Semantics of Programming
Languages
Denotational Semantics

Prof. Peter Muller

Software Component Technology

Peter Muller—Semantics of Programming Languages, SS04 — p.268

3. Denotational Semantics

3.1 Direct Style Semantics: Specification
3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence
3.4 Equivalence

3.5 Extensions of IMP

Peter Muller—Semantics of Programming Languages, SS04 — p.269

Requirements for Well-Definedness

» 1 he denotational semantics is well-defined, If the
equations for Spg define a function

- Trivial for all equations except for loops

Sps|whil e bdo send]| = FIX F
where F'(g) = cond(B[b], g o Sps|s], id)

» For loops, we have to show that F' Is continuous

- (State — State, C) is a ccpo (Lemma 3.4)

Peter Muller—Semantics of Programming Languages, SS04 — p.270

Continuity of F
» Observe that

F(g) = cond(B|b], g o Sps|s|, id) = Fi(F(g))

where
- Fi(g) = cond(B[b], g, id)
- F5(g) = g o Spss]

» By Lemma 3.7, F'Is continuous if £} and F; are
continuous

» We prove these properties in the following

Peter Muller—Semantics of Programming Languages, SS04 — p.271

Continuity of cond

Lemma 3.9:

Let g, gy : State — State, p : State — Bool and
define

Fl(g) — COnd(pagagO)

Then Fj Is continuous.

We prove:
1. Fj IS monotone
2. I preserves least upper bounds

Peter Muller—Semantics of Programming Languages, SS04 — p.272

Proof:. Part 1—Monotonicity

» We have to show that g1 C ¢ = Fi(¢1) C Fi(g9)
where Fi(g) = cond(p, g, go)

» Case 1. p(o) = tt

- We can assume g;(c) = o' = g2(0) = o’
- We get Fi(g1)o = g1(0) and Fi(g2)o = g2(0)
- Therefore, F(g1)0 = o' = Fi(gs)o0 = o’

» Case 2: p(o) = ff
- We get F1(g1) = go and Fi(g2) = go

Peter Muller—Semantics of Programming Languages, SS04 — p.273

Proof:. Part 2—Continuity

» We have to show that F;(LIY) = LI{Fi(g)lg € Y}
where Fi(g) = cond(p, g, g9) and Y is a non-empty
chain In State — State

» From monotonicity of F; and Lemma 3.6, we get
L{Fi1(g)lg € Y} E Fi(LY)

» By anti-symmetry of C, it remains to prove
Fi(UY) EU{Fi(g)lg € Y}

Peter Muller—Semantics of Programming Languages, SS04 — p.274

Proof: Part 2—Continuity (cont’d)

» Case 1. p(o) = tt
- By the definition of F;, we get F1 (LY)o = UY (o) = ¢’ for
some ¢’

- Therefore, thereis a g € Y such that g(o) = o’
(Lemma 3.4)

- The definition of F} gives LI{Fi(g)lg € Y}o =1H{glg € Y}o
- g(o) = o' implies LI{g|g € Y }o = ¢’ since the least upper
bound summarizes all information

» Case 2: p(o) = ff
- Let I (LY)o = go(o) = o
- Forevery g € Y we get F'(g)o = go(o) =0’
- Since the least upper bound summarizes all information,
ey Ve get L{Fi(g)|lg e Y}o =0

Peter Muller—Semantics of Programming Languages, SS04 — p.275

Continuity of o

Lemma 3.10:

Let gy : State — State and define

Fz(g) — g ©° 4o

Then F5 IS continuous.

We prove:
1. F5 IS monotone
2. F; preserves least upper bounds

Peter Muller—Semantics of Programming Languages, SS04 — p.276

Proof:. Part 1—Monotonicity

» We have to show that g1 C g0 = F5(g1) C F3(g9)
where F5(g) = g o g

» We can assume ¢;(0) = o' = gs(0) = o’

/

» Let F5(g1)o0 = g1(go(00)) =0
» There is a ¢ such that gy(0g) = o and g;(c) = o’

» Consequently, F5(g2)o0 = g2(go(00)) = g2(0) = o

Peter Muller—Semantics of Programming Languages, SS04 — p.277

Proof:. Part 2—Continuity

» Like for cond, we have to show that
Fo(lY) C W{Fr(g)|lg € Y} where F5(g) = g o gp and
Y Is a non-empty chain in State <— State

FrUY)o =0 = Definition of F5]
Y (go(0)) =o' = Lemma 3.4]
g eyY ¢g(go)) =0 = Definition of ['5]

g ey Fy¢d)o=0o =
g" €{F5g)lgeY}:g'(o) =0 = [Lemma3.4]
L{Fa(g)lg € Yo =o'

ETH
Sts Pl itinaea Techan gy dar. Peter Miller—Semantics of Programming Languages, SS04 — p.278

Well-Definedness

Theorem 3.11:

The semantic equations for the denota-
tional semantics define a total function
Sps IN Stm — (State < State)

The proof runs by structural induction on the statement

Peter Muller—Semantics of Programming Languages, SS04 — p.279

Proof of Well-Definedness

Induction Base:

» Case ski p: The function id is well-defined

» Case z: =e: A function that maps o to o|z — Ale]o]
IS well-defined

Induction Step:

» Case sq; s9:

- By the induction hypothesis, Sps[s:] and Sps[s2] are
well-defined

- The composition of two well-defined functions is
well-defined

Peter Muller—Semantics of Programming Languages, SS04 — p.280

Proof of Well-Definedness (cont’d)

» Caseif bt hen s; el se sy end:
- By the induction hypothesis, Sps|si]| and Sps|ss| are
well-defined
- cond preserves well-definedness

» Casewhi | e bdo s end:

By the induction hypothesis, Sps|s| is well-defined
F(g) = F1(Fx(g)) where F(g) = cond(B|b], g, id) and
F5(g) = g o Sps|s]

F} and F, are continuous (Lemmas 3.9 and 3.10)
Lemma 3.7 gives that ' IS continuous

Theorem 3.8 gives that FIX I is well-defined

Peter Muller—Semantics of Programming Languages, SS04 — p.281

Example

» | he denotational semantics of the factorial statement
Spsly: =1; whil e x#1 doy: =y xX; X: =X — 1 end]

F(g)o = 4 9(Spsly: =y *x; X: =x — 1]) ?f Bx#1]o = tt
L@ if B[x#1]|o = ff

F(g)o = ¢ gloly — a(y) *o(X)|[x — o(x) —1]) if o(x) # 1
L@ ifo(x) =1

Peter Muller—Semantics of Programming Languages, SS04 — p.282

Example: Fixed Point Iteration

F°(L)o = undefined

Fli(l)o = { undefined if o(X) # 1

undefined if o(X) #1Ao(x) # 2
F>(L)g =1 oly = o(y) *2)x — 1] ifo(x) =2
o if o(X) =1

» If x is 1 or 2, ['? gives the correct value for y
» For all other values, F* is undefined

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.283

Pattern of Fixed Point lteration

» [determines the correct value If it can be
computed with at most n unfoldings of the loop

undefined ifo(X) <1Vao(X)>n
F'(L)o=1q oy o(y)*j*...x2*1][X +— 1]
foX)=jA1<j<n

» T hen we have

undefined ifo(X) <1
(FIXF)o =14 oy —o(y)*n*...x2x*1][X — 1]
fo(X) =nAn>1

Peter Muller—Semantics of Programming Languages, SS04 — p.284

Example (cont’d)

» We apply the semantics of the factorial statement to
a state oy where x has the value 3.

» We have to compute F'IX F(ogly — 1])

(. .
undefined if o(X) < 1
(FIXF)o =14 oy —o(y)*n*...x2x*1][X > 1]

| fo(X)=nAn>1

» In the final state, we get oy — 3 % 2 % 1]|X +— 1]

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.285

Well-Definedness: Summary

Well-definedness of Spg relies on the following results

1. The set State — State equipped with an appropriate
order C Is a ccpo (Lemmas 3.2 and 3.4)

2. Certain functions
U : (State — State) — (State < State)

are continuous (Lemmas 3.9 and 3.10)

3. In the definition of Spgs we only apply the fixed point
operation to continuous functions (Theorem 3.11)

Peter Muller—Semantics of Programming Languages, SS04 — p.286

	3. Denotational Semantics
	Requirements for Well-Definedness
	Continuity of F
	Continuity of $cond $
	Proof: Part 1---Monotonicity
	Proof: Part 2---Continuity
	Proof: Part 2---Continuity (cont'd)
	Continuity of $circ $
	Proof: Part 1---Monotonicity
	Proof: Part 2---Continuity
	Well-Definedness
	Proof of Well-Definedness
	Proof of Well-Definedness (cont'd)
	Example
	Example: Fixed Point Iteration
	Pattern of Fixed Point Iteration
	Example (cont'd)
	Well-Definedness: Summary

