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Static Safety

� Realistic programming
languages support
many different kinds of
values

� Most operations are
only defined for certain
kinds of values

� Type systems check
statically that opera-
tions are only applied
to values for which they
are defined

procedure foo(p,q; res)
begin
res := p + q

end

var res := 0 in
foo(5,2;res)

end

var res := 0 in
foo(5,(5>2);res)

end
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Static Safety: Example

procedure foo(p: int,q: int; res: int)
begin
res := p + q

end

var res: int := 0 in
foo(5,2;res)

end

var res: int := 0 in
foo(5,(5>2);res)

end
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Type System

Definition: A type system is a syntactic method for
proving absence of certain program behaviors by
classifying phrases according to the kinds of values
they compute.

[B.C. Pierce, 2002]

� Syntactic: Rules can be checked by a compiler

� Phrases: Expressions, methods, etc. of a program

� Kinds of values: Types
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Types

Definition: A type is a set of values sharing some
properties. A value x has type T if x is an element
of T

� Properties: Available operations, etc.

� Remarks:
- Most languages provide primitve types (boolean, int, char,

etc.) and user-defined types (records, classes, etc.)
- The subtype relation on types corresponds to the subset

relation on sets of values
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Type Ckecking

� Each expression of a
program has a type

� Types of variables are
declared explicitly

� Types of expressions
are derived from the
types of their
constituents

� Type rules check
whether a phrase is
correctly typed

"A String"
5+7

a: bool
procedure
equals(p,q:String;b:bool)

a and true
equals("hello","test";a)
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Declaration Environments

� The set of all types of a program is Type

� A declaration environment associates a type to
each variable

� Declaration environments are represented as finite
functions Var → Type

� Example: Γ = {x1 7→ T1, x2 7→ T2, . . . , xn 7→ Tn}

� For languages with procedures, the declaration
environment would also contain the signatures of all
procedures
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Type Judgments

� Type judgment for expressions

Γ ` e :: T

Meaning: expression e is well-typed in environment Γ
and has type T

� Type judgment for statements

Γ ` s

Meaning: statement s is well-typed in environment Γ
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Type Rules

� The valid type judgments are described by a set of
type axioms and rules

� Examples:

A local variable access
x is correctly typed and
has the declared type of
x

Γ ` x :: Γ(x)

An assignment x:=e is
correctly typed if

� e is correctly typed
� e and x have the

same type
Γ ` e :: T, Γ(x) = T

Γ ` x:=e
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Static Type Safety

Definition: A programming language is called type-
safe if its design prevents type errors

� Type-safe languages guarantee the following type
invariant:
In every execution state, the type of the value held
by variable x is the declared type of x

� Type safety guarantees the absence of certain
runtime errors

� IMP’s syntax guarantees type safety, even without a
type system
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Type Invariant

� We can introduce a function that yields the type of a
value: typeof : Val → Type

- Example: typeof (5) = int

� Type invariant: The following property holds in each
execution state σ of a program with declaration
environment Γ

∀x : typeof (σ(x)) = Γ(x)

- σ and Γ map the same local variables to values and types,
resp.
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Discussion

� Advantages of static type checking
- Robustness: Elimination of type errors
- Readability: Types are excellent documentation
- Efficiency: Type information allows optimizations

� Limitations: Static type checking is only an
approximation of the behavior at runtime
- Some programs are rejected by the type checker although

they would never cause a runtime error

a := 5; a := a + 5;
a := true; a := a and a
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Secrecy

� Programs hold confidential and non-confidential
information

� Attackers
- should not be able to get (partial) information about

confidential information
- know the code of the program
- know the initial and final values of non-confidential

information

� Example: Attackers can read variable l, but not h

private int h; // confidential
public int l; // non-confidential
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Information Flow

� Access Control restricts the release of information,
but not its propagation

private int h; // confidential
public int l; // non-confidential

� Explicit information flow

l := h

� Implicit information flow

if h > 0 then l := 1
else l := -1

end
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Noninterference

� To keep data confidential, the following
noninterference policy should be enforced

An attacker cannot observe any difference
between two executions that differ only in
their confidential input

l := h if h > 0 then l := 1
else l := -1

end
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Formalization: Preliminaries

� We group all program variables into two sets H and
L

- Values of variables in H (high variables) are confidential
- Values of variables in L (low variables) are

non-confidential

� The equivalence relation ≡L describes that two
states have the same values for all low variables:

σ ≡L σ′ ⇔ ∀x ∈ L : σ(x) = σ′(x)
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Formalization: Noninterference

� The relation ≈L expresses the observational power
of an attacker:

σ ≈L σ′ ⇔ (σ, σ′ ∈ State ⇒ σ ≡L σ′)

- Attackers do not observe termination

� A statement s satisfies the noninterference property
iff:

∀σ1, σ2 : σ1 ≡L σ2 ⇒ SNS[[s]]σ1 ≈L SNS[[s]]σ2

- If two input states share the same low values, then the
behaviors of the statement executed on these states are
indistinguishable by the attacker
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Noninterference: Examples

∀σ1, σ2 : σ1 ≡L σ2 ⇒ SNS[[s]]σ1 ≈L SNS[[s]]σ2

� Assume l ∈ L and h ∈ H

h := l + 4 l := h

if l = 5 then h := h + 1
else l := l + 1

end

if h = 3 then l := 5
else skip

end

� Explanation:
- Let σ1 = {l 7→ 0,h 7→ 2} and σ2 = {l 7→ 0,h 7→ 3}
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Summary

� The formal semantics allows us to express security
properties such as noninterference

� More fine-grained policies can be achieved by
- Additional confidentiality levels (not only high and low)
- Different relations ≈L for observational power

� The formalization enables one to prove that a
statement has the noninterference property

� Interesting question:
Can we check noninterference syntactically?
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Approach

� Use a type system to check noninterference

� Variables have security type high or low
- Handles explicit information flow

l := h

� Statements have security context high or low
- If the control flow depends on high values, the security

context is high
- In high contexts, it is not allowed to assign to low variables
- Handles implicit information flow

if h = 3 then l := 5 else skip end

Peter Müller—Semantics of Programming Languages, SS04 – p.172



Type Judgments

� Type judgment for expressions

Γ ` e :: T

� Type judgment for statements

Γ, ∆ ` s

� Types: Type = {high,low}

� Declaration environments: Γ : Var → Type

� Security contexts: ∆ ∈ {high,low}
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Type Rules: Expressions

� It is always safe to type expressions as high

Γ ` b :: high Γ ` e :: high

� An expression can have type low only if it does not
contain high variables

∀x ∈ FV (b) : Γ(x) 6= high
Γ ` b :: low

∀x ∈ FV (e) : Γ(x) 6= high
Γ ` e :: low
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Type Rules: skip and Assignment

� skip can be typed in any security context

Γ, ∆ ` skip

� Assignments to high variables are always safe

Γ(x) = high
Γ, ∆ ` x:=e

� Assignments to low variables are only possible if the
security context is low

Γ ` e :: low, Γ(x) = low
Γ,low ` x:=e
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Type Rules: Conditional and Loop

� If the condition of an if-statement depends on high
values, then the security context of the statement
has to be high

Γ ` b :: ∆, Γ, ∆ ` s1, Γ, ∆ ` s2

Γ, ∆ ` if b then s1 else s2 end

� Loops are typed analogously

Γ ` b :: ∆, Γ, ∆ ` s
Γ, ∆ ` while b do s end
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Type Rules: Seq. Composition

� For sequential composition, both statements must
have the same security context

Γ, ∆ ` s1, Γ, ∆ ` s2

Γ, ∆ ` s1;s2

� If a statement can be typed in security context high
then it can also be typed in security context low
(subsumption)

Γ,high ` s
Γ,low ` s
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Subsumption: Example

� Assume Γ = {l 7→ low,h 7→ high}

� The statement
if l = 0 then l := l + 1 end

can only be typed in security context low

� Without using subsumption, the statement
if h = 0 then h := h + 1 end

can only be typed in security context high

� To be able to type the sequential composition the
subsumption rule has to be used

if l = 0 then l := l + 1 end;
if h = 0 then h := h + 1 end
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Type Rules: Examples

� Assume Γ = {l 7→ low,h 7→ high}

h := l + 4

l := h

if l = 5 then h := h + 1
else l := l + 1

end

if h = 3 then l := 5
else skip

end

Typeable in high
and low

Not typeable

Typeable in low

Not typeable
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Type Safety

� The type system does not have the usual type
invariant
- Values are not per se high or low values
- Classical type safety is not applicable

� The type system guarantees the noninterference
porperty as type invariant:

∀s, σ1, σ2 : σ1 ≡L σ2 ⇒ SNS[[s]]σ1 ≈L SNS[[s]]σ2

where ≡L is defined as follows

σ ≡L σ′ ⇔ (∀x : Γs(x) = low ⇒ σ(x) = σ′(x))
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Lemmas: Expressions

� The proof of type safety uses the following lemmas

� The values of expressions of type low do not depend
on values of high variables

Lemma 2.4.1

Γ ` e :: low ∧ σ1 ≡L σ2 ⇒ A[[e]]σ1 = A[[e]]σ2

Γ ` b :: low ∧ σ1 ≡L σ2 ⇒ B[[b]]σ1 = B[[b]]σ2

- The proofs run by structural induction on e and b
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Lemmas (cont’d)

� ≡L is reflexive, symmetric, and transitive

Lemma 2.4.2
≡L is an equivalence relation

- The lemma follows directly from equality “=” being an
equivalence relation

� Statements that can be typed in security context
high do not modify the values of low variables

Lemma 2.4.3
Γ,high ` s ∧ 〈s, σ〉 → σ′ ⇒ σ ≡L σ′

- See Exercise 20 for the proof
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Proof: Overview

� We have to prove the type invariant

∀s, σ1, σ2 : σ1 ≡L σ2 ⇒ SNS[[s]]σ1 ≈L SNS[[s]]σ2

� We prove the following equivalent property

∀s, σ1, σ2, σ
′
1
, σ′

2
: σ1 ≡L σ2∧

〈s, σ1〉 → σ′
1
∧ 〈s, σ2〉 → σ′

2

⇒ σ′
1
≡L σ′

2

� The type safety proof runs by induction on the shape
of the derivation tree for 〈s, σ1〉 → σ′

1
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Induction Base: skip

� Case skip-axiom: We know
- s = skip

- 〈skip, σ1〉 → σ′

1
implies σ′

1
= σ1

- 〈skip, σ2〉 → σ′

2
implies σ′

2
= σ2

� These equalities trivially imply σ1 ≡L σ2 ⇒ σ′
1
≡L σ′

2
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Induction Base: Assignment

� Case assign-axiom: The derivation tree is the axiom
instance 〈x:=e, σ1〉 → σ′

1
and we know

- s = x:=e

- σ′

1
= σ1[x 7→ A[[e]]σ1] and σ′

2
= σ2[x 7→ A[[e]]σ2]

� Case 1: Γ(x) = high

- σ′

1
= σ1[x 7→ A[[e]]σ1] ⇒ σ′

1
≡L σ1

- σ′

2
= σ2[x 7→ A[[e]]σ2] ⇒ σ′

2
≡L σ2

- Lemma 2.4.2 and σ′

1
≡L σ1 ≡L σ2 ≡L σ′

2
imply σ′

1
≡L σ′

2

� Case 2: Γ(x) = low
- From the type rule we get Γ ` e :: low

- By Lemma 2.4.1, we get A[[e]]σ1 = A[[e]]σ2

- σ1 ≡L σ2 ⇒ σ1[x 7→ A[[e]]σ1] ≡L σ2[x 7→ A[[e]]σ2] ⇒ σ′

1
≡L σ′

2
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Induction Step: Seq. Composition

� Case sequence-rule: The root of the derivation tree
is 〈s1;s2, σ1〉 → σ′

1
.

- There are derivation trees for 〈s1, σ1〉 → σ′′

1
and

〈s2, σ
′′

1
〉 → σ′

1
for some state σ′′

1

- There are derivation trees for 〈s1, σ2〉 → σ′′

2
and

〈s2, σ
′′

2
〉 → σ′

2
for some state σ′′

2

- By applying the induction hypothesis to 〈s1, σ1〉 → σ′′

1
and

〈s1, σ2〉 → σ′′

2
we get σ′′

1
≡L σ′′

2

- By applying the induction hypothesis to 〈s2, σ
′′

1
〉 → σ′

1
and

〈s2, σ
′′

2
〉 → σ′

2
we get σ′

1
≡L σ′

2
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Induction Step: if

� Case if-rule: The root of the derivation tree is
〈if b then s1 else s2 end, σ1〉 → σ′

1

� Case 1: Γ ` b :: high
- By the type rules, we get that s has security context high
- By Lemma 2.4.3, we get σ1 ≡L σ′

1
and σ2 ≡L σ′

2

- By Lemma 2.4.2, we get σ′

1
≡L σ′

2

� Case 2: Γ ` b :: low

- By Lemma 2.4.1, we get B[[b]]σ1 = B[[b]]σ2

- If B[[b]]σ1 = tt , we have 〈s1, σ1〉 → σ′

1
and 〈s1, σ2〉 → σ′

2

- By applying the induction hypothesis, we get σ′

1
≡L σ′

2

- The case for B[[b]]σ1 = ff is analogous
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Induction Step: while

� Case while-rule: The root of the derivation tree is
〈while b do s′ end, σ1〉 → σ′

1

� Case 1: Γ ` b :: high
- By the type rules, we get that s has security context high
- By Lemma 2.4.3, we get σ1 ≡L σ′

1
and σ2 ≡L σ′

2

- By Lemma 2.4.2, we get σ′

1
≡L σ′

2
and
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Induction Step: while

� Case 2: Γ ` b :: low

- By Lemma 2.4.1, we get B[[b]]σ1 = B[[b]]σ2

- If B[[b]]σ1 = tt , we have
〈s′, σ1〉 → σ′′

1
and 〈while b do s′ end, σ′′

1
〉 → σ′

1

as well as
〈s′, σ2〉 → σ′′

2
and 〈while b do s′ end, σ′′

2
〉 → σ′

2

- By applying the induction hypothesis to 〈s′, σ1〉 → σ′′

1
and

〈s′, σ2〉 → σ′′

2
, we get σ′′

1
≡L σ′′

2

- By applying the induction hypothesis to
〈while b do s′ end, σ′′

1
〉 → σ′

1
and

〈while b do s′ end, σ′′

2
〉 → σ′

2
, we get σ′

1
≡L σ′

2

- The case for B[[b]]σ1 = ff is trivial
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Discussion

� The type system can be used to check
noninterference statically

� Like all type systems, it is a static approximation of
the semantics

- It rejects statements that are safe

� Example
l := h; l := l - h

- The statement is not typeable
- However, it is secure (σ′(l) = 0 for all inputs h)
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Summary: Operational Semantics

� Operational semantics describe how the effects of a
computation are achieved
- Close to the intuition about languages
- Can be executable
- Simple mathematical background

� Main forms
- Natural semantics, with predominant proof principle

“induction on the shape of derivation trees”
- Structural operational semantics, with predominant proof

principle “induction on the length of derivation sequences”
- Abstract state machines will be presented by Robert Stärk
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