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Partial Ordering

� A partial order is a relation that is
- reflexive: d v d,
- transitive: d1 v d2 ∧ d2 v d3 ⇒ d1 v d3, and
- anti-symmetric: d1 v d2 ∧ d2 v d1 ⇒ d1 = d2

� We formalize the requirements for the desired fixed
point by introducing a partial order v on partial
functions State ↪→ State

� We set g1 v g2 when the partial function
g1 : State ↪→ State shares its results with the partial
function g2 : State ↪→ State in the sense that
g1(σ) = σ′ ⇒ g2(σ) = σ′ for all σ, σ′
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Partial Ordering: Example

g1(σ) = σ

g2(σ) =







σ if σ(x) ≥ 0

undefined otherwise

g3(σ) =







σ if σ(x) = 0

undefined otherwise

g4(σ) =







σ if σ(x) ≤ 0

undefined otherwise
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Partially Ordered Sets

� Definition

A partially ordered set is a pair (D,vD) where D is
a set and vD is a partial order on D.

� We say that d1 shares information with d2 if
d1 vD d2

� We omit the subscript from vD if it is clear from the
context
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Least Elements

� Definition

An element d of D satisfying

∀d′ ∈ D : d vD d′

is a least element of the partially ordered set
(D,vD)

� We say that a least element contains no information
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Unique Least Elements

� Lemma 3.1:

If a partially ordered set (D,vD) has a least
element d, then d is unique

� Proof
- Assume that d1 and d2 are two least elements of (D,vD)

- By the definition of least elements, we get d1 v d2 and
d2 v d1

- Anti-symmetry implies d1 = d2

� The least element of D, if one exists, is denoted by
⊥D (or simply ⊥)
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Partially Ordered Sets: Example

� Let S be a non-empty
set and
P(S) = {K|K ⊆ S} the
power set of S

� (P(S),⊆) is a partially
ordered set
- ⊆ is reflexive: K ⊆ K

- ⊆ is transitive:
K1 ⊆ K2 ∧ K2 ⊆ K3 ⇒
K1 ⊆ K3

- ⊆ is anti-symmetric:
K1 ⊆ K2 ∧ K2 ⊆ K1 ⇒
K1 = K2

{a,c}

{ }

{b,c}

{c}{a} {b}

{a,b}

{a,b,c}

Ordering for S = {a, b, c}
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Back to Semantics

� Lemma 3.2:

(State ↪→ State,v) is a partially ordered set. The
partial function ⊥: State ↪→ State defined by

⊥ (σ) = undefined for all σ

is the least element of State ↪→ State

� Proof
- Part 1: v is a partial order
- Part 2: ⊥ is the least element of State ↪→ State

Peter Müller—Semantics of Programming Languages, SS04 – p.231



Proof: Part 1

� Recall: g1 v g2 means that g1(σ) = σ′ ⇒ g2(σ) = σ′

for all σ, σ′

� Reflexivity: g v g since g(σ) = σ′ ⇒ g(σ) = σ′

� Transitivity: g1 v g2 ∧ g2 v g3 ⇒ g1 v g3 follows from
the transitivity of implication “⇒”

� Anti-symmetry: g1 v g2 ∧ g2 v g1 ⇒ g1 = g2

- If g1(σ) = σ′ then g2(σ) = σ′

- If g1(σ) = undefined then g2(σ) = undefined (otherwise, we
would get a contradiction)
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Proof: Part 2

� We show that ⊥ is the least element of State ↪→ State

� ⊥ is an element of State ↪→ State

� ⊥v g holds for all g since ⊥ (σ) = σ′ vacuously
implies g(σ) = σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.233



The Desired Fixed Point

Requirements on FIX F :

� FIX F is a fixed point of F , that is

F (FIX F ) = FIX F

� FIX F is the least fixed point of F , that is
if F (g) = g then FIX F v g
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Least Upper Bounds

� Definition of upper bound

Let (D,v) be a partially ordered set and Y a subset
of D. An element d of D is an upper bound of Y if

∀d′ ∈ Y : d′ v d

� Definition of least upper bound

An upper bound d of Y is a least upper bound if
and only if

d′′ is an upper bound implies that d v d′′

� If Y has a least upper bound, then it is unique (see
exercise session 7), and denoted by tY
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Least Upper Bounds: Example

� Let S be a non-empty
set and
P(S) = {K|K ⊆ S}
the power set of S

� Every subset Y of
(P(S),⊆) has the
least upper bound
⋃

d∈Y

d

{a,c}

{ }

{b,c}

{c}{a} {b}

{a,b}

{a,b,c}

Ordering for S = {a, b, c}
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Least Upper Bounds: Example

�

⋃

d∈Y

d is an upper bound

-
⋃

d∈Y

d is in P(S) since it is a subset of S

- ∀d′ ∈ Y : d′ ⊆
⋃

d∈Y

d

�

⋃

d∈Y

d is the least upper bound

- We have to show that if u is an upper bound, then
⋃

d∈Y

d ⊆ u

- For all x ∈ S, we get: x ∈
⋃

d∈Y

d ⇒ ∃d′ ∈ Y : x ∈ d′ ⇒ x ∈ u

because d′ has to be a subset of the upper bound u
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Chains

� A subset Y is called a chain if it is consistent in the
sense that if we take any two elements of Y then one
will share its information with the other

� Definition

A subset Y is called a chain if
∀d1, d2 ∈ Y : d1 v d2 ∨ d2 v d1
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Example: Power Sets

� Consider the partially ordered set (P({a, b, c}),⊆)

� Y1 = { {}, {a}, {a, c} } is a chain

- {a, c} and {a, b, c} are upper bounds of Y1

- {a, c} is the least upper bound of Y1

- {a, b} is not an upper bound of Y1 because {a, c} 6⊆ {a, b}

� Y2 = { {}, {a}, {c}, {a, c} } is not a chain
because {a} and {c} are unrelated by the ordering

- {a, c} is the least upper bound of Y2

� Y3 = {} is a chain

- Any element of P({a, b, c}) is an upper bound of {}
- {} is the least upper bound of {}
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Example: Chains and Upper Bounds

� Let S be a non-empty set and
Pfin(S) = {K|K is finite and K ⊆ S}

� For some choices of S, there are chains of
(Pfin(S),⊆) that do not have an upper bound

� For Pfin(N), the infinite chain of finite subsets of N

Y =
⋃

n∈N

{i|i ≤ n} = { {0}, {0, 1}, {0, 1, 2}, . . . }

has no upper bound, because N is the only superset
of all sets in Y

- N is an infinite set: N 6∈ Pfin(N)
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Example: Partial Functions

� Let gn : State ↪→ State be defined by

gn(σ) =















undefined if σ(x) > n

σ[x 7→ −1] if 0 ≤ σ(x) ≤ n

σ if σ(x) < 0

� n ≤ m ⇒ gn v gm because gn will be undefined for
more states than gm

� Y0 = {gn|n ≥ 0} is a chain.

� The partial function g is the least upper bound of Y0

g(σ) =







σ[x 7→ −1] if 0 ≤ σ(x)

σ if σ(x) < 0
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CCPOs and Complete Lattices

� Definition of Chain complete partially ordered set

A partially ordered set (D,v) is a chain complete
partially ordered set (ccpo) whenever tY exists
for all chains Y

� Definition of Complete lattice

A partially ordered set (D,v) is a complete lat-
tice whenever tY exists for all subsets Y of D
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Examples

� (P(S),⊆) is a
complete lattice (and,
thus, a ccpo)

- We have shown that
each subset has a
least upper bound

� (Pfin(N),⊆) is neither
a complete lattice nor
a ccpo

{a,c}

{ }

{b,c}

{c}{a} {b}

{a,b}

{a,b,c}

Ordering for S = {a, b, c}
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Least Elements

Lemma 3.3:

If (D,v) is a ccpo then it has a least
element ⊥= t∅

Proof:

� ∅ is a chain

� Since (D,v) is a ccpo, t∅ exists

� All elements d of D are upper bounds of ∅:
∀d′ ∈ ∅ : d′ v d

� Since t∅ is the least upper bound, we get t∅ v d
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CCPO of Semantic Functions

� Lemma 3.4:

(State ↪→ State,v) is a ccpo. The least upper
bound tY of a chain Y is given by

tY (σ) =

{

σ′ if ∃g ∈ Y : g(σ) = σ′

undefined otherwise

� For the proof, we have to show that
1. tY is indeed a partial function in State ↪→ State

2. tY is an upper bound of Y

3. tY is the least upper bound of Y
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Proof: Part 1—Partial Function

� Let g1 and g2 be two functions in Y with
- g1(σ) = σ′

- g2(σ) = σ′′

� We prove that σ′ = σ′′

� Since Y is a chain, we have g1 v g2 or g2 v g1

� By the definition of v, we get
g1(σ) = σ′ ⇒ g2(σ) = σ′ or g2(σ) = σ′ ⇒ g1(σ) = σ′

� Therefore, we have σ′ = σ′′
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Proof: Part 2—Upper Bound

� For any function g ∈ Y , we have to show g v tY ,
that is g(σ) = σ′ ⇒ tY (σ) = σ′

� This is a trivial consequence of the definition of tY

tY (σ) =

{

σ′ if ∃g ∈ Y : g(σ) = σ′

undefined otherwise
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Proof: Part 3—Least Upper Bound

� We show that tY is less than any other upper bound
of Y

� Let g′ be an upper bound of Y , that is, ∀g ∈ Y : g v g ′

� This means that if there is a function g ∈ Y with
g(σ) = σ′, then g′(σ) = σ′

� By the definition of tY , we get
tY (σ) = σ′ ⇒ (∃g ∈ Y : g(σ) = σ′) ⇒ g′(σ) = σ′

� Therefore, we have tY v g′, which completes the
proof
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Monotone Functions

� Recall that we want to ensure that SDS and, in
particular, F (g) = cond(B[[b]], g ◦ SDS[[s]], id) always
has a least fixed point

� Since F maps functions in State ↪→ State to functions
in State ↪→ State, we consider functions on ccpo’s

� Definition of Monotone Functions

Let (D,v) and (D′,v′) be ccpo’s, and f : D →
D′ a (total) function. f is monotone if

∀d1, d2 ∈ D : d1 v d2 ⇒ f(d1) v
′ f(d2)
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Monotone Functions: Examples

� Consider the ccpo’s (P({a, b}),⊆) and (P({d, e}),⊆)

� The function f1 is monotone

X {a, b} {a} {b} ∅

f1(X) {d, e} {d} {e} ∅

f1 changes a’s to d’s and
b’s to e’s

� The function f2 is not monotone

X {a, b} {a} {b} ∅

f2(X) {d} {d} {e} {e}

f2 maps sets that contain
an a to {d} and sets that do
not contain an a to {e}

- {b} ⊆ {a, b} but f2({b}) 6⊆ f2({a, b})
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Composition of Monotone Functions
Lemma 3.5:

Let (D,v), (D′,v′), and (D′′,v′′) be ccpo’s
and let f : D → D′ and f ′ : D′ → D′′ be
monotone functions. Then f ′ ◦ f : D → D′′ is
a monotone function

Proof:

� Assume that d1 v d2

� Monotonicity of f gives f(d1) v
′ f(d2)

� Monotonicity of f ′ gives f ′(f(d1)) v
′′ f ′(f(d2))
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Monotonicity and Chains

� Lemma 3.6:

Let (D,v) and (D′,v′) be ccpo’s and let f :
D → D′ be a monotone function. If Y is a
chain in D then {f(d)|d ∈ Y } is a chain in D′.
Furthermore, t′{f(d)|d ∈ Y } v′ f(tY )

� Proof of Case 1: Y = ∅

- ∅ is a chain in both D and D′

- By the monotonicity of f , we get ⊥′v′ f(⊥) and, thus,
t′∅ v′ f(t∅)
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Proof of Case 2—Chain

� We show that {f(d)|d ∈ Y } is a chain in D′

� Let d′
1

and d′
2

be two elements of {f(d)|d ∈ Y }

� There are elements d1 and d2 with d′
1

= f(d1) and
d′

2
= f(d2)

� Since Y is a chain, we have d1 v d2 or d2 v d1

� By the monotonicity of f , we get f(d1) v
′ f(d2) or

f(d2) v
′ f(d1)

� Consequently, we have d′
1
v′ d′

2
or d′

2
v′ d′

1
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Proof of Case 2—Least Upper Bound

� We show that t′{f(d)|d ∈ Y } v′ f(tY )

� For an arbitrary d ∈ Y , we have d v tY

� By the monotonicity of f , we get f(d) v′ f(tY )

� Since this property holds for all d ∈ Y , we get that
f(tY ) is an upper bound on {f(d)|d ∈ Y }
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Monotonicity and Least Upper Bounds

� Monotone functions preserve chains, but not
necessarily least upper bounds (see Example 4.31 in
the book)

� Monotone functions that do preserve least upper
bounds are called continuous functions

� Such functions satisfy t′{f(d)|d ∈ Y } = f(tY )

� Intuitively, we obtain the same information
independently of whether we determine the least
upper bound before or after applying the monotone
function f
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Continuous Functions

� Definition of Continuous Functions

A function f : D → D′ defined on ccpo’s (D,v)
and (D′,v′) is continuous if it is monotone and
t′{f(d)|d ∈ Y } = f(tY ) holds for all non-empty
chains Y

� Definition of Strict Functions

A function is strict if t′{f(d)|d ∈ Y } = f(tY )
holds for the empty chain, that is ⊥′= f(⊥)
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Continuous Functions: Example

� Consider the ccpo’s (P({a, b}),⊆) and (P({d, e}),⊆)

� The function f1 is continuous

X {a, b} {a} {b} ∅

f1(X) {d, e} {d} {e} ∅

f1 changes a’s to d’s and
b’s to e’s

� Proof

- Let X0 be the least upper bound of a chain Y of P({a, b})

- Since X0 ∈ Y , we get f1(tY ) = f1(X0) ⊆ t{f1(X)|X ∈ Y }

- By Lemma 3.6, we get t{f1(X)|X ∈ Y } ⊆ f1(tY )

� f1 is strict because f1(∅) = ∅
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Composition of Continuous Functions
Lemma 3.7:

Let (D,v), (D′,v′), and (D′′,v′′) be ccpo’s
and let f : D → D′ and f ′ : D′ → D′′ be
continuous functions. Then f ′ ◦ f : D → D′′ is
a continuous function

Proof:

� From Lemma 3.5, we know that f ′ ◦ f is monotone

� It remains to show that least upper bounds are
preserved
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Proof

� Let y be a non-empty chain in D

� The continuity of f gives t′{f(d)|d ∈ Y } = f(tY )

� Since {f(d)|d ∈ Y } is a non-empty chain in D′, we
get by the continuity of f ′:

t′′{f ′(d′)|d′ ∈ {f(d)|d ∈ Y }} = f ′(t′{f(d)|d ∈ Y })

� This is equivalent to t′′{f ′(f(d))|d ∈ Y } = f ′(f(tY ))
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Knaster-Tarski Fixed Point Theorem

� Theorem 3.8

Let f : D → D be a continuous function on the
ccpo (D,v) with least element ⊥. Then

FIXf = t{fn(⊥)|n ≥ 0}

defines an element of D that is the least fixed
point of f

where f 0 = id and fn+1 = f ◦ fn for n ≥ 0

� We have to prove that

1. FIXf is well-defined
2. FIXf is a fixed point of f

3. FIXf is the least fixed point of f
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Proof: Part 1—Well-Definedness

� Since D is a ccpo, FIXf exists if {fn(⊥)|n ≥ 0} is a
non-empty chain of D

� {fn(⊥)|n ≥ 0} is non-empty since it contains ⊥

� By a trivial induction, one can show that
fn(⊥) v fn(d) holds for all d ∈ D

� We use this result to prove fn(⊥) v fm(⊥) for n ≤ m

- fn(⊥) v fn(fm−n(⊥)) = fm(⊥)
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Proof: Part 2—Fixed Point

� We have to show that f(FIXf) = FIXf

f(FIXf) = [Definition of FIXf ]

f(t{fn(⊥)|n ≥ 0}) = [Continuity of f ]

t{f(fn(⊥))|n ≥ 0} =

t{fn(⊥)|n ≥ 1} = [ t (Y ∪ {⊥}) = tY ]

t({fn(⊥)|n ≥ 1} ∪ {⊥}) = [f 0(⊥) =⊥ ]

t{fn(⊥)|n ≥ 0} = [Definition of FIXf ]

FIXf
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Proof: Part 3—Least Fixed Point

� We show that FIXf is less than any other fixed
point of f

� Let d be a fixed point of f

� We have fn(⊥) v fn(d) = d for n ≥ 0

� Thus, d is an upper bound on {fn(⊥)|n ≥ 0}

� Since FIXf = t{fn(⊥)|n ≥ 0} is the least upper
bound, we get FIXf v d
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Fixed Point Iteration: Example

� We determine the least fixed point of the functional
F ′

F ′(g)σ =

{

g(σ) if σ(x) 6= 0

σ otherwise
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Fixed Point Theory: Summary

To guarantee the existence of a least fixed point, the
following steps have been taken

1. We restrict ourselves to chain complete partially
ordered sets—ccpo’s

2. We restrict ourselves to continuous functions on
ccpo’s

3. We show that continuous functions on ccpo’s always
have least fixed points
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