
Semantics of Programming
Languages

Denotational Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.302



3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

3.5.1 Locations
3.5.2 Continuations

Peter Müller—Semantics of Programming Languages, SS04 – p.303



Static Scope Rules

� We extend IMP by blocks with local variable and
procedure declarations

begin
var x:= 7;
proc p begin x := 0 end;
begin
var x:= 5;
call p

end
end

� With static scope rules, p updates the global
variable x

� A simple stack as state is not sufficient

Peter Müller—Semantics of Programming Languages, SS04 – p.304



Locations

� Without local variable declarations, we used states
that associate a value to each variable:
State : Var → Val

� For dynamic scope rules, we used stacks as states:
State : stack of(Var → Val)

� For static scope rules, we use locations
- A location can be seen as a memory cell
- A store maps locations to values
- An environment maps variables to locations

Peter Müller—Semantics of Programming Languages, SS04 – p.305



Stores

� We use the sort Loc = Z for locations

- Think: addresses

� To obtain fresh locations, we need a function
new : Loc → Loc

- We could use the successor function on integers

� A store maps locations to values

Store : Loc ∪ {next} → Val

- We use the meta-variable $ for stores
- next is a special token for the next free location
- Since Val = Loc = Z, $(next) is a location

Peter Müller—Semantics of Programming Languages, SS04 – p.306



Variable Environments

� We used type environments to associate a type to
each variable: Γ : Var → Type

� Similarly a variable environment maps variables to
locations

EnvV : Var → Loc

- We use the meta-variable ΦV for variable environments

� The lookup function combines environment and store

lookup : EnvV → Store → State

lookup(ΦV , $) = $ ◦ ΦV

Peter Müller—Semantics of Programming Languages, SS04 – p.307



Extended Semantics of IMP

� With locations, we get a new semantic function
S ′

DS
: Stm → EnvV → EnvP → (Store ↪→ Store)

� skip
S ′

DS
[[skip]](ΦV ,ΦP ) = id

� The clause for assignment uses the environment

S ′

DS
[[x:=e]](ΦV ,ΦP , $) = $[ΦV (x) 7→ A[[e]]lookup(ΦV , $)]

� Sequential composition

S ′

DS
[[s1;s2]](ΦV ,ΦP ) =

(S ′

DS
[[s2]](ΦV ,ΦP )) ◦ (S ′

DS
[[s1]](ΦV ,ΦP ))

Peter Müller—Semantics of Programming Languages, SS04 – p.308



Extended Semantics of IMP (cont’d)

� Conditional statement

S ′

DS
[[if b then s1 else s2 end]](ΦV ,ΦP ) =

cond(B[[b]] ◦ lookup(ΦV ),S ′

DS
[[s1]](ΦV ,ΦP ),S ′

DS
[[s2]](ΦV ,ΦP ))

where
cond : (Store → Bool) × (Store ↪→ Store) × (Store ↪→ Store) →

(Store ↪→ Store)

� Loop

S ′

DS
[[while b do s end]](ΦV ,ΦP ) = FIX F

where F (g) = cond(B[[b]] ◦ lookup(ΦV ), g ◦ S ′

DS
[[s]](ΦV ,ΦP ), id)

Peter Müller—Semantics of Programming Languages, SS04 – p.309



Syntax for Variable Declarations

Stm = . . .
| ’begin’ DV s ’end’

DecV = ’var’ x ’:=’ e ’;’ DV | ε

� DV is a meta-variable for the syntactic category DecV

of variable declarations

Peter Müller—Semantics of Programming Languages, SS04 – p.310



Local Variable Declarations

� The variable environment has to be updated
whenever a block is entered

DV

DS
: DecV → EnvV × Store → EnvV × Store

DV

DS
[[var x:=e ;DV ]](ΦV , $) =

DV

DS
[[DV ]](ΦV [x 7→ n], $[n 7→ v][next 7→ new(n)])

where n = $(next) and v = A[[e]](lookup(ΦV , $))

DV

DS
[[ε]] = id

� For the semantics of blocks, we get

S ′

DS
[[begin DV s end]](ΦV , $) = S ′

DS
[[s]](DV

DS
[[DV ]](ΦV , $))

Peter Müller—Semantics of Programming Languages, SS04 – p.311



Syntax with Procedure Declarations

Stm = . . .
| ’begin’ DV DP s ’end’
| ’call’ p

DecV = ’var’ x ’:=’ e ’;’ DV | ε

DecP = ’proc’ p ’begin’ s ’end’ ’;’ DP | ε

� Meta-variables

- DP for the syntactic category DecP of procedure
declarations

- p for the syntactic category Pname of procedure names

Peter Müller—Semantics of Programming Languages, SS04 – p.312



Procedure Environments

� A procedure environment maps procedure names to
the effect of executing its body

EnvP : Pname → (Store ↪→ Store)

- We use the meta-variable ΦP for procedure environments

Peter Müller—Semantics of Programming Languages, SS04 – p.313



Updating Procedure Environments

DP

DS
: DecP → EnvV → EnvP → EnvP

DP

DS
[[proc p begin s end;DP ]](ΦV , ΦP ) =

DP

DS
[[DP ]](ΦV , ΦP [p 7→ S ′

DS
[[s]](ΦV , ΦP )])

DP

DS
[[ε]] = id

� This function works for non-recursive procedures

� The semantics of the procedure body is determined
by using the variable and procedure environment of
the procedure declaration (static scope rules)

Peter Müller—Semantics of Programming Languages, SS04 – p.314



Block Declarations and Calls

� Blocks

S ′
DS

[[begin DV DP s end]](ΦV , ΦP , $) =

S ′
DS

[[s]](Φ′
V
, Φ′

P
, $′)

where (Φ′
V
, $′) = DV

DS
[[DV ]](ΦV , $)

and Φ′
P

= DP

DS
[[DP ]](Φ′

V
, ΦP )

� The semantics of a procedure call is defined by
consulting the procedure environment

S ′
DS

[[call p]](ΦV , ΦP ) = ΦP (p)

Peter Müller—Semantics of Programming Languages, SS04 – p.315



Example

� In the final store, the local variable x has value 5 and
the global variable x has value 0

begin
var x:= 7;
proc p begin x := 0 end;
begin
var x:= 5; call p

end
end

Peter Müller—Semantics of Programming Languages, SS04 – p.316



Dealing with Recursion

� Semantics for non-recursive procedures

DP

DS
[[proc p begin s end;DP ]](ΦV , ΦP ) =

DP

DS
[[DP ]](ΦV , ΦP [p 7→ S ′

DS
[[s]](ΦV , ΦP )])

� We have to ensure that the meaning of all recursive
calls in s is the same as that of the procedure p being
defined

� For recursive procedures, we need a function g that
satisfies g = S ′

DS
[[s]](ΦV , ΦP [p 7→ g])

� Again, we need to use fixed points

Peter Müller—Semantics of Programming Languages, SS04 – p.317



Semantics of Recursive Procedures

� Declaration of recursive procedures

DP

DS
[[proc p begin s end;DP ]](ΦV ,ΦP ) =

DP

DS
[[DP ]](ΦV ,ΦP [p 7→ FIXF ])

where F (g) = S ′

DS
[[s]](ΦV ,ΦP [p 7→ g])])

� Functions for empty procedure declaration (ε) and
procedure call stay unchanged

� To show well-definedness of S ′
DS

, we have to prove

1. that DV

DS
is a well-defined function

2. that (EnvP ,v′) is a ccpo
3. that the semantic clauses define continuous functions

Peter Müller—Semantics of Programming Languages, SS04 – p.318



3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

3.5.1 Locations
3.5.2 Continuations

Peter Müller—Semantics of Programming Languages, SS04 – p.319



Exceptions

� We extend IMP by exceptions

Stm = . . .
| ’begin’ s1 ’handle’ r : s2 ’end’
| ’raise’ r

� r is a meta-variable for the syntactic category
Exception of exceptions

� The raise r statement transfers control flow to the
handler of exception e

Peter Müller—Semantics of Programming Languages, SS04 – p.320



Exceptions: Example

begin
while true do
if x <= 0 then raise exit

else x := x -1 end
end
handle exit: y := 7

end

� If the example statement is executed from a state σ

with σ(x) > 0 then it will terminate in a state where
x = 0 and y = 7

Peter Müller—Semantics of Programming Languages, SS04 – p.321



Remainder of the Program

� With exceptions, the meaning of a statement cannot
be defined independently of following statements

� Example 1: What is the meaning of the conditional?

if x <= 0 then raise exit
else x := x -1 end

� Example 2: Do we have to execute s3?

if b then s1 else s2 end;s3

� We define the meaning of a statement by the effect
of executing the remainder of the program

Peter Müller—Semantics of Programming Languages, SS04 – p.322



Continuations

� A continuation is a function c of the domain Cont:

Cont = State ↪→ State

� For a statement s, we can assume that we have the
meaning of the program after s, c(s)

. . . ; s ; . . .
︸ ︷︷ ︸

c

� We want to define the meaning of s and the program
after s, c′(s)

. . . ; s ; . . .
︸ ︷︷ ︸

c′

Peter Müller—Semantics of Programming Languages, SS04 – p.323



Continuation Style Semantics of IMP

� With continuations, we get a new semantic function
S ′

CS
: Stm → EnvE → (Cont → Cont)

� skip

SCS[[skip]](ΦE) = id

- id is the identity on Cont

� Assignment

SCS[[x:=e]](ΦE , c, σ) = c(σ[x 7→ A[[e]]σ])

Peter Müller—Semantics of Programming Languages, SS04 – p.324



Continuation Style Semantics (cont’d)

� Sequential composition

SCS[[s1;s2]](ΦE) = (SCS[[s1]](ΦE)) ◦ (SCS[[s2]](ΦE))

- The functional composition is reversed compared to the
direct style semantics

- The continuations are pulled backwards

� Conditional statement

SCS[[if b then s1 else s2 end]](ΦE , c) =
cond(B[[b]],SCS[[s1]](ΦE, c),SCS [[s2]](ΦE , c))

Peter Müller—Semantics of Programming Languages, SS04 – p.325



Continuation Style Semantics (cont’d)

� Loop

SCS[[while b do s end]](ΦE) = FIX F

where F (g)c = cond(B[[b]],SCS [[s]](ΦE, g(c)), c)

� If the condition is ff , we simple return the
continuation of the remainder of the program

� If the condition is tt , then g(c) denotes the effect of
executing the remainder of the loop, followed by the
remainder of the program (continuation for first
unfolding)

Peter Müller—Semantics of Programming Languages, SS04 – p.326



Example

� What is the meaning of the following statement?
z:=x; x:=y; y:=z

SCS[[z:=x; x:=y; y:=z]](ΦE, id)

= (SCS [[z:=x]](ΦE) ◦ SCS [[x:=y]](ΦE) ◦ SCS [[y:=z]](ΦE))(id)

= (SCS [[z:=x]](ΦE) ◦ SCS [[x:=y]](ΦE))(g1)

where g1(σ) = id(σ[y 7→ σ(z)]) = σ[y 7→ σ(z)]

= SCS [[z:=x]](ΦE , g2)

where g2(σ) = g1(σ[x 7→ σ(y)]) = σ[x 7→ σ(y)][y 7→ σ(z)]

= g3

where g3(σ) = g2(σ[z 7→ σ(x)]) = σ[z 7→ σ(x)][x 7→ σ(y)][y 7→ σ(x)]

Peter Müller—Semantics of Programming Languages, SS04 – p.327



Semantics of Exceptions

� An exception environment maps each exception
name r to the effect of executing the remainder of the
program starting from r’s handler

EnvE : Exception → Cont

- We use the meta-variable ΦE for exception environments

� Semantic clauses

SCS[[begin s1 handle r : s2 end]](ΦE, c) =

SCS[[s1]](ΦE[r 7→ SCS[[s2]](ΦE , c)])

SCS[[raise r]](ΦE , c) = ΦE(r)

Peter Müller—Semantics of Programming Languages, SS04 – p.328



Denotational Semantics

� Denotational semantics describes the effect of a
computation

- Direct style: effect of the statement s

- Continuation style: effect of the remainder of the program,
starting from statement s

� A semantic function is defined compositionally for
each syntactic construct

� Expressiveness

- Denotational semantics is well understood for imperative,
functional, and logical programming languages

- Very little work on object-oriented and concurrent
languages

Peter Müller—Semantics of Programming Languages, SS04 – p.329


	3. Denotational Semantics
	Static Scope Rules
	Locations
	Stores
	Variable Environments
	Extended Semantics of IMP
	Extended Semantics of IMP (cont'd)
	Syntax for Variable Declarations
	Local Variable Declarations
	Syntax with Procedure Declarations
	Procedure Environments
	Updating Procedure Environments
	Block Declarations and Calls
	Example
	Dealing with Recursion
	Semantics of Recursive Procedures
	3. Denotational Semantics
	Exceptions
	Exceptions: Example
	Remainder of the Program
	Continuations
	Continuation Style Semantics of IMP
	Continuation Style Semantics (cont'd)
	Continuation Style Semantics (cont'd)
	Example
	Semantics of Exceptions
	Denotational Semantics

