Semantics of Programming
Languages
Denotational Semantics

Prof. Peter Muller

Software Component Technology

Peter Muller—Semantics of Programming Languages, SS04 — p.287

3. Denotational Semantics

3.1 Direct Style Semantics: Specification
3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence
3.4 Equivalence

3.5 Extensions of IMP

Peter Muller—Semantics of Programming Languages, SS04 — p.288

Equivalence Theorem

Theorem:

For every statement s of IMP we
have 8505[[8]] — SDS[[S]]

» Ssos[s] and Spg[s] are elements of the partially
ordered set State <— State

» It suffices to prove

1. 8505[[8]] L SDS[[S]]
2. Sps|s] E Ssos|s]

Eidgendssische Technische Hochschule Zarich
" .

Peter Muller—Semantics of Programming Languages, SS04 — p.289

Equivalence Lemma 1

Lemma:

For every statement s of IMP we have
Ssos|s] & Sps|s]

» We prove this lemma in two steps
» Part 1. Individual steps in the SOS
(s,0) —1 0 = Spg|s]o = o’
(s,0) =1 (s',0"y = Spg|s]oc = Spg|s’]o’

» Part 2. Derivation sequences in the SOS

(s,0) =1 0" = Spg|s]o = o

Peter Muller—Semantics of Programming Languages, SS04 — p.290

Proof of Part 1—Individual Steps

» We prove the property by induction on the shape of
the derivation tree for (s,0) —1 o’ or (s,0) —1 (s',0")

» Case assign-axiom: We have

- (x: =e,0) —1 olx — Ale]o]

- Spslz: =e]o = o[x — Ale]o]

» Case skip-axiom: Analogously

Peter Muller—Semantics of Programming Languages, SS04 — p.291

Proof of Part 1—Individual Steps

» Case sequence-rule 1:
- Assume that (si; s2,0) —1 (s}; s2,0’) because
<517 0> 1 <S/17 0/>
- By the induction hypothesis, we get Sps|si]|o = Sps|s)]o’
- We get
Sps(s1; s2]o = Sps|s2(Spslsi]o) = Sps|s2](Sps[si]o’) =

Sps|st; sa]o’

» Case sequence-rule 2:

- Assume that (sy; so,0) —1 (s9,0’) because (s;,0) —1 o’
- By the induction hypothesis, we get Sps|si]o = o’
- We QEt Sps[[Sl; 82]]0' — SDS[[SQ]](Sps[[Sl]]O') — SDS[[SQ]]O'/

Peter Muller—Semantics of Programming Languages, SS04 — p.292

Proof of Part 1—Individual Steps

» Case if-rule, B(b|o = tt:

- We have (i f bt hen s; el se s, end, o) —1 (s1,0)

- We get Spsfi f bthen s; el se sy end|o =
cond(B|b], Sps|si], Sps|s2])o = Sps|si|o

» Case if-rule, B[b]oc = ff: Analogously

Peter Muller—Semantics of Programming Languages, SS04 — p.293

Proof of Part 1—Individual Steps

» Case while-rule:

- We have (whi l e bdo send, o) —;
(iIf bthen s;whilebdo sendel seskipend,o)

- We have Spg[whi | e bdo s end] = FIXF where
F(g) = cond(B[b], g o Sps|s], id)
- We get

Sps[whi | e bdo send| =
FIXF =

F(FIXF) =

cond(B[b], Sps[whi | € b do s end] o Spg[s], id) =
cond(B[b], Sps[s; whi | e bdo s end],Sps[ski p]) =
Spsif bthen s; whilebdo send el se skipend]

Peter Muller—Semantics of Programming Languages, SS04 — p.294

Proof of Part 2—Derivation Sequences

» We prove (s,0) —i o' = Spg[s]o = ¢’ by induction

on k

» Induction Base: Trivial

» Induction Step: We can assume (s, o) —""! ¢’

» Case 1: (s,0) —; (s/,0")y and (s, ") —* ¢’
- By the lemma for individual steps, we get
SD[,{S]]O' — SDs[[S/]]O'”
- By the induction hypothesis, we get Sps|s’|c” = o’

» Case 2: (s,0) —; ¢’ and ¢” —* ¢

- By the lemma for individual steps, we get Spg[s]o = o”
- 0" =% ¢/ implies k = 0 and " = ¢’
ETH

Peter Muller—Semantics of Programming Languages, SS04 — p.295

Equivalence Lemma 2

Lemma:

For every statement s of IMP we have
Spsls] E Ssos|s]

» The proof runs by structural induction on s

» Induction base:
- Case z: =e: Sps|z: =eo = oz — Ale]o] = Ssos|z: =€]o

- Case ski p: Analogously

Peter Muller—Semantics of Programming Languages, SS04 — p.296

Induction Step: Seq. Composition

» Case sq; s9:
- We have Spg|s1; s2]| = Sps|sa] o Sps|si]

- By the induction hypothesis, we get Sps[si] T Ssos[s1]
and Sps|s2] E Ssos|s2]

- By monotonicity of o (Lemma 3.10 and a symmetric
Iemma), we get SDS[[SQ]] O Sps[[sl]] L 8505[[82]] O 5505[[81]]

- From Exercise 16, we know:
(s1,0) =75 0’ = (s1; S2,0) —7 (s2,0") OF
Ssos|silo = 0’ = Ssos|s1; s2]o = Ssos|sa]o’

- Therefore, we have (Ssos[sa] © Ssos|si])o =
Ssos|s2](Ssoslsilo) = Ssos|s1; s2]o

Peter Muller—Semantics of Programming Languages, SS04 — p.297

Induction Step: Conditional

» Caseif bt hen s; el se sy end:

- We have Spgi f bthen s; el se sy end]| =
cond(B|b], Sps|s1], Sps[sz2])

- By the induction hypothesis, we get Sps[si] C Ssos|[s1]
and Sps|s2] E Ssos|s2]

- By monotonicity of cond (Lemma 3.9 and a symmetric
lemma), we get cond(B|b], Sps[si], Sps[s2]) C
CO%CZ(B[[[)]], SSOS [[81]], SSOS [[82]])

- From the SOS rules, we know

Ssos|i T bthen s; el se sy, end]o = Ssos|si|o if Blbjo = tt

Ssos|i T bthen s; el se s, end]o = Ssos|s2]o it Bb]o = ff

- Therefore, we have cond(B[b], Ssos|s1], Ssos|s2]) =
Ssos|i f bthen s; el se s, end]

Peter Muller—Semantics of Programming Languages, SS04 — p.298

Induction Step: Loop

» Auxiliary Lemma:

Let f : D — D be a continuous function on
ccpo (D,C) and letd € D satisfy f(d) C d.
Then FIX f C d.

- See Exercise session 8 for the proof

» Casewhi | e bdo s end:

- We have Sps[whi | e bdo s end]| = FIXF where
F(g) = cond(B[b], g o Sps|s], id)

- By the auxiliary lemma, it is sufficient to prove
F(SSOS[[\Nhi |l e bdo s end]]) L SSOS[[Whi | e bdo s end]]

Peter Muller—Semantics of Programming Languages, SS04 — p.299

Induction Step: Loop (cont’d)

F(Ssos[whi | e bdo s end]) —
[Definition of F]
cond(B[b], Ssos[whi | e b do s end] o Spss], id)
[Induction hypothesis]
cond(B[b], Ssos[whi | e bdo s end] o Ssos(s], id) =
[Exercise 16]
cond(B[b], Ssos[s; whi |l e b do s end], id) =
Ssosli f bthen s;whil ebdo sendel seskipend]
Ssos[whi | e b do s end]

]

Peter Muller—Semantics of Programming Languages, SS04 — p.300

Equivalence: Summary

» T he operational semantics and denotational
semantics are equivalent

» Proof of Lemma 1

- runs by induction on the shape of the derivation tree for
each individual step in the SOS

- runs by induction on the length of the derivation sequence
for whole statements

» Proof of Lemma 2 runs by structural induction on the
statements

e tianet lhrasiagy Tidch Peter Milller—Semantics of Programming Languages, SS04 — p.301

	3. Denotational Semantics
	Equivalence Theorem
	Equivalence Lemma 1
	Proof of Part 1---Individual Steps
	Proof of Part 1---Individual Steps
	Proof of Part 1---Individual Steps
	Proof of Part 1---Individual Steps
	Proof of Part 2---Derivation Sequences
	Equivalence Lemma 2
	Induction Step: Seq.~Composition
	Induction Step: Conditional
	Induction Step: Loop
	Induction Step: Loop (cont'd)
	Equivalence: Summary

