
Semantics of Programming
Languages

Axiomatic Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.372



Motivation

� Developing an axiomatic semantics is difficult

� Soundness:
If a property can be proved then it does indeed hold

- An unsound inference system is useless

� Completeness:
If a property does hold then it can be proved

- With an incomplete inference system, a program might be
correct, but we cannot prove it

Peter Müller—Semantics of Programming Languages, SS04 – p.373



Unsoundness: While Rule

� Why do we need the precondition ∃Z : V(Z)?

{ B[[b]] ∧P ∧ V(Z + 1) } s { ⇓ P ∧ V(Z) }

{ P } while b do s end { ⇓ ¬B[[b]] ∧ P }

where Z ∈ N

� With V(Z) ≡ x = Z, we can derive

{ x− 1 = Z } x:=x− 1 { ⇓ x = Z }

{ x#0 ∧ x = Z + 1 } x:=x− 1 { ⇓ x = Z }

{ true } while x#0 do x:=x− 1 end { ⇓ x = 0 }

� This derivation is not sound

� We cannot prove ∃Z ∈ N : V(Z) for x < 0

Peter Müller—Semantics of Programming Languages, SS04 – p.374



Incompleteness: Procedures

{ P } call p { Q } ` { P } s { Q }

{ P } call p { Q }

where p is defined by proc p is s end

proc p is
if y >0 then
y := y - 1;
x := x - 1; call p; x := x + 1;

end
end

� We cannot prove
{ x = N } call p { x = N } ` { x = N } body(p) { x = N }

because the assumption does not match the
recursive call

Peter Müller—Semantics of Programming Languages, SS04 – p.375



Soundness and Completeness

� Soundess and completeness can be proved w.r.t. an
operational or denotational semantics

The partial correctness assertion { P } s { Q } is
valid—written as � { P } s { Q }— iff

∀σ, σ′ ∈ State : P(σ) = tt ∧ 〈s, σ〉 → σ′ ⇒ Q(σ′) = tt

� Soundness: ` { P } s { Q } ⇒ � { P } s { Q }

� Completeness: � { P } s { Q } ⇒ ` { P } s { Q }

Peter Müller—Semantics of Programming Languages, SS04 – p.376



Theorem

Soundess and completeness theorem

For all partial correctness assertions { P } s { Q }
of IMP we have

` { P } s { Q } ⇔ � { P } s { Q }

Peter Müller—Semantics of Programming Languages, SS04 – p.377



4. Axiomatic Semantics

4.1 Hoare Logic

4.2 Soundness and Completeness

4.2.1 Proof of Soundness
4.2.2 Proof of Completeness

Peter Müller—Semantics of Programming Languages, SS04 – p.378



Soundness Proof

� We prove ` { P } s { Q } ⇒ � { P } s { Q }

� That is, we have to show

` { P } s { Q } ∧ P(σ) = tt ∧ 〈s, σ〉 → σ′ ⇒ Q(σ′) = tt

� The proof runs by induction on the shape of the
inference tree for ` { P } s { Q }

Peter Müller—Semantics of Programming Languages, SS04 – p.379



Soundness Proof: Base Cases

� Case assign-axiom

- Assume 〈x:=e, σ〉 → σ′

- We have to prove (P[x 7→ A[[e]]])σ = tt ⇒ P(σ′) = tt

- From the natural semantics, we get
〈x:=e, σ〉 → σ[x 7→ A[[e]]σ]

- We have (P[x 7→ A[[e]]])σ = tt ⇔ P(σ[x 7→ A[[e]]σ]) = tt

� Case skip-axiom: Trivial

Peter Müller—Semantics of Programming Languages, SS04 – p.380



Soundness Proof: Composition

� Consider arbitrary states σ and σ ′′ where P(σ) = tt

holds and 〈s1;s2, σ〉 → σ′′

� From the natural semantics, we know that there is a
state σ′ such that 〈s1, σ〉 → σ′ and 〈s2, σ

′〉 → σ′′

� From the induction hypothesis, we get
� { P } s1 { Q } and � { Q } s2 { R }

� From � { P } s1 { Q }, 〈s1, σ〉 → σ′, and P(σ) = tt ,
we get Q(σ′) = tt

� From � { Q } s2 { R }, 〈s2, σ
′〉 → σ′′, and Q(σ′) = tt ,

we get R(σ′′) = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.381



Soundness Proof: Conditional

� Case 1: B[[b]]σ = tt

- Consider arbitrary states σ and σ′ where P(σ) = tt holds
and 〈if b then s1 else s2 end, σ〉 → σ′

- From the natural semantics, we get 〈s1, σ〉 → σ′

- From the induction hypothesis, we get
� { B[[b]] ∧P } s1 { Q }

- From P(σ) = tt and B[[b]]σ = tt , we get (B[[b]] ∧P)σ = tt

- From � { B[[b]] ∧P } s1 { Q } and (B[[b]] ∧P)σ = tt , we get
Q(σ′′) = tt

� Case 2: B[[b]]σ = ff is analogous

Peter Müller—Semantics of Programming Languages, SS04 – p.382



Soundness Proof: Loop

� We have to prove

` { P } while b do s end { ¬B[[b]] ∧ P }∧

P(σ) = tt ∧ 〈while b do s end, σ〉 → σ′′

⇒ (¬B[[b]] ∧ P)σ′′

where σ and σ′′ are arbitrary states

� The proof runs by induction on the shape of the
derivation tree for 〈while b do s end, σ〉 → σ′′

Peter Müller—Semantics of Programming Languages, SS04 – p.383



Soundness Proof: Loop (cont’d)

� Case 1: B[[b]]σ = tt

- From the natural semantics, we get 〈s, σ〉 → σ′ and
〈while b do s end, σ′〉 → σ′′

- From P(σ) = tt and B[[b]]σ = tt , we get (B[[b]] ∧P)σ = tt

- By applying the induction hypothesis of the outer induction
to � { B[[b]] ∧ P } s { P }, we get P(σ′) = tt

- Now we can apply the induction hypothesis of the nested
induction to 〈while b do s end, σ′〉 → σ′′ to get
(¬B[[b]] ∧P)σ′′ = tt

� Case 2: B[[b]]σ = ff

- From the natural semantics, we get σ = σ′′

- P(σ) = tt and B[[b]]σ = ff imply (¬B[[b]] ∧P)σ′′ = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.384



Soundness Proof: Consequence

� Consider arbitrary states σ and σ ′ where P(σ) = tt

holds and 〈s, σ〉 → σ′

� We have � { P′ } s { Q′ }, P ⇒ P′, and Q′ ⇒ Q

� From P(σ) = tt and P ⇒ P′, we get P′(σ) = tt

� By applying the induction hypothesis, we get
Q′(σ′) = tt

� From Q′(σ′) = tt and Q′ ⇒ Q, we get Q(σ′) = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.385



4. Axiomatic Semantics

4.1 Hoare Logic

4.2 Soundness and Completeness

4.2.1 Proof of Soundness
4.2.2 Proof of Completeness

Peter Müller—Semantics of Programming Languages, SS04 – p.386



Weakest (Liberal) Preconditions

� The weakest precondition of a statement s and a
postcondition Q is the weakest predicate that has to
hold in the initial state of an execution of s to
guarantee that Q holds in the final state

- The weakest precondition wp(s,Q) guarantees termination
- The weakest liberal precondition wlp(s,Q) does not

guarantee termination

wp(s,Q)σ = tt ⇔ ∃σ′ : (〈s, σ〉 → σ′ ∧ Q(σ′))

wlp(s,Q)σ = tt ⇔ ∀σ′ : (〈s, σ〉 → σ′ ⇒ Q(σ′))

� In the following, we consider partial correctness

Peter Müller—Semantics of Programming Languages, SS04 – p.387



wlp-Lemma

Lemma: For every statement s and predicate Q we
have
1. � { wlp(s,Q) } s { Q }

2. � { P } s { Q } ⇒ (P ⇒ wlp(s,Q))

� Proof 1:

- Let wlp(s,Q)σ = tt and 〈s, σ〉 → σ′

- From the definition of wlp, we get Q(σ′)

� Proof 2:

- Let P(σ) = tt and 〈s, σ〉 → σ′

- From � { P } s { Q }, we get Q(σ′) = tt

- From the definition of wlp, we get wlp(s,Q)σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.388



Completeness Proof

� We prove � { P } s { Q } ⇒ ` { P } s { Q }

� It suffices to infer ` { wlp(s,Q) } s { Q }

- By � { P } s { Q }, the wlp-lemma implies P ⇒ wlp(s,Q)

{ wlp(s,Q) } s { Q }

{ P } s { Q }

� We prove ` { wlp(s,Q) } s { Q } by structural
induction on s

Peter Müller—Semantics of Programming Languages, SS04 – p.389



Completeness Proof: Base Cases

� Case assign-axiom

- From the natural semantics, we get
〈x:=e, σ〉 = σ[x 7→ A[[e]]σ]

- From the definition of wlp, we get
wlp(x:=e,Q)σ ⇔ Q(σ[x 7→ A[[e]]σ]))

- Therefore, we get wlp(x:=e,Q) = Q[x 7→ A[[e]]]

- We can infer ` { Q[x 7→ A[[e]]] } x:=e { Q }

� Case skip-axiom:

- From the natural semantics, we get wlp(skip,Q) = Q

- We can infer ` { Q } skip { Q }

Peter Müller—Semantics of Programming Languages, SS04 – p.390



Completeness Proof: Composition

� By the induction hypothesis, we get
` { wlp(s2,Q) } s2 { Q } and
` { wlp(s1, wlp(s2,Q)) } s1 { wlp(s2,Q) }

� We can infer ` { wlp(s1, wlp(s2,Q)) } s1;s2 { Q }

� It remains to prove that
wlp(s1;s2,Q) ⇒ wlp(s1, wlp(s2,Q))

� We assume that wlp(s1;s2,Q)σ = tt and show that
wlp(s1, wlp(s2,Q))σ = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.391



Completeness Proof: Composition (2)

� If there is no σ′ such that 〈s1, σ〉 → σ′ then
wlp(s1, wlp(s2,Q))σ = tt follows immediately from
the definition of wlp

� Otherwise, we have to show wlp(s2,Q)σ′ = tt

� Again, if there is no σ′′ such that 〈s2, σ
′〉 → σ′′ then

wlp(s2,Q)σ′ = tt follows immediately from the
definition of wlp

� Otherwise, we have to show Q(σ′′)

� Q(σ′′) follows from wlp(s1;s2,Q)σ = tt and
〈s1;s2, σ〉 → σ′′

Peter Müller—Semantics of Programming Languages, SS04 – p.392



Completeness Proof: Conditional

� By the induction hypothesis, we get
` { wlp(s1,Q) } s1 { Q } and
` { wlp(s2,Q) } s2 { Q }

� Define P ≡ (B[[b]]∧wlp(s1,Q))∨ (¬B[[b]]∧wlp(s2,Q))

� We have B[[b]] ∧ P ⇒ wlp(s1,Q) and
¬B[[b]] ∧ P ⇒ wlp(s2,Q)

� We derive

{ wlp(s1,Q) } s1 { Q }

{ B[[b]] ∧ P } s1 { Q }

{ wlp(s2,Q) } s2 { Q }

{ ¬B[[b]] ∧ P } s2 { Q }

{ P } if b then s1 else s2 end { Q }

Peter Müller—Semantics of Programming Languages, SS04 – p.393



Completeness Proof: Conditional (2)

� We have
P ≡ (B[[b]] ∧ wlp(s1,Q)) ∨ (¬B[[b]] ∧ wlp(s2,Q))

� It remains to show that
wlp(if b then s1 else s2 end,Q)σ = tt ⇒ P(σ) = tt

� Case 1: B[[b]]σ = tt

- If there is no σ′ such that 〈s1, σ〉 → σ′ then wlp(s1,Q)σ = tt

follows immediately from the definition of wlp
- Otherwise, we have to prove Q(σ′)

- From wlp(if b then s1 else s2 end,Q)σ = tt and
〈if b then s1 else s2 end, σ〉 → σ′, we get Q(σ′)

� Case 2: B[[b]]σ = ff is analogous

Peter Müller—Semantics of Programming Languages, SS04 – p.394



Completeness Proof: Loop

� Define P ≡ wlp(while b do s end,Q)

� We will prove

(1) (¬B[[b]] ∧P) ⇒ Q

(2) (B[[b]] ∧P) ⇒ wlp(s,P)

� By the induction hypothesis, we get
` { wlp(s,P) } s { P }

� From (2), we get ` { B[[b]] ∧ P } s { P }

� Be the while rule, we get
` { P } while b do s end { ¬B[[b]] ∧ P }

� From (1), we get ` { P } while b do s end { Q }

Peter Müller—Semantics of Programming Languages, SS04 – p.395



Completeness Proof: Loop (2)

� We prove (1): (¬B[[b]] ∧ P) ⇒ Q

� Assume (¬B[[b]] ∧ P)σ = tt

� Then we have 〈while b do s end, σ〉 = σ

� By wlp(while b do s end,Q)σ = tt and the
definition of wlp, we get Q(σ) = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.396



Completeness Proof: Loop (3)

� We prove (2): (B[[b]] ∧ P) ⇒ wlp(s,P)

� We assume (B[[b]] ∧ P)σ = tt and show that
wlp(s,P)σ = tt

� If there is no σ′ such that 〈s, σ〉 → σ′ then
wlp(s,P)σ = tt follows immediately from the
definition of wlp

� Otherwise, we have to show P(σ′) = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.397



Completeness Proof: Loop (4)

� Case 1: There is no σ′′ such that
〈while b do s end, σ′〉 = σ′′

- By the definition of wlp, we get that
wlp(while b do s end,Q)σ′ = tt and, thus, P(σ′) = tt

� Case 2: There is a σ′′ such that
〈while b do s end, σ′〉 = σ′′

- From 〈s, σ〉 → σ′ and 〈while b do s end, σ′〉 = σ′′, we get
〈while b do s end, σ〉 = σ′′

- By P(σ) = tt and 〈while b do s end, σ〉 = σ′′, we get
Q(σ′′) = tt

- By Q(σ′′) = tt and 〈while b do s end, σ′〉 = σ′′, we get
wlp(while b do s end,Q)σ′ = tt and, thus, P(σ′) = tt

Peter Müller—Semantics of Programming Languages, SS04 – p.398



Summary: Axiomatic Semantics

� Axiomatic semantics

- expresses specific properties of the effect of executing a
program

- Some aspects of the computation may be ignored

� Axiomatic semantics is used to verify programs

- Partial correctness
- Total correctness
- Other properties, e.g., resource consumption

� The inference system should be sound and
complete

Peter Müller—Semantics of Programming Languages, SS04 – p.399


	Motivation
	Unsoundness: While Rule
	Incompleteness: Procedures
	Soundness and Completeness
	Theorem
	4. Axiomatic Semantics
	Soundness Proof
	Soundness Proof: Base Cases
	Soundness Proof: Composition
	Soundness Proof: Conditional
	Soundness Proof: Loop
	Soundness Proof: Loop (cont'd)
	Soundness Proof: Consequence
	4. Axiomatic Semantics
	Weakest (Liberal)
Preconditions
	wlp -Lemma
	Completeness Proof
	Completeness Proof: Base Cases
	Completeness Proof: Composition
	Completeness Proof: Composition (2)
	Completeness Proof: Conditional
	Completeness Proof: Conditional (2)
	Completeness Proof: Loop
	Completeness Proof: Loop (2)
	Completeness Proof: Loop (3)
	Completeness Proof: Loop (4)
	Summary: Axiomatic Semantics

