to be updated is uniquely identified. Fur-
thermore, non-idempotent update operators are converted into idempotent
ones.

3.3.3 Read Preference

Read preference is a setting for client applications and describes how they
route the query to the members of a replica set. The read preference modes
relevant for this work are:

primary (default): Query is routed to the primary. If no primary is reach-
able from the client, the operation fails.

primaryPreferred: Query is routed to the primary. If no primary is reach-
able the read will be performed on a secondary.

secondary: Query is routed to the secondary. If no secondary is reachable
from the client, the operation fails.

secondaryPreferred: Query is routed to the secondary. If no secondary is
reachable the read will be performed on the primary.

It is further possible to specify the exact nodes to read from.

3.3.4 Read Concern

Read concern is an option for query operations and determines which data
to return from it. There exist the following read concern levels:

11

3. MongoDB

local (default): The instance’s most recent data is returned by the query.

majority The instance’s most recent data that has been acknowledged as
having been written to a majority of replica nodes is returned by the
query.

linearizable: Data that has been acknowledged as having been written to
a majority of replica nodes prior to the start of the query is returned.
This level is only allowed for queries to the primary node.

3.3.5 Write Concern

Write concern is an option for write operations (insert/update/delete) and
specifies the level of acknowledgement requested from MongoDB. The ac-
knowledgement of the write concern is an acknowledgement to the client,
while that of the read concern is an acknowledgement of a replica node to
all other replica nodes. A write concern can take the following options:

number: number represents the minimum number of nodes that an operation
has to propagate to in order to count as acknowledged.

majority: Write operations need to have propagated to a majority of nodes
of the replica set to count as acknowledged.

The default value for the write concern is 1. This implies that an operation
becomes acknowledged as soon as it has propagated to the primary node.

3.3.6 Consistency Model

This section describes the consistency model of MongoDB that is inferred
from the specifications of the previous sections. Write concern and read con-
cern are essential to the level of consistency that is achieved. We will present
some configurations and discuss the resulting consistency level. We start by
giving very weak configurations and continue by strengthening them. As
we need eventual consistency for the serializability criterion to be applica-
ble, we discuss which configurations satisfy this guarantee.

We use the following terminology:

Stale reads describe read operations that do not return the most recent ac-
knowledged and therefore persistent data of the replica set.

Example 3.3.1 Consider the following sequence of events in a replica
set with one primary and two secondary nodes:

1. A client sends a write operation to the primary.

2. The client sends a read operation to a secondary that has not yet
executed the write from Step 1. This is a stale read, because the
update from Step 1 has not yet propagated to the secondary. �

12

3.3. Replication

Dirty reads specify reads of data that is going to be rolled back and will
therefore not be persistent.

Example 3.3.2 Consider the following sequence of events in a replica
set with one primary and two secondary nodes:

1. A network partition occurs that blocks the communication be-
tween the primary on one side of the partition and the two sec-
ondaries on the other side of the partition as illustrated in Figure
3.2a.

2. The secondary nodes realize that they cannot reach the primary
and elect one of the secondaries to be the new primary (Figure
3.2b)

3. A client (that is on the same side of the network partition as the
old primary) sends a write operation to the old primary, which
has not yet realized that it cannot reach the two other nodes of
the replica set and executes the write.

4. The client sends a read operation to the old primary and reads
the previously written value.

5. The old primary realizes that it is isolated and steps down as a
primary (Figure 3.2c).

6. Another client sends a write operation to the new primary of the
replica set. The new primary executes that write.

7. The network partition disappears and the old primary (which is
a secondary now) pulls the oplog from the new primary. There is
now a conflict between the oplog of the old primary and the new
one because both applied write operations. Therefore, the old
primary rolls back the write operation and executes the missing
operations from the oplog of the new primary (Figure 3.2d). Step
4 contains a dirty read, because the read value is rolled back in
Step 7. �

Dirty writes describe write operations that are acknowledged by MongoDB
but will later be rolled back.

Consider Example 3.3.2 again. Step 3 is a dirty write if it is acknowl-
edged to the client, because it is rolled back at Step 7. The acknowl-
edgement of the write depends on the write concern.

In order to satisfy eventual consistency, we cannot have dirty reads or dirty
writes, as they both violate the condition of EC that each update has to
propagate to all nodes eventually.

13

3. MongoDB

Primary

Secondary Secondary

(a) Network partition isolates primary

Primary

Primary Secondary

(b) Secondary nodes elect a new primary

Secondary

Primary Secondary

(c) Former primary steps down

Secondary

Primary Secondary

(d) Network partition disappears

Figure 3.2: A possible network partition in a replica set and the subsequent recovery. It
shows how there can transiently exist two primary nodes.

Read Concern: local, Write Concern: 1

This configuration can lead to stale reads, dirty reads and dirty writes.

Consider Example 3.3.2. A write concern of 1 leads to Step 3 performing a
dirty write. A read concern of local leads to Step 4 performing a dirty read.
Therefore, this configuration does not provide eventual consistency.

Read Concern: local, Write Concern: majority

By setting write concern to majority we eliminate dirty writes. However,
having a read concern of local still allows stale and dirty reads as in Step 4 of
Example 3.3.2. Therefore, this configuration is still not eventually consistent.

Read Concern: majority, Write Concern: majority

By strengthening the read concern we can avoid dirty reads. Step 4 in Ex-
ample 3.3.2 is not possible with a majority read concern, because the value
written in Step 3 cannot be acknowledged by a majority of nodes. Stale reads
are still possible in this configuration. However, this configuration provides
EC, because stale reads to not violate it.

Read Concern: linearizable, Write Concern: majority

We further strengthen the read concern by setting it to linearizable. This
configuration does not even allow stale reads anymore. But this level of
consistency comes to the price of read capacity because all reads have to be
performed on the primary node. The only advantages of having a replica
set instead of a standalone MongoDB instance in this configuration are avail-
ability and redundancy.

14

3.3. Replication

We conclude that the weakest configuration that still provides EC needs a
read and write concern of majority.

3.3.7 Consistent Prefix

As discussed, we need majority read concern and majority write concern
in order to provide strong eventual consistency. This configuration further
gives an ordering guarantee on events that we call consistent prefix (CP). We
adapt a slightly modified version of the definition given by [14]: A consis-
tency model has the consistent prefix guarantee if and only if (ar; vi) ⊆ vi.

More intuitively, it expresses that an update event u being visible to a query
q implies that all update events that are arbitrated before u are also visible
to q. Therefore, each query always observes a consistent prefix of all existing
update events ordered by arbitration.

As an explanation, assume the consistent prefix guarantee does not hold.
Then there exists an update event u2 that is visible to a query event q1, but
there also exists an update event u1 that is arbitrated before u2 and is not
visible to q1. For this situation to occur we need q1 to perform a dirty read,
which is not possible with majority read concern.

Note that this guarantee strengthens eventual consistency.

3.3.8 Possible Sequential Consistency Violations

This section introduces violations of the sequential consistency (SC) guaran-
tee, that is formally defined in Section 3.3.8 and is a weaker guarantee than
serializability but stronger than eventual consistency. The reason for consid-
ering only SC in this section is that MongoDB does not support transactions
and serializability is a guarantee on transactions. So we focus on violations
that are caused by the MongoDB consistency model.

Again, we assume majority read concern and majority write concern. We
further assume a read preference that allows reads from secondary nodes,
because this is the only way of benefiting from the possible performance ad-
vantages of a replica set. We present two classes of serializability violations
and then show that these violation types are indeed the only possible viola-
tions that can occur in the MongoDB consistency model with the assumed
write and read concern.

Read My Writes

Read My Writes (RMW) is an ordering guarantee of events defined as fol-
lows: (po∩ (U ×Q) ⊆ vi).

15

3. MongoDB

Violating this property means: ∃(u, q) ∈ po ∩ (U × Q). (u, q) /∈ vi. Intu-
itively, it is violated if an update is invisible to a query even though it is
ordered before it according to program order.

Monotonic Reads

Monotonic Reads (MR) is defined as the following ordering guarantee: (vi; (po∩
(Q×Q))) ⊆ vi.

Violating this property means: ∃u ∈ U, q1, q2 ∈ Q. (u, q1) ∈ vi ∧ (q1, q2) ∈
po ∧ (u, q2) /∈ vi. Intuitively, this property is violated if a query event q2
that occurs later than another query event q1 in program order cannot see
an update event u but q1 can.

Proof of Completeness

We prove that violations to the RMW and MR properties are the only ones
that can occur if we assume the consistent prefix guarantee.

We can further assume causal arbitration (CA) for MongoDB: po∩ (U×U) ⊆
ar [14]. This is guaranteed by the monotonic writes guarantee of MongoDB,
which expresses that the order of execution of write operations equals the
order of arrival at the server. Because program order is only allowed on
non-overlapping operations, CA is guaranteed.

non-circular causality (NCC) is defined as acyclic((po ∪ vi)+) and directly
follows from basic eventual consistency as shown in [14].

We construct our proof by assuming CP, RMW, MR and CA and show that
these guarantees imply sequential consistency. The model is sequentially
consistent (SC) if (ar∪vi∪vi− ∪po) is acyclic, where vi− := ((U×Q) \vi)−1.
This definition is a general version of the serializability criterion given in [13],
where vi = ⊕ and vi− = 	. (ar∪ vi∪ vi− ∪ po) satisfies Axiom 1 and 2 and
can therefore be applied to Theorem 1, which implies SC. The axioms and
the theorem are defined in [13].

Proof We assume CP, RMW, MR, CA and show that (ar ∪ vi ∪ vi− ∪ po) is
acyclic.

We start by showing that vi∪ ar is acyclic and use this to prove vi∪ ar∪ vi−

to be acyclic, too.

Lemma 3.1 vi∪ ar is acyclic.

Proof Since vi ⊆ (U × Q) and ar ⊆ (U ×U), a cycle must consist only of
updates. That is a contradiction to arbitration being acyclic. �

Lemma 3.2 vi∪ ar∪ vi− is acyclic

16

3.3. Replication

Proof Assume it contains a cycle. Then it contains a path (e1, ..., en) with
e1 = en. Because vi∪ ar is acyclic, this path must contain a pair (q, u1) ∈ vi−

that is essential to the cycle. In order to form a cycle there must also exist
an edge from an update to a query. The only relation defined on that set is
vi and therefore there exists a u2 with (u2, q) ∈ vi.

Case 1 (u1 = u2): We have u1
vi−→ q and q vi−−→ u1, which contradicts our

definition of vi and vi−.

Case 2 (u1 6= u2): Because arbitration is a total order we must either have
one of the two cases:

Case 2.1 (u1
ar−→ u2): CP

=⇒ u1
vi−→ q. This is a contradiction to the defi-

nition of vi and vi−, because we cannot have both, u1
vi−→ q and

q vi−−→ u1.

Case 2.2 (u2
ar−→ u1): vi∪ ar contains a cycle. This is a contradiction to

Lemma 3.1. �

We will now show that (ar∪ vi∪ vi− ∪ po) is acyclic.

Assume it contains a cycle. We perform a case distinction on the number of
nodes that are part of the cycle:

Case 1 (Cycle contains 1 event): All relations are acyclic, so must be their
union.

Case 2 (Cycle contains 2 events): The cycle contains two events n1, n2 ∈ E
with n1

po−→ n2. In order to form a cycle, there must be a relation from
n2 to n1:

Case 1.1 (n2
ar−→ n1): n1

po−→ n2
CA
=⇒ n1

ar−→ n2
ar total
===⇒ n2 6

ar−→ n1, which
contradicts the assumption of this case.

Case 1.2 (n2
po−→ n1): This means that po contains a cycle, which con-

tradicts po being acyclic.

Case 1.3 (n2
vi−→ n1): n1

po−→ n2 and n2
vi−→ n1 contradict NCC.

Case 1.4 (n2
vi−−→ n1): n1

po−→ n2
RMW
==⇒ n1

vi−→ n2 and therefore we cannot

have n2
vi−−→ n1 because our definition of vi and vi− does not allow

both n1
vi−→ n2 and n2

vi−−→ n1.

Case 3 (Cycle contains more than 2 events): The cycle contains a path (g1, ..., gn) :
g1 = gn. Because vi ∪ ar ∪ vi− is acyclic, there exists a path (q1, ..., qm)
in po of maximal size that is essential to the cycle. This path can only

17

3. MongoDB

qm

...

q1g1

...

po

po

Figure 3.3: Structure of cycle for correctness proof

consist of queries. This follows from CA and RMW. These guarantees
ensure that the only edges that program order can contribute to the
cycle that are not contained in vi∪ ar∪ vi− are between two queries.

Assume this cycle has the structure shown in Figure 3.3.

Observe that g1 ∈ U because otherwise g1 must be part of (q1, ..., qm).
We already observed that q1, q2, ..., qm ∈ Q.

We must either have qm
vi−−→ g1 or g1

vi−→ qm. g1
vi−→ qm implies that

vi∪ ar∪ vi− already contained a cycle, which is a contradiction. So we

must have qm
vi−−→ g1. But we also have g1

vi−→ q1, because vi is the only
relation defined on U×Q besides po. Together with q1

po−→ qm and MR

follows that g1
vi−→ qm, a contradiction to qm

vi−−→ g1.

Therefore, (ar∪ vi∪ vi− ∪ po) is acyclic.
�

3.3.9 Atomicity Violations

Atomicity violations are one class of violations that are even possible under
SC. After focusing only on SC in Section 3.3.8, we now consider serializabil-
ity again. Even though not supported by MongoDB, our method provides
annotating a group of events as a transaction, which signals the analysis
that these operations are assumed to be executed atomically. The analysis
will then merge the nodes of the corresponding DSG into a single node. Be-
cause MongoDB does not support transactions and a transaction violation
is based on the assumption of an atomic execution of the corresponding
events, we do not consider this as a serializability violation of the MongoDB
consistency model, because MongoDB does not make that assumption of
atomicity. Nevertheless, transactions can be helpful to detect violations that
are based on the fact that the developer assumed an atomic execution of the
events that are marked as one transaction. Therefore, we support the notion
of transactions as described in Section 4.1.4.

18

Chapter 4

Dynamic Analysis for MongoDB

We perform a dynamic analysis of MongoDB clients to detect serializability
violations. Therefore, we need to record all database events of the appli-
cation and instrument them in a way that allows to perform the analysis
proposed by Brutschy et al. [13]. After performing an execution of the in-
strumented application to be analyzed, we create the relations program or-
der, arbitration order and visibility, run the proposed algorithm to yield the
dependency and anti-dependency relation and finally build the correspond-
ing DSG. We achieve that by extending the analysis tool used in [13]. A
cycle detection on the DSG will then uncover the serializability violations
that occurred during the instrumented execution run of the application.

This chapter covers the instrumentation of the client application such that
we are able to extract the needed relations from them.

4.1 Instrumentation

This section describes how to instrument the database events of a client
in a way that allows to yield the relations arbitration order, visibility and
program order and further gives the necessary transformations of driver
operations in order to perform the proposed instrumentation.

4.1.1 Program Order

Depending on the programming model of the client, the program order
needs to be a partial order. This is the case for clients with an asynchronous
programming model like Node.js for JavaScript [26] or Play! [6] for Java
and Scala. The fact that a database event ea started before another database
event eb does not imply that ea also returns before eb. Therefore we store a
start time stamp and a return time stamp with each event. If we have two
database events e1 and e2 by the same client, we say that (e1, e2) ∈ po iff

19

4. Dynamic Analysis for MongoDB

endTime(e1) < startTime(e2). The analyzer can then later use these time
stamps to construct the program order as explained in Section 5.3.1. The
time stamps must be generated by the client because only the client’s system
clock is relevant for this purpose.

4.1.2 Arbitration Order

As described in Section 3.3.6, all updates go to the primary node of our
replica set. Therefore there exists a total arbitration order of all updates,
inserts and deletes, which is indicated by a time stamp of execution on the
server that is attached to each of those events.

4.1.3 Visibility

In order to construct the dependency and anti-dependency relations with
ECRacer in the later analysis, we need to be able to construct the visibility
relation from the instrumented records. To achieve this, we attach a unique
update identifier (UID) to every update or insert event.

The UID is generated by the client and should satisfy the following condi-
tions:

1. The UID is unique.

2. The UID contains enough information to uniquely identify the corre-
sponding client application.

Both conditions only need to provide uniqueness within a single dynamic
analysis run. While the first condition is necessary for the visibility relation,
as will be explained in this section, the second condition is essential for
creating the program order relation, described in Section 5.3.1.

However, we give more semantic meaning to it by constructing it using the
following pattern: clientId#subClientId#eventCounter.

clientID uniquely identifies a single client application, which is a Node.js
instance in our case.

subClientID uniquely identifies a child process within a single client appli-
cation. We introduce this ID to handle applications that spawn child
processes. This identifier is not necessary for the uniqueness of the
UID, because the eventCounter is shared for all child processes of a
client application. However, it helps to associate an event with a spe-
cific process for debugging purposes and identifying sources of serial-
izability violations.

eventCounter is an increasing integer that uniquely identifies a single event
within a client application.

20

4.1. Instrumentation

The UID is added as a property to the updated/inserted document and is
therefore stored in the database. The visibility relation can be constructed
by checking the UIDs of all documents that a query retrieves. For a UID
uid let upd(uid) be the corresponding update event. The visible updates/in-
serts (deletes are covered in Section 4.2.6) of a query q are obtained in the
following way:

1. Iterate through all documents retrieved by q and calculate the maxi-
mum (by arbitration) UID maxUID

2. An update/insert u is visible to q iff (u, upd(maxUID)) ∈ ar

This follows from the consistent prefix property described in Section 3.3.7.

Example 4.1.1 This example demonstrates how the visible updates/inserts
of a query are determined. Let i1, i2 be two insert events with dx being the
document inserted by ix. Let further u1 and u2 be two update events with sx
and mx being the selector and modifier of ux. We define:

• d1 := {"name":"John","age": 30, "__uid":"0#0#0"}

• d2 := {"name":"Sarah","age":23, "__uid":"1#0#1"}

• s1 := {"name":"John"}

• s2 := {"name":"Sarah"}

• m1 := {"$set":{"age":31, "__uid":"1#0#0"}}

• m2 := {"$set":{"age":24, "__uid":"0#0#1"}}

We assume the arbitration i1
ar−→ u1

ar−→ i2
ar−→ u2, where we introduce the

notation op1
ar−→ op2 ⇔ (op1, op2) ∈ ar.

Let q be a query event with selector s := {}. An empty selector in MongoDB
matches all documents of the collection. Let q further return the set D of
documents with D :=

{
{"name": "John", "age": 31, "__uid": "1#0#0"},
{"name": "Sarah", "age": 23, "__uid": "1#0#1"}

}

Because each UID uniquely identifies one update event, they are also or-
dered by arbitration: upd(0#0#0) ar−→ upd(1#0#0) ar−→ upd(1#0#1) ar−→ upd(0#0#1).
The maximum UID of all documents contained by D is maxUID = 1#0#1,
because upd(1#0#0) ar−→ upd(1#0#1).

We said that an update/insert u is visible to q iff (u, upd(maxUID)) ∈ ar.
Therefore we construct the following visibility relation: {(i1, q), (i2, q), (u1, q)} ⊆
vi.

21

4. Dynamic Analysis for MongoDB

�

The instrumentation implementation should also take care to remove the
UID attribute from all documents before returning them to the client appli-
cation. This avoids a change in the behavior of the application that is caused
by an additional property on the retrieved document. This can for instance
be the case if the application counts the fields of that document.

But there remain some further extensions to the client in order to obtain the
complete visibility relation. These are described in the following sections.

4.1.4 Transactions

MongoDB does not support database transactions, but in the analysis we
support them. There are many ways to specify transactions. For instance,
they can be annotated in the code by the user. To assign an event to a
transaction it is sufficient to attach a transaction identifier to it.

In our instrumentation of Node.js applications we group all events of a sin-
gle HTTP-request that was sent to the application into one transaction. The
reasoning behind this approach is that many developers are used to the situa-
tion where each request is handled by a synchronous server using a database
transaction of a relational database. This habit leads to programming pat-
terns that fail to be reliable on asynchronous servers without database trans-
actions. If websockets are used instead of HTTP we apply this approach to
a websocket request.

4.1.5 Special Cases

Limited Queries

Limited queries are those that limit the result set of a cursor. The limit
specifies the maximum number of documents the cursor will return. So
query event q with a selector s := {"name":"John"} and a limit of 10 returns
all but at most 10 documents with the attribute name having the value John.
Limited queries must be handled carefully to keep our visibility relation
correct. These queries are therefore transformed into unlimited queries to
retrieve all visible documents. Before returning the result set to the client
application later, we limit it to the specified number to avoid changing the
application’s behavior.

Projections

All projections of non-ID-queries must be removed. Projections reduce each
retrieved document of a query to a subset of its attributes. This is usually

22

4.2. Transformation of Driver Operations

used to decrease network traffic and memory usage of the client. However,
since we retrieve the whole collection and filter the documents at the client,
we need the complete documents in order to perform a correct filtering.
After doing the filtering, the projection should be performed as part of the
instrumentation to prevent a different client behavior.

GetMore

A MongoDB cursor is able to fetch the matching documents in chunks. This
is realized by the getMore command of MongoDB. If the set of matching
documents exceeds the maximum chunk size, the set will be split up. Each
getMore has to be handled as an own query event for the analysis, because
they can observere different database states, even though they relate to the
same cursor. An alternative is to set the maximum chunk size to a value that
is higher than the collection size. This prevents the server from splitting up
a query at all.

4.2 Transformation of Driver Operations

This section introduces all transformations of driver operations that need
to be performed in order to realize the introduced instrumentation. The
described transformations relate to the Node.js MongoDB driver, but can
be applied to other drivers easily, because the introduced operations are
defined by MongoDB. The arguments may slightly differ for other drivers,
though.

We made the following simplifications to keep the transformations clean and
more general:

• The operations are assumed to be synchronous. This simplification
keeps all the callback handling out of the transformations, which does
not add any information to the concept to be shown.

• f reshUid() creates a new UID, but in case of deletes the created UID
will not be recreated when the delete delegates to an update. Therefore
the UID and the delete property have the same value.

• The find operation of MongoDB actually returns a cursor that can then
be used to fetch documents from the database. We assume here that
it directly returns a set of documents to simplify the transformation
specifications.

4.2.1 updateMany

updateMany updates all documents that match the given selector.

23

4. Dynamic Analysis for MongoDB

Updates that possibly modify more than one document are called multi-
updates. Since multi-updates are not executed atomically, it is unsound to
keep them as a single update event in our graph. To cope with that fact and
to further increase the precision of our commutativity specification, we per-
form these steps in our instrumentation and only send single-updates to the
server. The exact impact on our commutativity specifications is described in
Section 5.1.6.

As explained in Section 3.3.2, the MongoDB server transforms all events
into their idempotent equivalents. Therefore, multi-updates are split up
into single updates whose selector only contains the object-ID. Upserts are
transformed into inserts or updates, depending on the documents matching
the selector. Since all updates go to the primary replica node, the splitting
process is also performed on the primary.

Replacement Documents: A modifier is a replacement document if it
only contains key-value-pairs and no update-operators.

As described, multi-updates without a replacement document are split up
into n single updates, where n is the number of documents that match the
selector. The MongoDB documentation states that multi-updates with a re-
placement document are converted into one single update that only updates
the first document matching the selector.

As an example, consider the following modifiers:

1. {” id”: 123, ”name”: ”John”}

2. {”name”: ”John”, ”age”: 32}

3. {”$set”: {”age”: 33}, ”name”: ”John”}

While modifiers 1 and 2 are replacement documents, modifier 3 is not, be-
cause it contains the update-operator $set.

We split up our multi-update updateMany by first executing a find oper-
ation. Let uid1, uid2, ..., uidn be the UIDs of the documents returned by
f ind(selector). If the modifier is a replacement document, all uidx with
x > 1 are simply omitted. There are now the following cases:

Case 1: No documents found (n = 0)

Case 1.1: updateMany is upsert

updateMany(selector, modi f ier)
 insertOne(createInsertDocument(selector, modi f ier))

24

4.2. Transformation of Driver Operations

Case 1.2: updateMany is no upsert

updateMany(selector, modi f ier) ⊥

⊥ indicates that updateMany is omitted.

Case 2: Documents found (n > 0)

updateMany(selector, modi f ier)

updateOne({” uid” : uid1}, modi f ier)
updateOne({” uid” : uid2}, modi f ier)
...
updateOne({” uid” : uidn}, modi f ier)

createInsertDocument(selector, modi f ier) creates an insert document based
on the selector and the modifier as described in the MongoDB documenta-
tion [3]:

Case 1: Modifier is a replacement document ⇒ Return replacement docu-
ment.

Case 2: Modifier is not a replacement document

1. Create a base document from the equality clauses of the selector,
ignoring comparison operators

2. Apply the update expressions from the modifier

4.2.2 updateOne

updateOne is used for single-updates. We delegate it to update because it is
more flexible as it can take a replacement document as well as a normal
modifier, while updateOne can not take replacement documents.

updateOne(selector, modi f ier)
 update(selector, modi f ier)

4.2.3 update

update can be used for single updates or multi updates.

We need to delegate multi-updates to updateMany:

25

4. Dynamic Analysis for MongoDB

Case 1: Multi-update:

update(selector, modi f ier)
 updateMany(selector, modi f ier)

Case 2: Single-update: We need to check if the selector matches that of an
ID-query, as described in Section 4.2.10:

Case 2.1: Selector only contains object-ID:

update(selector, modi f ier)
 update(selector, modi f ier ∪ {” uid” : f reshUid()})

Case 2.2: Selector does not only contain object-ID:
Execute f indOne(selector) with primary read preference.

Case 2.2.1: f indOne(selector) found document with UID uid

updateOne(selector, modi f ier)
 update({” id” : uid}, modi f ier)

Case 2.2.2: f indOne(selector) found no document

update(selector, modi f ier)
 insert(createInsertDocument(selector, modi f ier))

4.2.4 insertMany

insertMany inserts a set of documents. Multi-inserts are split up and sent as
single-inserts to the server for the same reason as multi-updates.

Let d1, d2, ..., dn be the set of documents to be inserted. Then we apply the
following transformation:

26

4.2. Transformation of Driver Operations

insertMany(docs)

inserteOne(d1)

inserteOne(d2)

...
inserteOne(dn)

4.2.5 insertOne

insertOne takes a single document and performs a single-insert. We need to
add the UID to the document.

insertOne(doc) insertOne(doc ∪ {” uid” : f reshUid()})

4.2.6 deleteOne

deleteOne deletes one document matching the specified selector. Figure 4.1
gives an example of how we transform a delete event that leads to a wrong
visibility relation and therefore to a wrong DSG into an update that resolves
the issue. The upper DSG shows that the delete event removes the previ-
ously inserted document from the collection, such that the following query
does not retrieve the document. This causes an incorrect visibility relation.
The lower part shows how the issue is resolved by transforming the delete
into an update that sets a delete property as we propose now.

Delete events are problematic for our construction of the visibility relation,
because a deleted document is never retrieved by any query. This causes
the delete event to be invisible for the query event. Therefore its UID is
never taken into account when calculating the maximum UID. To overcome
this obstacle we avoid deleting documents at all and mark them as deleted
instead. This happens by attaching a property to the document to be deleted,
which marks it as deleted and also stores the UID of the corresponding
delete event. While the existence of the delete property on a document
signals that the document has been deleted, its value describes when in the
arbitration order that deletion occurred.

Therefore, delete events are transformed into update events that set the
delete property as follows:

27

4. Dynamic Analysis for MongoDB

Insert({”name” : ”John”, ” uid” : ”0#0#13”})

Delete({”name” : ”John”})

Query({”name” : ”John”})

ar

po	

	

Insert({”name” : ”John”, ” uid” : ”0#0#13”})

Update({”name” : ”John”}, {” del” : ”0#0#14”})

Query({”name” : ”John”})

ar

po⊕

⊕

Figure 4.1: Example of a delete event causing a cycle in the DSG, which does not represent
a real serializability violation. The lower DSG shows how the modified delete event resolves
the cycle.

deleteOne(selector)
 updateOne(selector, {$set : {” del” : f reshUid()}})

The proposed method demands a mechanism in the instrumentation that
filters out all deleted documents that a query receives. It is not sufficient
to just add that filter to the selector of the query, because we need to know
which deleted documents the query can see in order to construct our visibil-
ity relation.

4.2.7 deleteMany

deleteMany is used for multi-deletes. Since we are transforming deletes into
updates, we also have to transform multi-deletes into multi-updates. We
achieve that by delegating to updateMany.

28

4.2. Transformation of Driver Operations

deleteMany(selector)
 updateMany(selector, {$set : {” del” : f reshUid()}})

4.2.8 findOneAndUpdate

This operation finds one document matching the selector, performs an up-
date on it and returns the original document in the state before the update.
There exists an option to return the updated document instead. We delegate
this operation to a slightly modified version of our updateOne operation. This
modified version, which we call updateOne’, differs from updateOne in terms
of the returned document. While the usual updateOne operation only returs
a status object, updateOne’ returns the original object or the updated object,
based on the given options.

f indOneAndUpdate(selector, update)
 updateOne′(selector, update)

4.2.9 findOneAndDelete

This operation finds one document matching the given selector, deletes it
and returns the deleted document. Since we convert delete events to up-
date events we can delegate this operation to findOneAndUpdate and add the
delete property to the update modifier.

f indOneAndDelete(selector)
 f indOneAndUpdate(selector, {$set : {” del” : f reshUid()}})

4.2.10 find

To transform the find operation, we need to handle ID-queries properly. By
ID-queries we describe queries that only keep the object-ID in their selector.
An example selector leading to an ID-query is {” id” : 123}, because it only
contains the object-ID. {$or : [{” id” : 123}, {”size” : ”XL”}]} and {” id” :
123, ”size” : ”XL”} on the other hand are examples for selectors of non-ID-
queries.

Figure 4.2 illustrates the problem of non-ID-queries in regard to visibility
with an example. In the visibility graph we observe that the second query
cannot see the insert, because the corresponding document does not match
the query selector and is therefore not amongst the retrieved documents.
This leads to a cycle in the DSG. However, that cycle is not a real serializabil-
ity violation, because by definition of our visibility relation the insert should
be visible to both queries.

29

4. Dynamic Analysis for MongoDB

Insert({”someKey” : f alse, ” uid” : ”0#0#0”})

Query({”someKey” : f alse})

Query({”someKey” : true})

vi

po

(a) Visibility graph

Insert({”someKey” : f alse, ” uid” : ”0#0#0”})

Query({”someKey” : f alse})

Query({”someKey” : true})

⊕

po

	

(b) DSG

Figure 4.2: Example of a cycle in the DSG caused by a wrong visibility relation that is in turn
caused by a non-ID-query.

ID-queries are not problematic because the only possible situation in which
they do not retrieve an existing document with the corresponding object-
ID is a real serializability violation. That is because their selectors only
contain the object-ID, which in turn uniquely identifies a single document.
Furthermore the object-ID is immutable in MongoDB.

To handle non-ID-queries and keep our visibility relation correct, we need
to adjust the selector of that query to fetch the whole collection. Therefore
we need to distinguish:

Case 1: Non-ID-query

f ind(selector) f ilter(f ind({}), selector)

Case 2: ID-query

f ind(selector) f ind(selector)

30

4.2. Transformation of Driver Operations

filter(documents, selector) filters a set of documents with the given selector.
This makes sure that all those documents get filtered out that do not match
the initial selector and ensures that the instrumented application does not
change its behavior based on a different set of documents returned by a
query.

4.2.11 findOne

findOne returns the first document matching the query. For our visibility
relation it is not enough to simply return one document. We need to trans-
form the findOne operation into a find operation and only return the first
document to the client application.

f indOne(selector) f irst(f ind(selector))

first(documents) returns the first document of an ordered set of documents.

4.2.12 count

This operation counts the number of documents that match the selector. To
get a correct visibility relation we need to transform it into a find operation
and then count the number of retrieved documents.

count(selector) | f ind(selector)|

4.2.13 Index operations

Indexes on document attributes are problematic in combination with our
approach of transforming deletes into updates. If a unique index is attached
to an attribute, there can only exist one document with the same value in the
database. But with our deletion attribute we actually keep the document in
the database. That leads to an error if a new document with the same value
for the indexed attribute is added to the database and also if an update event
changes the value of an existing document to the same value of the deleted
document. Figure 4.3a gives an example of such an indexing error. The name
attribute is registered as an index. We can see that the second insert leads
to a database error, because there already exists an entry with name equal to
John.

To overcome this obstacle we use compound indexes, which are composed
of more than one attribute. We transform every index into a new compound
index by adding our delete attribute to it. It is no problem if a document
does not have the delete attribute. This is equivalent to the delete attribute

31

4. Dynamic Analysis for MongoDB

Insert({”name” : ”John”, ” uid” : ”0#0#13”})

↓
Update({”name” : ”John”}, {” del” : ”0#0#14”})

↓
EInsert({”name” : ”John”, ” uid” : ”0#0#15”})

”John”

”John”

”John”, ”John”E

(a) Original indexing

Insert({”name” : ”John”, ” uid” : ”0#0#13”})

↓
Update({”name” : ”John”}, {” del” : ”0#0#14”})

↓
Insert({”name” : ”John”, ” uid” : ”0#0#15”})

”John ”

”John 0#0#14”

”John 0#0#14”, ”John ”

(b) Extended indexing

Figure 4.3: Example of a sequence of events and the corresponding indexing state. An index
on the name attribute is assumed. Events are shown on the left and current index entries on
the right. The index prohibits duplicate values.

having the special value undefined. There can only be one document in the
collection with the same value, undefined included. This produces the same
behavior as the initial index with real deletes. It is also the main reason why
we need to store the UID (or another unique identifier) as the value of the
delete attribute. If the delete attribute would only contain a boolean value,
the indexing would not work as described, because there can only exist one
deleted document with the same value of the indexed attribute.

Figure 4.3b demonstrates the proposed method with an example. Here, the
first insert creates an index entry with value John , because the delete at-
tribute del is undefined. The underscore is used to illustrate a compound
index. The update event, which is actually a delete, sets the delete attribute
with the UID as its value. So the index value changes to John 0#0#14. The
next insert can now add the index value John without creating a conflict.

32

4.3. Performance

createIndex

createIndex creates one new index on the collection. The parameter fieldOr-
Spec contains all fields of that index. The corresponding value can be 1 or -1
and determines the order of the index (ascending or descending). We sim-
ply need to add the delete property to the index fields. It does not matter
whether the index ordering is ascending or descending because the delete
property only needs to make the index unique:

createIndex(f ieldOrSpec) createIndex(f ieldOrSpec ∪ {” del” : 1})

createIndexes

This operation behaves like createIndex but can create more than one index.
Let s1, s2, ..., sn be the given index specifications.

createIndexes(indexSpecs)

createIndex(s1)

createIndex(s2)

...
createIndex(sn)

dropIndex

dropIndex drops the given index. We need to add the delete property here,
too. It is concatenated to the indexName. Different components of a com-
pound index are separated with an underscore.

dropIndex(indexName)
 dropIndex(indexName + ” del 1”)

4.3 Performance

There are several reasons why an instrumented client has a much slower
performance than a non-instrumented one. One reason is the fetching of
the whole collection for all non-ID-queries. Not only does this create a
higher workload for the database itself. It also increases the network traffic
immensely. Additionally, the memory consumption on the client grows to
the size of the whole collection for each query. Furthermore, the client has
to iterate through all elements of the collection and apply a filter. It cannot
take advantage of indexing on the database server.

33

4. Dynamic Analysis for MongoDB

Another performance aspect is the transformation of deletes into updates.
This can possibly lead to a much larger size of the database. This larger size
further increases the effects of the performance influence of non-ID-queries
as described before.

Since multi-updates, multi-inserts and multi-deletes are split up into single
updates/inserts/deletes, we have a lower performance based on the Round-
Trip-Delay (RTD) that is now added to every insert/update/delete event.

Transforming limited queries into unlimited ones increases the load on the
database as well as the network traffic. But this effect is already considered
in the effect of non-ID-queries, because limiting an ID-query has no effect
and for all non-ID-queries the whole collection is fetched anyway.

More formal, the overhead of the instrumentation can be described asymp-
totically as follows. Let d be the number of delete events, i the number of
insert events, q the number of non-ID-queries and s the maximum document
size. Let further om be the number of multi-updates and multi-deletes, im the
number of multi-inserts, u the number of non-ID-updates and l the highest
number of single-events per multi-events. We assume an empty database at
the beginning of the dynamic analysis run.

Space Overhead

The space overhead on the database is O(d ∗ s), because every deleted ele-
ment stays in the database and the object-ID field is immutable in MongoDB.

Network Traffic

The overhead for the network traffic is O((q + om + u) ∗ i ∗ s). This is com-
posed by O(q ∗ i ∗ s) for the overhead of all non-ID-queries, O(om ∗ i ∗ s)
for the overhead of all query operations triggered by the splitting of multi-
updates and multi-deletes and O(u ∗ i ∗ s) for the additional query event of
non-ID-updates.

Round-Trip-Delay (RTD)

We assume the RTD to be constant. Then we have an RTD overhead of
O((om + im) ∗ l). It describes the number of additional requests to the
database that our instrumentation creates. Each multi-update or multi-insert
creates O(l) additional requests.

4.4 Limitations

There are some limitations to the proposed instrumentation approach.

34

4.4. Limitations

One limitation is based on our transformation of deletes into updates. In
case that a document d with object-ID o has been deleted, it remains in the
database having the delete property. If now an insert or an upsert with a
specified object-ID that equals o is sent to the server, an error is triggered,
because there cannot be two documents with the same object-ID in the
database. We do not see this as a problematic issue, since it is generally
very error prone to reuse object-IDs. Usually the object-ID is generated by
the driver or by the server. In both cases the generated object-IDs will not
be reused. Therefore this case is rarely to occur.

Another limitation is the influence of the instrumentation on the client ap-
plication. Even though that influence is kept as small as possible there are
edge cases that lead to different behavior. One case is that the documents of
the client application already contain fields with the same name as the field
for the UID or the field for the delete property. Therefore, a name should
be chosen that is unlikely to occur in the document expected by the client
application. However, these are negligible corner cases and do not pose a
real limitation to the approach.

35

Chapter 5

Analysis

Chapter 4 described how to instrument a client application in order to record
all database traces that are necessary in order to perform the analysis pro-
posed by Brutschy et al. This chapter covers how we construct the neces-
sary relations, explained in Section 2.1.2, and use the proposed algorithm
to detect serializability violations. We define commutativity and absorption
between the database events in Section 5.1, as they are needed by the algo-
rithm. We extend the software ECRacer that was used for the experiments in
[13] to also support MongoDB database traces. This extension is described
in detail in Section 5.3.

5.1 Commutativity Specifications

MongoDB 3.4 has 22 different update operators [4]. Because commutativity
and absorption have to be defined for every combination of two operators,
the number of necessary specifications grows quadratically with the number
of operators. Therefore, we only support a subset of all update operators.
Supporting all operators means to define 222 = 484 different absorption
specifications and 222/2 = 242 different commutativity specifications.

We performed a static text search on the source code of our open source
projects, which are listed in Section 8.3, to get an impression of the distri-
bution of the different operators in practice. Figure 5.1 shows the results
of this text search. As one can see, $set occurs 63 times in the source code
files. All other operators only occur 0 to 10 times. This is also reflected
by the number of projects that use the different operators. Some projects
do not use any operators at all and work either completely with replace-
ment documents, explained in Section 4.2.1, or delegate the operator logic
to external libraries. Based on this data we support the operators $set, $inc,
$mul, $rename, $unset, $addToSet, $pull and $push. The $each operator is
not included in Tables 5.1 and 5.2, because it is part of the supported $push

37

5. Analysis

operator. We support $mul due to its similar logic to the supported $inc
operator. It is an easy step from specifying one of these operators to speci-
fying the other one. Therefore we support ∼ 36% of all MongoDB update
operators.

Note that the static text search allows no direct statement about executing
the operators at runtime.

Within this section we simply tread delete events as update events, because
they were transformed, as discussed in Section 4.2.6.

5.1.1 Basic definitions

We give some basic definitions that can be used to define all of the following
commutativity and absorption specifications.

• U: Set of all possible MongoDB update events.

• M: Set of all possible MongoDB modifiers.

• S: Set of all possible MongoDB selectors.

• O: Set of all possible MongoDB update operators.

• A: Set of all possible MongoDB attribute keys.

• V: Set of all possible MongoDB attribute values.

• sel : U −→ S - Gives the selector of a given update event.

• mod : U −→ M - Gives the modifier of a given update.

• ops : U −→ P(O) - Gives the set of update operators used in the given
update.

• keyso : M −→ P(A) - Gives all attribute keys of operator o ∈ O of a
given modifier.

• keys : S −→ P(A) - Gives all attribute keys of any query operator of a
selector.

• valso : M −→ P(V) - Gives all attribute values of the operator o ∈ O
of a given modifier.

• valo,m : A −→ V - Gives the attribute value for the given attribute key
of modifier m and operator o.

• com(o1,o2) ⊆ U×U - Commutativity relation where o1, o2 ∈ O. u1 como1,o2 u2
iff u1 and u2 are commutative considering only the operator o1 for u1
and o2 for u2.

Example 5.1.1 Assume we have an update that has selector s and modifer
m with s :=

38

5.1. Commutativity Specifications

0 10 20 30 40 50 60 70

set

push

unset

pull, each

inc, addToSet

rename, sort

min, max, pop, pullAll

mul/setOnInsert/
currentDate/pushAll/

slice/position/bit/isolated/

63

10

9

4

3

2

1

0

#total occurrences

0 2 4 6 8 10

set

push

unset

pull

each/inc/addToSet/rename/
sort/min/max/pop/pullAll

mul/setOnInsert/
currentDate/pushAll/

slice/position/bit/isolated/

9

3

4

2

1

0

#different projects

Figure 5.1: Results of the static text search in the source code of 17 open source projects,
listed in Section 8.3. The upper graph shows the total occurrence in the source files of
all projects. The lower graph shows the number of different projects that contained the
corresponding update operator. The results do not contain source files which are part of the
external libraries of the projects, because these libraries use a lot of operators that are not
used by the projects.

39

5. Analysis

{"$or":
[

{"name": "John"},
{"age": {"$gt" : 30}}

]

}

and m :=

{
"$set": {"age": 99, "last_name": "Doe"},
"$unset": {"address": ""}

}

Then we have

• keys$set(m) = {”age”, ”last name”}

• keys(s) = {”name”, ”age”}

• vals$set(m) = {99, ”Doe”}

• val$set,m(”age”) = 99 �

5.1.2 Insert and Query

In insert is commutative to a query if and only if the selector of the query
matches the document to be inserted.

We cannot apply this strategy to updates because an update event does not
contain the complete updated document.

5.1.3 Insert and Insert

The commutativity of two insert events i1 and i2 is best described by the
following case distinction:

Case 1: i1 or i2 does not contain an object-ID⇒ commutative

Case 2: i1 and i2 both contain an object-ID

Case 2.1: Object-IDs equal⇒ non-commutative

Case 2.1: Object-IDs unequal⇒ commutative

5.1.4 Query and Query

Two queries are always commutative, because they only read data without
any side effects.

40

5.1. Commutativity Specifications

Query Selector: {"name":"John","age": {"$gt" : 30}}

Update u1
Selector: { "name":"John" }

Modifier: {"$set":{"address":"New Street 5"}}

Update u2
Selector: {"name":"John","age": {"$gt" : 40}}

Modifier: {"$set":{"name":"Bob"}}

(a) Events

id name age address
1 ”John” 10 ”Old Drive 10”
2 ”John” 35 ”Old Drive 10”
3 ”John” 17 ”Old Drive 10”
4 ”John” 45 ”Old Drive 10”
5 ”John” 31 ”Old Drive 10”

−→u1

id name age address
1 ”John” 10 ”New Street 5”
2 ”John” 35 ”New Street 5”
3 ”John” 17 ”New Street 5”
4 ”John” 45 ”New Street 5”
5 ”John” 31 ”New Street 5”

(b) Type 1: u1 changes the content of the documents fetched by the query

id name age address
1 ”John” 10 ”Old Drive 10”
2 ”John” 35 ”Old Drive 10”
3 ”John” 17 ”Old Drive 10”
4 ”John” 45 ”Old Drive 10”
5 ”John” 31 ”Old Drive 10”

−→u2

id name age address
1 ”John” 10 ”Old Drive 10”
2 ”John” 35 ”Old Drive 10”
3 ”John” 17 ”Old Drive 10”
4 ”Bob” 45 ”Old Drive 10”
5 ”John” 31 ”Old Drive 10”

(c) Type 2: u2 changes the set of documents retrieved by the query

Figure 5.2: Demonstration of the two types of ways that an update can change a query’s
result. Documents in the database are represented as tables here. Blue rows indicate mem-
bership to the query’s result set. Red cells indicate changes by the corresponding update.
The left tables show the result of the query without the former update. The right tables
assume that the update has been executed before.

5.1.5 Insert and Update

An insert is commutative with an update if the document to be inserted does
not match the selector of the update. It is a similar specification to that of
the commutativity between inserts and queries.

5.1.6 Query and Update

There are two types of ways an update can change the results of a query.

Type 1: The update modifies the content of the documents retrieved by the
query.

Type 2: The update modifies the set of documents retrieved by the query.

Figure 5.2 demonstrates both types. The execution of u1 changes the address
fields of all documents. The query will still return the same set of documents,
but they will have different address values. u2, on the other hand, changes

41

5. Analysis

the set of documents returned by our query. This happens by changing a
value that appears in the query’s selector. Therefore, the document will no
longer match that selector and will not be contained in the result set. So u1
is an example for Type 1, while u2 is one for Type 2.

The absence of Type 1 can be checked using the projection of the query. Let
u be our update, q our query and Pq the set of projected fields of q. Then
we have no changes of Type 1 if ∀o ∈ O : keyso(mod(u)) ∩ Pq = ∅. More
intuitively, this means that none if the projected fields must be within the
keys of the modifier of u.

To check for changes of Type 2 we need to use object-IDs. Because we
transformed all updates into ID-updates, we have the object-IDs of every
update. We also have the query’s result set. Let oid(u) be the object-ID of u
and oids(q) the set of object-IDs from the result set of q. u is free of Type 2
changes to the result set of q if one of the following conditions holds:

1. q and u are executed on different collections

2. q and u both keep object-IDs in their selectors and the values of these
object-IDs are not equal

3. ∀o ∈ O : keyso(mod(u)) ∩ keys(sel(q)) = ∅

Condition 1 is trivial, while condition 2 covers the case that both selectors
uniquely identify different documents. Condition 3 ensures that all docu-
ment fields that are possibly changed by the modifier of u are not part of
the query’s selector.

We can neither have changes of Type 1 nor Type 2 if the set of documents
matching the update selector is disjoint from the set of documents matching
the query selector. Because this is depending on the database state during
the execution, we cannot directly access that information. However, we can
approximate this using the following rule: The documents matching the
selector of u are disjoint from those matching q’s selector if there is no Type
2 change and uid(u) /∈ oids(q).

This leads to the following strategy when checking for commutativity:

Case 1: Type 2 change found⇒ not commutative

Case 2: No Type 2 change found

Case 2.1: uid(u) /∈ oids(q)⇒ commutative

Case 2.2: uid(u) ∈ oids(q)

Case 2.2.1: Type 1 change found⇒ not commutative
Case 2.2.2: No Type 1 change found⇒ commutative

42

5.1. Commutativity Specifications

Table 5.1: Commutativity specifications. Commutativity is symmetric and so is this table.
Therefore, duplicate definitions have been omitted and replaced by –. * Events (o1 and o2)
need to be swapped on these properties. ** These two events are not commutative because
$push guarantees a specific ordering of the array elements while $addToSet does not. Equal
definitions are marked with the same shade of gray as a background color.

$s
et

$i
nc

$m
ul

$r
en

am
e

$u
ns

et

$a
dd

To
Se

t

$p
ul

l

$p
us

h

$set P.1 ∧
(P.2 ∨
P.3)

P.1 ∧
(P.2 ∨
P.6)

P.1 ∧
(P.2 ∨
P.7)

P.8 ∧
P.9

P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

$inc – P.1 P.1 ∧
(P.2 ∨
P.6 ∨
P.7)

P.8 ∧
P.9

P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

$mul – – P.1 P.8 ∧
P.9

P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

$rename – – – P.3 ∧
(P.4 ∨
P.5)

P.8* ∧
P.9*

P.8* ∧
P.9*

P.8* ∧
P.9*

P.8* ∧
P.9*

$unset – – – – P.1 P.1 ∧
P.2

P.1 ∧
P.2

P.1 ∧
P.2

$addToSet – – – – – P.1 P.1 ∧
(P.2 ∨
P.10)

(P.1 ∧
P.2)**

$pull – – – – – – P.1 P.1 ∧
P.2

$push – – – – – – – P.1 ∧
P.2

5.1.7 Update and Update

To decide whether an update u1 is commutative with another update u2 we
have to check commutativity for every update operator in u1 and every up-
date operator in u2. As already mentioned, we only support a subset of up-
date operators, which are listed in table 5.1. The specifications are separated
into different properties, which are then used to define the commutativity
of the different operator pairs.

Therefore, u1 and u2 are commutative if one of the following condition holds:

1. u1 and u2 are executed on different collections

2. u1 and u2 do both keep object-IDs in their selectors and the values of
these object-IDs are not equal

3. ∀(o1, o2) ∈ (ops(u1)× ops(u2)) : u1 com(o1,o2) u2

43

5. Analysis

Commutativity Properties

The commutativity specifications used in Table 5.1 can be broken down into
certain properties that are used to define commutativity between update
events. As a convention we will write si for sel(ui) and mi for mod(ui) to
keep the definitions more concise.

P.1 (keys(s1) ∪ keys(s2)) ∩ (keyso1
(m1) ∪ keyso2

(m2)) = ∅

P.1 makes sure that the attribute keys used in either of both updates
are distinct from any attribute keys used in the queries. This prevents
the updates from changing parts of the documents that are essential
for the query of the other update to match on that document.

P.2 keyso1
(m1) ∩ keyso2

(m2) = ∅

P.2 assures that the attribute keys of the updates are distinct.

P.3 ∀k ∈ (keyso1
(u1) ∩ keyso2

(m2)) : valo1,m1(k) = valo2,m2(k)

P.3 covers the case that the attribute keys of both updates are not dis-
tinct but the intersecting ones share the same value.

P.4 (keys(s1)∪keys(s2))∩ (keys$rename(m1)∪keys$rename(m2)∪vals$rename(m1)∪
vals$rename(m2)) = ∅

P.4 is only used with the $rename operator and is much like condi-
tion P.1 but also takes the attribute values into account, because the
operator renames attribute keys.

P.5 (keys$rename(m1)∪vals$rename(m1))∩ (keys$rename(m2)∪vals$rename(m2)) =
∅

P.5 is also only used with the $rename operator and differs from P.2 by
including attribute values.

P.6 ∀a ∈ keys$inc(m2) : val$inc,m2(a) = 0

P.6 expresses that all attribute keys used in the $inc operator have the
corresponding attribute value 0, which is the neutral element of R with
respect to addition.

P.7 ∀a ∈ keys$mul(m2) : val$mul,m2(a) = 1)

P.7 states that all attribute keys used in the $mul operator have the
attribute value 1. Since this is the neutral Element of R with respect to
multiplication, it does not affect the corresponding value in the docu-
ment.

P.8 (keys(s1)∪keys(s2))∩ (keyso1
(m1)∪keys$rename(m2)∪vals$rename(m2)) =

∅

44

5.2. Absorption Specifications

P.8 behaves like P.4 but is only applicable if exactly one of the operators
is the $rename operator.

P.9 keyso1
(m1) ∩ (keyso2

(m2) ∪ valso2(m2)) = ∅

P.9 behaves like P.5 but is only applicable if exactly one of the operators
is the $rename operator.

P.10 Let C ⊆ V be set of values that are possible conditions of the $pull
operator and sat : C −→ P(V) be a function that gives all values
satisfying the given condition. Then P.10 is the following property:
∀a ∈ (keys$addToSet(m1) ∩ keys$pull(m2)) : valu1(a) /∈ sat(valm2(a))

P.10 covers the case that all values of the mutual attributes of m1 and m2
in m1 do not satisfy the condition for the corresponding attribute in m2.
In other words does this express that the values added by $addToSet
should not be covered by the condition for removal of $pull. Otherwise
the values added by u1 are being removed by u2 and this leads to non-
commutativity between u1 and u2.

5.2 Absorption Specifications

We give a definition of the absorption relation in Section 2.1.1. Please note
that we only consider right-absorption here, as it is also needed by the al-
gorithm proposed by Brutschy et al. [13]. With the same argumentation as
in Section 5.1, we specify absorption only on a subset of update operators.
Trivially, two queries cannot absorb each other. The same holds for two in-
sert events. Inserts and updates can also not absorb each other in any way.
It remains to specify under which circumstances a delete absorbs an insert
or an update absorbs another update.

5.2.1 Basic definitions

Additionally to the definitions of Section 5.1, let abs(o1,o2) ⊆ U×U be the ab-
sorption relation where o1, o2 ∈ O. u1 abso1,o2 u2 iff u2 absorbs u1 considering
only the operator o1 for u1 and o2 for u2.

5.2.2 Insert and Delete

To decide if a delete event absorbs an insert we simply need to check if they
operate on the same collection and the selector of the delete matches the
document to be inserted. We use the same mechanism as in Section 5.1.5.

5.2.3 Update/Delete and Delete

A delete event absorbs an update/delete if they operate on the same collec-
tion and the selector of the potentially absorbing delete matches the selector

45

5. Analysis

Table 5.2: Absorption specifications. × indicates no absorption. * $addToSet does not absorb
$pull because $pull is order-preserving and $addToSet is not. ** $pull does not absorb
$push because it is not guaranteed that $push adds the element at the same position as $pull
removed it. Equal definitions are marked with the same shade of gray as a background color.

$s
et

$i
nc

$m
ul

$r
en

am
e

$u
ns

et

$a
dd

To
Se

t

$p
ul

l

$p
us

h

$set AP.1,
AP.2,
AP.3

× AP.1,
AP.2,
AP.3,
AP.7

× AP.1,
AP.2,
AP.3

× × ×

$inc AP.1,
AP.2,
AP.3

AP.1,
AP.2,
AP.3,
AP.4

AP.1,
AP.2,
AP.3,
AP.8

× AP.1,
AP.2,
AP.3

× × ×

$mul AP.1,
AP.2,
AP.3

AP.1,
AP.2,
AP.3,
AP.9

AP.1,
AP.2,
AP.3,
AP.5

× AP.1,
AP.2,
AP.3

× × ×

$rename × × × × × × × ×
$unset AP.1,

AP.2,
AP.3

AP.1,
AP.2,
AP.3

AP.1,
AP.2,
AP.3

× AP.1,
AP.2,
AP.3

AP.1,
AP.2,
AP.3

× AP.1,
AP.2,
AP.3

$addToSet AP.1,
AP.2,
AP.3

× × × AP.1,
AP.2,
AP.3

AP.1,
AP.2,
AP.3,
AP.6

AP.1,
AP.2,
AP.3,
AP.10

×

$pull AP.1,
AP.2,
AP.3

× × × AP.1,
AP.2,
AP.3

×* AP.1,
AP.2,
AP.3,
AP.6

×**

$push AP.1,
AP.2,
AP.3

× × × AP.1,
AP.2,
AP.3

× AP.1,
AP.2,
AP.3,
AP.10

×

of the update/delete to be absorbed. This ensures that both events operate
on the same set of documents.

5.2.4 Update and Update

We specify absorption in our analysis in the way that update u2 absorbs up-
date u1 if both updates need to operate on the same collection and ∀(o1, o2) ∈
(ops(u1)× ops(u2)) : u1 abs(o1,o2) u2. The absorption is decided based on ta-
ble 5.2, which gives the specifications for the absorption between any two
update operators that are supported by our analysis.

46

5.2. Absorption Specifications

Absorption Properties

The properties used to specify absorption between two updates are explained
in this section.

AP.1 s1 = s2

AP.1 ensures that the queries of both updates equal. If they do not, it
cannot be guaranteed that they both operate on the same set of docu-
ments and therefore absorption cannot be guaranteed either.

AP.2 (keyso1
(m1) ∩ keys(s2)) = ∅

AP.2 expresses that the attributes used in m1 should not occur in s2.
Without this condition it cannot be guaranteed that u1 changes the set
of documents matching s2.

AP.3 keyso1
(m1) ⊆ keyso2

(m2)

AP.3 states that m2 only absorbs m1 if all attributes used in m1 in oper-
ator o1 are also used in m2 in operator o2.

AP.4 ∀k ∈ keys$inc(m1) : val$inc,m1(k) = 0

AP.4 covers the case that all increments of u1 are of value 0. So they
have no effect besides creating the attribute if not existent and get
absorbed by the increments done in u2.

AP.5 ∀k ∈ keys$mul(m1) : val$mul,m1(k) = 1

AP.5 is similar to AP.4, but demands the values to be equal to 1 to have
no effect on multiplication.

AP.6 ∀k ∈ keyso1
(m1) : valo1,m1(k) = valo2,m2(k)

AP.6 allows absorption only if for every attribute in m1 the correspond-
ing value equals the one in m2 for that same attribute.

AP.7 ∀a ∈ keyso1
(m1) : val$mul,m2(a) = 0

AP.7 expresses that a multiplication with 0 sets the value of the at-
tribute to 0, independent of its former value.

AP.8 ∀k ∈ keys$inc(m1) : val$inc,m1(k) = 0∨ val$mul,m2(k) = 0

AP.8 covers the case that either the $inc operator does not change the
value by adding 0 or the $mul operator absorbs any changes by multi-
plying with 0.

AP.9 ∀k ∈ keys$mul(m1) : val$mul,m1(k) = 1

AP.9 assures that the $mul operator does not change the value because
it is multiplying by 1.

47

5. Analysis

AP.10 ∀a ∈ keyso1
(m1) : valm1(a) ∈ sat(valm2(a))

AP.10 makes sure that each value of $addToSet has a corresponding
constraint in $pull that satisfies that value.

5.3 Extension of ECRacer

The analysis of the recorded traces, as proposed by Brutschy et al. [13], has
been accomplished by extending the software ECRacer. It has been devel-
oped by Brutschy et al. to perform their proposed analysis. This section
covers the conceptional description of the analysis. The concrete implemen-
tation is explained in Section 7.2.1. ECRacer performs the proposed algo-
rithm based on the relations that are introduced in Section 2.1.2. Therefore,
we need to convert the traces from our instrumentation into the required
relations and implement the commutativity and absorption specifications as
extensions to ECRacer.

5.3.1 Relation Construction

This section covers the construction of the required relations from the database
records created by the instrumented client.

Arbitration Order

In section 3.3.6 we explained that all write events go to the primary replica
node of MongoDB. Therefore, there exists a total order of execution of all
write events, which is our arbitration order. Each write event contains a
time stamp from the server, stating the time of execution. That time stamp
is given in milliseconds and also contains a counter covering the case that
more than one event has been executed during the same millisecond. We
simply use these server time stamps to create our arbitration order.

Program Order

As explained in Section 4.1.1, we need the program order to be a partial rela-
tion, but the proposed method is easily adaptable to fit a total program order,
if needed. In Section 4.1.1 is also explained that we have a start time stamp
and a return time stamp for every event and that for two events e1 and e2 by
the same client we say that (e1, e2) ∈ po iff endTime(o1) < startTime(o2). It
is sufficient for the analysis if we give the transitive reduction of the program
order.

Algorithm 1 shows the construction of the partial program order’s transitive
reduction. The algorithm’s output is the program order relation, initialized
as an empty set in line 1. Intuitively, the algorithm runs over the sorted

48

5.4. Runtime Analysis

events of a client (lines 4 to 15) and for each of these events it checks for
all remaining events (lines 7 to 14) if they happen after it and includes the
pair into the relation if this is the case. Lines 8 and 9, using the minimum
return time stamp of the outer loop, ensure that no unnecessary program
order is included, since we aim for the transitive reduction. Retrieving the
maximum return time can be achieved while sorting without changing the
asymptotic runtime complexity.

Let c be the number of clients and e the maximum number of events per
client. Then the asymptotic runtime complexity of the algorithm is O(c ∗ e2).
In most cases we have c� e, which lets the complexity collapse to O(e2).

The asymptotic space complexity is O(e), because we need to keep all events
in memory. Sorting does also not exceed this upper bound.

Visibility

How the visibility is determined for a given query and update is described
in Section 4.1.3. In our extension of ECRacer we perform that check for every
possible pair consisting of a query and an update/insert.

1: po ← ∅
2: for all client← clients do
3: sortedOps← sortByStartTimeAsc(getOps(client))
4: for all op← sortedOps do
5: minRetTime← maxRetTime
6: sortedOps.remove(op)
7: for all op2← sortedOps do
8: if minRetTime < op2.startTime then
9: break

10: else if op2.startTime ≥ op.returnTime then
11: po.add((op, op2))
12: minRetTime← min(minRetTime, op2.returnTime)
13: end if
14: end for
15: end for
16: end for

Algorithm 1: Algorithm for the construction of the partial program order relation, given all
database events including their start and return time.

5.4 Runtime Analysis

Brutschy et al. propose two algorithms for the analysis. One generic al-
gorithm with a higher runtime complexity, and one optimized algorithm

49

5. Analysis

with a lower runtime complexity. The optimized algorithm demands a far-
reaching absorption, as defined in 2.1.1. If that far-reaching absorption is
weaker than common absorption, the method will be less precise. Our
absorption specifications are also far-reaching. Therefore, we use the op-
timized algorithm without a loss in precision.

Let u be the number of update/insert events, q the number of queries and
m = |ar| in our dynamic analysis run. The asymptotic runtime complexity
of the optimized algorithm is then O(max((u + q)m, (u + q)2)) [13].

The creation of the program order has a time complexity of O((u + q)2), as
shown in Section 5.3.1 where we used e as the number of all events. Because
all events are either updates (including deletes) or queries, we have e = u+ q.
This does not change the asymptotic runtime complexity of the analysis.

The arbitration order is generated by iterating over all pairs of update events
and decide if the one event is arbitrated before the other. It takes O(1)
to decide whether an update/insert is arbitrated before another one. This
leads to an asymptotic runtime complexity of O(u2) and does therefore not
change the complexity of the algorithm.

Creating the visibility relation has a more involved complexity. Visibility is
created by checking every pair of updates/inserts and queries. For each of
those pairs we need to calculate the maxUID of the query and then check
if it is arbitrated after the UID of the update/insert. Because in the worst
case there can be the UIDs of all documents in the query’s visible UIDs, we
conclude a time complexity of O(q ∗ i ∗ u), where i is the number of insert
events. This does also not increase the time complexity of ECRacer.

5.5 Pattern-Matching Extension

Because analysis runs have shown that serializability violations are hard to
catch during dynamic analysis, we further extend ECRacer with a pattern-
matching mechanism. First, we define classes of violation patterns that are
possible to occur in the DSG under the consistency model of MongoDB.
We then discover patterns that do not contain violations but can be trans-
formed into a violation pattern by changing visibility between one update
and query. That change in visibility must be valid in the MongoDB consis-
tency model, such that we do not create unsound executions. We call these
patterns pre-violation patterns. The intuition behind that process is to discover
all locations in a specific dynamic analysis run that could also have lead to a
violation. This tackles the issue that these violations occur only with a small
probability and are therefore not likely to occur in a dynamic run.

After changing the visibility we need to discard all parts of the graph that
follow the pre-violation pattern by arbitration or program order. This is

50

5.5. Pattern-Matching Extension

Insert(users, {”name” : ”John”})

Query(users, {”name” : ”John”})

Query(addresses, {”user” : ”John”})

po

po

⊕

(a)

Insert(users, {”name” : ”John”})

Query(users, {”name” : ”John”})

Query(addresses, {”user” : ”John”})

po

po

	

(b)

Figure 5.3: Demonstrates invalidity of parts of the DSG after changing visibility to match a
violation pattern. Invalid parts of the DSG are marked with a lower opacity. (a) shows the
original DSG and (b) the version with a manipulated visibility.

necessary, because it cannot be guaranteed that this part of the graph is still
valid. The application could have behaved differently based on the changed
visibility.

The following example demonstrates this issue.

Example 5.5.1 Consider we have the following simplified piece of code, which
does assume synchronous database operations for the sake of readability.

var userColl = db.collection (" users ");

userColl.insert ({" name": "John", ...});

var user = userColl.findOne ({" name": "John "});

if (user) {

// perform code depending on existence of user "John"

var address = db.collection (" addresses "). findOne ({

"user" : "John"

});

...

}

The DSG produced by the previous code is shown in Figure 5.3a. By making
the insert invisible to the first query, we obtain graph 5.3b. The second query
of the graph is now invalid, since the application would never create this
graph. If the first query cannot see the insert, then the branch of the code
responsible for executing the second query is never reached.

5.5.1 Patterns

We describe one pattern for each possible violation pattern that is possible
within the MongoDB consistency model, as discussed in ection 3.3.8.

51

5. Analysis

Insert/Update

...

Query

po

po

	

(a) RMW violation pattern

Insert/Update

...

Query

po

po

⊕

(b) RMW pre-violation pattern

Figure 5.4: RMW patterns in the DSG

Read-My-Writes

We give a formal specification of a Read-My-Writes (RMW) violations in Sec-
tion 3.3.8. A RMW violation occurs whenever an insert/update is not visible
to a query, even though it precedes it in program order. The violation pat-
tern in the DSG that is created by RMW violations is shown in Figure 5.4a.
It shows an update/insert followed by arbitrary many events connected by
program order and finally a query that does not see the initial update/in-
sert. The corresponding pre-violation pattern with the changed visibility is
illustrated in Figure 5.4b.

Monotonic-Reads

As described in Section 3.3.8, Monotonic-Reads (MR) violations occur if an
insert/update is visible to a query, but not to another query that follows the
first one in program order. This is expressed by the pattern shown in Figure
5.5a. Figure 5.5b shows the corresponding pre-violation pattern.

5.5.2 Pattern Filtering

In the case of RMW violations for each update there exist as many differ-
ent RMW violations as there exist non-commutative queries following by
program order. In the case of MR violations this argument applies to all up-
dates with two queries following. Therefore, we only look for the smallest
possible match to the pattern.

In practice, most inserts/updates are followed by one or more non-commutative
queries at any point of the execution. This leads to approximately as many
matches to the patterns as we have inserts/updates. This is usually not very
helpful for manual inspection. Therefore, we limit the number of reported
patterns to 5. As a heuristic for identifying the 5 most relevant patterns,

52

5.5. Pattern-Matching Extension

Insert/Update

Query

...

Query

⊕

po

po

	

(a) MR violation pattern

Insert/Update

Query

...

Query

⊕

po

po

⊕

(b) MR pre-violation pattern

Figure 5.5: MR patterns in the DSG

we rank them in ascending order by the real-time interval that the pattern
includes. More precisely, we measure the timespan between the first and
the last event included in the pattern. Note that this method is as imprecise
as the system clocks of the clients differ from each other. However, in our
implementation all clients are run on the same machine.

5.5.3 Algorithms

While pattern matching on a graph is NP-complete in general [27], we can
exploit the structure of our graph to extract the matching patterns inO(| ⊕ |)
time.

Read-My-Writes

Algorithm 2 shows how the RMW patterns are extracted in our extension
of ECRacer. We filter all event pairs of the dependency relation by only
considering those pairs that belong to the same client (line 2). We then sort
the dependency pairs (line 3) and group them by their update events (line
4). Afterwards, we iterate over all these update events (lines 5 to 12) and
for each update event over the corresponding dependency pairs (lines 6 to
11). If there exists a dependency whose query has a read-concern distinct
from linearizable, we add both events of the dependency to the set of patterns
and continue with the next update. The reason we ignore queries with read-
concern linearizable is that these queries make RMW violations impossible
by definition, which is described in Section 3.3.6.

The algorithm has an asymptotic runtime complexity of O(| ⊕ |).

53

5. Analysis

1: P← ∅
2: depList← toList(sameClient(⊕))
3: depList← sortByStartTime(depList)
4: depMap← groupBySource(depList)
5: for all update← depMap.keys() do
6: for all dependency← depMap[update] do
7: if dependency.query.readConcern 6= ”linearizable” then
8: P← P ∪ {update, dependency.target}
9: break

10: end if
11: end for
12: end for

Algorithm 2: Extraction of RMW pre-violation patterns, where P is the returned set of pat-
terns

5.5.4 Monotonic-Reads

Algorithm 4 describes our method of extracting the MR pre-violation pat-
terns in ECRacer. We sort and group the dependency pairs like in Algorithm
2. Then we create an empty mapping from clients to queries (line 5) and it-
erate over all grouped updates (line 6 to 19). For each of these updates we
iterate over the corresponding dependency pairs (line 7 to 18) and check if
the query has read-concern linearizable. If not, we check if the current client
of the dependency is already contained in our map (line 10) and add it with
the query if necessary (line 11). If it was already contained we check if our
map only contains one query for that client (line 12). In this case we can
finish the pattern with the current query (line 14) and add the query to the
map (line 15) to avoid multiple entries for the same pattern. The reason for
ignoring linearizable queries is the same as in Section 5.5.3.

The algorithm has an asymptotic runtime complexity of O(| ⊕ |).

54

5.5. Pattern-Matching Extension

1: P← ∅
2: depList← toList(⊕)
3: depList← sortByStartTime(depList)
4: depMap← groupBySource(depList)
5: clientToQueries←Map()
6: for all update← depMap.keys() do
7: for all dependency← depMap[update] do
8: targetClient← dependency.darget.clientId
9: if dependency.readConcern 6= ”linearizable” then

10: if targetClient /∈ clientToQueries then
11: clientToQueries.put(targetClient, {dependency.target})
12: else if |clientToQueries[targetClient]| == 1 then
13: f irstQuery← clientToQueries[targetClient].head
14: P← P ∪ {update, f irstQuery, dependency.target}
15: clientToQueries[targetClient].add(dependency.target)
16: end if
17: end if
18: end for
19: end for

Algorithm 3: Extraction of MR pre-violation patterns, where P is the returned set of patterns

55

Chapter 6

Stress Testing

Our experimental results, presented in Chapter 8, demonstrate that the fre-
quency of occurring serializability violations during an instrumented execu-
tion are generally low. To increase that frequency and therefore make the
dynamic analysis more useful, we propose a strategy that is based on the
triggering of network partitions between the different nodes of a replica set.
Our approach is designed to cause stale reads, which lead to RMW and MR
violations as explained in Section 3.3.8.

6.1 Strategy

We know that stale reads are caused by read operations from a secondary
node, that has not yet applied the latest oplog entries of the primary. In an
experimental run, where all nodes of the replica set are located on the same
machine, the secondary nodes apply the newest changes to the primary’s
data set with a very small delay in time. We enforce the secondary to keep
stale data by blocking the network traffic between the secondary and the
other nodes. We control the triggering of network partitions from the instru-
mented client application. Example 6.1.1 demonstrates how we enforce a
stale read using our strategy.

Example 6.1.1 Assume we have a replica set consisting of one primary and
two secondary nodes. Figure 6.1 illustrates the following events:

1. The client initiates an update to the primary node.

2. A network partition is triggered that separates Secondary 1 from the
remaining replica set.

3. The primary receives and applies the update.

57

6. Stress Testing

Primary

Secondary 1 Secondary 2

Client Send update

(a) Clients sends an update to the primary while Secondary 1 is separated.

Primary

Secondary 1 Secondary 2

Client

Send query

(b) Clients sends query to Secondary 2 while it is still separated from the primary.

Figure 6.1: Stale read forced by our partitioning strategy.

4. The client sends a query to the replica set. We enforce it to be sent to
Secondary 1 via special read preference settings. This prevents it from
observing the update event from Step 1.

5. We finally resolve the network partition. �

The exact strategy is defined by Algorithm 4. We have two listener func-
tions which are called when a client initiates a query or an update. On each
update we trigger a network partition if currently no partition exists and
perform the update after the partition has been created. For each initiated
query we enforce it to read from the separated secondary if there currently
exists a network partition. After performing the query we resolve the parti-
tion. Note that this approach can easily be adapted to trigger partitions on
every nth update instead of each one.

6.2 Discussion

This strategy is not designed to produce stale reads for every query. It solves
the purpose to significantly increase the amount of stale reads during a dy-
namic analysis run. We heuristically exhaust the pattern that an update
event commonly has a non-commutative query event following. Our ap-
proach does only work for executions that have a non-commutative query
following on an update. Consider an application that always sends sev-
eral commutative queries after an update. This leads to the resolving of

58

6.2. Discussion

1: partitionTriggered← FALSE
2: function onUpdateInitiated(update)
3: if partitionTriggered == FALSE then
4: triggerNetworkPartition()
5: end if
6: update.execute()
7: end function
8: function onQueryInitiated(query)
9: if partitionTriggered == TRUE then

10: query.setReadPref(SECONDARY 1)
11: end if
12: query.execute()
13: resolveNetworkPartition()
14: end function

Algorithm 4: Extraction of MR pre-violation patterns, where P is the returned set of patterns

the network partition before the non-commutative query is executed and
can cause the stale read. There are several approaches for these situations.
One approach is to sustain the partition for not only one query but m
queries. Another approach is to perform an approximation of commuta-
tivity of the query and the update that triggered the partition and wait for a
non-commutative query before resolving the partition. However, there is no
guarantee of such a query ever being initiated. Since the approach is not de-
signed to guarantee a stale read in every case, but as a technique to increase
the rate of stale reads, it suffices for our experiments. The results in Chap-
ter 8 show that the approach is able to significantly increase the occurring
serializability violations.

59

Chapter 7

Implementation

To evaluate the proposed dynamic analysis, we implemented most of the
instrumentation concepts that are described in Chapter 4 for Node.js clients.
Furthermore, we extended the ECRacer software as explained in Chapter 5.
This chapter presents our implementation that was used to run the experi-
ments of Chapter 8.

7.1 MongoRacer

We developed a Node.js application called MongoRacer that allows to in-
strument other Node.js applications that use MongoDB as a database. Our
application can be used to run one or more instances of the application to
be instrumented and covers setting up and shutting down the replica set
as well as instrumenting the application and recording the instrumented
database traces. Additionally it performs the analysis of Chapter 5 on the
collected data by running our extended version of ECRacer. We refer to the
application to be instrumented as the target application.

7.1.1 Architecture

The architecture of our tool is illustrated in Figure 7.1. Each node of the
replica set is contained in its own Docker-container. Using Docker simplifies
controlling the communication between the nodes, used to trigger network-
partitions, but it also increases modularity and system independence. Fur-
ther, MongoRacer starts another MongoDB instance that is used to store the
instrumented database operations and is called Records in Figure 8.1. The
Composer component has the following responsibilities:

• Starting/stopping Docker [21] containers

• Setting up/shutting down MongoDB replica set

61

7. Implementation

Composer

Recorder Instrumentor

Target Application

Instrumentor

Target Application

…
ECRacer

Insert

Set up

Insert

Set upSet up

Set up Set up

Read

Figure 7.1: Architecture of MongoRacer

• Setting up/shutting down MongoDB instance for storing instrumented
traces

• Starting/stopping target applications with injected instrumentation

• Instrumenting and recording oplog entries of primary node

• Running ECRacer on the recorded traces

The Instrumentor component takes care of:

• Instrumentation of the Node.js driver

• Overwriting the target application’s database configurations, such that
they point to the replica set that is set up by the Composer component

• Overwriting the target application’s port, such that it listens on the
port specified in the configuration file of our tool

7.1.2 Composer

When MongoRacer is started in the terminal, the Composer parses the com-
mand line arguments and loads the corresponding configuration file, which
contains the path to the target application. It then starts the MongoDB
recorder instance for storing the instrumented database traces and the replica
set. Further, it configures the replica set and waits until the nodes have
elected a primary and the replica set is ready to operate. The Composer

62

7.1. MongoRacer

then runs an optional initialization script, which can be used to perform
some custom configurations before the target application is started. This
can be inserting sample data to the database, creating a user account or cre-
ating files in the file system. After the initialization script has terminated,
the Composer starts the specified number of injected target applications.
The injection is explained in Section 7.1.3. Because Node.js does not support
threads, each instance of the target application is run in its own process.
The target applications are then executed until they terminate or the Mon-
goRacer is signaled to stop the analysis. The Composer will then stop the
target applications, shut down the replica set, run ECRacer on the collected
data and finally shut down the MongoDB recorder instance.

7.1.3 Instrumentation

We extend the official MongoDB driver for Node.js [5] by implementing
most of the instrumentation concepts of Chapter 4.

We choose an approach that is widely called monkey patching and describes
changing the behavior of an application at runtime without changing the
original code. We use this approach to wrap the functions of the Node.js
MongoDB driver in order to implement our instrumentation. In most cases
this means replacing the function of the prototype of the driver by a modi-
fied function. This has the following advantages over providing a modified
version of the driver as a Node.js package:

• Since we are usually wrapping the original driver functions into ad-
ditional functionality or only change the arguments, our approach is
less sensitive to changes to the driver and can therefore operate with
other versions as long as they provide the same interface. Providing
an own version of the driver means to change the driver on every up-
date of the official one. However, monkey patching does not guarantee
compatibility to all other driver versions either.

• Monkey patching decouples the instrumentation from the target appli-
cation. It allows to leave the code of the target application completely
untouched.

The arguments for monkey patching are also the reason why we perform
our instrumentation directly on the functions that are called by the user of
the driver and not on a deeper level in the driver. Manipulating code that
is at a very deep level increases the possibility of code changes with newer
driver versions, while the functions that represent the user interface are less
likely to change in order to maintain backward compatibility.

An example for the replacement of a prototype driver function is the follow-
ing:

63

7. Implementation

Co l l e c t i o n . p r o t o t yp e . r ep l aceOne = f u n c t i o n () {
r e t u r n C o l l e c t i o n . p r o t o t yp e . updateOne . app l y (t h i s , arguments) ;

} ;

This code simply delegates a call of the replaceOne function to updateOne
by overriding the prototype of Collection.

We also override the driver function to connect to MongoDB and give it a
different MongoDB connect string that points to our replica set. This avoids
having to change the configuration of the target application. For the same
reason we override functions of the http module to override the port that the
target application listens on.

The Instrumentor is called in an own process by the Composer, performs
the instrumentations via monkey patching and runs the code of the target
application by importing it. This can not be achieved by calling the Node.js
function require. The Node.js runtime needs to know which module is the
main module (the module which was initially loaded by the Node.js pro-
cess). We want this to be the target application after we performed the
instrumentation. Therefore we call the load function of the Node.js native
Module package. The require function internally calls load as well. The
main difference between both functions is that load offers a parameter that
states if the loaded module is to be loaded as the main module or not.

Document Filtering

We have two cases that need a filtering mechanism for queries:

1. Deleted documents

2. Documents fetched by non-ID-queries

As described, deleted documents only contain a delete property and are still
fetched by the query in order to construct our visibility relation and need
to be filtered out before returned to the target application. The result set of
non-ID-queries needs to be filtered, because we removed the filter in order
to fetch the whole collection.

As described in Chapter 4, we finally delegate all queries to the find function,
which returns a cursor. Therefore, we implement the filtering by overriding
the corresponding function of the cursor object. We filter out all documents
that contain the delete property and in case of a non-ID-query all documents
that do not match the query selector. We achieve the latter by using the
Node.js package Mingo [2], which is an implementation of the MongoDB
query language in JavaScript and allows filtering JavaScript objects. We
store all documents that we filtered out in a data structure in order to attach
them to the traces that we record.

64

7.1. MongoRacer

Identifiers

• The client identifiers that we use to create the UID are generated by
the Composer and given to the Instrumentor when creating the corre-
sponding process.

• The sub-client identifier is generated by the Instrumentor. Whenever a
child process is created, the Instrumentor wraps the application that is
to be run in the process into another Instrumentor instance. Therefore,
we cannot have uninstrumented child processes.

• The UID is generated using the client identifier, the sub-client identifier
and an event counter that is incremented on each initiated database
operation.

• Each Instrumentor has its own transaction identifier. It starts with zero
and is incremented on each HTTP-request or socket.io-request, where
socket.io [25] is a library for handling websockets.

Recording of Traces

To record the database traces of the target application we use the Application
Performance Monitoring (APM) API of the driver. It offers listener functions
that allow logging all database events, containing additional information
like the IP address of the replica node. We add additional information like
time stamps to these events and insert them into the MongoDB recorder
database.

Oplog Instrumentation

To construct the arbitration order relation, we need to know the time of
execution of a database event on the server. Unfortunately there exists a
bug in the driver’s APM API that removes this time stamp from the events.
We were able to fix this bug and contribute the fix to the driver, such that
it will not occur in new versions. However, for other versions we attach a
listener to the oplog of the primary node, because each oplog entry contains
a server time stamp and our UID. This listener function is called on every
new entry in the oplog such that we can insert it into the record database.

Limitations

We do not support bulk operations. One reason for that is that they are not
mapped to the driver interface functions that are used for non-bulk opera-
tions. Instead, they are based on functions deeper in the driver. This means
a stronger dependency to the driver version and the same implementation
effort as for all the non-bulk operations. Another reason is that bulk op-
erations are only used in one of the projects that we used to evaluate our

65

7. Implementation

approach. However, the implementation can be extended to also support
bulk operations. All the concepts of Chapter 4 also apply for bulk opera-
tions, because they are not executed atomically. Therefore, it is a limitation
of our concrete implementation and not of the instrumentation method.

Another limitation is that we cannot directly map a violation to a line of code
in the target application. The MongoDB APM API uses an event listener,
which is called asynchronously and therefore loses the code location that
triggered the database operation in its stack trace. An instrumentation that
avoids using the driver’s APM API can solve this issue.

7.1.4 Network Partitions

We implement the triggering of network partitions, as described in Chapter
6, by configuring the Linux kernel firewall using the user-space application
iptables [24]. Because each replica node is executed in its own Docker
container we can precisely control the allowed communication between the
different containers via iptables. This has the consequence that the network
partitioning only works on Linux operating systems.

7.2 Extension of ECRacer

As mentioned in Chapter 5, we extend ECRacer, which is written in Scala,
to support our recorded MongoDB traces. As already explained, ECRacer
expects the relations program order, arbitration order and visibility as well
as commutativity and absorption specifications for the events in order to run
the analysis algorithm. Therefore, we extend it to transform the recorded
traces from our MongoDB record database into the internal data structures
representing the relations. We iterate over all events of a trace and create
an ECRacer specific data structure for each event. In this step we add the
missing time stamp of execution from the oplog records.

The creation of arbitration order, program order and visibility have already
been covered in Chapter 5.

7.2.1 Commutativity and Absorption

Commutativity and absorption are implemented in Scala code by using the
specifications from Sections 5.1 and 5.2 and applying them to the internal
data structures of ECRacer.

7.2.2 Document Matching

To specify commutativity between an insert and a query or a delete event,
we need to be able to determine if a given document matches a given selec-
tor. We over-approximate the document matching of MongoDB in ECRacer

66

7.2. Extension of ECRacer

and only support a subset of query operators, because there exist 34 query
operators in MongoDB 3.4 and the effort of supporting each operator is high
in comparison to the gain of precision for the analysis. We replicate the be-
havior of the document matching method of the MongoDB server using the
specifications of the different query operators. If our method detects an un-
known or unsupported operator in the selector it simply reports that the doc-
ument matches the selector. This assures that the analysis does not become
unsound. The supported operators are $or, $and, $not, $nor, $elemMatch,
$eq, $gt, $gte, $lt, $lte, $ne, $in, $exists, $mod, $all, $size. Therefore, we sup-
port ∼ 47% of all query operators. Examples for not supported operators
are regular expressions and geospatial operators. We do not support regular
expressions because it is hard to guarantee the soundness of the analysis if
we are not sure to exactly replicate or over-approximate the regular expres-
sion matching of MongoDB. Furthermore, only one of the projects that we
analyzed uses regular expressions.

67

Chapter 8

Evaluation

As a proof of concept, we use our instrumentation tool MongoRacer from
section 7 together with our extended version of ECRacer to analyze 17 open
source Node.js projects that use MongoDB as their database.

8.1 Experimental Set-Up

The experimental set-up is shown in Figure 8.1. Each experiment consists of
4 phases.

Phase 1 (Initialization): Phase 1 is responsible for setting up the envi-
ronment. MongoRacer sets up a new MongoDB replica set consisting of one
primary and two secondary nodes. MongoRacer finishes phase 1 by starting
two instances of the client application to be analyzed.

Phase 2 (Recording): The recording of instrumented database operations
performed by the client applications happens in phase 2. One browser win-
dow is opened for each of the two client instances. We automatically per-
form actions in these browser windows using a technique called monkey
testing [22], which randomly simulates user actions on the website. This
technique has the advantage of being very flexible in terms of a large va-
riety of client applications. We perform the testing by using the browser
extension Tampermonkey [7] with a custom test script. All instrumented
database operations are stored in the MongoDB record database.

Phase 3 (Shutdown): Phase 2 is terminated by manually signaling Mon-
goRacer to finish recording. It will then enter phase 3 and therefore termi-
nate the client applications and shut down the replica set. This phase makes
sure that the replica set and the client applications are stopped in a con-

69

8. Evaluation

S1

P

S2

Client 1 Client 2

MongoRacer

Browser
Client 1

Browser
Client 2

Records

Figure 8.1: Experimental set-up; P: Primary replica node, S1: Secondary replica node #1, S2:
Secondary replica node #2

trolled manner. The MongoDB recorder instance stays online for the next
phase.

Phase 4 (Analysis): Phase 4 handles the analysis of the recorded database
operations from phase 2. It uses our extended version of ECRacer, which
fetches the records from the MongoDB recorder instance. After the analysis
is finished, MongoRacer shuts down the recorder instance and exits.

We perform two dynamic analysis runs for each project. One normal run
and one with stress testing, explained in chapter 6. Therefore we collect
two sets of database records for each project. Each of these record sets is
analyzed with ECRacer twice, while one run considers transactions and the
other one does not, because enabling transactions can hide violations that
occur within a single transaction.

70

8.2. Results

Table 8.1: Experiment results; S: Number of Strongly Connected Components (SCCs) found;
V: Number of different serializability violations; t: Transactions enabled; p: Network parti-
tioning enabled

Project S V S (t) V (t) S (p) V (p) S (p,t) V (p,t)

lets-chat 0 0 18 2 12 3 17 3

NodeBB 0 0 3 2 29 4 21 3

relax 0 0 6 1 8 2 9 2

strider 0 0 3 1 0 0 2 1

node-login 0 0 0 0 7 2 7 2

aqua 0 0 - - 1 1 - -

tvshow-tracker 0 0 0 1 1 1 1 1

node-todo 1 1 0 0 15 3 15 3

node-stripe-
membership-app

0 0 4 1 3 2 3 1

chat.io 1 1 3 3 3 3 3 3

Nodejs-
MongoDb-
TodoMVC

9 2 9 2 2 2 2 2

mean-stack-
registration-login-
example

0 0 1 1 0 0 1 1

mean mytasklist 1 1 1 1 4 2 4 2

event-backend 0 0 0 0 18 1 18 1

timetracker 0 0 0 0 1 1 1 1

game-of-life-
javascript

0 0 2 1 2 1 5 1

8.2 Results

As explained in Section 2.1, a serializability violation is represented by a
cycle in the DSG. ECRacer gives a set of Strongly Connected Components
(SCCs) as its output, where each SCC contains one ore more cycles. Table
8.1 shows the number of SCCs for each project. Because SCCs indicate the
frequency of violations and not their diversity, we also give the number
of violations that are not all caused by the same database operation using
different parameters.

One can observe that a partition-free analysis run with disabled transactions
does generally not yield many violations. Enabling transactions turns out
to cause a significant increase of the amount of violations. But transaction
violations are only one class of violations and can also occur in strongly

71

8. Evaluation

consistent data stores.

Triggering network partitions drastically increases the amount of serializabil-
ity violations. Enabling transactions on these runs adds new violations only
in the analysis of Mean-stack-registration-login-example.

While a short description of each project together with the corresponding
violations can be found in A, the next sections describe the most important
detected violations.

8.2.1 Session Violations

156 of 277 discovered SCCs and 34 of 76 discovered violations in all analyses
are caused by session handling.

Sessions are used to equip the stateless HTTP protocol with state. It is
mainly used for authentication. Typically a user fills out a login web form
with his login credentials. After a successful authentication, a session object
is created on the server and a cookie with the corresponding session-ID is
stored at the user’s browser, which keeps it from authenticating again with
every request. The client only sends the session-ID and the server checks its
validity.

Atomicity Violations

A common DSG pattern of session violations is shown in Figure 8.2. Be-
cause a session object usually has a limited period of validity, the session
is updated with every request to the server. This strategy achieves that the
validity of the session is always dependent on the last action while logged
in and not on the time of login itself. After updating the session, it is fetched
from the database in a separate query. In our transaction model this is done
within the same transaction. This can lead to an overlapping of these 2 oper-
ations on two different clients if they use the same session. This is the case
if they log in with the same account, like in our experiments. That explains
the large amount of transaction related session violations. However, these
violations are not harmful, because in the worst case they only lead to a
minimum deviation in the duration of validity of the session. In practice
this period of validity does not need to have an accuracy that high.

RMW/MR Violations

RMW violations occur on session objects, which are usually fetched to check
the authentication of a user. If the query does not fetch the session object,
access is denied to that user. The user logs in with his credentials but is
denied access. However, if the violation does not occur on the creation of
a session object but on the update of one, the impact on the application is

72

8.2. Results

Update(sessions, {” id” : 123}, {”$set” : {”expires” : ”2017− 05−...”}})

Query(sessions, {” id” : 123})

po

Figure 8.2: Common pattern used in session management

very small, because only the update to the period of validity of the session is
not observed. Another situation occurs if the session object is being deleted,
can not be observed and the user is therefore still authenticated. Developers
have to be careful here not to introduce security violations.

8.2.2 Harmless Data Violations

40 of 76 discovered violations are violations that we could not directly link
to a harmful influence on the application. However, that does not prove the
absence of such a harmful influence. Note that some violations are counted
multiple times in the above statements, since they were found in multiple
analysis runs.

RMW violations always consist of one update event that inserts/updates/deletes
a document and a following non-commutative query event that does not ob-
serve the update. In general this is not a harmful effect. However, if there
exists code that relies on the visibility of the update to the query it can lead
to errors, even though we did not observe any during the monkey testing.
We found RMW violations containing the following update events:

1. (Lets-chat) Insertion of user

2. (Lets-chat) Insertion of chat room

3. (NodeBB) Update of forum category

4. (NodeBB) Update of forum topic

5. (Tvshow-tracker) Insertion of user

6. (Node-todo) Insertion/update/deletion of todo entry

7. (Chat.io) Insertion of user

8. (Chat.io) Insertion/update of chat room

9. (Nodejs-MongoDb-TodoMVC) Insertion/update of todo entry

10. (Mean-stack-registration-example) Insertion of user

11. (Mean mytasklist) Insertion/update of todo entry

73

8. Evaluation

All MR violations depend on an insert, update or delete and two following
queries. As with RMW violations, the effects of a MR is generally harmless,
but can lead to errors in specific situations that we could not observe during
our tests. We found MR violations for the following update events:

1. (Node-login) Insertion of user

2. (Node-todo) Insertion/update/deletion of todo entry

3. (Node-stripe-membership-app) Insertion of user

4. (Timetracker) Insertion of user

We found the following harmless violations related to transactions:

1. (Lets-chat) Both clients add a message to a chat room. Lets-chat then
checks if there exists only one chat room with the corresponding name,
adds the message object, fetches the corresponding chat room and up-
dates that room setting a new lastActive time stamp. These two transac-
tions overlap in such a way that the queries that are looking for similar
rooms with the same name, cannot see the update of the other client.

2. (NodeBB) While client 1 is performing several queries on the user col-
lection, client 2 updates a user. This leads to some queries of client 1
seeing the update and some not.

8.2.3 Harmful Register Violations

We found a harmful atomicity violation in the projects Node-login and
Mean-stack-registration-example, which occurs when two users register at
the same time. It is a common pattern in applications that is demonstrated
in a general way in Figure 8.3. Both clients register a user by first checking
if a user with that user name already exists in the database and then adding
that user. If these transactions overlap in a way that both queries cannot ob-
serve the insert of the other client, two inserts happen. If the same user name
was picked, there exist two users with the same user name in the database.
A state that is usually unwanted. In the violation that we observed, two user
accounts with the same e-mail address but with different user names are cre-
ated. This is especially problematic in a project that serves as a foundation
to build other applications upon. All applications that use this project for
account management also inherit this bug.

8.3 Fixing Violations

For RMW/MR violations there exists a simple fix for MongoDB 3.4 or higher.
Using the linearizable read concern, described in Section 3.3.6, guarantees
the absence of RMW and MR violations. But it also enforces to read from

74

8.3. Fixing Violations

Query(users, {”username” : ”johndoe”})

Insert(users, {”username” : ”johndoe”, ...})

po

Figure 8.3: Common pattern used in user registration

the primary replica node. Therefore, it is not an optimal solution to just
set a linearizable read concern for every operation. That would destroy all
performance benefits of a replica set. But it is highly recommended to ensure
linearizable read concern on parts critical for security or error prevention.
For the sake of performance and scalability, violations can be ignored if they
are guaranteed to only have harmless effects on the application. An example
for a harmless effect is an outdated information displayed to the user in an
environment where it is not critical to have information in real time. If a
user gets displayed an outdated post counter of a topic in NodeBB, that is a
harmless violation. But in the end it has to be decided by the developer if a
violation can have a harmful effect on the application or not.

It is more complicated to fix transaction violations, because there are no
transactions in MongoDB. Therefore, one has to make sure that all opera-
tions that need to be atomically executed are within the same single up-
date/insert/upsert operation.

As an example, we show how to fix the common user registration violation
shown in Figure 8.3. One can solve this problem by adding an index on
the fields to be unique. If for instance the username and the e-mail address
should be unique for each user account then a compound index involving
username and e-mail address solves the problem. The application only has
to handle the MongoDB error thrown at a unique index violation.

75

Chapter 9

Conclusion

We showed that a MongoDB replica set that is configured to provide even-
tual consistency additionally guarantees the consistent prefix property. This
reduces the possible serializability violations to read-my-writes and monotonic-
reads violations.

We explained how to instrument a MongoDB client application in order to
collect enough data to apply the serializability criterion of Brutschy et al.
and the corresponding algorithm.

Furthermore, we introduced a software that implements the proposed in-
strumentation and extended the analysis tool by Brutschy et al. to run on
these instrumented recorded executions.

We evaluated our implementation by performing the proposed dynamic
analysis on a set of Node.js open source applications that use MongoDB
as their data store and conclude that the criterion proposed by Brutschy et
al. is suitable to serve as a foundation for tools that detect serializability
violations in dynamic executions of clients of replicated data stores.

77

Appendix A

Serializability Violations

Lets-chat

Lets-chat is a chat application that allows registered users to send text mes-
sages into custom chat rooms.

Violations

• Session violation

• RMW violation on insertion of user

• RMW violation on insertion of chat room

• Atomicity violation on insertion of message to chat room

Manual testing with enabled network partitioning shows that it takes several
approaches to log into the application. This behavior is caused by session
violations.

NodeBB

NodeBB is a commonly used bulletin board software. It is the most complex
of the analyzed projects.

Violations

• Session violation

• RMW violation on update of forum category

• RMW violation on update of forum topic

• Atomicity violation on update of user

79

A. Serializability Violations

Manual testing with network partitioning enabled shows some effects of the
violations. Users are not logged in after registration and logging in takes
several approaches. Both issues are caused by session violations.

Relax

Relax is a content management system on top of Node.js.

All violations are caused by session management.

More involved testing methods than monkey testing are likely to unravel
more violations when used in network partition mode.

Strider

Strider is an open source continuous integration and deployment server.

All violations are transaction violations in session management.

Node-login

Node-login is a basic account management system whose purpose is to be
used in other applications to handle user registration and login.

Violations

• Harmful registration atomicity violation

• MR violation on insertion of user

Aqua

Aqua describes itself as a website and user system starter. That means that
it is supposed to be used as a starting point for creating a website or appli-
cation. It gives basic features like account management and a contact page.

Transaction violations: Transactions like we implemented them, do not
work here. This is because our implementation of the instrumentation does
not cover the library that is used in Aqua to create requests.

RMW/MR violations: We only found one violation and it is caused by
session management.

The monkey testing approach is not able to deeply cover the functionality
of Aqua. We are therefore convinced that a more specific test method will
detect more violations.

80

Tvshow-tracker

This is a project that offers a platform for tv-shows. It allows to subscribe
to tv-shows and get informed about new episodes. Monkey testing could
not discover the application properly. Therefore we were forced to perform
manual testing here. We could only find one RMW violation during user
registration.

Node-todo

Node-todo is a simple todo-list application for demonstration purposes. It
has no user registration or authentication but offers only basic CRUD (Create
Read Update Delete) functionality on todo entries.

All violations are RMW or MR violations on either inserting, updating or
deleting todo entries. Because Node-todo is an application for demonstra-
tion purposes and does not offer a lot of functionality there is no harmful
effect of the violation. However, it demonstrates that violations occur even
in minimalistic applications.

Node-stripe-membership-app

This project is a boilerplate application for creating membership/subscrip-
tion sites with Stripe, an online payment service.

All transaction violations are related to sessions. While most RMW/MR vi-
olations are related to sessions, one violation turns out to be a MR violation
during user registration. A newly registered user is fetched by a query but
not by a following one. We explained similar violations in relation to other
projects already.

Chat.io

Chat.io is another real time chat application.

We found three RMW violations. One occurs during the registration of a
user. The other two violations occur while inserting/updating a chat room.

Nodejs-MongoDb-TodoMVC

This is again a simple todo application for demonstration purposes. We used
another monkey testing approach that did not involve our Tampermonkey
script but a JavaScript library called gremlins.js [1]. Because it does not rely
on the Document Object Model (DOM) of the website, but randomly applies
user interactions on the browser screen, it allows much more interactions

81

A. Serializability Violations

per second. This leads to many RMW violations that occur even without
network partitioning.

All violations are RMW violations while inserting/updating todo entries.
Other violations are not possible in this application because of its simple
structure and small functionality.

Mean-stack-registration-example

This project was created for a tutorial on the MEAN (MongoDB, Express,
Angular.js, Node.js) stack and provides a simple registration/login example
functionality.

We found the common but dangerous user registration violation, already
described in the results of Node-login. Furthermore, we found a RMW
violation on user registration.

Even though it is a simple example application this reflects the way many
applications are developed. It is also to expect that readers of the corre-
sponding tutorial use this project as a starting point, inheriting this issue.

Mean mytasklist

This is another minimalistic todo-list application.

Like for the other todo-list projects, we found RMW violations occurring
during CRUD operations on todo-entries.

Event-backend

Event-backend is a simple content-management-system specialized on event
managing.

All violations that occurred are session related. The monkey testing ap-
proach was not able to discover the functionality in depth.

Timetracker

This application is a management system for time tracking. Users can regis-
ter and add tasks that contain a duration.

The only violation that we found is a MR violation during user registra-
tion. But the monkey testing was not able to cover the functionality of the
application appropriately.

82

Game-of-life-javascript

This is a JavaScript version of Conway’s Game of Life [18].

We only discovered session violations in this project.

83

Bibliography

[1] gremlins.js. https://github.com/marmelab/gremlins.js/blob/

master/README.md. Accessed: 2017-04-25.

[2] Mingo - javascript implementation of mongodb query language,
howpublished = https://www.npmjs.com/package/mingo, note = Ac-
cessed: 2017-04-29.

[3] MongoDB documentation. https://docs.mongodb.com/v3.4/

reference/method/db.collection.update/. Accessed: 2017-04-20.

[4] MongoDB documentation - update operators. https://docs.mongodb.
com/v3.4/reference/operator/update/. Accessed: 2017-04-21.

[5] Mongodb node.js driver. https://mongodb.github.io/

node-mongodb-native/. Accessed: 2017-04-29.

[6] Play! the high velocity web framework for java and scala. https://

www.playframework.com/. Accessed: 2017-04-20.

[7] Tampermonkey. https://tampermonkey.net/. Accessed: 2017-04-24.

[8] Veronika Abramova and Jorge Bernardino. Nosql databases: Mongodb
vs cassandra. In Proceedings of the international C* conference on computer
science and software engineering, pages 14–22. ACM, 2013.

[9] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-
monotonic snapshot isolation: Scalable and strong consistency for geo-
replicated transactional systems. In Reliable Distributed Systems (SRDS),
2013 IEEE 32nd International Symposium on, pages 163–172. IEEE, 2013.

[10] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M Heller-
stein, and Ion Stoica. Highly available transactions: Virtues and limita-
tions. Proceedings of the VLDB Endowment, 7(3):181–192, 2013.

85

https://github.com/marmelab/gremlins.js/blob/master/README.md
https://github.com/marmelab/gremlins.js/blob/master/README.md
https://www.npmjs.com/package/mingo
https://docs.mongodb.com/v3.4/reference/method/db.collection.update/
https://docs.mongodb.com/v3.4/reference/method/db.collection.update/
https://docs.mongodb.com/v3.4/reference/operator/update/
https://docs.mongodb.com/v3.4/reference/operator/update/
https://mongodb.github.io/node-mongodb-native/
https://mongodb.github.io/node-mongodb-native/
https://www.playframework.com/
https://www.playframework.com/
https://tampermonkey.net/

Bibliography

[11] Giovanni Bernardi and Alexey Gotsman. Robustness against consis-
tency models with atomic visibility. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 59. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[12] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison- Wesley, 1987.

[13] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. Se-
rializability for eventual consistency: Criterion, analysis, and applica-
tions. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pages 458–472, New York, NY,
USA, 2017. ACM.

[14] Sebastian Burckhardt. Principles of Eventual Consistency, volume 1. now
publishers, October 2014.

[15] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel
Fähndrich. Global Sequence Protocol: A Robust Abstraction for Repli-
cated Shared State. In John Tang Boyland, editor, 29th European Confer-
ence on Object-Oriented Programming (ECOOP 2015), volume 37 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 568–590, Dagstuhl,
Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, pages 205–220,
New York, NY, USA, 2007. ACM.

[17] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil,
and Dennis Shasha. Making snapshot isolation serializable. ACM Trans.
Database Syst., 30(2):492–528, June 2005.

[18] Martin Gardner. Mathematical games: The fantastic combinations of
john conway’s new solitaire game “life”. Scientific American, 223(4):120–
123, 1970.

[19] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

[20] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S Sudarshan.
Automating the detection of snapshot isolation anomalies. In Proceed-
ings of the 33rd international conference on Very large data bases, pages 1263–
1274. VLDB Endowment, 2007.

86

Bibliography

[21] Dirk Merkel. Docker: lightweight linux containers for consistent devel-
opment and deployment. Linux Journal, 2014(239):2, 2014.

[22] Noel Nyman. Using monkey test tools. Software Testing & Quality Engi-
neering Magazine, pages 18–21, 2000.

[23] Christos H Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM (JACM), 26(4):631–653, 1979.

[24] Gregor N Purdy. Linux iptables Pocket Reference: Firewalls, NAT & Ac-
counting. ” O’Reilly Media, Inc.”, 2004.

[25] Rohit Rai. Socket. IO Real-time Web Application Development. Packt Pub-
lishing Ltd, 2013.

[26] S. Tilkov and S. Vinoski. Node.js: Using javascript to build high-
performance network programs. IEEE Internet Computing, 14(6):80–83,
Nov 2010.

[27] Gabriel Valiente and Conrado Martı́nez. An algorithm for graph
pattern-matching. In In Proc. 4th South American Workshop on String
Processing, volume 8 of Int. Informatics Series, pages 180–197. Carleton
University Press, 1997.

[28] Kamal Zellag and Bettina Kemme. How consistent is your cloud appli-
cation? In Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 6:1–6:14, New York, NY, USA, 2012. ACM.

[29] Kamal Zellag and Bettina Kemme. Consistency anomalies in multi-tier
architectures: automatic detection and prevention. The VLDB Journal,
23(1):147–172, 2014.

87

	Contents
	Introduction
	Contributions
	Overview

	Preliminaries
	Serializability Criterion
	Basic Definitions
	Relations

	Related Work

	MongoDB
	Document Structure
	Operations
	Inserts
	Queries
	Updates
	Deletes

	Replication
	Automatic Failover
	Oplog
	Read Preference
	Read Concern
	Write Concern
	Consistency Model
	Consistent Prefix
	Possible Sequential Consistency Violations
	Atomicity Violations

	Dynamic Analysis for MongoDB
	Instrumentation
	Program Order
	Arbitration Order
	Visibility
	Transactions
	Special Cases

	Transformation of Driver Operations
	updateMany
	updateOne
	update
	insertMany
	insertOne
	deleteOne
	deleteMany
	findOneAndUpdate
	findOneAndDelete
	find
	findOne
	count
	Index operations

	Performance
	Limitations

	Analysis
	Commutativity Specifications
	Basic definitions
	Insert and Query
	Insert and Insert
	Query and Query
	Insert and Update
	Query and Update
	Update and Update

	Absorption Specifications
	Basic definitions
	Insert and Delete
	Update/Delete and Delete
	Update and Update

	Extension of ECRacer
	Relation Construction

	Runtime Analysis
	Pattern-Matching Extension
	Patterns
	Pattern Filtering
	Algorithms
	Monotonic-Reads

	Stress Testing
	Strategy
	Discussion

	Implementation
	MongoRacer
	Architecture
	Composer
	Instrumentation
	Network Partitions

	Extension of ECRacer
	Commutativity and Absorption
	Document Matching

	Evaluation
	Experimental Set-Up
	Results
	Session Violations
	Harmless Data Violations
	Harmful Register Violations

	Fixing Violations

	Conclusion
	Serializability Violations
	Bibliography

