
Abstract Read Permission Support
for an Automatic Python Verifier

Bachelor Thesis
Benjamin Schmid

Friday 16th March, 2018

Advisors: Prof. Dr. Peter Müller, Vytautas Astrauskas, Marco Eilers

Department of Computer Science, ETH Zürich

Abstract

In program verification there are a lot of cases, like for example the veri-
fication of absence of data races, where one needs to reason about access
to memory locations. By using verification based on implicit dynamic
frames [14], a logic based on access permissions, one can reason about
such kind of problems.

In concurrent programs often multiple readers should be able to access a
location at the same time. For this, it is necessary to split the permission
such that each thread has some permission. One way of doing this, is to
use rational numbers in the range [0, 1] to model permissions, where 1 is
a full permission granting write access and > 0 permission grants read
permission.

When choosing values for access permissions it is sometimes difficult to
choose a suitable permission value to represent a read permission. Ab-
stract read permissions [4, 10] allow specifying some read permission to
a resource (e.g., a memory location) without choosing a concrete per-
mission amount. This value is suitably constrained by the verifier such
that it is positive but less than the currently held permission amount.
Thus, for example in a method call, the caller does not transfer all held
permission and does not need to havoc any information.

The Viper verification framework [12] supports reasoning based on im-
plicit dynamic frames. In this project we implemented abstract read per-
missions for Viper. We describe a new encoding based on new insights
published by Boyland et al. [4], which is more powerful than existing
approaches and allows to verify more complex examples. Support for
abstract read permissions was added to Nagini [7], a front-end for Viper
to verify statically-typed Python programs.

i

Acknowledgements

I would like to thank my supervisors Vytautas Astrauskas and Marco
Eilers for their immense support during the project. Their feedback
and inputs were very valuable and our weekly meetings provided many
interesting and enlightening discussions and helped me to stay motivated.
I would also like to thank Prof. Dr. Peter Müller for the opportunity to
work on this interesting project.

ii

Contents

Contents iii

1 Introduction 1
1.1 Project Goals . 4

2 Background 5
2.1 Permission Based Verification 5
2.2 Viper . 6
2.3 Nagini . 10
2.4 ARP in Chalice . 11

3 Methodology 13
3.1 Extended Viper Language . 13
3.2 Encoding . 14

3.2.1 Simple ARP Encoding 14
3.2.2 Log-based ARP Encoding 16
3.2.3 Constraint System . 19
3.2.4 Log Update . 22
3.2.5 Constraining . 23

3.3 Quantified Permissions . 27
3.4 Desugaring . 31

3.4.1 Methods . 32
3.4.2 Method Calls . 33
3.4.3 While Loops . 34
3.4.4 Fold / Unfold . 36
3.4.5 Inhale / Exhale . 36

4 Implementation 39
4.1 Viper to Viper Translation . 39
4.2 Normalization . 41

iii

Contents

4.3 Optimizations . 42
4.4 Error Back Translation . 43
4.5 Plugin System . 44
4.6 Nagini . 45
4.7 Limitations . 46

5 Evaluation 47
5.1 Expressiveness . 47
5.2 Custom Parser for Performance Evaluation 49
5.3 Performance . 50

5.3.1 Examples without ARP 51
5.3.2 Examples with ARP . 53
5.3.3 Nagini . 53

6 Conclusion 57

Bibliography 59

A Appendix 61
A.1 First Example from Constraint Paper 61

iv

Chapter 1

Introduction

Software is becoming increasingly parallel. Concurrent programs are difficult
to get right and therefore, one wants to be able to verify their correctness.
Besides functional correctness, this also includes the absence of data races.
This requires us to be able to reason about heap access. One approach to
this is to use deductive verification based on a permission logic. In deductive
verification, programs are verified according to a specification given by the
user. To make it scalable the program is being verified modular during verifi-
cation: each method is verified independently and only method contracts are
considered for method calls.

One approach to modular verification with the ability to reason about memory
access are implicit dynamic frames [11, 14], a permission logic using fractional
access permissions to resources such as memory locations. Each memory lo-
cation has a total of one permission associated and this permission can be
split between methods. A thread can write to a memory location if and only
if it holds the full permission to that memory location. To read the location
it needs to hold some positive permission amount. If a thread holds some
positive permission to a memory location, then no other thread can have full
permission to that memory location. Thus, the location cannot be written by
any other thread. On the other hand, if no permission is held the location
can be changed by another activation record at any moment and the thread
cannot retain any information about the content of the memory location. In
this way, implicit dynamic frames allow reasoning about concurrent programs
and enables verification of absence of issues such as data races.

It is sometimes difficult to choose suitable permission amounts if a read per-
mission has to be specified. We consider the example in Listing 1 and 2 to
illustrate the problem (taken from the 2013 VMCAI paper by Heule et al. [10]).
We have a class Expr (Listing 1) representing a node in an arithmetic expres-
sion. For simplicity we assume the fields left and right to be immutable and
thus no permission is needed to access them.

1

1. Introduction

The method eval evaluates the node in the given state. It needs to be able
to read the field s.map which models a mapping from variables to values. The
method will not change it and thus only some positive permission amount is
needed. The method in the class Add has the same method contract as the
method it overrides.

1 class Expr {
2 ...
3 method eval(s: State) returns (res: Int)
4 requires acc(s.map, π) && s.map != null
5 ensures acc(s.map, π)
6 ...
7 }

Listing 1: Class Expr represents a node in an arithmetic expression.

1 class Add extends Expr {
2 var left, right: Expr
3

4 method eval(s: State) returns (res: Int)
5 requires acc(s.map, π) && s.map != null
6 ensures acc(s.map, π)
7 {
8 leftVal := left.eval(s)
9 rightVal := right.eval(s)

10 return leftVal + rightVal
11 }
12 }

Listing 2: Example illustrating problem of choosing suitable read permission:
Class Add. Method eval has to be able to read s.map but it is not clear how
to choose the permission amount.

The problem is now how to choose π, i.e., the amount of permission that should
be transferred from the caller to the callee.

Choosing a concrete value for π (e.g., π = 1/2) does not work. While it will
give the callee permission to read s.map it is not possible for the caller to
retain the assumption s.map != null across the method call. The reason is
that the caller itself only has a permission of 1/2 and thus it has to give up
all permission. All information about s.map is therefore havocked. Hence, the
second call to right.eval(s) will fail because the assumption s.map != null
had to be dropped. Another problem is that it would not be possible to call
eval from a context where the caller holds some permission but less than 1/2.

2

Intuitively this should be possible as 1/2 in this case just represents a read
permission and the chosen fraction is rather arbitrary.
Another approach are counting permissions [3]. The permission is split into
infinitesimally small, indivisible units. Holding at least one unit allows to read
the associated location. While this will allow to call eval from any context
(by specifying π = rd(1), i.e., a single unit) it will still not work due to the
first problem of giving up all permission.
What one really wants to specify is that the location has to be readable. As
long as the assertion is well-formed a suitable, positive permission amount
exists. Just specifying some read permission also removes the need to choose
an arbitrary value for the permission which has no further meaning (besides
granting read access). In the 2013 VMCAI paper, Heule et al. [10] present
abstract read permissions (abbreviated as ARP). The paper introduces an rd
qualifier resulting in the specification shown in Listing 3. rd specifies that a
read permission is needed. Each rd qualifier will be replaced by a suitable
value which is positive and strictly less than the amount held by the caller.
However, it is not necessary for the verifier to choose a specific value. It suffices
to automatically constrain it such that it is positive and small enough to leave
the caller with some permission [1, 4]. An interesting feature of rd is that in
different places it can refer to different permission amounts. For example, in
two subsequent method calls it does not refer to the same amount. However,
a common pattern is that the callee temporarily needs read access to some
structure. This pattern is supported by making rd refer to the same value
in a called method’s specification during the call, which allows the callee in
the postcondition to give back all permission which was transferred by the
precondition. This is important for the caller to be able to get back the full
permission.

1 method eval(s: State) returns (res: Int)
2 requires acc(s.map, rd) && s.map != null
3 ensures acc(s.map, rd)

Listing 3: Contract for example in Listing 2 using rd, an abstract read per-
mission.

Abstract read permissions were first implemented in Chalice [11]. In this
project we describe a new encoding for abstract read permissions which allows
to verify more usages and does not rely on ad-hoc solutions. The new encoding
is based on a theoretical generalization of ARP which provides a new, more
general sufficient condition for a sound encoding [1, 4].
The new encoding was implemented as an extension to the Viper verifica-
tion framework [12] which is being developed at ETH Zurich. Viper consists
of an intermediate language and back-ends used to verify this intermediate

3

1. Introduction

language. It allows fast prototyping of new verification approaches and can
be used for front-ends in different languages (such as VerCors [2] for Java
or Nagini [7] for Python). The implemented extension provides an extended
Viper language which is translated into normal Viper and thus can be verified
using the existing infrastructure.

The added features were made available in Nagini [7], a front-end for Viper
to verify statically-typed Python programs.

We evaluated the new encoding by implementing examples from the Chal-
ice2Viper [6] test suite and some examples which were not possible in Chalice.
Furthermore, the performance of the encoding was evaluated and the effect of
using abstract read permission on the verification time was measured.

Outline. Chapter 2 introduces necessary background for the following parts.
The new encoding is presented in Chapter 3. In Chapter 4 we describe the
implementation of the translation from the extended Viper language to nor-
mal Viper. Finally, in Chapter 5, the new encoding is evaluated in terms of
performance and new examples which can now be verified.

1.1 Project Goals
This project had the following goals:

1. Design an extension to the Viper language to support abstract read
permissions. This includes rd qualifier in access predicates, counting
permissions and wildcard permissions.

2. Specify new syntax for Nagini to use abstract read permissions.

3. Develop a translation from the extended Viper language to the Viper
language. It has to be possible to map errors back to the original pro-
gram. The translation should be composable.

4. Implement support for abstract read permissions in Nagini. It should
be possible to model the first example from the 2014 FTfJP paper by
Boyland et al. [4].

5. Enhance the extended Viper language to support abstract read permis-
sions in some instances of quantified expressions.

6. Make quantified expressions available in Nagini.

7. Evaluate the implementation using examples from the Chalice2Viper [6]
test suite.

4

Chapter 2

Background

This chapter introduces necessary background on which the next parts build
upon. In Section 2.1 we give a short introduction to permission-based ver-
ification. Section 2.2 describes the structure of Viper programs. Nagini is
shortly introduced in Section 2.3. Finally, Section 2.4 describes the existing
ARP encoding in Chalice.

2.1 Permission Based Verification
We will first look at two examples of problems which can be solved with the
verification approach described below: prevention of data races as part of
verifying concurrent problems as seen in Chapter 1 and the framing problem.
A data race is defined as some memory location being accessed concurrently by
several threads in an unsynchronized way where at least one of the accesses is a
write. If one of them is a write the behavior of the whole program depends on
the exact order of memory accesses and the outcome is in many programming
languages not defined.

Framing is an important problem in modular verification, which is needed to
be able to scale to large programs. In modular verification only pre- and post-
conditions of called methods are considered for verification and the method
body is ignored. All methods are verified separately in isolation from each
other. Framing is the problem of which assumptions can be kept across method
calls. Without any additional information the caller does not know which heap
locations may have been changed by the callee. Specifying all unchanged mem-
ory locations is not always possible and in cases where it would be possible it
does not scale to larger programs. Furthermore, it would not be modular to
always have to mention all memory locations.

Verification based on implicit dynamic frames [11, 14], a permission-based
approach, enables framing and verification of concurrent programs, including

5

2. Background

verifying absence of data races. We consider implicit dynamic frames with
fractional permissions, where permissions are modeled as rational numbers
in the range [0, 1]. Each memory location has one full permission associated
with it. This permission can be split infinitely and it can be held by methods,
loops, locks and monitors. To be able to read a memory location, a method
invocation or loop iteration has to hold some positive amount of permission.
To write to a memory location the full permission (a permission amount of 1)
is needed.

Required permissions are specified in pre- and postconditions for methods and
in loop invariants for loops. Upon calling another method or entering a loop
the requested permission amount is transferred (after checking that enough
permission is held by the caller/surrounding verification scope).

If the full permission is held for a specific location one can be sure that no
other method holds any permission to this location and it can be modified
without the danger of data races. Further, if some positive amount is held
the value cannot be changed by a called method or another thread as it is not
possible for the other method/thread to hold a full permission. This allows
framing because information can be kept across a method call without the
need to explicitly specify all unchanged locations. On the other hand, if the
caller holds no permission, the callee may have a full permission and thus the
caller has to havoc all knowledge about this memory location.

Listing 4 shows an example how permissions can be used. acc(x.f) is used
to represent write permission to the field f of object x. acc(x.f, 1/2) is the
same but only for half the permission which only grants read access.

2.2 Viper

The Viper verification framework [12] is a verification infrastructure based
on implicit dynamic frames. It is being developed at ETH Zurich. Viper
provides an intermediate language which can be used to implement front-ends
for different languages (e.g., Nagini for Python [7], VerCors [2] for Java). The
intermediate language used by Viper (subsequently called Viper language)
is human readable and can thus be written manually. Viper provides two
back-ends to verify programs. One is based on symbolic execution, and the
other is based on verification condition generation. This section introduces
the main features of Viper which are relevant to this project. For a more
detailed discussion of Viper see the paper introducing Viper [12].

A Viper program consists of some fields, predicates, functions, methods and
domains. Before we can describe these parts it is necessary to explain how
permissions to resources are managed.

6

2.2. Viper

1 method calleeRd(x: Ref)
2 requires acc(x.f, 1/2)
3 ensures acc(x.f, 1/2)
4 {
5 x.f := 4 // fails, not enough permission
6 }
7

8 method calleeWrite(x: Ref)
9 requires acc(x.f)

10 ensures acc(x.f)
11 {
12 x.f := 42 // succeeds
13 }
14

15 method client(x: Ref)
16 requires acc(x.f)
17 ensures acc(x.f)
18 {
19 x.f := 42 // we have full permission
20 calleeRd(x)
21 assert x.f == 42 // succeeds, body of calleeRd is ignored
22 calleeWrite(x) // only pre- and postconditions are considered
23 assert x.f == 42 // fails, x.f might have been changed
24 }

Listing 4: Example of permissions. Comments show which statements succeed
and which fail.

To manage permissions to resources, assertions can be exhaled and inhaled.
The first assumes the stated assertion and adds all permissions mentioned to
the current state. Exhaling does the opposite: it asserts the stated assertion
and removes permissions.

Access predicates are used to specify a permission amount to a certain loca-
tion. A required permission is specified using acc(x.f, perm_amount) to access
a field. As we will see there are also permissions to predicates, which are spec-
ified by acc(pred(x, y, z), perm_amount) (where x, y and z are parameters of
the predicate called pred). perm_amount can be any value between 0 (written
as none, no access at all) and 1 (written as write, granting write permission).
acc(x.f, write) can be written as acc(x.f). If multiple access predicates to
the same location are present the permission values will be summed up (e.g.,
acc(x.f, 1/2) && acc(x.f, 1/2) will grant write access). When referring to
location accesses we mean both predicates and fields.

7

2. Background

It is important to differentiate between expressions and assertions. An asser-
tion is a boolean expression, but can in contrast to other expressions contain
access predicates and can be used in specifications (e.g., assert, inhale and
exhale statements). An assertion without access predicates is called a pure
assertion.

A field represents a typed memory location on the heap. Every reference
has all fields declared in the program and there is no notion of a class. A
field access is always of the form x.f for a reference x and a field f. The
reference can be any reference typed expression, for example a function result
(get_from_array(array, 0).f) or another field access (x.r.f).

Predicates can be used to encapsulate assertions. They can have parameters
which can be used in its body. Permissions cannot only be held to a certain
memory location but also to a predicate. Two predicate instances of the same
predicate are the same if and only if they have the same argument values.
This is also the case if the argument which differs is not mentioned in the
body at all (see Listing 5).

If a method holds permissions to a predicate the latter can be exchanged for
its body. This is called unfold in Viper. The reverse is also possible: with
fold a predicate can be recreated if the assertion in its body holds in the
current state. When exchanging a predicate for its body the permission to
the predicate is exhaled, that is it is asserted and the permissions are removed,
and the body is inhaled, i.e., it is assumed and the permissions are added. The
analogue holds for exchanging the body for the predicate. If only a partial
permission to a predicate is held the permissions in the body will be multiplied
by this value.

The explicit fold and unfold allows to specify recursive predicates. Predicates
are never folded or unfolded automatically.

Functions abstract over a pure expression. They can have several parameters
and have exactly one return value. As the expressions are pure they cannot
change the state of the program and can therefore be used in assertions. It
is necessary to specify the permissions required to evaluate the expression in
the precondition of a function but as they are pure it is not possible to lose
any permission. Therefore, they will always return all obtained permissions
without the need to explicitly mention it in the postcondition.

Domains are a way to specify custom types and axiomatize a mathematical
domain. One example is the encoding of a linked list [5]. A domain consists
of several functions and axioms. The functions and axioms are global and can
for example also mention or refer to functions from other domains.

Methods are the core part of a Viper program as they specify the program
behavior which is verified. A method can have several parameters as well

8

2.2. Viper

1 field f: Int
2

3 predicate pred(x: Ref, i: Int)
4 {
5 acc(x.f, 1/2)
6 }
7

8 method client(x: Ref)
9 requires pred(x, 1)

10 ensures pred(x, 2)
11 {
12 var x: Int
13 assert acc(pred(x, 1)) // ok
14 assert acc(pred(x, 2)) // fails, pred(x, 1) != pred(x, 2)
15 x := x.f // fails, no permission to x.f
16 unfold pred(x, 1) // trade for predicate body
17 x := x.f // ok
18 assert acc(pred(x, 1)) // fails, was exchanged
19 fold pred(x, 2) // trade for predicate
20 x := x.f // fails again
21 assert acc(pred(x, 1)) // fails, pred(x, 1) != pred(x, 2)
22 assert acc(pred(x, 2)) // ok
23 }

Listing 5: Example of predicates in Viper and how they work.

as several return values. Furthermore, pre- and postconditions can be speci-
fied (the example in Listing 5 specifies that a full permission to the predicate
‘pred‘ is required and ensured). At the beginning of a method all precondi-
tions are inhaled (i.e., assumed and permissions are added) and at the end all
postconditions are exhaled (i.e., asserted and permissions are removed).

The body of a method is a series of statements. Most statements are well
known from regular imperative languages: local variable declarations, vari-
able assignments, conditionals, while loops and method calls. Other possible
statements which are Viper specific are inhales, exhales or the previously men-
tioned folds and unfolds.

The inhale and exhale statements are used to manage permissions. For exam-
ple, inhale acc(x.f, 1/2) will add half a permission to the memory location
pointed to by x.f.

As mentioned before all methods are verified in isolation. If another method
is called its body is ignored and only the contracts are considered. Upon a
method call the preconditions will be exhaled and the postconditions will be

9

2. Background

inhaled. It is also possible to specify methods without a body to model calls
to external code, for example a system call or a call into a library.

Expressions are similar as in many well known imperative languages. Any
boolean typed expression can be used as an assertion in Viper. Additionally,
assertions can also contain additional, Viper specific features such as access
predicates, implication, quantifier, perm and old expressions. Implications are
a boolean assertion of the form a ==> b where a is a boolean expression and
b is an assertion. A perm expression allows to access the current permission
amount which is held to a certain location. For example, perm(x.f) will return
the held permission amount to the field f on object x. Old expressions allow to
refer to a previous heap state: old(expression) will evaluate the expression in
the heap state at the beginning of the method. old[labelname](expression)
refers to the heap state at the specified label. A label is written as label
labelname and can be inserted anywhere in the body of a method.

Two kinds of quantifiers can be used in assertions: forall a: Type, ... ::
assertion and exists a: Type, ... :: assertion. The first one, a universal
quantifier, evaluates to true if the assertion is true for all possible values of
the specified variables and the existential quantifier will be true if at least
one possible assignment of the specified variables makes the assertion true.
Universal quantifiers are often used in combination with a set or sequence
in the form forall r: Ref :: r in s ==> acc(r.f). Note that forall r: Ref
:: acc(r.f) is equivalent to false as null is included in the quantification and
it is not possible to hold any permission to null.f.

Most statements of Viper can be represented by explicit inhales and exhales.
For example, a method call is semantically equivalent to exhaling the callee’s
precondition and inhaling the postcondition.

Viper already contains an approach to constrain read permissions by using so-
called constraining blocks. It is very easy to use them in an unsound way and
therefore, they are rarely used. It is similar to the encoding we will describe
in Section 3.2.1. The constraining block is used in Chalice2Viper to constrain
read permissions in method calls.

2.3 Nagini

Nagini is a front-end for Viper to verify concurrent, statically-typed Python
programs. The program under verification is encoded to a Viper program and
then verified using one of the back-ends available for Viper. Nagini provides
a library enabling a specification language similar to the one used by Viper.
This specification languages lifts many concepts such as pure functions and
predicates to Python.

10

2.4. ARP in Chalice

2.4 ARP in Chalice
Chalice [11] is a verification language based on implicit dynamic frames. It uses
access predicates and it already supports ARP in some cases. The encoding
for ARP used by Chalice [10] reorders assertions to better constrain used
read permissions. If an assertion is inhaled or exhaled, the occurring access
predicates are split into three groups. The first group does not contain rd. The
second group are access predicates where rd does occur but only in positive
positions. The third group consists of those access predicates where rd occurs
but in a negative position.

The access predicates are then processed in order of their group. The first
group can be exhaled/inhaled as normal. For the second group rd will be
constrained. We consider an access predicate acc(x.f, p) being exhaled where
p is the permission expression containing rd. p can be rewritten as p' + n *
rd such that p' does not contain any rd anymore. A constraint for n * rd <
perm(x.f) - p' is then emitted. The third group where rd occurs in a negative
position is processed last and does not emit any new constraints.

In order to still be able to verify some examples where rd occurs in a negative
position an ad-hoc solution is used where the read permission is constrained
to be smaller than a very small constant. While this does allow to verify some
examples it is for example not possible to encode the first example from the
2014 FTfJP paper by Boyland et al. [4]. This example uses a lock invariant
of 1 - n * rd to model a read/write lock.

The next chapter describes our new approach which is able to constrain rd in
negative positions and does not rely on such ad-hoc solutions.

11

Chapter 3

Methodology

This chapter describes our new encoding of ARP. In Section 3.1 we show
new syntax which is supported by the extended Viper language. We present
two different encodings to support ARP. The simple encoding is described in
Section 3.2.1. This encoding is in most cases faster than the second one but it
can only handle some specific cases. Section 3.2.2 describes our new log-based
approach which has much less restrictions. Section 3.3 explains how quantified
permissions can be constrained. To support the new approach it is necessary
to desugar parts of the Viper program. Section 3.4 shows how certain Viper
constructs can be desugared in order to enable our encoding.

3.1 Extended Viper Language
The extended Viper language which we implemented in this project adds sup-
port for several types of abstract read permissions. Supported are a read
qualifier (written as rd), counting permissions (written as rdc(n) for a posi-
tive integer n), wildcard permissions (written as rdw) and token permissions
(written as rd_token(tk) and rd_token_fresh(tk) where tk is the token used).
The read qualifier and counting permissions have already been discussed in
Chapter 1. Wildcard and token permissions are described in the next para-
graphs.

A wildcard permission denotes any positive amount which is small enough
such that no information needs to be havocked (e.g., in a method call it is
smaller than the currently held permission by the caller). For each occurrence
of a wildcard permission a new value is used and thus it can be constrained
without the danger of becoming unsound (Section 3.2.3 describes why this is
the case). The downside is that it is not possible to give back the same per-
mission amount which was transferred in the precondition. If the precondition
requires a wildcard permission amount to some location and the postcondition
gives it back, the caller cannot assume that those two amounts are the same.

13

3. Methodology

Therefore, the caller ‘loses’ some permission and is not able to get back the
whole permission.

Viper does not provide primitives for forking and joining threads. However,
forking and joining can easily be encoded. When a method is forked, its
precondition is exhaled. Once the thread is joined, the postcondition of the
method is inhaled. In order to be able to get back the whole permission once a
method is joined it is necessary to use the same value for rd in the precondition
and the postcondition. This poses a problem if the thread is not joined in the
same method as it was forked because the methods are verified separately.
In order to solve this, it is necessary to associate the used read permission
with the thread and provide syntax to refer to this permission amount. This
concept is called a token permission. The thread instance is represented by
a token and the read permission associated with the token is represented as
rd_token(tk) where tk is the token (represented by a reference). When a
thread is forked rd_token_fresh(tk) is used to be able to constrain the value.
Later only rd_token(tk) may be used. The reasoning behind this distinction
is explained in Section 3.2.3.

rd used in a predicate always refers to the same value which is represented as
a constant parameterless function globalRd. To refer to the read permission
used in predicates, a function globalRd can be used explicitly. In predicates
the normal rd can be used and it will refer to this function. The short form
globalRd (without parentheses) is available as well.

For functions the already present wildcard qualifier can be used as functions
will always return all received permission and therefore it is not necessary to
be able to refer to the permission value in the postcondition.

3.2 Encoding
3.2.1 Simple ARP Encoding
A simple encoding of ARP is to add an assumption stating that the permission
expression containing rd is positive and if some permission is held it is less
than the currently held permission. This assumption is added directly before
a method call or a while loop which uses ARP. So-called ghost parameters are
used to specify the value to use for rd in the callee. Ghost parameters are
parameters which are only used for verification but do not influence program
behavior. This encoding is a simplified version of the encoding presented in
the 2013 VMCAI paper by Heule et al. [10].

This works in some cases (see Listing 6 and 7). In the example the callee spec-
ifies an access permission of acc(x.f, rd). The caller successfully constrains
the read permission used in the call to be smaller than the currently held per-
mission. But the encoding can be unsound in some other cases where rd is in

14

3.2. Encoding

1 method callee(x: Ref)
2 requires acc(x.f, rd)
3 ensures acc(x.f, rd)
4

5 method client(x: Ref)
6 requires acc(x.f, rd)
7 ensures acc(x.f, rd)
8 {
9 callee(x)

10 }

Listing 6: Example we use for the simple ARP encoding. client and callee
both specify a read permission to x.f. Upon calling callee the calling method
will not give up all permission it holds.

1 method callee(x: Ref, callee_rd: Perm)
2 requires acc(x.f, callee_rd)
3 ensures acc(x.f, callee_rd)
4

5 method client(x: Ref, client_rd: Perm)
6 requires acc(x.f, client_rd)
7 ensures acc(x.f, client_rd)
8 {
9 var call_rd: Perm

10 assume none < call_rd
11 assume none < perm(x.f) ==> call_rd < perm(x.f)
12 callee(x, call_rd)
13 }

Listing 7: Encoding for Listing 6. The read permission which is used for the
call is constrained to be smaller than the currently held amount.

a negative position (see Listing 8 and 9). In this example the callee specifies a
precondition of acc(x.f, rd) && acc(x.f, 1/2 - rd) which results in a total
required permission of 1/2. The caller only holds a permission of 1/4 and
thus should not be able to call the method. The emitted constraints are then
(slightly simplified) call_rd < perm(x.f) and 1/2 - call_rd < perm(x.f). As
perm(x.f) is 1/4 we have call_rd < 1/4 and 1/2 - 1/4 < call_rd and thus
call_rd < 1/4 < call_rd which is false.

After false is assumed everything can be proven: a → b ⇐⇒ ¬a ∨ b and thus
false → anything ⇐⇒ ¬false ∨ anything ⇐⇒ true ∨ anything ⇐⇒ true.
Hence, as soon as false is assumed the verification becomes unsound as wrong
inputs can be ”proved” to be correct.

15

3. Methodology

1 method callee(x: Ref)
2 // should be equivalent to acc(x.f, 1/2)
3 requires acc(x.f, rd) && acc(x.f, 1/2 - rd)
4 ensures acc(x.f, rd) && acc(x.f, 1/2 - rd)
5

6 method client(x: Ref)
7 requires acc(x.f, 1/4)
8 ensures acc(x.f, 1/4)
9 {

10 // this call should not verify as not enough permission is held
11 callee(x)
12 }

Listing 8: Example which is unsound if encoded with the simple ARP encod-
ing.

There are some properties which guarantee that a constraint system stays
sound [4]: the variables in constraints have to be ordered and variables may
only be constrained by a larger variable according to the partial order (see
Section 3.2.3 for details). If the above encoding is used for non-trivial expres-
sions (e.g., where rd is in a negative position) the ordering condition may be
violated. The encoding we describe in Section 3.2.2 will use these properties.

If rd is only used positively and in isolation (i.e., not in a sum or multiplica-
tion, e.g., acc(x.f, rd)) this encoding is sound as the value being constrained
is always newer than the value being used to constrain from above. If a vari-
able is newer it can always be placed below all older variables in the partial
order. Thus, the ordering condition can be maintained. For a more detailed
explanation of the soundness of this approach we refer to the 2013 VMCAI
paper by Heule et al. [10].

3.2.2 Log-based ARP Encoding
We present now an encoding which builds on the ordering constraint and al-
lows to encode ARP in many interesting uses. The encoding was initially
sketched by Vytautas Astrauskas [1]. All further explanations in this Sec-
tion 3.2 refer to this log-based approach. The basic idea is to use a log to keep
track of how a permission is constructed (i.e., what part are constants or some
kind of ARP). If values are only constrained by larger values according to some
partial order it is guaranteed that the constraints stay sound [4]. By using
a log to keep track of the permission composition it can be checked that all
assumptions observe the ordering constraint and are sound. How exactly the
value can be constrained is explained in Section 3.2.5. Unfortunately, to be
able to accurately update the log and constrain ARP, many Viper constructs
have to be desugared (see Section 3.4).

16

3.2. Encoding

1 method callee(x: Ref, callee_rd: Perm)
2 requires acc(x.f, callee_rd) && acc(x.f, 1/2 - callee_rd)
3 ensures acc(x.f, callee_rd) && acc(x.f, 1/2 - callee_rd)
4

5 method client(x: Ref, client_rd: Perm)
6 requires acc(x.f, 1/4)
7 ensures acc(x.f, 1/4)
8 {
9 var call_rd: Perm

10 assume none < call_rd
11 assume none < perm(x.f) ==> call_rd < perm(x.f)
12 assume none < perm(x.f) ==> 1/2 - call_rd < perm(x.f)
13 // equivalent to
14 // call_rd < 1/4
15 // 1/2 < 1/4 + call_rd <==> 1/4 < call_rd
16 // thus we have call_rd < 1/4 < call_rd <==> false
17 // therefore, the call verifies despite not having enough permission
18 callee(x, call_rd)
19 }

Listing 9: Encoding for Listing 8. As the read permission is in a negative
position it is constrained from above and from below which results in assuming
false.

1 method callee(x: Ref)
2 requires acc(x.f, write - rd) && acc(x.f, rd)
3 ensures acc(x.f, write - rd) && acc(x.f, rd)
4

5 method client(x: Ref)
6 requires acc(x.f)
7 ensures acc(x.f)
8 {
9 callee(x)

10 }

Listing 10: In this example it is necessary to know the composition of the
current permission in order not to inhale an unsound assumption.

The example in Listing 10 shows an example where the verification becomes
unsound if the composition of the current permission is not taken into account.
After having constrained none < write - rd and exhaling the first conjunct,
the method client is left with a permission amount of rd. For the second
conjunct a constraint of rd < perm(x.f) == rd is introduced. This is equiva-
lent to rd < rd which in turn is equivalent to false. The second constraint

17

3. Methodology

cannot be added without being unsound. It is therefore not always possible
to constrain everything and be sound at the same time.

To be able to keep track of the composition of a permission a log is kept. The
log will be updated each time some permission is added or removed. In order to
correctly log permissions and constrain ARP soundly it is necessary to desugar
many Viper constructs into explicit inhales and exhales (see Section 3.4). The
next paragraphs will explain why desugaring and log-keeping are necessary in
order to soundly verify some examples.

1 method callee(x: Ref)
2 requires acc(x.f, 1/4 - rd) && acc(x.f, 4 * rd)
3 ensures acc(x.f, 1/4 - rd) && acc(x.f, 4 * rd)
4

5 method client(x: Ref)
6 requires acc(x.f, 1/2)
7 ensures acc(x.f, 1/2)
8 {
9 // assume none < 1/4 - rd

10 // assume 4 * rd < perm(x.f)
11 callee(x) // method call requiring desugaring
12 }

Listing 11: In order to verify this example it is necessary to desugar the
method call into explicit inhales and exhales.

1 method client(x: Ref)
2 requires acc(x.f, 1/2)
3 ensures acc(x.f, 1/2)
4 {
5 // assume none < 1/4 - rd
6 exhale acc(x.f, 1/4 - rd)
7 // assume 4 * rd < perm(x.f)
8 exhale acc(x.f, 4 * rd)
9 inhale acc(x.f, 1/4 - rd)

10 inhale acc(x.f, 4 * rd)
11 }

Listing 12: Example from Listing 11 desugared. The method call is replaced
by two exhales for the precondition and two inhales for the postcondition.

Listing 11 shows an example where it is not possible to constrain rd correctly
without desugaring. Without desugaring all constraints have to be applied
before the call in line 11. The first conjunct results in none < 1/4 - rd which

18

3.2. Encoding

is equivalent to rd < 1/4. The second conjunct gives us 4 * rd < 1/2 or rd
< 1/8. In total a permission of 1/4 - rd + 4 * rd == 1/4 + 3 * rd will be
exhaled. The constraint of rd < 1/8 is not enough to be able to verify the
example as the permission held in the method client is smaller than the
maximal possible permission amount being exhaled: 1/2 == 4/8 < 1/4 + 3 *
1/8 == 5/8.

To be able to sufficiently and soundly constrain the read permission it is nec-
essary to add constraints between exhaling the two conjuncts (see Listing 12).
The first constraint remains none < 1/4 - rd. Then acc(x.f, 1/4 - rd) is
exhaled and the method is left with 1/4 + rd. For the second conjunct the
constraint is now 4 * rd < 1/4 + rd or rd < 1/12. It is now possible to verify
the example: 1/2 == 6/12 >= 1/4 + 3 * 1/12 == 6/12. If the exhale is part
of a method contract it is not possible to add new constraints between the
conjuncts.

For each verification scope a new permission typed local variable is created.
Each usage of rd is replaced by this variable. As we will see it is possible to
add constraints for this value each time it is used. For methods this variable
is added as an additional parameter because conceptually the value is defined
by the caller of the method. A new variable will be used for while loops and
call sites of methods.

To encode counting permissions a constant parameterless function epsilonRd
is used to represent the unit permission. rdc(n) will be translated to n *
epsilonRd(). For each occurrence of a wildcard permission rdw a new variable
is created and constrained. This new variable is only used once and can never
be reused.

3.2.3 Constraint System
As mentioned above, if all used variables are ordered the constraint system is
guaranteed to stay sound if variables are only constrained by variables which
are larger according to a chosen partial order [4]. This prevents constraints
which are not satisfiable like for example a < a or a < b ∧ b < c ∧ c < a.

Hence, before a constraint rd < perm(x.f) can be inhaled it has to be checked
that perm(x.f) contains at least one part which is larger than the rd which is
being constrained. For this the composition of the currently held permission
has to be known. A log is used which stores the composition of all permissions
to all locations.

For the log we use a list of tuples <reference: Ref, field_id: Int, level:
Int, permission: Perm>. The reference represents the object on which the
field is accessed. Each field has a unique identifier which is modeled as global,
unique integer constants. The level is used to ensure that the partial order is
obeyed. The permission represents the amount of permission which is added/

19

3. Methodology

removed to the location for the given level. If a permission consists of parts of
different levels, the parts have to be logged separately on their corresponding
level. Permissions will be logged as a positive amount for an inhale and as
a negative amount in an exhale. Thus, to get the current permission amount
for a certain location and level, all entries corresponding to this location and
level can be summed up.

Before constraining a variable it has to be made sure the currently held per-
mission contains variables which are on a higher level than the variable we
try to constrain. To check this, the log can be summed up using only entries
with a higher level than the level of the variable being constrained. If this is
the case a constraint may be emitted.

Table 3.1 shows the levels which are used to store an added/removed permis-
sion of a certain type as well as the levels which are checked before constrain-
ing the variable [1]. The check ensures that the current permission contains
a larger variable and thus, the ordering condition is preserved. There may be
several variables on the same level but due to the levels which are checked the
partial order is still observed.

As an example we take an access predicate acc(x.f, rd) from a precondition
of a method call. As it is a fresh value the levels listed for the category
FRESH have to be used. The check to constrain the read permission would
look similar to ARPLog_sum_gt(x, field_f(), 1, log) > none ==> call_rd <
perm(x.f) where field_f() is a unique identifier for the field, log is the log
of the current scope and ARPLog_sum_gt is a function summing up all values
in the log for the given reference and field with a level strictly greater than
the specified value, which in this case is level 1. The permission change would
be logged as log := ARPLog_Cons(x, field_f(), -call_rd, 1, log). Because
the read permission is exhaled at the call site it is subtracted and thus logged
as a negative amount.

An occurrence of rd_token_fresh(tk) will be translated to rd_token(tk) but
it is constrained based on level FRESH instead of level token. This can be
done because it is a new value which cannot already be constrained by other
values. Later the token permission might be older than the context’s read
permission and it therefore has to be constrained according to a higher level
than CONTEXT. rd_token_fresh(tk) has to be logged on level TOKEN
as all further usages of the value will be logged on level TOKEN as well.
Not logging them on the same level might result in unsoundness (note that
rd_token_fresh(tk) and rd_token(tk) refer to the same permission amount):
after (write, CONST), (-rd_token_fresh(tk), FRESH), (rd_token(tk), TO-
KEN), (-write, CONST) has been logged for some location it is possible to
add a constraint rd < none for a fresh rd because the log summed up above
level FRESH will return rd_token_fresh(tk). Logging rd_token_fresh(tk)
on level TOKEN as well prevents this problem.

20

3.2. Encoding

Category Store Check Description

CONST 6 >5 Constant permission amount

GLOBAL 5 >5 Read permission used in predicates

CONTEXT 4 >4 Read permission used in the surround-
ing scope (e.g., rd used in preconditions
come from the calling scope)

TOKEN 3 >4 Token permissions. As they can be older
than permissions from the surrounding
scope they cannot be constrained by
CONTEXT level variables. But as
they might be newer CONTEXT can-
not be constrained with a token permis-
sion

WILDCARD 2 >0 Wildcard permissions are only used
once. Therefore they cannot be con-
strained further. Thus they can also be
constrained by other wildcard permis-
sions as they are all older and therefore
larger in the partial order

FRESH 1 >1 A new rd permission (e.g., for a method
call or a loop). As shown in Listing 10
a fresh variable may not be constrained
with itself

EPSILON 0 >0 Counting permission

Table 3.1: Log levels. Store represents the level on which a value of the given
category has to be stored in the log. Check specifies which levels are checked
before a constraint may be emitted.

21

3. Methodology

For each verification scope a new log has to be started. In Viper a new log is
needed for each method and in each while loop. If the while loop uses an ARP
in its invariant it is logged on the level FRESH in the surrounding scope’s log
but on the level CONTEXT within the while loop.

3.2.4 Log Update

A log update has to be done for all statements which change the permission
amount of a location. In Viper those are inhales, exhales, folds, unfolds,
method calls, loops and method contracts.

In order to log the permissions on the correct levels, the permission expres-
sion first has to be brought into a normalized form q + ng ∗ globalRd() +
ntk1 ∗ rd_token(tk1)+ ntk2 ∗ rd_token(tk2)+ · · ·+ nrd ∗ rd+ ncnt ∗ epsilonRd()
where q is a constant permission, globalRd() represents a read permission in
a predicate, rd_token(tk1) is the read permission which was passed to the
forked method being represented by token tk1, rd is the read permission and
epsilonRd() is the unit used in counting permissions. For now we assume such
a normalized form.

For each level of the normalized expression a separate log update is performed.
We assume for the moment that access predicates are not in a quantified ex-
pression and do not contain any perm expressions. We will revisit the quan-
tified case in Section 3.3. In this simple case the update can just be added
to the front of the list. If a permission is added it is logged positively, if
the permission is removed it is logged negatively. Listing 13 shows the log
updates for a method call which specifies acc(x.f, write - rd) for pre- and
postcondition. In the example the call has been replaced by explicit inhales
and exhales of the method contracts. rd in the contracts is replaced by the
actual value call_rd which would be constrained before the shown part.

1 log := ARPLog_Cons(x, field_f(), -write, 6, log)
2 log := ARPLog_Cons(x, field_f(), call_rd, 1, log)
3 exhale acc(x.f, write - call_rd)
4 inhale acc(x.f, write - call_rd)
5 log := ARPLog_Cons(x, field_f(), write, 6, log)
6 log := ARPLog_Cons(x, field_f(), -call_rd, 1, log)

Listing 13: Log update for an inhale and exhale of acc(x.f, write - rd).

In order to also log permissions to predicates each distinct predicate also needs
a unique identifier. This is implemented using functions for each predicate
which take the same parameters as the predicate. Using axioms it is ensured
that the same predicate with different parameters or a different predicate have

22

3.2. Encoding

different identifiers. As predicates do not have a receiver, null can be used
for the reference part in the log.

3.2.5 Constraining

Before an ARP is used in an access predicate – this might be in an inhale,
exhale or an assert – the values of the used ARP constructs have to be
constrained. As we saw above the constraints stay sound by only constraining
a variable by a larger variable according to the partial order. The partial order
used is based on the check value of Table 3.1. none is the lowest value in the
order and all other constant values are larger than any variable.

We assume a normalized form of the permission as described in Section 3.2.4.
It holds that ∀q, ng, ntk, tk, nrd, ncnt. none < ncnt ∗ epsilonRd() < nrd ∗ rd <
ntk ∗ rd_token(tk) < ng ∗ globalRd() < q ≤ write. For all occurring parts a
constraint is added which ensures this order. For example, for a permission
expression of 1/2 + 4 * rd + rdc(3) the constraint 3 * epsilonRd() < 4 * rd
&& 4 * rd < 1/2 is emitted. The partial order is trivially followed and thus,
this constraints can be added without any checks. This already ensures simple
properties like for example none < rd− rdc(1) < write.

The goal of the added constraints is to make sure the whole expression is
less than the currently held permission amount and larger than none. To
be as complete as possible while still being sound, as much of the expression
as possible should be part of the constraint. For example, if rd + rdc(1) is
constrained, the constraint rd + rdc(1) < perm(...) is more powerful than
the two separate constraints rd < perm(...) and rdc(1) < perm(...). The
following encoding ensures that as many parts as possible are part of the
emitted constraint.

The resulting assertion will be of the form C ==> A < perm(x.f) where C is a
check on the permission composition and A is a sum of ARP parts. Starting
from the smallest occurring ARP part it is checked whether the part is in a
positive position and the current permission contains a larger variable. If this
is the case the part is added to A. Otherwise it is omitted and the process
is continued with the next larger part. As soon as the current permission
does not contain a larger part any more but it is in a positive position the
collected assumption can be emitted. Constants are a special case as it has
to be checked that the constant part of the currently held permission is larger
than the constant occurring in the expression being processed.

If some part is in a negative position the largest non-zero part has to be
positive. Because all remaining parts are smaller than the found positive part
we assume that the whole expression is larger than zero. If the largest non-zero
part is negative it is not possible to soundly constrain the values.

23

3. Methodology

Listing 14 shows an example of the constraints which are added for an exhale
of acc(x.f, 1/2 + 4 * rd + rdc(7). The function ARPLog_sum_gt sums up the
values of ARPLog_sum for all levels which are strictly greater than the specified
level. For this example it is assumed that the exhale is from a desugared
method call and thus rd will be on level FRESH. rdc(7) has been translated to
7 * epsilonRd() and field_f() is a function which returns a unique identifier
for the field f. For clarity the assumption has been split into several lines.
The first two assume on lines 1 and 2 ensure the order of the different levels.
The third assume starting from line 3 checks the log and assumes suitable
assumptions.

1 assume 7 * epsilonRd() < 4 * rd // level order
2 assume 4 * rd < 1 / 2 // level order
3 assume (// check log and assume
4 none < ARPLog_sum_gt(x, field_f(), 0, log) ? // level EPSILON
5 (
6 none < ARPLog_sum_gt(x, field_f(), 1, log) ? // level FRESH
7 (
8 none <= 1 / 2 ==>
9 (

10 1 / 2 < ARPLog_sum_gt(x, field_f(), 5, log) ? // level CONST
11 (
12 1 / 2 + (4 * rdr + 7 * epsilonRd()) < perm(x.f)
13) : (
14 4 * rd + 7 * epsilonRd() < perm(x.f)
15)
16)
17) : (
18 none <= 1 / 2 ==>
19 (
20 1 / 2 < ARPLog_sum_gt(x, field_f(), 5, log) ? // level CONST
21 (
22 1 / 2 + 7 * epsilonRd() < perm(x.f)
23) : (
24 7 * epsilonRd() < perm(x.f)
25)
26)
27)
28) : (
29 none < ARPLog_sum_gt(x, field_f(), 1, log) ==> // level FRESH
30 (
31 none <= 1 / 2 ==>
32 (
33 1 / 2 < ARPLog_sum_gt(x, field_f(), 5, log) ? // level CONST

24

3.2. Encoding

34 (
35 1 / 2 + 4 * rd < perm(x.f)
36) : (
37 4 * rd < perm(x.f)
38)
39)
40)
41)
42)
43 exhale acc(arg_x.f, 1 / 2 + 4 * rd + 7 * epsilonRd())

Listing 14: Constraining ARP values for an exhale of acc(arg_x.f, 1 / 2 + 4
* rd + 7 * epsilonRd()). The log is checked to contain a larger value before
a constraint is applied.

An example where some parts might be in a negative position is shown in
Listing 15. As part of a desugared method call the expression acc(x.f, 1/2 +
n * rd + rdc(nc) is exhaled for some integer parameters n and nc. The first
two assume are again a constraint for the order of the levels. Due to the fact
that n might be negative the absolute value is considered.

1 assume (nc < 0 ? -nc : nc) * epsilonRd() < (n < 0 ? -n : n) * a_rd
2 assume (n < 0 ? -n : n) * a_rd < 1 / 2
3

4 assume (
5 0 <= nc ?
6 (
7 none < (ARPLog_sum_gt(x, field_f(), 0, log)) ?
8 (
9 0 <= n ?

10 (
11 none < (ARPLog_sum_gt(x, field_f(), 4, log)) ?
12 (
13 1 / 2 < (ARPLog_sum_gt(x, field_f(), 5, log)) ?
14 (
15 1 / 2 + (n * a_rd + nc * epsilonRd()) < perm(x.f)
16) : (
17 n * a_rd + nc * epsilonRd() < perm(x.f)
18)
19) : (
20 1 / 2 < (ARPLog_sum_gt(x, field_f(), 5, log)) ?
21 (
22 1 / 2 + nc * epsilonRd() < perm(x.f)
23) : (

25

3. Methodology

24 nc * epsilonRd() < perm(x.f)
25)
26)
27) : (
28 (
29 none < 1 / 2 + (n * a_rd + nc * epsilonRd())
30) && (
31 1 / 2 < (ARPLog_sum_gt(x, field_f(), 5, log)) ?
32 (
33 1 / 2 + nc * epsilonRd() < perm(x.f)
34) : (
35 nc * epsilonRd() < perm(x.f)
36)
37)
38)
39) : (
40 0 <= n ?
41 (
42 none < (ARPLog_sum_gt(x, field_f(), 4, log)) ==>
43 (
44 1 / 2 < (ARPLog_sum_gt(x, field_f(), 5, log)) ?
45 (
46 1 / 2 + n * a_rd < perm(x.f)
47) : (
48 n * a_rd < perm(x.f)
49)
50)
51) : (
52 none < 1 / 2 + n * a_rd
53)
54)
55) : (
56 (
57 0 < n ?
58 (
59 none < 1 / 2 + nc * epsilonRd()
60) : (
61 0 == n ?
62 (
63 none < 1 / 2 + nc * epsilonRd()
64) : (
65 none < n * a_rd + (1 / 2 + nc * epsilonRd())
66)
67)

26

3.3. Quantified Permissions

68) && (
69 0 <= n ==>
70 (
71 none < (ARPLog_sum_gt(x, field_f(), 4, log)) ==>
72 (
73 1 / 2 < (ARPLog_sum_gt(x, field_f(), 5, log)) ?
74 (
75 1 / 2 + n * a_rd < perm(x.f)
76) : (
77 n * a_rd < perm(x.f)
78)
79)
80)
81)
82)
83)
84

85 exhale acc(x.f, 1 / 2 + n * a_rd + nc * epsilonRd())

Listing 15: Constraining ARP values in negative positions for an exhale of
acc(x.f, 1 / 2 + n * a_rd + nc * epsilonRd()). To constrain a variable in
a negative position it is not necessary to check the log as long as there is a
larger variable in a positive position.

3.3 Quantified Permissions
If access predicates are used in a universal quantifier, updating the log and
constraining read permissions is more difficult than in the non-quantified vari-
ant. As not all affected locations are explicitly enumerated, updating and
constraining has to be done in a quantifier as well.
All quantifiers which contain access predicates can be rewritten in the form
forall r: Ref, ... :: A ==> acc(B, C) for some quantified variables, a con-
dition A, a location B and a permission amount of C. This transformation is
applied by Viper upon parsing the input.
In the simple encoding handling ARP in quantified expressions is relatively
easy. The quantifier can just be used with the exact same quantified variables
and the access predicate is replaced by the constraint. In Listing 16, an
example of the encoding is shown. There are no limitations imposed by the
encoding on any part of the quantifier.
In the log-based encoding quantified permissions pose a much bigger chal-
lenge. To log quantified expressions it is not possible to enumerate all oc-
curring permission updates and add an entry for each of them – there might

27

3. Methodology

1 method callee(s: Seq[Ref], callee_rd: Perm)
2 requires forall r: Ref :: r in s ==> acc(r.f, callee_rd) && r.f > 0
3 ensures forall r: Ref :: r in s ==> acc(r.f, callee_rd) && r.f > 0
4

5 method client(s: Seq[Ref, client_rd: Perm)
6 requires forall r: Ref :: r in s ==> acc(r.f, client_rd) && r.f > 0
7 ensures forall r: Ref :: r in s ==> acc(r.f, client_rd) && r.f > 0
8 {
9 var call_rd: Perm

10 assume none < call_rd
11 assume forall r: Ref :: r in s ==>
12 none < perm(r.f) ==> call_rd < perm(r.f)
13 callee(s)
14 }

Listing 16: Quantified ARP in the simple encoding. The access predicate in
the quantifier is replaced by the constraint for the read permission.

be an infinite number of updates necessary. For summing up the permissions
in the log a function function ARPLog_sum(ref: Ref, fieldId: Int, level:
Int, log: ARPLog): Perm is used, which sums all entries with the correspond-
ing reference, field and level. To check permissions before constraining the
function ARPLog_sum_gt sums up ARPLog_sum for all needed levels.

The encoding described below can update the log only if the only quantified
variable is a reference and B in the mentioned normalized quantifier is of the
form r.f for the quantified reference r and some field f. Access to predi-
cates and more complex location expressions is therefore not supported in a
quantified assertion. There are no limitations for A or C.

To update the log a new log variable is created for which no information is
present. Using a forall expression, information from the old log is trans-
ferred to the new log and updated where needed. For locations affected by
the quantifier, the new log is changed accordingly, and for all others it stays
unchanged. To transfer the information we quantify over all parameters of
the ARPLog_sum function except the log. If condition B holds for the quanti-
fied reference, the permission amount corresponding to the quantified level is
added or subtracted. Otherwise, the old value is kept. Listing 17 shows an
example of a quantified log update. For clarity the assume has been split into
multiple lines.

If the location in the access predicate does not conform to the described form
the update of the log is much harder. To understand the difficulty we will
consider Listing 18 from the Viper test suite. IArray is a custom domain
modeling an array and loc(a, i).val represents the element at position i in

28

3.3. Quantified Permissions

1 method client(s: Seq[Ref])
2 {
3 var log: ARPLog := ARPLog_Nil()
4 ...
5 inhale forall r: Ref :: r in s ==> acc(r.f, 1/2 + rdc(1))
6 var new_log: ARPLog
7 assume forall ref: Ref, fld: Int, level: Int ::
8 ARPLog_sum(ref, fld, level, new_log) ==
9 ARPLog_sum(ref, fld, level, log) +

10 (
11 (fld == field_f() && ref in s) ?
12 (
13 level == CONST ?
14 1/2
15 : (
16 level == EPSILON ?
17 rdc(1)
18 :
19 none
20)
21) :
22 none
23)
24 log := new_log
25 ...
26 }

Listing 17: Quantified log update for a quantified access predicate. The log
is only updated for references where the condition holds and all other entries
stay the same. Triggers for the quantifiers were removed for simplicity.

array a. To log the permissions it is not only necessary to know which values
changed but also which did not change. To specify the changed values the
access predicate in the quantifier can be replaced by the log update which was
used above. The difficulty is to specify that all permissions to other locations
which are not part of the quantifier did not change.

One approach we tried is to use an existential quantifier in order to figure
out which values changed. An encoding for the first quantifier in the example
would look like Listing 19. Existential quantifiers are difficult for the under-
lying SMT solver to prove and even a simple looking expression like forall
i: Int :: exists j: Int :: i == j might not be able to be verified. Due to
this the approach does not work in practice. We were not able to verify any
example using this approach.

29

3. Methodology

1 method test01(a: IArray, n: Int)
2 requires n > 5
3 requires forall i: Int :: i in [0..n) ==> acc(loc(a, i).val)
4 ensures forall i: Int :: i in [0..n) ==> acc(loc(a, i).val)
5 ensures loc(a, 1).val == loc(a, 0).val + old(loc(a, 1).val)
6 {
7 loc(a, 1).val := loc(a, 0).val + loc(a, 1).val
8 }

Listing 18: Array access in a quantifier. It is difficult to log such an assertion.

1 inhale forall i: Int :: i in [0..n) ==> acc(loc(a, i).val)
2 var new_log: ARPLog
3 assume forall ref: Ref, fld: Int, level: Int ::
4 ARPLog_sum(ref, fld, level, new_log) ==
5 ARPLog_sum(ref, fld, level, log) +
6 (fld == field_val() && (exists i: Int :: i in [0..n) && loc(a, i) == ref) ?
7 (level == CONST ? write : none) : none)

Listing 19: Log update approach for quantified array access seen in Listing 18.
Triggers for the quantifiers were removed for simplicity. Due to the use of the
existential quantifier it is not well suited for the underlying SMT solver.

Perm expressions can be used to refer to the currently held permission amount.
If the permission to one location is added to another location (e.g., acc(x.f,
perm(x.g))), we have to make sure we can keep the information about the
composition of the permission. As the added permission can be composed
of different ARP types and constants, it is necessary to transfer the logged
information to the location for which the permission is changed. A similar ap-
proach as for quantified expressions can be used. Listing 20 shows an example
for the encoding. Instead of the new permissions the current permission of
the other location is used and the condition is that the quantified reference
and quantified field are the receiver of the permission. A quantifier is needed
because the number of levels might in general not be bounded (in our case
they are but in a more general case they might not be).

If ARP are used in a quantified assertion it is necessary to constrain the
read permissions. The approach to constraining described in Section 3.2.5
can be used to constrain values even if they occur in a quantified assertion.
Contrary to the log update it is only necessary to make assumptions about
the references occurring in the assertion. No assumption about references
not part of the assertion are necessary. Thus, it is possible to adopt the
original quantifier and replace the access predicate by the same assumption
as for the non-quantified case. Because the assumption is a single assertion
without the need for multiple statements this is possible to do. It would be

30

3.4. Desugaring

1 method client(a: Ref, b: Ref)
2 {
3 var log: ARPLog := ARPLog_Nil()
4 ...
5 inhale acc(a.f, perm(b.f))
6 var new_log: ARPLog
7 assume forall ref: Ref, fld: Int, level: Int ::
8 ARPLog_sum(ref, fld, level, new_log) ==
9 ARPLog_sum(ref, fld, level, log) +

10 (
11 (ref == a && fld == field_f()) ?
12 ARPLog_sum(b, fld, level, log)
13 :
14 none
15)
16 log := new_log
17 ...
18 }

Listing 20: Log update if perm is used in a permission. As the levels might
not be bounded, a quantified log update is used.

possible to constrain ARP for arbitrary locations like for example the one
shown in Listing 18. In practice this cannot be done because it is not possible
to update the log and thus we risk to become unsound. If the log updating
can be improved, constraining ARP in quantified assertions comes ‘for free’.

To summarize, ARP are currently supported in quantified assertions only if
the simple encoding is used or if the location is of the form x.f for a bound
variable x and a field f. In this case, the permissions can be correctly logged
and the ARP values are suitably constrained.

3.4 Desugaring

As described in Section 3.2.2 it is necessary to desugar Viper constructs which
alter permission information including method calls and while loops into ex-
plicit inhales and exhales. This allows us to accurately update the log and
emit constraints at the correct position. It is important to reproduce the same
behavior in the desugared form as in its original form. This proved to be dif-
ficult and was not always possible. This section describes how the different
Viper constructs can be desugared in order to be able to keep an accurate log
and suitably constrain ARP. Some statements can not directly be desugared
and have to be handled separately.

31

3. Methodology

3.4.1 Methods

Methods must not have any contracts in order for the encoding to be able to
correctly constrain read permissions as explained in Section 3.2.2. This allows
us to add statements before and between contracts. Therefore, all contracts
are replaced by explicit inhales for preconditions or exhales for postconditions
respectively.

In order to be able to support old expressions, a label is inserted right after
the preconditions have been inhaled. As old considers the permission state at
the referred label position, the label is placed after inhaling the preconditions,
otherwise not enough permission would be present. All old expressions which
do not already refer to a label are rewritten to point to the newly added label.

The postconditions as well as other contracts use the permission state at the
end of the method body to check location accesses. For single exhales the
state just before the exhale is relevant. Listing 21 shows how exhaling con-
tracts differ from exhaling normal assertions. Both times a write permission
is inhaled and then exhaled and a statement about the value is asserted. The
check whether enough permission for a.f is present is done for line 4 in the
state at the end of the method body in line 7. Therefore, the assertion is
successful. For line 15 the state just before the statement is relevant. As in
line 14 the permission was already exhaled, not enough permission is left and
the assertion fails due to missing permission.

Therefore, if a method has more than one postcondition it would change the
semantics of the program to just add an exhale for each postcondition. It is
therefore necessary to add a label just before exhaling the postconditions. All
heap-dependent expressions in the postconditions which are not yet in an old
expression are then wrapped in an old expression referring to this label.

Viper checks contracts for well-formedness. Among other things this means
that the contracts are self-framing: if a location is accessed, the needed per-
mission needs to be mentioned in the contract. If contracts are desugared into
inhales/exhales this check will no longer be performed. Therefore, an addi-
tional method is added which just has the contracts but no body. For this
new method well-formedness checks are performed. Reported errors will be
mapped back to the original method. The method does not have a body and
therefore, it is not checked whether the postcondition holds. Viper performs
only well-formedness checks for these methods.

To be able to refer to the read permission which is used in the method, an
additional parameter of type Perm is added. The new parameter is constrained
to be strictly between none and write. All occurrences of rd in the method
body are rewritten to this added parameter.

32

3.4. Desugaring

1 method contracts(a: Ref)
2 require acc(a.f) && a.f == 0
3 ensures acc(a.f) // remove permission
4 ensures a.f == 1 // successful
5 {
6 a.f := 1
7 // end of method body
8 }
9

10 method explicit(a: Ref){
11 {
12 inhale acc(a.f) && a.f == 0
13 a.f := 1
14 exhale acc(a.f) // remove permission
15 exhale a.f == 0 // fails
16 }

Listing 21: Difference between handling of method postconditions and exhales.
If the exhales are written exactly like the postconditions, the second exhale
fails.

3.4.2 Method Calls

Method calls can be replaced by first exhaling all preconditions and then
inhaling all postconditions. Old expressions in the postconditions as well as
all location accesses need to be rewritten to an old expression referring to a
label added just before the call. Location accesses need be rewritten using
old expressions due to the same reason as mentioned in Section 3.4.1 – the
permissions available in a single exhale might not be the same as when the
exhale is part of a postcondition and thus processed at once.

For the method call a fresh variable for the read permission in the called
method is created. Occurrences of rd in the method contract of the called
method are replaced by this new variable.

The pre- and postconditions can refer to method parameters and return values.
These have therefore to be exchanged for the actual arguments and targets
which are used in the call. If an expression is used as an argument it would be
unsound to just replace all occurrences of the argument in the contract with
the expression used in the call (see Listing 22 and 23). Therefore, for each
argument a new local variable is created and the corresponding expression is
assigned. Those new variables are then used to replace the arguments. The
only information which is available about the return values comes from the
postconditions. Therefore, variables which are assigned to are havocked before
the postconditions are inhaled.

33

3. Methodology

1 method callee(a: Int) returns (b: Int)
2 ensures b > a
3

4 method client()
5 {
6 var x: Int
7 x := callee(x)
8 }

Listing 22: Just replacing arguments in a method call might be unsound if a
naive encoding is used.

1 method callee(a: Int) returns (b: Int)
2 ensures b > a
3

4 method client()
5 {
6 var x: Int
7 // x := callee(x)
8 // ensures b > a
9 // a -> x, b -> x

10 assume x > x // equivalent to false
11 }

Listing 23: Naive encoding of Listing 22. Because the target of the call is used
as an argument it is constrained against itself.

3.4.3 While Loops
As for methods it is also necessary to remove contracts in while loops.

During verification the loop invariant and the loop condition is inhaled for the
loop body. At the end of the body the invariant is exhaled. Outside of the
loop in the method the invariant is exhaled before the loop and together with
the negation of the loop condition inhaled after the loop.

To desugar this behavior we exhale the loop invariant before the loop. In
the loop body we inhale the loop invariant and the loop condition. At the
end of the loop body we exhale the loop invariant. Finally, we inhale the
invariant and the negation of the loop condition after the loop body. As the
loop invariant may contain more than one assertion, we wrap heap-dependent
assertions in an old expression with the label being just before the loop in-
variants are exhaled. For the loop we create and constrain a fresh variable
for read permissions used in the invariant, just as for a method call. Within
the loop body we create a new log because the loop body is a new verification
scope.

34

3.4. Desugaring

Due to the missing loop invariant no permissions are available for the loop
condition. If the condition is heap-dependent this poses a problem. Therefore
a new local boolean variable is used as a replacement. Before exhaling the
invariant outside the loop as well as inside the loop the condition is assigned
to the local variable. Further, at the start of the loop body the loop condition
is assumed and after the loop the negation of the loop condition is assumed.
Listing 24 and 25 show an example of a desugared while loop.

1 method client(x: Ref)
2 requires acc(x.f) && x.f <= 5
3 ensures acc(x.f) && x.f == 5
4 {
5 while(x.f != 5)
6 invariant acc(x.f) && x.f <= 5
7 {
8 x.f := x.f + 1
9 }

10 }

Listing 24: While loop which is desugared in Listing 25.

1 method client(x: Ref)
2 {
3 inhale acc(x.f) && x.f <= 5 // method precondition
4 var while_cond: Bool
5 while_cond := x.f != 5 // assign loop condition
6 exhale acc(x.f) && x.f <= 5 // invariant
7 while(while_cond) // replaced loop condition
8 {
9 inhale acc(x.f) && x.f <= 5 // invariant

10 assume x.f != 5 // loop condition
11 x.f := x.f + 1 // actual loop body
12 while_cond := x.f != 5 // assign loop condition
13 exhale acc(x.f) && x.f <= 5 // invariant
14 }
15 inhale acc(x.f) && x.f <= 5 // invariant
16 assume !(x.f != 5) // loop condition
17 exhale acc(x.f) && x.f == 5 // method postcondition
18 }

Listing 25: While loop from Listing 24 desugared. The loop invariants are
removed and replaced by explicit inhales and exhales. Furthermore, the loop
condition is replaced due to missing permissions if it is left in the while.

35

3. Methodology

Like pre- and postconditions, Viper checks invariants for well-formedness. For
invariants the contract is not considered in isolation but information available
in the method at this point is taken into account. If, for example, the divisor
of a division is a local variable, it will be checked that this variable is non-
zero. In the method there might be information that implies that the variable
cannot be zero and the verifier will not complain. When the loop is desugared,
this check is not performed any more.

One approach to still perform a well-formedness check is to create an addi-
tional method with the invariant as a postcondition (as the invariant might
contain old expressions it cannot be put as a precondition). This proved not
to be a viable approach because it fails to verify examples which were possible
before. Since less information is available, as explained above, the contract
can fail the check even though in the original program there is no problem.

We decided to give up well-formedness checks for loop invariants. As every-
thing which would lead to a not well-formed invariant also leads to another
error (e.g., if the contract is not self-framing, it will result in an insufficient
permission error when inhaling the loop invariant in the loop body) this change
does not lead to wrong programs being verified successfully, but the type of
the error will change.

3.4.4 Fold / Unfold
A fold is semantically equivalent to exhaling the predicate body and inhaling
access to the predicate except that knowledge about memory locations is not
havocked. An unfold corresponds to exhaling access to the predicate and
inhaling its body. Due to the difference in havocking behavior the statements
cannot simply be replaced by inhales and exhales. Instead the changes in
permissions are directly added to the log. The log update is equivalent to
the case where the folds/unfolds were replaced by the corresponding inhales/
exhales. To make sure enough permission is present to log all changes, the
update will take place before a fold but after an unfold.

3.4.5 Inhale / Exhale
Inhales and exhales need to be split into multiple statements if they contain
a perm expression or use ARP. Each conjunct of the assertion is treated sepa-
rately. Assertions containing implications or ternary expressions are wrapped
together with the corresponding log update in if statements. This is necessary
for log-keeping as the implied expression might change the value of the ex-
pression which is being evaluated for the implication/ternary expression. E.g.,
after inhaling perm(x.f) < 1/2 ==> acc(x.f, 1/2) the condition will be false.
If the implication is first inhaled and then the log update is done separately
the log will not contain the added 1/2.

36

3.4. Desugaring

If an inhale or exhale is split into several statements it is necessary to wrap
all heap-dependent expressions into an old expression referring to a label just
before the first of the split statements. This is similar to the wrapping needed
for method contracts seen in Section 3.4.1 and Section 3.4.2.

37

Chapter 4

Implementation

We implemented the encoding described in Chapter 3 in Viper and made ARP
available in Nagini. This chapter describes different aspects and challenges of
the implementation.

4.1 Viper to Viper Translation
We have decided to not implement ARP directly in Viper but as an extended
Viper language which will be encoded to normal Viper. The Viper language
already supports a well-rounded set of features and constantly adding new
things would bloat the core language. As there are some front-ends building on
top of Viper (e.g., Nagini [7] for Python, VerCors [2] for Java) it is not desirable
to keep changing it. As we have demonstrated in the previous chapter, it is
possible to encode ARP in the existing Viper language and thus it was not
necessary to implement them directly in Viper.

We implemented an extension to Viper which encodes the extended Viper
language to the normal Viper language. The extension receives the input, a
program written in an extended form of the Viper language, and produces
an equivalent Viper program. This program is then verified and the resulting
errors are translated back to the original program. To be able to implement
such Viper-to-Viper translations in an easy and clean fashion we developed a
plugin system which allows to add hooks at different stages of the parsing and
translation stage. Section 4.5 introduces the main features of this system.

For the translation we used an AST 1 rewriting framework for Viper, which
was developed in a Master’s Thesis [9] by Simon Fritsche. This framework
allows to specify a partial function mapping AST nodes to new AST nodes
and it allows to keep custom context information.

1Abstract Syntax Tree

39

4. Implementation

As described in Section 3.2, the extension adds syntax to use abstract read
permissions (rd), counting permissions (rdc(n) for positive integer n), wildcard
permissions (rdw) and token permissions (rd_token(tk) and rd_token_fresh(tk)
for some reference typed token tk) in access predicates (e.g., requires acc(x.f,
rd)).

To be able to parse the extended Viper language without changing the existing
parser, the rewriting takes place in two phases. The first phase takes place
after the parsing but just before the identifiers are resolved. In this phase
functions for rd, rdc, rdw, globalRd, rd_token and rd_token_fresh are added
such that they can be resolved. As it is nicer to write acc(x.f, rd) instead of
acc(x.f, rd()) all uses of rd which are not yet a function call are transformed
into a call.

The second phase takes place just before the verification. The parse AST
which was manipulated in the first phase has been translated into a Viper
AST by Viper. This AST contains much more information than the parse
AST because all variables and calls have been resolved. For example, types of
variables are known and calls to methods can be distinguished from function
calls. During this second phase the desugaring (see Section 3.4) and the en-
coding explained in Section 3.2 is performed. During this phase information
used to translate errors back (see Section 4.4) is added to the AST.

For the encoding two domains are needed. The first one is the domain describ-
ing the log used to store the permissions. This domain does not depend on
the program which is verified and can be loaded from file. The second domain
provides unique integer identifiers for fields and predicates to be used when
updating and querying the log. Each field and parameterless predicate gets
a parameterless function marked as unique. Such a function is guaranteed to
return a unique value which is not returned by any other function marked as
unique. For each predicate with parameters, a function with the same param-
eters is generated. As the identifier has to be unique, some axioms have to
be added. One axiom states that the function does not return the same value
for two different choices of parameters. This ensures that the same predicate
with different parameters can be differentiated. Additionally, for each other
field and predicate an axiom is added to state that whatever the parameters,
the value of the two functions will be different. Listing 26 shows an example
for the generated axioms.

To be able to generate unique names for additional local variables and method
arguments, all used identifiers are collected at the start of the translation.
Once a new name is needed it is checked whether the desired name is already
used. If it is, a number in the name will be increased until an unused name is
found. This new name is then added to the list of used names. This prevents
any name collisions between newly added identifiers and existing ones.

40

4.2. Normalization

1 domain ARP_field_functions {
2 unique function field_f(): Int
3 function predicate_p2(x: Ref): Int
4 function predicate_p3(x: Ref, y: Ref): Int
5

6 axiom ARP_p2_f {
7 (forall x: Ref :: predicate_p2(x) != field_f())
8 }
9

10 axiom ARP_p2_p3 {
11 (forall x: Ref, x_1: Ref, y_0: Ref ::
12 predicate_p2(x) != predicate_p3(x_1, y_0))
13 }
14

15 axiom ARP_p2 {
16 (forall x: Ref, x_0: Ref ::
17 predicate_p2(x) == predicate_p2(x_0) ==> x == x_0)
18 }
19

20 // p3 axioms omitted
21 }

Listing 26: Example of generated axioms to guarantee unique identifiers for
fields and parameterized predicates. The example adds unique values for a
field f and two predicates p2(x: Ref) and p3(x: Ref, y: Ref). For brevity
axioms for p3 and triggers in quantifiers were omitted.

4.2 Normalization

The explained encoding assumes a normalized form for the transferred permis-
sions. Viper does allow arbitrarily complex permission expressions in access
predicates. Obtaining the normalized form is not always easy to do. Our im-
plementation is able to normalize an expression if it is linear (e.g., no rd ∗ rd)
and ternary expressions are only used at the top level (e.g., acc(x.f, b ? 1/2
: 1/4) is possible but acc(x.f, (a ? 1/4 : 1/8) + (b ? 1/2 : 1/4)) is not).
If a ternary expression in the permission expression of an access predicate is
encountered it is split into two separate access predicates in the two branches
of an if statement.

If an expression contains a permission typed variable it is not known how the
variable is composed and it might contain parts of a non-CONST level. To be
able to still log them correctly it is enforced that no ARP can ever be assigned
to a variable. While directly assigning an ARP to a variable (e.g., a := rd)
is prevented during translation it could be done by using perm on a field to

41

4. Implementation

which an rd permission is held. If this pattern of assigning perm to a variable
is found an assertion is added which checks the log to make sure the assigned
permission is only on the CONST level.

4.3 Optimizations
The presented log-based encoding introduces some overhead for example due
to the log updates. It is possible to optimize different parts of the encoding
during translation in order to minimize the introduced overhead.

To improve the performance of verification the translation can already per-
form some optimizations. A simple optimization is to simplify expressions in
emitted statements when possible. For example, 1 * n can be replaced by n
and -(-n) is the same as n. While this might not make a difference as the
back-end can do such optimizations as well it simplifies other optimizations
described below.

One large optimization is to remove branches if they cannot be reached. One
example is the check of 0 < 1 which is often generated to check whether in an
expression like 1/2 + rd the rd is in a positive position. While the back-end
will figure out the false branch is not reachable, it is faster to already drop
the branch when generating the translation. This is because the back-end will
perform SMT queries to check for satisfiability but during the generation of
the branch some simple cases can already be checked – like for example if both
values are integer literals the branch to take can already be decided and only
this branch will be emitted.

Always splitting all inhale/exhale statements turned out to be a performance
problem in the VCG back-end as each performed inhale/exhale introduces
some performance overhead. Therefore, those statements are only split if it is
absolutely necessary.

Another optimization is to mix the encoding based on logs described in Sec-
tion 3.2.2 and the simple encoding described in Section 3.2.1. In a first step it
is determined which methods do not use complicated ARP expressions (that
is, expressions where no ARP is used or only in the form acc(loc, rd) for some
location loc) in the method contract. Each method which either uses com-
plicated ARP expressions in the method contract or body or calls a method
which uses them in the contract has to be encoded using the log-based ap-
proach. All other methods can use the simple encoding which does not require
to desugar any statements.

As updating the log for each field comes with a performance penalty the
user can exclude some fields if it is known that rd is never used with them.
Listing 27 shows an example how this can be used. This syntax was chosen
to be able to parse it without changing the parser.

42

4.4. Error Back Translation

1 field f: Int
2 field g: Int
3 field h: Int
4

5 method ARP_IGNORE(){
6 g()
7 h()
8 }

Listing 27: The dummy method ARP_IGNORE allows to specify some fields which
will be ignored for the encoding. In this example fields g and h are ignored.

4.4 Error Back Translation

Because the program is heavily modified before it is verified the found er-
rors will be at different positions in the AST, for different nodes or even of
a different type. For example, the verifier may return an exhale failed error
when it would have returned a precondition violated error for the original
program. The Viper AST already allows to add error transformation infor-
mation directly to nodes. After the verification step the back-translation can
be triggered by calling a single method on each of the reported errors. This
method will transform the node and change the type of the error according to
the attached transformation information.

During translation of the extended Viper program to normal Viper it has to
be ensured that all nodes have the correct error transformation information
attached. This information consists of an optional original node and an op-
tional partial function mapping an error to a different type of error. Each
error has a node attached to it which caused the error. When transforming an
error the attached node is replaced recursively by the original node specified
by the attached error transformation. Subsequently, if the partial function
of the node is defined for the found error, it will be applied to the error to
generate an error of the new type.

To display more informative error messages, each AST node has the position
in the input file attached to it. When creating new nodes the position of
the original node can be retained so the displayed error position is correct.
For example, the generated inhales and exhales of a method call will have
the position information of the original call statement. For most new nodes
the original node is just the node which is currently being transformed and
triggered the generation of this new node. In some cases this is not desirable
as the output might be wrong. If, for example, the expression -n is rewritten
as -1 * n and both nodes -1 and n have -n as their original node, the back-
translated expression will be -n * -n.

43

4. Implementation

The partial function mapping error types is only used in a few places. Firstly,
method contracts which are transformed into inhales and exhales have to be
transformed from ‘exhale failed’ to ‘postcondition violated’ for methods or
‘precondition false’ for method calls. If the assignment of an argument for a
method call fails (e.g., due to missing permission) the resulting ‘assignment
failed’ has to be translated to ‘call failed’. The second case where the type
of an error has to be changed are invariants of while loops. The occurring
‘exhale failed’ would be a ‘loop invariant not established’ or ‘loop invariant
not preserved’, respectively. If not enough permission for the loop condition
is present, an ‘inhale failed’ will be generated in the desugared form once the
condition is assumed. This is transformed into a ‘while failed’ error.

4.5 Plugin System

To be able to implement the extension as a plugin the Viper framework had
to be extended by a plugin system which allows to load extensions and allows
them to modify the program in suitable ways. Plugins can now be added
without changing anything in Viper. If the plugin is on the class path it
can be loaded using the --plugin PluginClassName (where PluginClassName is
the fully qualified name of the class containing the plugin) argument when
starting Viper. If several plugins are specified they will modify the program
in the order they were specified. Thus, the developed extension is composable
and can be combined with other extensions.

A plugin consists of a class which implements the trait viper.silver.plugin.
SilverPlugin. It can override several hooks as needed to modify the program
in different stages of parsing and translation. Should the plugin encounter an
error (e.g., if the user inputs an unsupported expression) it can call the method
reportError with the encountered error. As soon as any plugin reports any
error the translation is terminated and verification is not performed anymore.
The errors can still be processed by plugins but all other steps are omitted.

The plugin can modify the program/result at different stages by overriding
the following methods (in order of execution):

beforeParse is called with the input string read from the input file before
parsing started.

beforeResolve is called before identifiers (such as method calls) are resolved.

beforeTranslate is called before the parse AST is translated into the Viper
AST.

beforeMethodFilter is called before the methods which should not be ver-
ified are removed.

44

4.6. Nagini

beforeVerify is the last hook before the actual verification happens. Here
the fully translated Viper AST will be available for rewriting.

mapVerificationResult allows to change the results of the verification. Er-
ror back translation should happen here.

beforeFinish is called just before the results are printed.

The ARP plugin developed for this project uses three of these hooks. Dur-
ing beforeResolve all instances of rd are rewritten to rd(). Using rd with-
out parentheses is not possible, because at the positions it is used no such
variable exists. A function call to a global function on the other hand can
be resolved. Further, functions are added for all added syntax (e.g., rd(),
rdc(n), rd_token(tk)). This allows the resolving stage to find matching func-
tions. The transformation of the program (i.e., desugaring, log-keeping and
constraining) is performed in beforeVerify. Finally, in mapVerificationResult
the found errors are translated back to the original program.

4.6 Nagini
Nagini translates the Python program directly into a Viper AST without
generating a human readable text form. For this a Java virtual machine
instance is started which loads the desired back-end for verification. The
generated AST can then be passed directly to the verifier. Due to this, the
implemented plugin system does not work as the hooks are not executed.
Instead, the ARP plugin is manually loaded and the needed hooks (second
phase and error back translation) are directly called.

Nagini provides a contract library to specify user specification in Python pro-
grams. To make ARP available a few new contracts were added. ARP() is
translated to rd() in Viper. Rd(x.f) is a short form for Acc(x.f, ARP()).
ARP(n) representing counting permissions gets translated to rdc(n) for an in-
teger n. And finally RD_PRED is a constant representing the read permission
used in predicates and gets translated to globalRd().

Starting and joining a thread in Nagini are encoded as explicit inhales and
exhales. When a new thread is started, the ARP used in the contract will be
translated to rd_token_fresh(tk) where tk is the thread which was started.
When joining a thread, ARP in the contract will be translated to rd_token(tk).
As the same thread object is used as a token, the same value which was used
in the method which started the thread can be used to join the thread. To
access the read permission used in a forked method, GET_ARP(thread) is used
which is translated to rd_token(thread).

Previously, Nagini only supported to use 0, 1 or a fraction a/b (for integers
a and b) in access predicates. To be able to encode more examples and use

45

4. Implementation

all of the added features the Viper extension provides this was extended to
support arbitrary permission expressions (e.g., 1 - n * ARP()).

4.7 Limitations
The implementation of the presented encoding which was done during this
project has some limitations of what can and cannot be used in combination
with ARP.

All syntax added for ARP may only be used in linear expressions. Otherwise
it is not possible to correctly log the permissions and constrain the ARP.
Furthermore, if ARP are used, ternary expressions may only occur as the
top level expression in the permission part of an access predicate. These
expressions can always be rewritten to a form where the ternary expression is
outside the access predicate.

It is not allowed to assign any ARP to a variable. Otherwise, it would not
be possible to accurately log the permissions. This is enforced using assert
statements before assignments where the right hand side is a perm expression.

The built-in wildcard expression must only be used in functions. In all other
places, the replacement rdw has to be used in order for the log to accurately
reflect the held permission. wildcard and rdw are otherwise semantically equiv-
alent.

Quantified access predicates are only supported if the accessed location has
the form x.f for a bound variable x and a field f. If the reference part does not
directly come from a local variable (e.g., a function result or another location
access) our implementation is not able to correctly log the permissions. The
condition as well as the permission expression can be any expression which
is supported in quantifiers. The permission expression can depend on the
quantified reference.

Packaging magic wands is not supported and if used in combination with ARP
in the same method may lead to undefined behavior. This is due to missing log
updates when packaging a magic wand. There is no point before or after the
package statement where all permissions to the right hand side of the magic
wand are guaranteed to be present. These permissions may only be attainable
by for example unfolding predicates. These actions necessary are described
in the proof script but it is not possible to do the logging in the body of the
proof. This is caused by the fact that statements in the proof script have no
effect outside the proof.

If the simple ARP encoding as described in Section 3.2.1 can be used, the
above limitations do not apply. Notably, quantified expressions containing
ARP can have any form.

46

Chapter 5

Evaluation

The encoding we presented in Section 3.2 allows to verify many interesting
examples using ARP. ARP are not only available in Viper but are also imple-
mented in Nagini. We managed to implement the extended Viper language
without adding ARP specific code to the existing implementation by using the
newly implemented plugin system. The extended Viper language provides in-
tuitive new syntax to use ARP similar to the one used in Chalice. Section 5.1
shows some examples using ARP which can now be verified. Section 5.2 de-
scribes a new lightweight parser to improve performance measurements. In
Section 5.3 we present the measured performance of the encoding with and
without using ARP.

5.1 Expressiveness
Listing 28 shows the encoding of our initial example presented in Listing 2. In
order to have access to the two subexpressions a recursive predicate is used.
ARP are not only used in the method contract of the recursive method but
also in the predicate.

Nagini now supports to use ARP in combination with threads as well as locks.
We translated many examples which use ARP from the Chalice2Viper [6] test
suite to Python to be verified using Nagini. The 24 examples can be found in
the Nagini repository1. They test basic usage of ARP, permission arithmetic
involving ARP as well as simple examples of forking and joining threads which
use ARP. All translated examples were successfully verified with the VCG
back-end. The SE back-end was able to verify almost all examples as well but
three of the examples could not be verified.

One reason for the incompleteness of the SE back-end seems to be a constraint
needed if ARP are used in some expressions in predicates. The constraint

1https://github.com/marcoeilers/nagini/tree/threads_with_arp/tests/arp/verification

47

5. Evaluation

1 class Expr:
2

3 def __init__(self) -> None:
4 self.left = Expr() # type: Expr
5 self.right = Expr() # type: Expr
6 Ensures(Acc(self.left))
7 Ensures(Acc(self.right))
8

9 @Predicate
10 def valid(self) -> bool:
11 return Rd(self.left) and Rd(self.right) and \
12 Implies(self.left is not None, self.left.valid()) and \
13 Implies(self.right is not None, self.right.valid())
14

15 def eval(self, state: State) -> int:
16 Requires(self.valid())
17 Requires(Rd(state.mapping))
18 Ensures(self.valid())
19 Ensures(Rd(state.mapping))
20 Unfold(self.valid())
21 result = 0 # type: int
22 if self.left is not None:
23 result += self.left.eval(state)
24 if self.right is not None:
25 result += self.right.eval(state)
26 Fold(self.valid())
27 return result

Listing 28: Initial example from Listing 2 encoded in Python. Nagini provides
contracts to specify the program specification.

none < write - n * globalRd() is nonlinear due to the multiplication of the
two constants n and globalRd(). Nonlinear constraints are known to cause
incompleteness in SMT solvers. However, the examples could be verified in
the VCG back-end.

The new encoding allows to verify examples which were not possible to verify
in Chalice. We are able to encode the first example from the 2014 FTfJP
paper by Boyland et al. [4] in Python and successfully verify it using the
VCG back-end. Due to the issue mentioned above it is not possible to verify
it in the SE back-end. The encoding of the first example can be found in
Appendix A.1. It is not possible to verify the example in Chalice because
ARP in negative positions will not be constrained. We were not able to verify
the second example. To be able to verify this example it is necessary to transfer

48

5.2. Custom Parser for Performance Evaluation

information about read permissions used to fork a method in one loop into
an other loop where the method is joined again. While this is possible to
encode for a single thread the example forks and joins an unbounded number
of threads. One approach is to introduce a construct to express the read
permission of a list of tokens [1]. This is currently not supported by the
described encoding.

The new encoding also supports ARP in quantified permissions. It is possi-
ble to verify examples using quantified permissions if the location access is
of the form x.f for a bound variable x (see Section 3.2.4 for details). List-
ing 29 shows a simple example using quantified read permissions we are able
to successfully verify. The expression Forall(self.seq, lambda r: Rd(r.x))
in Nagini is equivalent to the contract forall r: Ref :: r in self.seq ==>
acc(r.x, rd) in Viper. The argument b is used to provide a base case in the
recursion.

1 def m1(self, b: bool) -> None:
2 Requires(Rd(self.seq) and Forall(self.seq, lambda r: Rd(r.x)))
3 Ensures(Rd(self.seq) and Forall(self.seq, lambda r: Rd(r.x)))
4 if b:
5 self.m1(not b)

Listing 29: Nagini example using quantified read permission in a recursive
method.

5.2 Custom Parser for Performance Evaluation
While measuring performance of the produced encoding we encountered large
differences between generating the encoding on the fly using the plugin and
loading the generated encoding from a file. The second approach added a
significant overhead for parsing and type checking the larger input. Viper
Runner [8], which was used to measure performance, measures the duration
between start of the program until termination. Due to the large overhead
the results did not reflect the true performance differences. To get meaningful
performance measurements the parse speed should be as fast as possible and
should be the same for all inputs.

In order to eliminate these differences we implemented a second approach
to load a program for verification which allows to bypass parsing and type
checking. In a first step the AST of the program to verify is loaded using the
normal procedure used in Viper. This AST is then written to a file using a
simple to parse format. During performance testing this file is read, the AST
is reconstructed and it can directly be passed to the verification stage. Due
to the simple structure of the used format parsing is easy and can be done

49

5. Evaluation

with one single pass over the file. Type checking can be omitted as the AST
is known to be well-formed and everything is already resolved. Using this new
parsing method removed the overhead and resulted in similar measurements
as when generating the encoding on the fly.

The syntax used to store the AST is similar to Lisp. An instance of the case
class classname is represented as (classname|param_1|param_2|...|param_n)
where param_n is the nth parameter of the case class. The parameters are
encoded recursively using the same format. To load a program the whole string
can be read once from the start. Upon encountering an opening parenthesis
the first part can be read to learn the case class. It is then known how many
arguments are expected. The arguments can be read recursively until all
arguments were parsed. The case class can then be instantiated. As all case
classes are dumped with all their parameters it is never necessary to search
for something in another part of the program. The improved parsing speed
comes with a larger file size and it is no longer possible to manually edit the
program.

This was implemented using the plugin system described in Section 4.5. Ex-
porting is done in beforeVerify where the finished AST is available and can
be dumped to file. When loading a file the input is parsed in beforeParse
before Viper sees the input string and is stored locally. An empty program is
returned to be ‘parsed’ by Viper. In beforeVerify the previously stored AST
is returned and can be verified.

5.3 Performance

We measured the performance of the encoding for different scenarios. The
scenarios are compared between the usage of ARP and using concrete fractions
instead. Where possible, the difference between the log-based encoding and
the simple encoding are compared. We created some examples in Viper which
use one specific language feature to measure the impact of the encoding on
these features.

All measurements were performed on a Dell Latitude E7440 with an Intel Core
i7-4600U CPU @ 3.3GHz and 8 GB of RAM running a fresh install of Ubuntu
16.04 Xenial. The measurements were performed using Viper Runner [8], each
configuration was measured 20 times. The times mentioned below are averages
over those 20 runs. All examples were tested with the SE and VCG back-ends.
To be able to reliably measure verification time and not overhead caused by
parsing and typechecking, a custom parser as described in Section 5.2 was
used for most measurements.

50

5.3. Performance

The examples which were used can be found in the repository2.

5.3.1 Examples without ARP

We measured the verification time of Viper examples which do not use ARP
but were encoded using the log-based encoding. We compared this time with
the verification time for the original input. This gives an impression how
expensive desugaring and log-keeping is. Figure 5.1 shows the measured times
and slowdown. We see a slowdown of a factor of 1.4 to 2.4 for the SE back-end
and a slowdown of 1.2 to 2 for the VCG back-end.

Back-end Example Normal [s] Encoded [s] Slowdown

SE

Fields 0.31 (0.08) 0.51 (0.14) 1.62

Predicates1 0.29 (0.08) 0.48 (0.13) 1.63

Predicates2 0.32 (0.10) 0.77 (0.20) 2.39

Quantifiers 0.76 (0.12) 1.74 (0.26) 2.29

Test Suite 0.26 (0.15) 0.48 (0.52) 1.85

VCG

Fields 1.57 (0.07) 3.19 (0.25) 2.04

Predicates1 2.54 (0.06) 3.16 (0.13) 1.24

Predicates2 1.66 (0.07) 3.36 (0.20) 2.02

Quantifiers 1.61 (0.07) 3.23 (0.13) 2.01

Test Suite 2.47 (1.59) 3.31 (1.53) 1.34

Figure 5.1: Performance of examples without ARP. The number in parentheses
is the standard deviation.

As the examples use one specific feature a lot and do not represent an av-
erage usage pattern, the performance on some examples from the Viper test
suite was measured as well. The examples measured are the ones located in
all/basic in the test suite. The SE back-end had an average slowdown of
1.67 while the VCG back-end had an average slowdown of 1.75. The table in
Figure 5.1 shows the average runtime of the examples from the test suite and
the slowdown based on those averages.

2https://bitbucket.org/viperproject/arp-plugin/src/
0f409f7da455889175f92967b4ac9e3827e707e6/src/test/resources/arp/performance/

51

5. Evaluation

To find out which part of the encoding is responsible for the increased ver-
ification time we deleted parts of the generated encoding to see which part
decreases the verification time the most.

In a first step the dummy methods used for contract well-formedness checks
were removed. Secondly, the log-keeping was removed. As no ARP was used,
the program behavior was not changed. Then, the domain used for log-keeping
as well as the domain providing unique field identifiers was deleted. In a last
step, all unnecessary remains were removed. This includes for example the
additional argument to pass the read permission to be used in contracts.

These measurements were performed for all performance examples with both
back-ends. Figure 5.2 shows the measured times and slowdown relative to the
unencoded form for the example ‘fields’ with the SE back-end. Most parts
account for some slowdown but there is no huge slowdown in any of the parts
measured. The largest difference seems to be the log-keeping. The results
were similar for most of the cases.

File Time [s] Slowdown

Fields 0.36 (0.11) 1

Encoded full 0.59 (0.17) 1.64

Encoded without dummy methods 0.51 (0.15) 1.4

Encoded without log-keeping 0.41 (0.12) 1.14

Encoded without domain 0.37 (0.10) 1.03

Encoded minimum 0.36 (0.10) 1.01

Figure 5.2: Performance of examples where part of the encoding was removed.
Starting from ‘Encoded full’ more and more parts of the encoding were re-
moved. The largest drop occurs after removing the log updates. The number
in parentheses is the standard deviation.

Using many predicates with parameters results in a quadratic number of ax-
ioms to ensure uniqueness of the corresponding identifiers. We first suspected
those axioms to be the cause of the large slowdown but the measurements did
not confirm this suspicion. Removing the axioms had almost no influence on
the performance and the largest drop occurred when removing the log updates
as in all other examples.

52

5.3. Performance

5.3.2 Examples with ARP
The performance impact of actually using ARP largely depends on the type
of usage. We used the same Viper examples as for the measurements without
ARP, but replaced concrete values by an ARP. In the examples the measured
slowdown ranged from 1.02 to 44.32. The simple encoding was measured as
well as the log-based encoding. Figure 5.3 shows measurements when using
ARP. Slowdown is calculated relative to the encoded form and not the original
input. This is to show the additional impact of actually using ARP in the new
encoding.

Entries marked with * did not successfully verify with the default settings. By
increasing the timeout for SMT queries in the SE back-end we were able to
verify the examples. Even though the same timeout was used for all settings of
those examples the slowdown is much larger than for the other examples. The
verification times also varied a lot for those examples. For example, the SE
back-end took between 1.02 and 40.81 seconds to verify the encoded form of the
‘predicates2‘ example. Very likely, this large difference between the two back-
ends and the large slowdown in the SE back-end is due to branching. There
are many branches needed to check the log and constrain read permissions.
While the VCG back-end is able to handle branches quite well, the SE back-
end experiences exponential performance degradation if many branches are
used.

In general the performance impact of using the encoding is noticeable and
there is some room to enhance the performance in the future. One possible
approach is to reduce the number of needed branches. The VCG back-end
seems to be better suited for the current encoding as it shows for many ex-
amples a rather low slowdown.

5.3.3 Nagini
We also measured the performance impact for Python examples in Nagini. As
the additional contracts are translated directly into the extended Viper lan-
guage, we expect a slowdown similar to the one measured in Viper. Table 5.4
shows measured run times for some Python examples from the Nagini test
suite. As expected the measurements are very similar to the ones measured
directly in Viper. We see on average a total slowdown between not encoded
examples without ARP and the same examples using ARP of around 1.55 for
the SE back-end and 1.53 for the VCG back-end.

53

5. Evaluation

B
ac

k-
en

d

E
xa

m
pl

e

E
nc

od
ed

w
/o

A
R

P
[s

]

Si
m

pl
e

w
/

A
R

P
[s

]

Si
m

pl
e

sl
ow

do
w

n

Lo
g-

ba
se

d
w

/
A

R
P

[s
]

Lo
g-

ba
se

d
sl

ow
do

w
n

SE

Fields 0.51 (0.14) 0.60 (0.13) 1.17 22.04 (7.91) * 43.30

Predicates1 0.48 (0.13) 0.38 (0.10) 0.79 1.13 (0.16) 2.37

Predicates2 0.77 (0.20) 4.49 (0.26) 5.81 17.45 (13.20) * 22.59

Quantifiers 1.74 (0.26) 39.16 (2.78) 22.48 77.21 (1.43) 44.32

V
C
G

Fields 3.19 (0.25) 3.81 (0.24) 1.20 7.19 (0.13) 2.26

Predicates1 3.16 (0.13) 3.82 (0.25) 1.21 3.23 (0.22) 1.02

Predicates2 3.36 (0.20) 4.27 (0.22) 1.27 38.20 (4.14) 11.38

Quantifiers 3.23 (0.13) 3.89 (0.24) 1.20 3.75 (0.13) 1.16

Figure 5.3: Examples where ARP are used. Entries marked with ‘*’ did not
successfully verify with the default settings and we increased the SMT timeout.
The number in parentheses is the standard deviation.

54

5.3. Performance
B

ac
k-

en
d

Ex
am

pl
e

N
ot

en
co

de
d

[s
]

E
nc

od
ed

w
/o

A
R

P
[s

]

Sl
ow

do
w

n
w

/o
A

R
P

E
nc

od
ed

w
/

A
R

P
[s

]

Sl
ow

do
w

n
w

/
A

R
P

SE

Call 1.84 (0.13) 2.63 (0.20) 1.43 3.40 (0.21) 1.29

Thread 2.23 (0.14) 3.02 (0.23) 1.36 3.40 (0.23) 1.13

Simple 1.86 (0.13) 2.42 (0.18) 1.30 2.46 (0.23) 1.02

Predicate 1.86 (0.14) 2.56 (0.20) 1.37 2.62 (0.23) 1.02

V
C
G

Call 2.82 (0.10) 3.80 (0.17) 1.35 6.05 (0.21) 1.59

Thread 3.28 (0.10) 4.36 (0.13) 1.33 4.53 (0.18) 1.04

Simple 2.81 (0.08) 3.67 (0.13) 1.31 3.71 (0.14) 1.01

Predicate 2.87 (0.08) 3.80 (0.15) 1.32 3.86 (0.20) 1.02

Figure 5.4: Performance of examples in Nagini. The number in parentheses
is the standard deviation. Slowdown is relative to the previous column (i.e.,
slowdown with ARP is relative to encoded form without ARP).

55

Chapter 6

Conclusion

In this project we implemented a new encoding for abstract read permissions.
While ARP are implemented in Chalice the new encoding is more powerful
and allows to verify more examples. In particular, it allows to verify the first
example presented in the 2014 FTfJP paper by Boyland et al. [4].

The new encoding was implemented as an extension to the existing Viper
verification infrastructure. As part of this, a plugin system for Viper was
implemented. The used Viper-to-Viper translation is composable and allows
to add more extensions at the same time. The plugin supports not only the
cases defined in Section 1.1 (ARP, counting permission, wildcards) but also
token permissions, which were used to support threads in Nagini. Therefore,
all types of ARP supported by Chalice are supported by the extended Viper
language. Errors can be successfully translated back to the original program.

ARP in quantified expressions are supported if the simple encoding (see Sec-
tion 3.2.1) can be used or some constraints are satisfied (see Section 3.2.4).
We successfully verified many examples using quantified permissions in Viper
as well as in Nagini.

Nagini has been extended to support usage of the features provided by the
developed extension. The newly added syntax is similar to the already existing
Nagini syntax.

Finally, we evaluated our implementation using examples from the Chal-
ice2Viper test suite as well as the first example from the paper introducing the
constraint system we used [4]. While the performance impact is not negligible
it is still usable especially with the VCG back-end.

Future Work. While ARP can now be used in Viper and in front-ends, there
is still room for future work. The performance of the encoding can be improved
by optimizations in the log-keeping, constraining or desugaring of the program.

57

6. Conclusion

For example, one could investigate how to reduce the number of branches used
in the encoding since it significantly affects performance in the SE back-end.

The second example from the constraint paper [4] was not yet encoded with
the new ARP encoding. Adding new constructs to express read permissions
of a sequence of tokens would allow to encode the example.

Moreover, while quantified permissions are supported in many cases this can
be further expanded to lift the limits mentioned in Section 4.7. One could
reuse ideas used in the implementation of quantified permissions in the SE
back-end [13] to extend the current implementation to the general case. By
finding suitable inverse functions for the locations in the quantified access
predicate, it might be possible to correctly log these permission changes.

Packaging magic wands is currently not supported because the permissions
cannot always be logged. This could probably be supported by implementing
ARP directly in the back-end.

Finally, it would be interesting to integrate ARP in permission inference to
directly generate a read permission.

58

Bibliography

[1] Vytautas Astrauskas. Encoding of chalice permissions in viper. unpub-
lished, 2017.

[2] Stefan Blom and Marieke Huisman. The vercors tool for verification of
concurrent programs. FM, 8442:127–131, 2014.

[3] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew
Parkinson. Permission accounting in separation logic. In ACM SIGPLAN
Notices, volume 40, pages 259–270. ACM, 2005.

[4] John Tang Boyland, Peter Müller, Malte Schwerhoff, and Alexander J
Summers. Constraint semantics for abstract read permissions. In Pro-
ceedings of 16th Workshop on Formal Techniques for Java-like Programs,
pages 1–6. ACM, 2014.

[5] ETH Zurich Department of Computer Science. Encoding ADTs. http:
//viper.ethz.ch/examples/encoding-adts.html, 2016. [Online; accessed
2018-02-02].

[6] ETH Zurich Department of Computer Science. Chalice2Viper. https:
//bitbucket.org/viperproject/chalice2silver, 2018. [Online; accessed
2018-02-02].

[7] ETH Zurich Department of Computer Science. Nagini. https://github.
com/marcoeilers/nagini, 2018. [Online; accessed 2018-02-12].

[8] ETH Zurich Department of Computer Science. Viper Runner. https://
bitbucket.org/viperproject/viper-runner, 2018. [Online; accessed 2018-
02-02].

[9] Simon Fritsche. A Framework for Bidirectional Program Transformations.
Master’s thesis, ETH Zurich, 2017.

59

http://viper.ethz.ch/examples/encoding-adts.html
http://viper.ethz.ch/examples/encoding-adts.html
https://bitbucket.org/viperproject/chalice2silver
https://bitbucket.org/viperproject/chalice2silver
https://github.com/marcoeilers/nagini
https://github.com/marcoeilers/nagini
https://bitbucket.org/viperproject/viper-runner
https://bitbucket.org/viperproject/viper-runner

Bibliography

[10] Stefan Heule, K Rustan M Leino, Peter Müller, and Alexander J Sum-
mers. Abstract read permissions: Fractional permissions without the
fractions. In International Workshop on Verification, Model Checking,
and Abstract Interpretation, pages 315–334. Springer, 2013.

[11] K Rustan M Leino and Peter Müller. A basis for verifying multi-threaded
programs. In ESOP, volume 9, pages 378–393. Springer, 2009.

[12] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[13] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Automatic
verification of iterated separating conjunctions using symbolic execution.
In International Conference on Computer Aided Verification, pages 405–
425. Springer, 2016.

[14] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
In Proceedings of the 10th ECOOP Workshop on Formal Techniques for
Java-like Programs, pages 1–12, 2008.

60

Appendix A

Appendix

A.1 First Example from Constraint Paper
The encoding of the first example from the 2014 FTfJP paper by Boyland et
al. [4] in Python.

1 from nagini_contracts.lock import Lock
2 from nagini_contracts.contracts import *
3 from nagini_contracts.obligations import Level, WaitLevel, MustTerminate
4 from nagini_contracts.thread import Thread
5

6

7 class Cell:
8 def __init__(self, val: int) -> None:
9 self.value = val

10 self.rds = 0
11 Ensures(Acc(self.value) and self.value == val)
12 Ensures(Acc(self.rds) and self.rds == 0)
13

14

15 class CellLock(Lock[Cell]):
16

17 @Predicate
18 def invariant(self) -> bool:
19 return Acc(self.get_locked().rds) and self.get_locked().rds >= 0 and \
20 Acc(self.get_locked().value, 1 - self.get_locked().rds * ARP())
21

22

23 class Writer:
24 def write(self, data: Cell) -> None:
25 Requires(Acc(data.value))

61

A. Appendix

26 Requires(MustTerminate(2))
27 Ensures(Acc(data.value))
28

29

30 class Reader:
31 def read(self, data: Cell) -> None:
32 Requires(Rd(data.value))
33 Requires(MustTerminate(2))
34 Ensures(Rd(data.value))
35

36

37 class RWController:
38 def __init__(self, c: Cell) -> None:
39 Requires(Acc(c.rds) and Acc(c.value) and c.rds == 0)
40 Ensures(Acc(self.c) and self.c == c and Acc(self.lock) and \
41 self.lock.get_locked() is self.c)
42 Ensures(WaitLevel() < Level(self.lock))
43 self.c = c # type: Cell
44 self.lock = CellLock(self.c) # type: CellLock
45

46 def do_write(self, writer: Writer) -> None:
47 Requires(writer is not None)
48 Requires(Rd(self.lock) and Rd(self.c) and \
49 self.lock.get_locked() is self.c)
50 Requires(WaitLevel() < Level(self.lock))
51 Ensures(Rd(self.lock) and Rd(self.c))
52 self.lock.acquire()
53 Unfold(self.lock.invariant())
54 if self.c.rds != 0:
55 Fold(self.lock.invariant())
56 self.lock.release()
57 self.do_write(writer) # try again
58 else:
59 writer.write(self.c) # lock acquired successfully
60 Fold(self.lock.invariant())
61 self.lock.release()
62

63 def do_read(self, reader: Reader) -> None:
64 Requires(reader is not None)
65 Requires(Rd(self.lock) and Rd(self.c) and \
66 self.lock.get_locked() is self.c)
67 Requires(WaitLevel() < Level(self.lock))
68 Ensures(Rd(self.lock) and Rd(self.c))
69 self.lock.acquire()

62

A.1. First Example from Constraint Paper

70 Unfold(self.lock.invariant())
71 self.c.rds += 1
72 Fold(self.lock.invariant())
73 self.lock.release()
74 reader.read(self.c)
75 self.lock.acquire()
76 Unfold(self.lock.invariant())
77 self.c.rds -= 1
78 Fold(self.lock.invariant())
79 self.lock.release()

63

	Contents
	Introduction
	Project Goals

	Background
	Permission Based Verification
	Viper
	Nagini
	ARP in Chalice

	Methodology
	Extended Viper Language
	Encoding
	Simple ARP Encoding
	Log-based ARP Encoding
	Constraint System
	Log Update
	Constraining

	Quantified Permissions
	Desugaring
	Methods
	Method Calls
	While Loops
	Fold / Unfold
	Inhale / Exhale

	Implementation
	Viper to Viper Translation
	Normalization
	Optimizations
	Error Back Translation
	Plugin System
	Nagini
	Limitations

	Evaluation
	Expressiveness
	Custom Parser for Performance Evaluation
	Performance
	Examples without ARP
	Examples with ARP
	Nagini

	Conclusion
	Bibliography
	Appendix
	First Example from Constraint Paper

