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Static Scope Rules

� We extend IMP by blocks with local variable and
procedure declarations

begin
var x:= 7;
proc p begin x := 0 end;
begin
var x:= 5;
call p

end
end

� With static scope rules, p updates the global
variable x

� A simple stack as state is not sufficient
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Locations

� Without local variable declarations, we used states
that associate a value to each variable:
State : Var → Val

� For dynamic scope rules, we used stacks as states:
State : stack of(Var → Val)

� For static scope rules, we use locations
- A location can be seen as a memory cell
- A store maps locations to values
- An environment maps variables to locations
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Stores

� We use the sort Loc = Z for locations

- Think: addresses

� To obtain fresh locations, we need a function
new : Loc → Loc

- We could use the successor function on integers

� A store maps locations to values

Store : Loc ∪ {next} → Val

- We use the meta-variable $ for stores
- next is a special token for the next free location
- Since Val = Loc = Z, $(next) is a location
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Variable Environments

� We used type environments to associate a type to
each variable: Γ : Var → Type

� Similarly a variable environment maps variables to
locations

EnvV : Var → Loc

- We use the meta-variable ΦV for variable environments

� The lookup function combines environment and store

lookup : EnvV → Store → State

lookup(ΦV , $) = $ ◦ ΦV
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Extended Semantics of IMP

� With locations, we get a new semantic function
S ′

DS
: Stm → EnvV → EnvP → (Store ↪→ Store)

� skip
S ′

DS
[[skip]](ΦV ,ΦP ) = id

� The clause for assignment uses the environment

S ′

DS
[[x:=e]](ΦV ,ΦP , $) = $[ΦV (x) 7→ A[[e]]lookup(ΦV , $)]

� Sequential composition

S ′

DS
[[s1;s2]](ΦV ,ΦP ) =

(S ′

DS
[[s2]](ΦV ,ΦP )) ◦ (S ′

DS
[[s1]](ΦV ,ΦP ))
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Extended Semantics of IMP (cont’d)

� Conditional statement

S ′

DS
[[if b then s1 else s2 end]](ΦV ,ΦP ) =

cond(B[[b]] ◦ lookup(ΦV ),S ′

DS
[[s1]](ΦV ,ΦP ),S ′

DS
[[s2]](ΦV ,ΦP ))

where
cond : (Store → Bool) × (Store ↪→ Store) × (Store ↪→ Store) →

(Store ↪→ Store)

� Loop

S ′

DS
[[while b do s end]](ΦV ,ΦP ) = FIX F

where F (g) = cond(B[[b]] ◦ lookup(ΦV ), g ◦ S ′

DS
[[s]](ΦV ,ΦP ), id)
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Syntax for Variable Declarations

Stm = . . .
| ’begin’ DV s ’end’

DecV = ’var’ x ’:=’ e ’;’ DV | ε

� DV is a meta-variable for the syntactic category DecV

of variable declarations
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Local Variable Declarations

� The variable environment has to be updated
whenever a block is entered

DV

DS
: DecV → EnvV × Store → EnvV × Store

DV

DS
[[var x:=e ;DV ]](ΦV , $) =

DV

DS
[[DV ]](ΦV [x 7→ n], $[n 7→ v][next 7→ new(n)])

where n = $(next) and v = A[[e]](lookup(ΦV , $))

DV

DS
[[ε]] = id

� For the semantics of blocks, we get

S ′

DS
[[begin DV s end]](ΦV , $) = S ′

DS
[[s]](DV

DS
[[DV ]](ΦV , $))
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Syntax with Procedure Declarations

Stm = . . .
| ’begin’ DV DP s ’end’
| ’call’ p

DecV = ’var’ x ’:=’ e ’;’ DV | ε

DecP = ’proc’ p ’begin’ s ’end’ ’;’ DP | ε

� Meta-variables

- DP for the syntactic category DecP of procedure
declarations

- p for the syntactic category Pname of procedure names
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Procedure Environments

� A procedure environment maps procedure names to
the effect of executing its body

EnvP : Pname → (Store ↪→ Store)

- We use the meta-variable ΦP for procedure environments
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Updating Procedure Environments

DP

DS
: DecP → EnvV → EnvP → EnvP

DP

DS
[[proc p begin s end;DP ]](ΦV , ΦP ) =

DP

DS
[[DP ]](ΦV , ΦP [p 7→ S ′

DS
[[s]](ΦV , ΦP )])

DP

DS
[[ε]] = id

� This function works for non-recursive procedures

� The semantics of the procedure body is determined
by using the variable and procedure environment of
the procedure declaration (static scope rules)
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Block Declarations and Calls

� Blocks

S ′
DS

[[begin DV DP s end]](ΦV , ΦP , $) =

S ′
DS

[[s]](Φ′
V
, Φ′

P
, $′)

where (Φ′
V
, $′) = DV

DS
[[DV ]](ΦV , $)

and Φ′
P

= DP

DS
[[DP ]](Φ′

V
, ΦP )

� The semantics of a procedure call is defined by
consulting the procedure environment

S ′
DS

[[call p]](ΦV , ΦP ) = ΦP (p)
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Example

� In the final store, the local variable x has value 5 and
the global variable x has value 0

begin
var x:= 7;
proc p begin x := 0 end;
begin
var x:= 5; call p

end
end
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Dealing with Recursion

� Semantics for non-recursive procedures

DP

DS
[[proc p begin s end;DP ]](ΦV , ΦP ) =

DP

DS
[[DP ]](ΦV , ΦP [p 7→ S ′

DS
[[s]](ΦV , ΦP )])

� We have to ensure that the meaning of all recursive
calls in s is the same as that of the procedure p being
defined

� For recursive procedures, we need a function g that
satisfies g = S ′

DS
[[s]](ΦV , ΦP [p 7→ g])

� Again, we need to use fixed points
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Semantics of Recursive Procedures

� Declaration of recursive procedures

DP

DS
[[proc p begin s end;DP ]](ΦV ,ΦP ) =

DP

DS
[[DP ]](ΦV ,ΦP [p 7→ FIXF ])

where F (g) = S ′

DS
[[s]](ΦV ,ΦP [p 7→ g])])

� Functions for empty procedure declaration (ε) and
procedure call stay unchanged

� To show well-definedness of S ′
DS

, we have to prove

1. that DV

DS
is a well-defined function

2. that (EnvP ,v′) is a ccpo
3. that the semantic clauses define continuous functions
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Exceptions

� We extend IMP by exceptions

Stm = . . .
| ’begin’ s1 ’handle’ r : s2 ’end’
| ’raise’ r

� r is a meta-variable for the syntactic category
Exception of exceptions

� The raise r statement transfers control flow to the
handler of exception e
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Exceptions: Example

begin
while true do
if x <= 0 then raise exit

else x := x -1 end
end
handle exit: y := 7

end

� If the example statement is executed from a state σ

with σ(x) > 0 then it will terminate in a state where
x = 0 and y = 7
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Remainder of the Program

� With exceptions, the meaning of a statement cannot
be defined independently of following statements

� Example 1: What is the meaning of the conditional?

if x <= 0 then raise exit
else x := x -1 end

� Example 2: Do we have to execute s3?

if b then s1 else s2 end;s3

� We define the meaning of a statement by the effect
of executing the remainder of the program
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Continuations

� A continuation is a function c of the domain Cont:

Cont = State ↪→ State

� For a statement s, we can assume that we have the
meaning of the program after s, c(s)

. . . ; s ; . . .
︸ ︷︷ ︸

c

� We want to define the meaning of s and the program
after s, c′(s)

. . . ; s ; . . .
︸ ︷︷ ︸

c′
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Continuation Style Semantics of IMP

� With continuations, we get a new semantic function
S ′

CS
: Stm → EnvE → (Cont → Cont)

� skip

SCS[[skip]](ΦE) = id

- id is the identity on Cont

� Assignment

SCS[[x:=e]](ΦE , c, σ) = c(σ[x 7→ A[[e]]σ])
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Continuation Style Semantics (cont’d)

� Sequential composition

SCS[[s1;s2]](ΦE) = (SCS[[s1]](ΦE)) ◦ (SCS[[s2]](ΦE))

- The functional composition is reversed compared to the
direct style semantics

- The continuations are pulled backwards

� Conditional statement

SCS[[if b then s1 else s2 end]](ΦE , c) =
cond(B[[b]],SCS[[s1]](ΦE, c),SCS [[s2]](ΦE , c))
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Continuation Style Semantics (cont’d)

� Loop

SCS[[while b do s end]](ΦE) = FIX F

where F (g)c = cond(B[[b]],SCS [[s]](ΦE, g(c)), c)

� If the condition is ff , we simple return the
continuation of the remainder of the program

� If the condition is tt , then g(c) denotes the effect of
executing the remainder of the loop, followed by the
remainder of the program (continuation for first
unfolding)
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Example

� What is the meaning of the following statement?
z:=x; x:=y; y:=z

SCS[[z:=x; x:=y; y:=z]](ΦE, id)

= (SCS [[z:=x]](ΦE) ◦ SCS [[x:=y]](ΦE) ◦ SCS [[y:=z]](ΦE))(id)

= (SCS [[z:=x]](ΦE) ◦ SCS [[x:=y]](ΦE))(g1)

where g1(σ) = id(σ[y 7→ σ(z)]) = σ[y 7→ σ(z)]

= SCS [[z:=x]](ΦE , g2)

where g2(σ) = g1(σ[x 7→ σ(y)]) = σ[x 7→ σ(y)][y 7→ σ(z)]

= g3

where g3(σ) = g2(σ[z 7→ σ(x)]) = σ[z 7→ σ(x)][x 7→ σ(y)][y 7→ σ(x)]
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Semantics of Exceptions

� An exception environment maps each exception
name r to the effect of executing the remainder of the
program starting from r’s handler

EnvE : Exception → Cont

- We use the meta-variable ΦE for exception environments

� Semantic clauses

SCS[[begin s1 handle r : s2 end]](ΦE, c) =

SCS[[s1]](ΦE[r 7→ SCS[[s2]](ΦE , c)])

SCS[[raise r]](ΦE , c) = ΦE(r)
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Denotational Semantics

� Denotational semantics describes the effect of a
computation

- Direct style: effect of the statement s

- Continuation style: effect of the remainder of the program,
starting from statement s

� A semantic function is defined compositionally for
each syntactic construct

� Expressiveness

- Denotational semantics is well understood for imperative,
functional, and logical programming languages

- Very little work on object-oriented and concurrent
languages
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