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Abstract

Rust is a modern programming language with a strong focus on speed,
safety and concurrency. To that end the Rust compiler checks for data-
races and similar memory safety issues at compile time using so called
lifetimes to statically compute the timespan in which references can be
safely used. However, in case of error the compiler messages can be
difficult to understand, especially for beginners.

In this thesis, we provide an algorithm that identifies a set of source
code lines that complement the error message and are in practice suf-
ficient to reason about the error. We further define a visualization of
the constraints between lifetimes that the compiler uses internally to
identify the error. We implemented these in a prototype that generates
a graph of the constraints and shows the identified source code lines.

We evaluated the prototype over several examples, automatically check-
ing that the visualized constraints are indeed sufficient to generate the
error, and manually checking that all the source code lines relevant to
the error and not already visualized in the compiler error message are
identified.
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Chapter 1

Introduction

Rust [1] is a modern programming language with a strong focus on safety,
concurrency and speed. It is comparable to C in terms of performance.
Among other features, its type system is designed to prevent data races,
as well as dangling pointers and null dereferences. Rust uses a part of the
compiler called borrow-checker to check for these kinds of errors at compile
time.

1.1 Motivation
The error messages generated by the borrow checker are notoriously diffi-
cult to understand for beginners, because they require reasoning on not just
the lines reported by the compiler. For example, the error message for the
code example in listing 1.1 would point to the lines (a), (c) and (d), but not
line (b), which the user should also look at to understand the error.

To easily understand these errors more information is needed, than is given
in the error messages. To help with this issue we want to provide a tool that
complements these error messages with additional information.

1 fn foo(v: i32) {
2 x = &v; // (a)
3 // ...
4 y = &x; // (b)
5 // ...
6 v += 1; // (c)
7 take(y;) // (d)
8 }

1



1. Introduction

1.2 Contributions
This thesis addresses the previously mentioned problem by:

1. Providing an algorithm that identifies a set of source code lines that
relate the line at which the borrow occurs (a) with the line at which
the borrow is later used (d);

2. Defining a visualization of the lifetime constraints that have been used
by the borrow checker to identify the lifetime error;

3. Providing a prototype that implements the previous two points.
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Chapter 2

Background

2.1 Lifetimes
One of the novelties of Rust is the distinction between two kind of refer-
ences: shared &T and mutable &mut T. Shared references can only be used
to read memory they are pointing to, while mutable ones can also be used to
mutate the memory they are pointing to. Having two mutable or a mutable
and a shared reference to the same memory location at one program point
can lead to data races, for example if a thread reads the value of a shared ref-
erence while another is mutating the same memory location via a mutable
reference. For this reason the type system only allows two situations:

• having one or more shared references (&T) to a memory location

• or having exactly one mutable reference (&mut T) to it.

To be able to ensure that these two situations are mutually exclusive, the
compiler needs to know at which program points a specific reference may
be used. For this reason, each reference is annotated with a lifetime that
informs the compiler for how long a reference can be safely used. In an
abstract sense, lifetimes correspond to a set of program points. Lifetimes
can be implicit or explicit. In Listing 1, the function foo takes a reference x
with an implicit lifetime and the function bar takes x with an explicit lifetime
'a.

Explicitly writing lifetimes gives more control to the developer, for example,
to express that the return value of a function must live for the same lifetime
as its arguments:

fn x_or_y<'a>(x: &'a str, y: &'a str) -> &'a str { .. }

This means that x, y and the return value need to be alive for at least the
set of program points corresponding to lifetime 'a. If x and y need to have
different lifetimes, one can use multiple lifetime parameters:
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2. Background

1 // implicit
2 fn foo(x: &i32) {
3 }
4

5 // explicit
6 fn bar<'a>(x: &'a i32) {
7 }

Listing 1: Implicit and explicit lifetimes

fn x_or_y<'a, 'b>(x: &'a str, y: &'b str) -> &'a str { .. }

In this example, y is alive for the set of program points denoted by lifetime
'b, which may or may not be the same as the set corresponding to 'a.

There are two different implementations of lifetimes: the original one based
on the lexical scope, called lexical lifetimes, and the new more precise one
called non-lexical lifetimes.

The lexical lifetime checks are very conservative: they reject programs that
would run fine at runtime. Listing 2 is an example of such a program.

1 struct T(i32);
2

3 fn main() {
4 let x = T(123);
5

6 let y = &x; // y holds a reference to x until
7 // the end of the main function,
8 let z = x; // so we get an error here
9 }

Listing 2: Error with lexical lifetimes

This can be fixed by manually restricting the lexical lifetime of y, as shown
in Listing 3. But that is detrimental to the readability of the code and can
be challenging to get right. A better solution, seen in Listing 4, is to use
the new non-lexical lifetimes, which are precise enough to accept the pro-
gram in Listing 2. With non-lexical lifetimes, lifetimes are computed to be
the minimal set of program points needed to satisfy all corresponding con-
straints, rather than a lexical scope and hence the name [2]. The advantage
of non-lexical lifetimes is that they are more flexible: lexical lifetimes usu-
ally last until the end of the containing block, while non-lexical lifetimes aim
to be as short as possible and thus are more accurate and may for example
only last for a couple of statements or only for one branch of an if-statement.
However, this makes them more complicated and harder to understand.
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2.2. Lifetime Constraints

1 struct T(i32);
2

3 fn main() {
4 let x = T(123);
5

6 {
7 let y = &x; // here y is only alive to
8 } // this curly brace
9

10 let z = x;
11 }

Listing 3: Manually restricting lifetime

1 #![feature(nll)]
2

3 struct T(i32);
4

5 fn main() {
6 let x = T(123);
7

8 let y = &x; // since y is never used in this block after here,
9 // it is not alive anymore here

10 let z = x;
11 }

Listing 4: Using non-lexical lifetimes

2.2 Lifetime Constraints

Lifetimes alone are not enough to detect unsafe reference accesses, con-
straints between the lifetimes are also needed. For example, when there
is a reference to a struct with a field that holds another reference, that sec-
ond reference needs to live at least as long as the one to the struct. In the
following example the constraint is implicit and will be inferred by the com-
piler:

fn x_or_y<'a, 'b>(x: &'b Struct<'a>) -> &'b str { .. }

For more control, constraints can also be explicitly written with 'a:'b:

fn x_or_y<'a, 'b>(x: &'a str, y: &'b str) -> &'a str where 'a:'b { .. }

The 'a:'b is commonly called an “outlives relationship”, in this case lifetime
'a outlives lifetime 'b. This means, that whenever a reference with lifetime
'b is alive, so has to be a reference with lifetime 'a.
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2. Background

2.3 Lifetime Errors

Compilation errors generated by the borrow checker use the so-called three
points error message [3]. For example, consider the simple program in list-
ing 5. This example does not compile because of a lifetime error, which is
reported in listing 6.

1 fn main() {
2 let mut x = 4;
3 let y = &x;
4 let z = &y;
5 x = 5;
6 take(z);
7 }

Listing 5: Simple program with lifetime error

The error message points out the first borrowing location (line 3), the forbid-
den usage of the borrowed location (line 5) and the later usage of the borrow
(line 6). However it does not show why the the first borrowing location and
the later usage of the borrow are related, especially when those lines use
completely different variables.

error[E0506]: cannot assign to `x` because it is borrowed
--> src/main.rs:9:5
|

3 | let y = &x;
| -- borrow of `x` occurs here

...
5 | x = 5;

| ˆˆˆˆˆ assignment to borrowed `x` occurs here
6 | take(z);

| - borrow later used here

error: aborting due to previous error

Listing 6: Lifetime error of listing 5

2.4 Polonius

The so called borrow-checker is the part of the compiler which uses life-
times to perform the checks explained in section 2.1, such as checking for
dangling pointers. The borrow-checker works on an intermediate represen-
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2.4. Polonius

tation based on a control-flow graph. Polonius [4], the newest version of the
borrow-checker, is the component that implements the non-lexical lifetime
checks. It uses rules defined in the Datalog language [5] to check for errors.
These rules have been implemented using the Datafrog engine [6], a Rust li-
brary designed to be a fast engine for executing datalog-like rules. Listing 7
shows one of the rules used in Polonius.

loan_live_at(L, P) :-
region_live_at(R, P),
requires(R, L, P).

Listing 7: Datalog rule used in Polonius

The complete set of Polonius datalog rules can be found in appendix A.1.
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Chapter 3

Design

To decide what information exactly we want to display, we collected and
examined code examples with lifetime errors. Based on these findings we
defined a visualization.

3.1 Code Examination
The first step was to collect code examples with lifetime errors to examine
the code and to determine what kind of information would be needed to
understand the errors better. Since we focused on non-lexical lifetime errors,
which are still an experimental feature and not yet in the stable release of
Rust, we did not find many useful examples online. Because of that we
constructed our own examples containing various errors related to lifetimes.

To find out what information would help to understand the error we manu-
ally examined the programs to see what we need to reason about the error.
Then we compared the information we used to reason about the error with
the information given by the error message.

We found that the main reason why the errors are so difficult is that the error
message does not explain how the lines that are reported interact together
to form the lifetime error.

For example, the error message, shown in listing 8, for the code in listing 9
only reports lines 3, 8 and 9, but to understand how lines 3 and 9 are con-
nected we also have to look at lines 5 and 7. However, we can safely ignore
lines 4, 6 and 8.

The collected examples can be found in the collected code directory of the
project repository [7].
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3. Design

error[E0506]: cannot assign to `x` because it is borrowed
--> example3.rs:8:5
|

3 | let y = foo(&x);
| -- borrow of `x` occurs here

...
9 | x = 5;

| ˆˆˆˆˆ assignment to borrowed `x` occurs here
10 | take(w);

| - borrow later used here

error: aborting due to previous error

Listing 8: Error of listing 9

1 fn main() {
2 let mut x = 4;
3 let y = foo(&x);
4 //\ldots
5 let z = bar(&y);
6 //\ldots
7 let w = foobar(&z );
8 //\ldots
9 x = 5;

10 take(w);
11 }

Listing 9: Example 3 of the collected Examples

3.2 Choosing Visualization

While choosing the visualization we considered existing projects. The main
project was Borrow Visualizer for the Rust Language Service [8], which used
the approach of highlighting the state of a selected borrow on the source
code. In this thesis, however we focused on lifetime constraints and the
source code lines that generate the constraints, because we found that this
information is the most helpful for understanding lifetime errors better.

We experimented with different ways to visualize lifetimes and the con-
straints between them and found that the best way to visualize lifetime con-
straints would be a directed graph. We defined nodes for the lifetimes and
constraints and the edges to show the direction of the constraints. This re-
sulted in a graph where, for two lifetimes ’a and ’b and a constraint ’a:’b,
there is a directed edge from node ’a to node ’a:’b, and one from node ’a:’b
to node ’b, as shown in figure 3.1.
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3.2. Choosing Visualization

4

Lifetime R1

x: &’R1

let x = &y;

Lifetime R2

p: &’R2

let p = &x;

Lifetime R3

v: &’R3

let mut v: Vec<&i32> 

R1:R2

R2 may point to R1

generated at line 7: 

let p = &x;

R2:R3

R3 may point to R2

generated at line 9:

v.push(p);

R3:R2

R2 may point to R3

generated at line 9:

v.push(p);

Figure 3.1: Graph with Constraints as Nodes
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Figure 3.2: One Possible Visualization of Lifetimes

The information we want to display in our graph is

• For Lifetimes:

– the name of the lifetime,

– the variable or reference it is associated with,

– the source code line where it starts

• For Constraints:

– the constraint

– the line number where it was generated

– the source code line where it was generated

Another approach that we tried, before choosing the constraints-based visu-
alization, was to represent each lifetime as a bar next to the code, as seen in
Figure 3.2. It soon became clear that this visualization could become quite
confusing with increasing size of code and number of involved lifetimes.
Displaying a lifetime bar also does not answer the fundamental question,
that is why the lifetime has a particular length, and does not end some-
where before. This question is better answered by explicitly stating what
are the constraints between lifetimes, and which line caused them. This is
why we decided to base our visualization on the lifetime constraints instead
of the lifetimes themselves.
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Chapter 4

Implementation

We implemented the visualization described in section 3.2 as a compiler
plug-in, that extracts information from the compiler and displays it to com-
plement borrow-checker error messages. During the implementation one of
the main challenges was to reverse engineer and extract information from
the compiler, as described in the following section.

4.1 Information Extraction
The information we want to display was obtained in multiple steps. As pre-
sented in the following sections we first extracted the constraints involved
in generating the error from the borrow-checker, then we linked those to the
source code via compiler dumps.

4.1.1 Extracting Constraints

To extract the constraints we wrote a modified version of the borrow-checker
algorithm with additional rules to compute the cause of the lifetime error
and ran this over the input and output facts of the original algorithm.

The set of facts on which Polonius operates is quite large even for relatively
simple programs and grows with the size and complexity of the program.
To get a small subset of facts sufficient to generate the error we inverted the
Datalog rules of Polonius, similar to an approach suggested in [2]. To invert
the Polonius rule that computes the error, shown in listing 10, for example,

error(P) :-
invalidates(P, L),
loan_live_at(L, P).

Listing 10: Polonius Rule for Error

13



4. Implementation

we generated a new rule for the right-hand-fact ”invalidates” and for ”loan live at”,
like shown in listing 11.. We called these rules ”inverted” because they work
backwards: given one error they generate the ”invalidates” and ”loan live at”
facts that were needed to generate the error.

expl_invalidates(P, L) :-
expl_error(P),
invalidates(P, L),
loan_live_at(L, P).

expl_loan_live_at(L, P) :-
expl_error(P),
invalidates(P, L),
loan_live_at(L, P).

Listing 11: Inverted Error Rule

To invert a general rule with n facts on the right-hand side, we construct n
new rules, each with an additional fact on the right-hand side for the fact
on the left-hand side of the original rule. This is shown in listing 12.

The complete set of the inverted rules can be found in appendix A.2.

4.1.2 Finding Source
After computing the set of lifetime constraints and regions to be visualized,
the following step was to link them to an appropriate source code line, such
that the user can understand which line caused a particular constraint, or
which declaration introduced a particular lifetime.

Our extraction algorithm returns a tuple consisting of the constraint and
the program point it was reported at for every constraint computed in sec-
tion 4.1.1. Because the same constraint is reported at multiple program
points, we get many tuples for the same constraint. To keep the graph
as simple as possible, we wanted to show every constraint only once. We
found that only showing the earliest occurrence of every constraint is a good
heuristic to identify the line that generated that constraint. We look up the
program point corresponding to that constraint in a compiler internal data
structure to find the associated span of source code.

To link the lifetimes involved in the constraint to the source code a detour
was necessary. We wrote regular expressions to extract the compiler internal
local variables associated with the lifetimes of our constraints from compiler
dumps. Then we could look up these local variables in a compiler internal
data structure to get the corresponding span of source code at which the
variable is defined.
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4.2. Visualizing

A(a_1, a_2, ...) :-
B(b_1, b_2, ...),
C(c_1, c_2, ...),
...

\Downarrow

expl_B(b_1, b_2, ...) :-
expl_A(a_1, a_2, ...),
B(b_1, b_2, ...),
C(c_1, c_2, ...),
...

expl_C(c_1, c_2, ...) :-
expl_A(a_1, a_2, ...),
B(b_1, b_2, ...),
C(c_1, c_2, ...),
...

...

Listing 12: Inversion of a general Rule

4.2 Visualizing

We use the DOT language [9], a graph description language, to define the
graph and the GraphViz [10] software to display it.

One change to the graph design presented in section 3.2 that we made, was
to merge two constraint nodes if one was the inversion of the other, since
this means that the two involved lifetimes are equal, which can be expressed
as a single constraint as shown in figure 4.1.
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4. Implementation

10

Figure 4.1: Merging Constraint Nodes

This simplification made the graph clearer and more readable, because it
reduced the number of nodes and edges by a considerable amount for some
errors.

Figure 4.2 shows the graph the prototype generates for the example in sec-
tion 3.1.
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Figure 4.2: Graph produced by prototype
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Chapter 5

Evaluation

To evaluate the prototype, we ran an automated test to check that we com-
puted the correct constraints and manually examined if the correct source
code lines are displayed.

For the automated test we rerun Polonius with just the subset of constraints
identified in section 4.1.1, to check that the set is actually sufficient to gen-
erate the error. This test was successful for every evaluated example that
contained a borrow-checker error.

To test the identified source code lines we manually examined the code and
noted the lines needed to reason about the error. We then checked that the
lines displayed by the prototype are indeed a super-set of the ones identified
in the previous step.

Given above criteria, table 5.1 shows the results of the evaluation for the
examples collected in section 3.1.

example1.rs ∼
example2.rs ✓
example3.rs ✓
example4.rs ✓
example5.rs ✓
example6.rs ✓

Table 5.1: Evaluation Results

In table 5.1, ✓ means that the graph displays exactly the lines we expected.
∼ says that all the expected lines are shown, but also some additional ones
we did not expect.

Upon further inspection some of the collected examples were determined to
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5. Evaluation

be outside the scope of the thesis because the error they cause is only related
to lifetimes and not produced by the borrow-checker.
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Chapter 6

Future Work

With this thesis we have developed a prototype that complements borrow-
checker error messages with additional information. However there are still
possible improvements and extensions that could be further explored. For
one, the graph of constraints, produced by the prototype, could possibly be
simplified by exploring ways to remove unneeded information like spuri-
ous equalities and anonymous intermediate lifetimes. Second, a IDE-plugin
could be written, to highlight and display the information provided by our
prototype inside the IDE.
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Appendix A

Datalog Rules

A.1 Polonius Rules

error(P) :-
invalidates(P, L),
loan_live_at(L, P).

loan_live_at(L, P) :-
region_live_at(R, P),
requires(R, L, P).

requires(R2, B, P) :-
requires(R1, B, P),
subset(R1, R2, P).

requires(R, B, Q) :-
requires(R, B, P),
!killed(B, P),
cfg_edge(P, Q),
region_live_at(R, Q).

subset(R1, R2, P) :-
outlives(R1, R2, P).
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A. Datalog Rules

subset(R1, R3, P) :-
subset(R1, R2, P),
subset(R2, R3, P).

subset(R1, R2, Q) :-
subset(R1, R2, P),
cfg_edge(P, Q),
region_live_at(R1, Q),
region_live_at(R2, Q).

A.2 Inverted Rules

expl_loan_live_at(L, P) :-
expl_error(P),
invalidates(P, L),
loan_live_at(L, P).

expl_requires(R, L, P) :-
expl_loan_live_at(L, P)
region_live_at(R, P),
requires(R, L, P).

expl_requires(R1, B, P) :-
expl_requires(R2, B, P)
requires(R1, B, P),
subset(R1, R2, P).
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A.2. Inverted Rules

expl_subset(R1, R2, P) :-
expl_requires(R2, B, P)
requires(R1, B, P),
subset(R1, R2, P).

expl_requires(R, B, P) :-
expl_requires(R, B, Q),
requires(R, B, P),
!killed(B, P),
cfg_edge(P, Q),
region_live_at(R, Q).

expl_outlives(R1, R2, P) :-
expl_subset(R1, R2, P),
outlives(R1, R2, P).

expl_subset(R1,R2, P) :-
expl_subset(R1, R3, P),
subset(R1, R2, P),
subset(R2, R3, P).

expl_subset(R2, R3, P) :-
expl_subset(R1, R3, P),
subset(R1, R2, P),
subset(R2, R3, P).

expl_subset(R1, R2, P) :-
expl_subset(R1, R2, Q),
subset(R1, R2, P),
cfg_edge(P, Q),
region_live_at(R1, Q),
region_live_at(R2, Q).
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