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Big-Step and Small-Step Semantics

� Big-step semantics describe how the overall results
of the executions are obtained

- Natural semantics

� Small-step semantics describe how the individual
steps of the computations take place

- Structural operational semantics (SOS)
- Abstract state machines
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2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.2.1 Structural Operational Semantics of IMP
2.2.2 Properties of the Semantics
2.2.3 Extensions of IMP

2.3 Equivalence

2.4 Applications of Operational Semantics
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Structural Operational Semantics

� The emphasis is on the individual steps of the
execution
- Execution of assignments
- Execution of tests

� Describing small steps of the execution allows one to
express the order of execution of individual steps
- Interleaving computations
- Evaluation order for expressions (not shown in the course)

� Describing always the next small step allows one to
express properties of looping programs
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Transitions in SOS

� The configurations are the same as for natural
semantics

� The transition relation →1 can have two forms

� 〈s, σ〉 →1 〈s
′, σ′〉: the execution of s from σ is not

completed and the remaining computation is
expressed by the intermediate configuration 〈s′, σ′〉

� 〈s, σ〉 →1 σ′: the execution of s from σ has
terminated and the final state is σ′

� A transition 〈s, σ〉 →1 γ describes the first step of
the execution of s from σ
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Transition System

Γ = {〈s, σ〉 | s ∈ Stm, σ ∈ State} ∪ State

T = State

→1⊆ {〈s, σ〉 | s ∈ Stm, σ ∈ State} × Γ

� We say that 〈s, σ〉 is stuck if there is no γ such that
〈s, σ〉 →1 γ
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SOS of IMP

� skip does not modify the state
〈skip, σ〉 →1 σ

� x:=e assigns the value of e to variable x

〈x:=e, σ〉 →1 σ[x 7→ A[[e]]σ]

� skip and assignment require only one step

� Rules are analogous to natural semantics
〈skip, σ〉 → σ

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]
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SOS of IMP: Sequential Composition

� Sequential composition s1;s2

� First step of executing s1;s2 is the first step of
executing s1

� s1 is executed in one step
〈s1, σ〉 →1 σ′

〈s1;s2, σ〉 →1 〈s2, σ
′〉

� s1 is executed in several steps
〈s1, σ〉 →1 〈s

′
1, σ

′〉
〈s1;s2, σ〉 →1 〈s

′
1;s2, σ

′〉
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SOS of IMP: Conditional Statement

� The first step of executing if b then s1 else s2 end
is to determine the outcome of the test and thereby
which branch to select

〈if b then s1 else s2 end, σ〉 →1 〈s1, σ〉 if B[[b]]σ = tt

〈if b then s1 else s2 end, σ〉 →1 〈s2, σ〉 ifB[[b]]σ = ff
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Alternative for Conditional Statement

� The first step of executing if b then s1 else s2 end
is the first step of the branch determined by the
outcome of the test

〈s1, σ〉 →1 σ′

〈if b then s1 else s2 end, σ〉 →1 σ′ if B[[b]]σ = tt

〈s1, σ〉 →1 〈s
′
1, σ

′〉
〈if b then s1 else s2 end, σ〉 →1 〈s

′
1, σ

′〉
if B[[b]]σ = tt

and two similar rules for B[[b]]σ = ff

� Alternatives are equivalent for IMP

� Choice is important for languages with parallel
execution
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SOS of IMP: Loop Statement

� The first step is to unrole the loop

〈while b do s end, σ〉 →1

〈if b then s;while b do s end else skip end, σ〉

� Recall that while b do s end and
if b then s;while b do s end else skip end are
semantically equivalent in the natural semantics
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Alternatives for Loop Statement

� The first step is to decide the outcome of the test and
thereby whether to unrole the body of the loop or to
terminate

〈while b do s end, σ〉 →1 〈s;while b do s end, σ〉

if B[[b]]σ = tt

〈while b do s end, σ〉 →1 σ if B[[b]]σ = ff

� Or combine with the alternative semantics of the
conditional statement

� Alternatives are equivalent for IMP
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Derivation Sequences

� A derivation sequence of a statement s starting in
state σ is a sequence γ0, γ1, γ2, . . . , where
- γ0 = 〈s, σ〉

- γi →1 γi+1 for 0 ≤ i

� A derivation sequence is either finite or infinite
- Finite derivation sequences end with a configuration that is

either a terminal configuration or a stuck configuration

� Notation
- γ0 →

i

1 γi indicates that there are i steps in the execution
from γ0 to γi

- γ0 →
∗

1 γi indicates that there is a finite number of steps in
the execution from γ0 to γi

- γ0 →
i

1 γi and γ0 →
∗

1 γi need not be derivation sequences
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Derivation Sequences: Example

� What is the final state if statement

z:=x; x:=y; y:=z

is executed in state {x 7→ 5,y 7→ 7,z 7→ 0}?

〈z:=x; x:=y; y:=z, {x 7→ 5,y 7→ 7,z 7→ 0}〉

→1 〈x:=y; y:=z, {x 7→ 5,y 7→ 7,z 7→ 5}〉

→1 〈y:=z, {x 7→ 7,y 7→ 7,z 7→ 5}〉

→1 {x 7→ 7,y 7→ 5,z 7→ 5}
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Derivation Trees

� Derivation trees explain why transitions take place

� For the first step

〈z:=x; x:=y; y:=z, σ〉 →1 〈x:=y; y:=z, σ[z 7→ 5]〉

the derivation tree is

〈z:=x, σ〉 →1 σ[z 7→ 5]
〈z:=x; x:=y, σ〉 →1 〈x:=y, σ[z 7→ 5]〉

〈z:=x; x:=y; y:=z, σ〉 →1 〈x:=y; y:=z, σ[z 7→ 5]〉

� z:=x; ( x:=y; y:=z ) would lead to a simpler
tree with only one rule application
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Derivation Sequences and Trees

� Natural (big-step) semantics
- The execution of a statement (sequence) is described by

one big transition
- The big transition can be seen as trivial derivation

sequence with exactly one transition
- The derivation tree explains why this transition takes place

� Structural operational (small-step) semantics
- The execution of a statement (sequence) is described by

one or more transitions
- Derivation sequences are important
- Derivation trees justify each individual step in a derivation

sequence
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Termination

� The execution of a statement s in state σ

- terminates iff there is a finite derivation sequence starting
with 〈s, σ〉

- loops iff there is an infinite derivation sequence starting
with 〈s, σ〉

� The execution of a statement s in state σ

- terminates successfully if 〈s, σ〉 →∗

1 σ′

- In IMP, an execution terminates successfully iff it
terminates (no stuck configurations)
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2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.2.1 Structural Operational Semantics of IMP
2.2.2 Properties of the Semantics
2.2.3 Extensions of IMP

2.3 Equivalence

2.4 Applications of Operational Semantics
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Induction on Derivations

Induction on the length of derivation sequences

1. Induction base: Prove that the property holds for all
derivation sequences of length 0

2. Induction step: Prove that the property holds for all
other derivation sequences:

� Induction hypothesis: Assume that the property holds for
all derivation sequences of length at most k

� Prove that it also holds for derivation sequences of length
k + 1

Induction on the length of derivation sequences is an ap-

plication of strong mathematical induction.
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Using Induction on Derivations

� The induction step is often done by inspecting either
- the structure of the syntactic element or
- the derivation tree validating the first transition of the

derivation sequence

� Lemma

〈s1;s2, σ〉 →
k
1 σ′′ ⇒

∃σ′, k1, k2 : 〈s1, σ〉 →
k1

1
σ′ ∧ 〈s2, σ

′〉 →k2

1
σ′′∧

k1 + k2 = k
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Proof

� Proof by induction on k, that is, by induction on the
length of the derivation sequence for
〈s1;s2, σ〉 →

k
1 σ′′

� Induction base: k = 0: There is no derivation
sequence of length 0 for 〈s1;s2, σ〉 →

k
1 σ′′

� Induction step

- We assume that the lemma holds for k ≤ m

- We prove that the lemma holds for m + 1

- The derivation sequence
〈s1;s2, σ〉 →

m+1

1 σ′′ can be written as
〈s1;s2, σ〉 →1 γ →m

1 σ′′ for some configuration γ
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Induction Step

� 〈s1;s2, σ〉 →1 γ →m
1 σ′′

� Consider the two rules that could lead to the
transition 〈s1;s2, σ〉 →1 γ

� Case 1
〈s1, σ〉 →1 σ′

〈s1;s2, σ〉 →1 〈s2, σ
′〉

� Case 2
〈s1, σ〉 →1 〈s

′
1, σ

′〉
〈s1;s2, σ〉 →1 〈s

′
1;s2, σ

′〉
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Induction Step: Case 1

� From
〈s1;s2, σ〉 →1 γ →m

1 σ′′ and 〈s1;s2, σ〉 →1 〈s2, σ
′〉

we conclude 〈s2, σ
′〉 →m

1 σ′′

� The required result follows by choosing k1 = 1 and
k2 = m
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Induction Step: Case 2

� From
〈s1;s2, σ〉 →1 γ →m

1 σ′′ and 〈s1;s2, σ〉 →1 〈s
′
1;s2, σ

′〉
we conclude 〈s′1;s2, σ

′〉 →m
1 σ′′

� By applying the induction hypothesis, we get
∃σ0, l1, l2 : 〈s′1, σ

′〉 →l1
1

σ0∧〈s2, σ0〉 →
l2
1

σ′′∧ l1 + l2 = m

� From
〈s1, σ〉 →1 〈s

′
1, σ

′〉 and 〈s′1, σ
′〉 →l1

1
σ0

we get 〈s1, σ〉 →
l1+1

1
σ0

� By
〈s2, σ0〉 →

l2
1

σ′′ and (l1 + 1) + l2 = m + 1
we have proved the required result
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Semantic Equivalence

Two statements s1 and s2 are semantically equivalent
if for all states σ:

� 〈s1, σ〉 →
∗
1 γ iff 〈s2, σ〉 →

∗
1 γ, whenever γ is a

configuration that is either stuck or terminal, and

� there is an infinite derivation sequence starting in
〈s1, σ〉 iff there is one starting in 〈s2, σ〉

Note: In the first case, the length of the two derivation

sequences may be different
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Determinism

Lemma: The structural operational semantics of IMP is
deterministic. That is, for all s,σ,γ, and γ ′ we have that

〈s, σ〉 →1 γ ∧ 〈s, σ〉 →1 γ′ ⇒ γ = γ′

� The proof runs by induction on the shape of the
derivation tree for the transition 〈s, σ〉 →1 γ

Corollary: There is exactly one derivation sequence
starting in configuration 〈s, σ〉

� The proof runs by induction on the length of the
derivation sequence
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2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.2.1 Structural Operational Semantics of IMP
2.2.2 Properties of the Semantics
2.2.3 Extensions of IMP

2.3 Equivalence

2.4 Applications of Operational Semantics
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Local Variable Declarations

� Local variable declaration var x:=e in s end

� The small steps are
1. Assign e to x

2. Execute s

3. Restore the initial value of x

(necessary if x exists in the enclosing scope)

� Problem: There is no history of states that could be
used to restore the value of x

� Idea: Represent states as execution stacks
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Modelling Execution Stacks

� We model execution stacks by providing a mapping
Var → Val for each scope

State : stack of(Var → Val)

� Assignment and lookup
have to determine the
highest stack element in
which a variable is defined

� Example: σ(x) = 3
x 1, y 2 

x 3 

z 4 
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SOS for Variable Declarations

� The small steps are
1. Create new scope and assign e to x in this scope
2. Execute s

3. Restore the initial value of x using a return statement

〈var x:=e in s end, σ〉 →1

〈s;return, push({x 7→ A[[e]]σ}, σ)〉

〈return, σ〉 →1 pop(σ)

� Similar techniques can be used for procedure calls
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Abortion

� Statement abort stops the execution of the
complete program

� Abortion is modeled by ensuring that the
configurations 〈abort, σ〉 are stuck

� There is no additional rule for abort in the structural
operational semantics

� abort and skip are not semantically equivalent
- 〈abort, σ〉 is the only derivation sequence for abort

starting is s

- 〈skip, σ〉 →1 σ is the only derivation sequence for skip
starting is s
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Abortion: Observations

� abort and while true do skip end are not
semantically equivalent:

〈while true do skip end, σ〉 →1

〈if true then skip;while true do skip end end, σ〉 →1

〈skip;while true do skip end〉 →1

〈while true do skip end, σ〉

� In a structural operational semantics,
- looping is reflected by infinite derivation sequences
- abnormal termination by finite derivation sequences

ending in a stuck configuration
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Non-determinism

� For the statement s1 s2 either s1 or s2 is
non-deterministically chosen to be executed

� The statement

x:=1 x:=2; x:=x+2

could result in a state in which x has the value 1 or 4

� Rules

〈s1 s2, σ〉 →1 〈s1, σ〉 〈s1 s2, σ〉 →1 〈s2, σ〉
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Non-determinism: Observations

� There are two derivation sequences
- 〈x:=1 x:=2; x:=x+2, σ〉 →∗

1 σ[x 7→ 1]

- 〈x:=1 x:=2; x:=x+2, σ〉 →∗

1 σ[x 7→ 4]

� There are also two derivation sequences for
〈while true do skip end x:=2; x:=x+2, σ〉

- an finite derivation sequence leading to σ[x 7→ 4]

- an infinite derivation sequence

� A structural operational semantics can choose the
”wrong” branch of a non-deterministic choice

� In a structural operational semantics
non-determinism does not suppress looping
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Parallelism

� For the statement s1 par s2 both statements s1 and
s2 are executed, but execution can be interleaved

〈s1, σ〉 →1 〈s
′
1, σ

′〉
〈s1 par s2, σ〉 →1 〈s

′
1 par s2, σ

′〉

〈s1, σ〉 →1 σ′

〈s1 par s2, σ〉 →1 〈s2, σ
′〉

〈s2, σ〉 →1 〈s
′
2, σ

′〉
〈s1 par s2, σ〉 →1 〈s1 par s′2, σ

′〉

〈s2, σ〉 →1 σ′

〈s1 par s2, σ〉 →1 〈s1, σ
′〉
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Example: Interleaving

� The statement

x:=1 par x:=2; x:=x+2

could result in a state in which x has the value 4, 1,
or 3
- Execute x:=1, then x:=2, and then x:=x+2

- Execute x:=2, then x:=x+2, and then x:=1

- Execute x:=2, then x:=1, and then x:=x+2

� In a structural operational semantics we can easily
express interleaving of computations
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Example: Derivation Sequences
〈x:=1 par x:=2; x:=x+2, σ〉 →1 〈x:=2; x:=x+2, σ[x 7→ 1]〉

→1 〈x:=x+2, σ[x 7→ 2]〉

→1 σ[x 7→ 4]

〈x:=1 par x:=2; x:=x+2, σ〉 →1 〈x:=1 par x:=x+2, σ[x 7→ 2]〉

→1 〈x:=1, σ[x 7→ 4]〉

→1 σ[x 7→ 1]

〈x:=1 par x:=2; x:=x+2, σ〉 →1 〈x:=1 par x:=x+2, σ[x 7→ 2]〉

→1 〈x:=x+2, σ[x 7→ 1]〉

→1 σ[x 7→ 3]
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Comparison: Summary
Natural Semantics

� Local variable declarations
and procedures can be
modeled easily

� No distinction between
abortion and looping

� Non-determinism
suppresses looping (if
possible)

� Parallelism cannot be
modeled

Structural Operational Semantics

� Local variable declarations
and procedures require
modeling the execution stack

� Distinction between abortion
and looping

� Non-determinism does not
suppress looping

� Parallelism can be modeled
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