
Concepts of Object-Oriented Programming Winter Semester 06/07

 1 / 3

Exercise Sheet 6

1. Look at the following program:

class Motor {

boolean isOK() { return true; }
void start() { /*...*/ }
...

}
class Wheel {
 void deflate() { /*...*/ }
 ...
}
class MotorTrouble extends Exception {

public Motor motor;
public MotorTrouble(Motor m) {

motor = m;
}

}
public class Car {

public Motor engine;
public Wheel[] wheels;

 /*@ invariant engine.isRunning() ==>
 @ (\forall int i; i >= 0 && i < wheels.length;
 @ wheels[i] != null && wheels[i].isOK())
 @*/

public Car(Motor m, Wheel[] w) {
 engine = m;

 wheels = w;
}
public Motor getMotor() {
 return engine;
}
public Wheel[] getWheels() {

return wheels;
}
public void start() throws MotorTrouble {

if(engine == null || !engine.isOK()) {
throw new MotorTrouble(engine);

} else {
engine.start();

}
}

}

a. What aliasing problems can arise in the example program?
b. Write example code for every problem where the invariant can be destroyed.
c. Change the code of Car in a way so that there are no more aliasing problems.

Concepts of Object-Oriented Programming Winter Semester 06/07

 2 / 3

2. In lecture 5 we have seen what is needed to preserve the consistency of invariants in Java.

Now we want to allow invariants that can refer to private and default access fields.

a. Give an example program showing that the existing obligations are not sufficient.

b. Strengthen the obligations in a way so that consistency is preserved again.

3. Encapsulation question from previous exam!
This example addresses the relation between encapsulation techniques and security aspects.
Given the following scenario: A system environment, represented by the object of type
Environment, manages what people have access to secure parts of the system. The ID of
the persons are stored as an int in the class Authorization . Environment and
Authorization are implemented in the following way:

package System;
public interface Environment {
 public void insertAuthorization (Authorization b);
 public Authorization getAuthorization();
}
package System;
public class Authorization {
 private int[] ids;
 public Authorization() { ids = new int[5]; }
 protected void setIDs(int[] p) {
 ids = p; }
 public int[] getIDs() { return ids; }
}

 The interaction between Environment and Authorization looks like the following:

• Objects of type Authorization can be created by an arbitrary class and can be
transfered to the system environment with the method insertAuthorization.

• insertAuthorization saves the transfered reference and stores the ID of the
registered person into the field IDs of the Authorization object using the
method setIDs. (Keep in mind, that Environment and Authorization are
declared in the same package!)

• An arbitrary user of the system can fetch the IDs of the registered people with the
methods getAuthorization and getIDs accessing them read only. For
example, to make comparisons between ids.

The interaction between Environment and Authorization is called a secure system, if
no class outside of the package System is allowed to modify the IDs stored into the
Authorization object.

Exercise:

a. The above implementation is not secure. Describe how an attacker can manipulate
the list of ids using the method getIDs. In this case an attacker is a class
declared outside of the package system.

Concepts of Object-Oriented Programming Winter Semester 06/07

 3 / 3

b. Implement your solution for question a as method
public static void attack(Environment u) {...}
in class Attack of package Attacker.

c. Explain how to modify the implementation of class Authorization, to prohibit
the attack. The modified Authorization class still has to allow the read only
interaction described above.
The interface Environment as well as the implementation must not be modified.

d. Describe how an attacker could manipulate the list of IDs without using the method
getIDs.

e. Implement your solution for question d as method
 public static void attack(Environment u) {...}
in a class Attack in the package Attacker.

f. Explain how to modify the implementation of class Authorization to prohibit
the attack from question d. There are the same requirements as in question c.

g. [Homework 7]
How can the Universe Type system be used to prevent such problems?
Give an annotated source code of the classes Environment and
Authorization. Assume that the objects Environment and
Authorization are stored in the same universe. Change the implementation of
the methods of both classes as needed.

