Semantics of Programming
Languages
Denotational Semantics

Prof. Peter Muller

Software Component Technology

Peter Muller—Semantics of Programming Languages, SS04 — p.193

Motivation

» Operational semantics is at a rather low abstraction
level

- Some arbitrariness in choice of rules (e.g., size of steps)
- Syntax involved in description of behavior

» Semantic equivalence in natural semantics

(s1,0) = 0" & (s9,0) — o

» ldea

- We can describe the behavior on an abstract level if we are
only interested in equivalence

- We specify only the partial function on states

Peter Muller—Semantics of Programming Languages, SS04 — p.194

Approach

» Denotational semantics describes the effect of a
computation

» A semantic function is defined for each syntactic
construct
- maps syntactic construct to a mathematical object, often a
function
- the mathematical object describes the effect of executing
the syntactic construct

e tianet lhrasiagy Tidch Peter Milller—Semantics of Programming Languages, SS04 — p.195

Compositionality

» IN denotational semantics, semantic functions are
defined compositionally

» There Is a semantic clause for each of the basis
elements of the syntactic category

» For each method of constructing a composite
element (in the syntactic category) there is a
semantic clause defined in terms of the semantic
function applied to the immediate constituents of

the composite element

Peter Muller—Semantics of Programming Languages, SS04 — p.196

Examples

» The semantic functions A : Aexp — State — Val and
BB : Bexp — State — Bool are denotational definitions

Alzx|o = o(x)
Ali]o = for i € 7
Alei op es]o = Alei]o op Ales]o for op € Op

(it if A[[el]]a op .A[[@Q]]O’

Blei op es|loc = <
lev op €] ff otherwise

\

Peter Miller—Semantics of Programming Languages, SS04 — p.197

Counterexamples

» 1he semantic functions Syg¢ and Sg¢pg are not
denotational definitions because they are not defined
compositionally

Sng : Stm — (State — State)
‘
o’ if (s,0) — o’

SNs[[S]]O' = <

undefined otherwise

\

Ssos : Stm — (State <— State)

/

o’ if (s,0) —7F o

Ssos|s]o = <

undefined otherwise

\

Peter Muller—Semantics of Programming Languages, SS04 — p.198

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.1.1 Direct Style Semantics of IMP
3.1.2 Requirements on the Fixed Point

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence
3.4 Equivalence

3.5 Extensions of IMP

Peter Muller—Semantics of Programming Languages, SS04 — p.199

Semantic Functions

» T he effect of executing a statement is described by
the partial function Spg

Sps : Stm — (State <— State)

» Partiality is needed to model non-termination

» The effects of evaluating expressions is defined by
the functions A and B

Peter Muller—Semantics of Programming Languages, SS04 — p.200

Direct Style Semantics of IMP

» Ski p does not modify the state
Sps[ski p] = id

1d : State — State
id(o) =0

» . =e assigns the value of e to variable «

Spslz: =e]o = o|x — Ale]o]

Peter Muller—Semantics of Programming Languages, SS04 — p.201

Direct Style Semantics of IMP (cont’d)

» Seqguential composition s;; ss
Sps|si; s2] = Sps|sz2] o Sps|si]

» Function composition o is defined in a strict way

- If one of the functions is undefined on the given argument
then the composition is undefined

f(g(o)) if g(o) # undefined

(fog)o = and f(g(0)) # undefined
undefined otherwise

Peter Muller—Semantics of Programming Languages, SS04 — p.202

Direct Style Semantics of IMP (cont’d)

» Conditional statementi f bt hen s; el se s, end

Spsfi f bthen s; el se s, end] =
cond(B[b], Sps[s1]; Sps|sa])

» The function cond

- takes the semantic functions for the condition and the two
statements

- when supplied with a state selects the second or third
argument depending on the first

cond : (State — Bool) X (State — State) X (State — State) —
(State — State)

Peter Muller—Semantics of Programming Languages, SS04 — p.203

Definition of cond

cond : (State — Bool) X (State — State) X (State — State)

— (State — State)

f(o) if b(o) = tt

and f(o) # undefined

cond(b, f,g)o = | glo) itb(o) =ff
and g(o) # undefined

undefined otherwise

Peter Miller—Semantics of Programming Languages, SS04 — p.204

Semantics of Loop: Observations

» Defining the semantics of whi | e is difficult

» The semantics of whi | e b do s end must be equal to
| f bthen s;whilebdo sendel seskipend

» This requirement yields:

Sps|whi l e bdo s end] =
cond(B[b],Sps[whi | e bdo s end] o Spgs], id)

» We cannot use this equation as a definition because
It IS not compositional

Peter Muller—Semantics of Programming Languages, SS04 — p.205

Functionals and Fixed Points

Spswhil e bdo send]| =
cond(B|b],Sps[whi | e bdo s end] o Spg|s], id)

» The above equation has the form g = F'(g)
- g =Sps|whi | e bdo s end]
- F(g) = cond(B|b], g o Sps|s], id)

» F'iIs a functional (a function from functions to
functions)

» Spg[whi | e bdo s end] is a fixed point of the
functional F°

Peter Muller—Semantics of Programming Languages, SS04 — p.206

Fixed Points: Examples

» x is a fixed point of function f if f(z) = x holds

» Consider a function f : N — N

- f(:z:) = x + 1 does not have a fixed point
f(x) = 0 has exactly one fixed point, 0
f(z) = z* has two fixed points, 0 and 1
f(z) =

xr) = x has an infinite number of fixed points

Peter Muller—Semantics of Programming Languages, SS04 — p.207

Direct Style Semantics of IMP: Loops

» Loop statementwhi | e b do s end

Sps|whil e bdo send]| = FIX F
where F'(g) = cond(B[b], g o Spg|s], id)

» We write FIX F'to denote the fixed point of the
functional F':

FIX : ((State — State) — (State — State))
— (State — State)

» This defintion of Spgwhi | e b do s end] is
compositional

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.208

Example

» Consider the statement

while x # 0 do skip end

» The functional for this loop is defined by

F'(g)o

cond (B[x#0], g o Sps[ski p], id)o

(
cond(B[x#0], g o id, id)o
(

= C()nd B[x#0], g, id)o

<

\

[g(0) fo(z) #£0
o if o(x) =0

Peter Muller—Semantics of Programming Languages, SS04 — p.209

Example (cont’d)

» 1 he function

g1(0) =

’

N

undefined if o(x) # 0
9 .
o if o(x) =0

\

s a fixed point of £”

» The function g-(o)
F/

= undefined IS not a fixed point for

Peter Muller—Semantics of Programming Languages, SS04 — p.210

Well-Definedness

Sps|whil e bdo send]| = FIX F
where F'(g) = cond(B[b], g o Sps|s], id)

» The function Spg[whi | e b do s end] is well-defined
If F'IXF defines a unique fixed point for the
functional F

- There are functionals that have more than one fixed point
- There are functionals that have no fixed point at all

Peter Muller—Semantics of Programming Languages, SS04 — p.211

Examples

» F’ from the previous example has more than one
fixed point
(

glo) ito(z)#0

o otherwise

F'(g)o =

\

- Every function ¢’ : State — State with ¢'(0) = o if o(z) =0 IS
a fixed point for £
» The functional F; has no fixed point if g; # go
g1 119 =g

go otherwise

Fi(g) =

Peter Muller—Semantics of Programming Languages, SS04 — p.212

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.1.1 Direct Style Semantics of IMP
3.1.2 Requirements on the Fixed Point

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence
3.4 Equivalence

3.5 Extensions of IMP

Peter Muller—Semantics of Programming Languages, SS04 — p.213

Achieving Well-Definedness

» 10 make sure that there is exactly one fixed point for
the functional F', we develop a framework where:

» We Impose requirements on the fixed points and

show that there is at most one fixed point fulfilling
these requirements

» all functionals originating from statements in IMP do
have a fixed point that satisfies these requirements

Peter Muller—Semantics of Programming Languages, SS04 — p.214

Requirements on the Fixed Point

» 10 motivate the requirements on the fixed points, we
consider the three possible outcomes of a loop
whi | e b do s end.:

1. it terminates,

2. It loops locally, that is, there Is a construct in s that loops, or
3. it loops globally, that is, the outer whi | e construct loops

» We Investigate the functional F' and its fixpoints for
these three cases

Peter Muller—Semantics of Programming Languages, SS04 — p.215

Terminating Loops

» Execution of whi | e bdo s end from state o
terminates

» There are states oy, ..., o, such that

)
tt ifeo<n

BbO’Z:<
0] ff ifi=n

\

and Spg|s]o; = 0,01 fori < n

» Every fixed point gy of F' satisfies gy(og) = o,
» This case does not give us any help for choosing “the
right” fixed point

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.216

Terminating Loops (cont’d)

» Let gy be any fixed point of F

» FOrz < n we get » For: =n we get
go(073) go(on)
= F(g0)o = F(g0)on
= cond(B[b], go o Sps|s], id)o; = cond(B[b], go o Sps|s], id)oy,
— g0(Sps[s] (7)) — id(o,)
= go(0it1) = o,

» Thus, any fixed point g, satisfies gg(oy) = o,

Peter Muller—Semantics of Programming Languages, SS04 — p.217

Local Looping

» Execution of whi | e b do s end from state o, loops
locally

» There are states oy, ..., o, such that B|b]o; = tt for
» < n and

041 if i <n
SD‘S'[[S]]O',,; — .
undefined If12 =n

» Every fixed point gy of F satisfies gy(0g) = undefined

» This case does not give us any help for choosing “the
right” fixed point

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.218

Local Looping (cont’d)

» Let gy be any fixed point of F

» FOrz < n we get » For: =n we get
go(03) go(om)
= F(go)o = F(go)om
= cond(B[b], go o Sps|s], id)o; = cond(B[b], go o Sps|s], id)oy,
= 90(Sps|s](4)) = (90 © Spsls])(on)
= go(0is1) = undefined

» Thus, any fixed point g, satisfies go(cg) = undefined

Peter Muller—Semantics of Programming Languages, SS04 — p.219

Global Looping

» Execution of whi | e b do s end from state o, loops
globally

» There are states o0y, 01, ... such that B|b|o; = tt and
Sps[[S]]O'Z’ = 0j+1 for all ¢
» Let gy be any fixed point of F

» Like in the other cases, we get go(o;) = go(o;.1) for
all 2

» Therefore, we get go(og) = go(o;) for all ¢
» We cannot determine the value of gq(oy) in this way

Peter Muller—Semantics of Programming Languages, SS04 — p.220

Global Looping: Example

» We revisit the example whi | e x#0 do skip end
with its functional F”

/

glo) ito(z)#0

o otherwise

F'(g)o = 4

\

» Every function ¢’ : State < State with ¢'(0) = o if
o(x) = 0 is a fixed point for F’

» However, we want to record the looping. Therefore,
our preferred fixed point is g;:

undefined if o(x) # 0O
g1(0) = { |
o ifo(z) =0

Peter Muller—Semantics of Programming Languages, SS04 — p.221

The Desired Fixed Point

)
undefined if o(x) # 0

g1(0) = 1

o ifo(z) =0

» The property that distinguishes g; from all other fixed
points ¢’ of I’ isthat ¢g1(0) = ¢’ = ¢'(0) = o', but not
vice versa

» Requirement: The desired fixed point FIX F' should
be some partial function g, : State — State such that
- go IS a fixed point of I, that is, F'(gg) = go
- if ¢’ is another fixed point of F', then go(c) = ¢’ = ¢'(0) = o’
for all o, 0’

Peter Muller—Semantics of Programming Languages, SS04 — p.222

	Motivation
	Approach
	Compositionality
	Examples
	Counterexamples
	3. Denotational Semantics
	Semantic Functions
	Direct Style Semantics of IMP
	Direct Style Semantics of IMP (cont'd)
	Direct Style Semantics of IMP (cont'd)
	Definition of $cond $
	Semantics of Loop: Observations
	Functionals and Fixed Points
	Fixed Points: Examples
	Direct Style Semantics of IMP: Loops
	Example
	Example (cont'd)
	Well-Definedness
	Examples
	3. Denotational Semantics
	Achieving Well-Definedness
	Requirements on the Fixed Point
	Terminating Loops
	Terminating Loops (cont'd)
	Local Looping
	Local Looping (cont'd)
	Global Looping
	Global Looping: Example
	The Desired Fixed Point

