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Operational Semantics of Statements

� Evaluation of an expression in a state yields a value

x + 2 * y

A : Aexp → State → Val

� Execution of a statement modifies the state

x := 2 * y

� Operational semantics describe how the state is
modified during the execution of a statement
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Big-Step and Small-Step Semantics

� Big-step semantics describe how the overall results
of the executions are obtained

- Natural semantics

� Small-step semantics describe how the individual
steps of the computations take place

- Structural operational semantics
- Abstract state machines
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2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics
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Transition Systems

� A transition system is a tuple (Γ, T,B)
- Γ: a set of configurations
- T : a set of terminal configurations, T ⊆ Γ

- B: a transition relation, B⊆ Γ × Γ

� Example: Finite automaton

Γ = {〈w, S〉 | w ∈ {a, b, c}∗, S ∈ {1, 2, 3, 4}}

T = {〈ε, S〉 | S ∈ {1, 2, 3, 4}}

B = {(〈aw, 1〉 → 〈w, 2〉), (〈aw, 1〉 → 〈w, 3〉),

(〈bw, 2〉 → 〈w, 4〉), (〈cw, 3〉 → 〈w, 4〉)}
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Transitions in Natural Semantics

� Two types of configurations for operational semantics
1. 〈s, σ〉, which represents that the statement s is to be

executed in state σ
2. σ, which represents a terminal state

� The transition relation → describes how executions
take place
- Typical transition: 〈s, σ〉 → σ′

- Example: 〈skip, σ〉 → σ

Γ = {〈s, σ〉 | s ∈ Stm, σ ∈ State} ∪ State

T = State

→⊆ {〈s, σ〉 | s ∈ Stm, σ ∈ State} × State
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Rules

� Transition relation is specified by rules
ϕ1, . . . , ϕn

ψ
if Condition

where ϕ1, . . . , ϕn and ψ are transitions

� Meaning of the rule

If Condition and ϕ1, . . . , ϕn then ψ

� Terminology
- ϕ1, . . . , ϕn are called premises
- ψ is called conclusion
- A rule without premises is called axiom
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Notation

� Updating States: σ[y 7→ v] is the function that
- overrides the association of y in σ by y 7→ v or
- adds the new association y 7→ v to σ

(σ[y 7→ v])(x) =

{

v if x = y

σ(x) if x 6= y
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Natural Semantics of IMP

� skip does not modify the state

〈skip, σ〉 → σ

� x:=e assigns the value of e to variable e

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]

� Sequential composition s1;s2

- First, s1 is executed in state σ, leading to σ′

- Then s2 is executed in state σ′

〈s1, σ〉 → σ′, 〈s2, σ
′〉 → σ′′

〈s1;s2, σ〉 → σ′′
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Natural Semantics of IMP (cont’d)

� Conditional statement if b then s1 else s2 end
- If b holds, s1 is executed
- If b does not hold, s2 is executed

〈s1, σ〉 → σ′

〈if b then s1 else s2 end, σ〉 → σ′ if B[[b]]σ = tt

〈s2, σ〉 → σ′

〈if b then s1 else s2 end, σ〉 → σ′ ifB[[b]]σ = ff
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Natural Semantics of IMP (cont’d)

� Loop statement while b do s end
- If b holds, s is executed once, leading to state σ ′

- Then the whole while-statement is executed again σ ′

〈s, σ〉 → σ′, 〈while b do s end, σ′〉 → σ′′

〈while b do s end, σ〉 → σ′′ if B[[b]]σ = tt

- If b does not hold, the while-statement does not modify the
state

〈while b do s end, σ〉 → σ
if B[[b]]σ = ff
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Rule Instantiations

� Rules are actually rule schemes
- Meta-variables stand for arbitrary variables, expressions,

statements, states, etc.
- To apply rules, they have to be instantiated by selecting

particular variables, expressions, statements, states, etc.

� Assignment rule scheme

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]

� Assignment rule instance

〈v:=v+1, {v 7→ 3}〉 → {v 7→ 4}
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Derivations: Example

� What is the final state if statement

z:=x; x:=y; y:=z

is executed in state {x 7→ 5,y 7→ 7,z 7→ 0}
(abbreviated by [5, 7, 0])?

〈z:=x, [5, 7, 0]〉 → [5, 7, 5], 〈x:=y, [5, 7, 5]〉 → [7, 7, 5]
〈z:=x; x:=y, [5, 7, 0]〉 → [7, 7, 5]

,

〈y:=z, [7, 7, 5]〉 → [7, 5, 5]
〈z:=x; x:=y; y:=z, [5, 7, 0]〉 → [7, 5, 5]

Peter Müller—Semantics of Programming Languages, SS04 – p.68



Derivation Trees

� Rule instances can be combined to derive a
transition 〈s, σ〉 → σ′

� The result is a derivation tree
- The root is the transition 〈s, σ〉 → σ′

- The leaves are axiom instances
- The internal nodes are conclusions of rule instances and

have the corresponding premises as immediate children

� The conditions of all instantiated rules must be
satisfied

� There can be several derivations for one transition
(non-deterministic semantics)

Peter Müller—Semantics of Programming Languages, SS04 – p.69



Termination

� The execution of a statement s in state σ
- terminates iff there is a state σ′ such that 〈s, σ〉 → σ′

- loops iff there is no state σ′ such that 〈s, σ〉 → σ′

� A statement s
- always terminates if the execution in a state σ terminates

for all choices of σ
- always loops if the execution in a state σ loops for all

choices of σ
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2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics
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Semantic Equivalence

� Definition
Two statements s1 and s2 are semantically
equivalent (denoted by s1 ≡ s2) if the follow-
ing property holds for all states σ, σ ′:

〈s1, σ〉 → σ′ ⇔ 〈s2, σ〉 → σ′

� Example

while b do s end ≡
if b then s; while b do s end

Peter Müller—Semantics of Programming Languages, SS04 – p.72



Unfolding Loops in C, C++, and Java

int i = 0;
while(i < 2 ) {

while(i < 1)
if(i == 0) break;

i = i + 1;
}

printf("i = %d", i);

i = 2

int i = 0;
while(i < 2 ) {
if(i < 1) {
if(i == 0) break;
while(i < 1)
if(i == 0) break;

}
i = i + 1;

}

printf("i = %d", i);

i = 0

� Equivalence does not hold in these languages

Peter Müller—Semantics of Programming Languages, SS04 – p.73



Unfolding Loops in IMP

� We prove the equivalence based on the natural
semantics

〈while b do s end, σ〉 → σ′′ ⇔ (∗)

〈if b then s; while b do s end, σ〉 → σ′′ (∗∗)

� Proof idea
- Consider the derivation tree for one transition
- Show that there is a derivation tree for the other transition
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Proof: Case “⇒”

� Consider the derivation tree for
〈while b do s end, σ〉 → σ′′

� The last rule application is one of the rules for while

� For the case

〈s, σ〉 → σ′, 〈while b do s end, σ′〉 → σ′′

〈while b do s end, σ〉 → σ′′ if B[[b]]σ = tt

we know

1. There is a derivation tree T1 with root 〈s, σ〉 → σ′

2. There is a derivation tree T2 with root
〈while b do s end, σ′〉 → σ′′

3. B[[b]]σ = tt
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Proof: Case “⇒” (cont’d)

� We can construct the derivation tree

T1, T2

〈s;while b do s end, σ〉 → σ′′

� Since B[[b]]σ = tt we can use the rule for if to derive

T1, T2

〈s;while b do s end, σ〉 → σ′′

〈if b then s;while b do s end else skip end, σ〉 → σ′′

� We have a derivation tree for (∗∗), which completes
this case
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Proof: Case “⇒” (cont’d)

� For the case

〈while b do s end, σ〉 → σ if B[[b]]σ = ff

we know

1. σ = σ′′

2. B[[b]]σ = ff

� We can construct the derivation tree

〈skip, σ〉 → σ′′

〈if b then s;while b do s end else skip end, σ〉 → σ′′

� We have a derivation tree for (∗∗), which completes
Case “⇒”
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Induction on Derivations

Induction on the shape of derivation trees

1. Induction base: Prove that the property holds for all
the simple derivation trees by showing that it holds
for the axioms of the transition system

2. Induction step: Prove that the property holds for all
composite derivation trees:

� Induction hypothesis: For each rule, assume that the
property holds for its premises

� Prove that it also holds for the conclusion, provided that
the conditions of the rule are satisfied

Induction on derivations is a special case of well-

founded induction (derivations are finite)

Peter Müller—Semantics of Programming Languages, SS04 – p.78



Using Induction on Derivations

Lemma: The natural semantics of IMP is deterministic

� We prove

〈s, σ〉 → σ′ ∧ 〈s, σ〉 → σ′′ ⇒ σ′ = σ′′

by induction on the shape of the derivation tree for
〈s, σ〉 → σ′

� Structural induction does not work since definition of
transition relation is not compositional
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Induction Base

� Case skip-axiom: The derivation tree is the axiom
instance 〈skip, σ〉 → σ′ and we know:
- σ′ = σ

- The only axiom or rule that gives 〈skip, σ〉 → σ′′ is the
skip-axiom, which implies, σ′′ = σ

� Case assign-axiom: The derivation tree is the axiom
instance 〈x:=e, σ〉 → σ′ and we know:
- σ′ = σ[x 7→ A[[e]]σ]

- The only axiom or rule that gives 〈x:=e, σ〉 → σ′′ is the
assign-axiom, which implies, σ′′ = σ[x 7→ A[[e]]σ]

� Case while-rule (B[[b]]σ = ff ): Analogously
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Induction Step: Seq. Composition

� Case sequence-rule: The root of the derivation tree
is 〈s1;s2, σ〉 → σ′.
- There are derivation trees for 〈s1, σ〉 → σ0 and 〈s2, σ0〉 → σ′

for some state σ0

- The only rule that gives 〈s1;s2, σ〉 → σ′′ is the
sequence-rule. Therefore, there are derivation trees for
〈s1, σ〉 → σ1 and 〈s2, σ1〉 → σ′′ for some state σ1

- By the induction hypothesis, 〈s1, σ〉 → σ0 and 〈s1, σ〉 → σ1

imply σ0 = σ1

- By the induction hypothesis, 〈s2, σ0〉 → σ′ and 〈s2, σ1〉 → σ′′

imply σ′ = σ′′
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Induction Step: if

� Case if-rule (B[[b]]σ = tt): The root of the derivation
tree is 〈if b then s1 else s2 end, σ〉 → σ′

- There is a derivation tree for 〈s1, σ〉 → σ′

- The only rule that gives
〈if b then s1 else s2 end, σ〉 → σ′′ is the if-rule. Since
B[[b]]σ = tt , there is a derivation tree for 〈s1, σ〉 → σ′′

- By the induction hypothesis, 〈s1, σ〉 → σ′ and 〈s1, σ〉 → σ′′

imply σ′ = σ′′

� Case if-rule (B[[b]]σ = ff ): Analogously
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Induction Step: while

� Case while-rule (B[[b]]σ = tt): The root of the
derivation tree is 〈while b do s end, σ〉 → σ′

- There are derivation trees for 〈s, σ〉 → σ0 and
〈while b do s end, σ0〉 → σ′ for some state σ0

- The only rule that gives 〈while b do s end, σ〉 → σ′′ is the
while-rule. Since B[[b]]σ = tt , there are derivation trees for
〈s, σ〉 → σ1 and 〈while b do s end, σ1〉 → σ′′ for some
state σ1

- By the induction hypothesis, 〈s, σ〉 → σ0 and 〈s, σ〉 → σ1

imply σ0 = σ1

- By the induction hypothesis, 〈while b do s end, σ0〉 → σ′

and 〈while b do s end, σ1〉 → σ′′ imply σ′ = σ′′

� Case while-rule (B[[b]]σ = ff ): See induction base
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2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics
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Local Variable Declarations

� Statement var x:=e in s end declares a new
variable that is visible in the statement sequence of
the declaration, s (block)

� Semantics
- Expression e is evaluated in the initial state
- Statement s is executed in a state in which x has the value

of e
- After the execution of s, the initial value of x is restored

� Rule

〈s, σ[x 7→ A[[e]]σ]〉 → σ′

〈var x:=e in s end, σ〉 → σ′[x 7→ σ(x)]
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Procedure Declarations and Calls

procedure p(x1 . . . xn; y1 . . . ym) begin s end

� Formal parameters
- x1 . . . xn are value parameters (call-by-value)
- y1 . . . ym are variable parameters (call-by-name)

� Context conditions
- The variables xj and yk are pairwise disjoint
- x1 . . . xn and y1 . . . ym are the only free variables in s (no

global variables)
- For calls p(e1 . . . en; y1 . . . ym), the actual variable

parameters yk have to be pairwise disjoint (no aliasing)
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Procedures: Example

procedure fac(n; res)
begin
if n <=1 then
res := 1

else
fac( n-1; res );
res := n * res

end
end
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Vector Notation

� To simplify notations for procedures, we write ~x for
x1, x2, . . . , xm(m ≥ 0) and ~e for e1, e2, . . . , en(n ≥ 0)

� For state updates, we write σ[~y 7→ f(~v)] for
σ[y1 7→ f(v1)][y2 7→ f(v2)] . . . [yn 7→ f(vn)]
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Natural Semantics of Procedure Calls

� Procedure call p(~e;~z) with declaration
procedure p(~x;~y) begin s end

- The call-by-value arguments ~e are evaluated in the initial
state to values ~v

- The body of the procedure, s, is executed in a new state in
which the value parameters are initialized by the values ~v,
and the variable parameters are initialized by the values of
~z in the initial state

- After termination of p, execution continues in the initial
state with the values of ~y assigned to the variables ~z

〈s, {~x 7→ A[[~e]]σ, ~y 7→ σ(~z)}〉 → σ′

〈p(~e;~z), σ〉 → σ[~z 7→ σ′(~y)]
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Abortion

� Statement abort stops the execution of the
complete program

� Abortion is modeled in the operational semantics by
ensuring that the configurations 〈abort, σ〉 are
stuck

� There is no additional rule for abort in the natural
semantics
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Abortion: Observations

� abort and skip are not semantically equivalent
since there is a derivation tree for 〈skip, σ〉 → σ, but
not for 〈abort, σ〉 → σ′

� abort and while true do skip end are
semantically equivalent!

� Natural semantics cannot distinguish between
looping and abnormal termination
- Natural semantics is only concerned with programs that

terminate normally
- Abortion could be modeled by “normal termination” in a

special error configuration
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Non-determinism

� For the statement s1 s2 either s1 or s2 is
non-deterministically chosen to be executed

� The statement

x:=1 x:=2; x:=x+2

could result in a state in which x has the value 1 or 4

� Rules

〈s1, σ〉 → σ′

〈s1 s2, σ〉 → σ′
〈s2, σ〉 → σ′

〈s1 s2, σ〉 → σ′
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Non-determinism: Observations

� There are derivation trees for
- 〈x:=1 x:=2; x:=x+2, σ〉 → σ[x 7→ 1] and
- 〈x:=1 x:=2; x:=x+2, σ〉 → σ[x 7→ 4]

� There is a derivation tree for

〈while true do skip end x:=2; x:=x+2, σ〉 → σ[x 7→ 4]

� A natural semantics always chooses the ”right”
branch of a non-deterministic choice

� In a natural semantics non-determinism will
suppress looping, if possible
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Parallelism

� For the statement s1 par s2 both statements s1 and
s2 are executed, but execution can be interleaved

� The statement

x:=1 par x:=2; x:=x+2

could result in a state in which x has the value 4, 1,
or 3
- Execute x:=1, then x:=2, and then x:=x+2

- Execute x:=2, then x:=x+2, and then x:=1

- Execute x:=2, then x:=1, and then x:=x+2
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Parallelism: Observations

� Attempt to define rules

〈s1, σ〉 → σ′, 〈s2, σ
′〉 → σ′′

〈s1 par s2, σ〉 → σ′′

〈s2, σ〉 → σ′, 〈s1, σ
′〉 → σ′′

〈s1 par s2, σ〉 → σ′′

� Rules do not allow interleaving execution

� In a natural semantics the execution of the
immediate constituents is an atomic entity so we
cannot express interleaving of computations
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Problems of Natural Semantics

� Properties of looping programs cannot be expressed

� No distinction between abortion and looping

� Non-determinism suppresses looping (if possible)

� Parallelism cannot be modeled

� Definition of equivalence is too coarse
- All sorting programs are equivalent
- All looping programs are equivalent
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