Semantics of Programming
Languages
Operational Semantics

Prof. Peter Muller

Software Component Technology

Peter Muller—Semantics of Programming Languages, SS04 — p.150

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics

2.4.1 Type Systems
2.4.2 Secure Information Flow
2.4.3 A Type System for Secure Information Flow

Peter Muller—Semantics of Programming Languages, SS04 — p.151

Static Safety

» Realistic programming procedure foo(p,q; res)
languages support begi n
many different kinds of res .=p+4dq
values end
» Most operations are var res := 0 in
only defined for certain foo(5, 2;res)
kinds of values Sl

» [ype systems check |var res := 0 in
statically that opera- foo(5,(5>2);res)
tions are only applied [End
to values for which they

defined
Eidgendssische Technische Hochschule Zarich
Swiss Federal lnstitute af Technology Fursck

Peter Muller—Semantics of Programming Languages, SS04 — p.152

Static Safety: Example

procedure foo(p: Iint,q: int; res: int)
begi n

res .= p + @
end

var res: I1nt := 0 1n
foo(5, 2;res)
end

S Federmt ietfune of Seehomiony Lotk Peter Milller—Semantics of Programming Languages, SS04 — p.153

Swiss Federal Institute af Technalogy furich

Type System

Definition: A type system is a syntactic method for
proving absence of certain program behaviors by
classifying phrases according to the kinds of values

they compute.

[B.C. Pierce, 2002]

» Syntactic: Rules can be checked by a compiler
» Phrases: Expressions, methods, etc. of a program

» Kinds of values: Types

Peter Muller—Semantics of Programming Languages, SS04 — p.154

Types

Definition: A type is a set of values sharing some
properties. A value x has type 7' if x Is an element

of T

» Properties: Available operations, etc.

» Remarks:
- Most languages provide primitve types (boolean, int, char,
etc.) and user-defined types (records, classes, etc.)

- The subtype relation on types corresponds to the subset
relation on sets of values

e tianet lhrasiagy Tidch Peter Miller—Semantics of Programming Languages, SS04 — p.155

Type Ckecking

» Each expression ofa |"A String"
program has a type [5+7

» Types of variables are |a: bool

declared explicitl procedure
’ g equal s(p, g: String; b: bool)

» Types of expressions
are derived from the a and true
types of their equal s("hell 0", "test"; a)

constituents

» Type rules check
whether a phrase Is
correctly typed

Peter Muller—Semantics of Programming Languages, SS04 — p.156

Declaration Environments

» The set of all types of a program Is Type

» A declaration environment associates a type to
each variable

» Declaration environments are represented as finite
functions var — Type

> Example: ' = {5131 —> Tl,CEQ —> TQ, R 17 e 6 Tn}

» For languages with procedures, the declaration
environment would also contain the signatures of all
procedures

Peter Muller—Semantics of Programming Languages, SS04 — p.157

Type Judgments

» Type judgment for expressions

I'Fe:: T

Meaning: expression e is well-typed in environment I'
and has type T

» Type judgment for statements

' s

Meaning. statement s is well-typed in environment I'

Peter Muller—Semantics of Programming Languages, SS04 — p.158

Type Rules

» The valid type judgments are described by a set of
type axioms and rules

» Examples:
A local variable access An assignment z: =e IS
x IS correctly typed and correctly typed if
has the declared type of » ¢ is correctly typed
X
CFa:(2) » ¢ and = have the
same type
e, T'(x)=T
I'-z: =€

Peter Muller—Semantics of Programming Languages, SS04 — p.159

Static Type Safety

Definition: A programming language is called type-
safe If its design prevents type errors

» Type-safe languages guarantee the following type
Invariant:

In every execution state, the type of the value held
by variable x is the declared type of x

» Type safety guarantees the absence of certain
runtime errors

» IMP’s syntax guarantees type safety, even without a

Eidgendssische Technische Hochschule Zarich
Swiss Federal Institute af Technalogy I I

Peter Muller—Semantics of Programming Languages, SS04 — p.160

Type Invariant

» We can introduce a function that yields the type of a
value: typeof : val — Type

- Example: typeof (5) =1 nt

» Type Invariant: The following property holds in each
execution state ¢ of a program with declaration
environment I'

Va @ typeof (o(x)) = T'(x)

- ¢ and I' map the same local variables to values and types,
resp.

Peter Muller—Semantics of Programming Languages, SS04 — p.161

Discussion

» Advantages of static type checking
- Robustness: Elimination of type errors
- Readabillity: Types are excellent documentation
- Efficiency: Type information allows optimizations

» Limitations: Static type checking is only an
approximation of the behavior at runtime

- Some programs are rejected by the type checker although
they would never cause a runtime error

a + 5;

a .
a a and a

5 a .
true; a

Peter Muller—Semantics of Programming Languages, SS04 — p.162

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics

2.4.1 Type Systems
2.4.2 Secure Information Flow
2.4.3 A Type System for Secure Information Flow

Peter Muller—Semantics of Programming Languages, SS04 — p.163

Secrecy

» Programs hold confidential and non-confidential
Information

» Attackers

- should not be able to get (partial) information about
confidential information

- know the code of the program

- know the Initial and final values of nhon-confidential
Information

» Example: Attackers can read variable | , but not h

private int h; // confidenti al
public 1nt |; // non-confidenti al

Peter Muller—Semantics of Programming Languages, SS04 — p.164

Information Flow

» Access Control restricts the release of information,
but not its propagation

private int h; // confidenti al
public 1nt |; // non-confidenti al

» EXplicit information flow

| := h

» Implicit information flow

I1f h > 0 then |
el se |

TR
'R

end

Peter Muller—Semantics of Programming Languages, SS04 — p.165

Noninterference

» 10 keep data confidential, the following
noninterference policy should be enforced

An attacker cannot observe any difference
between two executions that differ only In
their confidential input

[
-

I1f h > 0 then |
el se |

end

Peter Muller—Semantics of Programming Languages, SS04 — p.166

Formalization: Preliminaries

» We group all program variables into two sets H and
L

- Values of variables in H (high variables) are confidential

- Values of variables in L (low variables) are
non-confidential

» The equivalence relation =; describes that two
states have the same values for all low variables:

oc=p0 &VreLl:olx)=o(x)

Peter Muller—Semantics of Programming Languages, SS04 — p.167

Formalization: Noninterference

» The relation ~; expresses the observational power
of an attacker:

o~y o < (0,0 €State= 0 = 0)
- Attackers do not observe termination

» A statement s satisfies the noninterference property
Iff:

Voy,09 : 01 =1, 09 = Sns|s]|o1 = Sns|s]o

- If two input states share the same low values, then the
behaviors of the statement executed on these states are
iIndistinguishable by the attacker

Peter Muller—Semantics of Programming Languages, SS04 — p.168

Noninterference: Examples

Yoi,09 : 01 =1 09 = Sns|s]or =1 Sns[s]oz

» Assumel e Landh & H

h :=1 + 4 | := h

If | =5 then h := h + 1 If h =3 then | :=5
elsel =1 + 1 el se skip

end end

» Explanation:

- Letoy ={l — 0,h—2}andoy,={l — 0,h — 3}

Peter Miller—Semantics of Programming Languages, SS04 — p.169

Summary

» The formal semantics allows us to express security
properties such as noninterference

» More fine-grained policies can be achieved by
- Additional confidentiality levels (not only high and low)
- Different relations =;, for observational power

» The formalization enables one to prove that a
statement has the noninterference property

» Interesting question:
Can we check noninterference syntactically?

Peter Muller—Semantics of Programming Languages, SS04 — p.170

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics

2.4.1 Type Systems
2.4.2 Secure Information Flow
2.4.3 A Type System for Secure Information Flow

Peter Muller—Semantics of Programming Languages, SS04 — p.171

Approach

» Use atype system to check noninterference

» Variables have security type hi gh or | ow
- Handles explicit information flow

| := h

» Statements have security context hi gh or | ow

- If the control flow depends on high values, the security
context is high

- In high contexts, it is not allowed to assign to low variables
- Handles implicit information flow

I1f h =3 thenl|l :=5 else skip end

Peter Muller—Semantics of Programming Languages, SS04 — p.172

Type Judgments

» Type judgment for expressions

I'Fe:: T

» Type judgment for statements

' AFs

» Types: Type = {hi gh,| ow}
» Declaration environments: I' : Var — Type
» Security contexts: A € {hi gh,| ow}

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.173

Type Rules: Expressions

» It IS always safe to type expressions as hi gh

[I'=6::high [I'=e::high

» An expression can have type | owonly if it does not
contain high variables

Ve € FV(b) : I'(z) # hi gh
I'Eb::1 ow

Ve € F'V(e) : T'(x) # hi gh
I'Fe: | ow

Peter Muller—Semantics of Programming Languages, SS04 — p.174

Type Rules: ski p and Assignment

» SKi p can be typed in any security context
[' A skip

» Assignments to high variables are always safe

['(xz) = hi gh
' AFax:=e

» Assignments to low variables are only possible if the
security context is | ow

'Fe:low TI'(z)=Iow
[I''l owk z: =e

Peter Muller—Semantics of Programming Languages, SS04 — p.175

Type Rules: Conditional and Loop

» If the condition of an if-statement depends on high
values, then the security context of the statement
has to be hi gh

I'Fb: A, T'AFsy, TI''AF s
I'"AFIif bthen s; el se sy end

» Loops are typed analogously

I'Eb: A, TI''AFs
I'"AFwhilebdo send

Peter Muller—Semantics of Programming Languages, SS04 — p.176

Type Rules: Seq. Composition

» For sequential composition, both statements must
have the same security context

F,A"Sl, F,A"SQ
F,A|_81; S9

» If a statement can be typed in security context hi gh
then it can also be typed in security context | ow
(subsumption)

['highF s
[l owlr s

)

Peter Muller—Semantics of Programming Languages, SS04 — p.177

Subsumption: Example

» Assume ' = {I — | ow,h — hi gh}

» | he statement
1f | = 0thenl|l =1 + 1 end

can only be typed in security context | ow

» Without using subsumption, the statement
I1f h =0then h :=h + 1 end

can only be typed in security context hi gh

» 10 be able to type the sequential composition the
subsumption rule has to be used

| f | O then |
1 f h O then h :

| + 1 end;
h + 1 end

Peter Muller—Semantics of Programming Languages, SS04 — p.178

Type Rules: Examples

» Assume ' = {I — | ow,h — hi gh}

h:=1 + 4 Typeable In high
and | ow
L_o= i Not typeable
I1f | =5then h :=h + 1
else |l :=1 + 1| Typeablein| ow
end
I1f h =3 thenl|l :=5
el se skip Not typeable
end

Peter Miller—Semantics of Programming Languages, SS04 — p.179

Type Safety

» The type system does not have the usual type
Invariant

- Values are not per se high or low values
- Classical type safety is not applicable

» The type system guarantees the noninterference
porperty as type invariant:

Vs, 01,09 : 01 =1, 09 = Sns|s]|or =~ Sns|s]oo

where =; Is defined as follows
c=r0 & Vr:Ty(z) =1low= o(x) =d'(z))

Peter Muller—Semantics of Programming Languages, SS04 — p.180

Lemmas: Expressions

» The proof of type safety uses the following lemmas

» The values of expressions of type | owdo not depend
on values of high variables

Lemma 2.4.1
['FexlowAo = 09 = Ale]or = Ale]o
I'Fb:lowA oy =7 09 = B[[b]]()‘l — B[[b]]()‘g

- The proofs run by structural induction on e and b

Peter Muller—Semantics of Programming Languages, SS04 — p.181

Lemmas (cont’d)

» = IS reflexive, symmetric, and transitive

Lemma 2.4.2
=, IS an equivalence relation

- The lemma follows directly from equality “=" being an
equivalence relation

» Statements that can be typed in security context
hi gh do not modify the values of low variables

Lemma 2.4.3
I'hightsA(s,0) - d" =0=p0

- See Exercise 20 for the proof
ETH

Peter Muller—Semantics of Programming Languages, SS04 — p.182

Proof: Overview

» We have to prove the type invariant

\V/S,O-l,O-Q 01 =1, 09 = SNs[[S]]O'l 7 SNs[[S]]O'Q

» We prove the following equivalent property

/ /. __
\V/S,O'l,O'Q,O'l,O'Q .01 =], 0'2/\

<87 01> — O-i A <87 02> — O-é

/] — /
:>0-1:L0-2

» The type safety proof runs by induction on the shape
of the derivation tree for (s, 01) — o}

Eidgendssische Technische Hochschule Zarich
E"I'I'lixr'd 1 ks - ¥ Tl g

Peter Muller—Semantics of Programming Languages, SS04 — p.183

Induction Base: ski p

» Case skip-axiom: We know
- s=skip
- (ski p,o1) — o implies ¢} = o4
- (ski p,o9) — o5 implies o}, = o5

» These equalities trivially imply o =1, 09 = 0} =1, 0}

Peter Muller—Semantics of Programming Languages, SS04 — p.184

Induction Base: Assignment

» Case assign-axiom: The derivation tree is the axiom
instance (x: =e, 01) — o7 and we know

- S=X. =€

- 01 = o1|lx — Ale]oi| and o = o3z — Ale]os]
» Case 1: I'(z) = hi gh

- 01 = 01|z — Ale]o1] = o] =1 o4
- 0y = ooz — Ale|os] = g5 =1 09
- Lemma 2.4.2 and o] =1, 01 =, 03 =1, 05 iIMmply ¢} =}, 75,

» Case 2: I'(z) = | ow
- From the type rule we getI' e :: | ow
- By Lemma 2.4.1, we get Ale]o; = Ale]os

- 01 =1 09 = o1|x — Ale|oi| =1 og|lx — Ale]os] = o1 =1 75
ETH

Peter Muller—Semantics of Programming Languages, SS04 — p.185

Induction Step: Seq. Composition

» Case sequence-rule: The root of the derivation tree
1S <81; 82,0'1> —> O'i.
- There are derivation trees for (s;,0,) — o and
(s9,07) — o7 for some state o/

There are derivation trees for (s, 05) — o} and
(s9,04) — o) for some state o

By applylng the induction hypothesis to (s1,01) — of and

(s1,09) — 04 We get o =1, o)

By applying the induction hypothesis to (s,, ¢7) — o7 and
(s9,0h) — o, we get o] =, g},

Peter Muller—Semantics of Programming Languages, SS04 — p.186

Induction Step: | f

» Case If-rule: The root of the derivation tree Is
(if bthen s; el se sy end, o) — oy
» Case 1: I' = b :: high
- By the type rules, we get that s has security context hi gh
- By Lemma 2.4.3, we get 0, =1, 07 and oy =, 05
- By Lemma 2.4.2, we get o] =, o,

» Case2: ' 0b:: 1 ow

By Lemma 2.4.1, we get B|b]o; = B[b]os

If B|b]o, = tt, we have (s,01) — o} and (s1,05) — 05
By applying the induction hypothesis, we get o7 =1, 75
The case for B[b|o; = ff is analogous

Peter Muller—Semantics of Programming Languages, SS04 — p.187

Induction Step: whi | e

» Case while-rule: The root of the derivation tree is
(whi | e bdo s’ end, o1) — o

» Case 1: I' = b :: high
- By the type rules, we get that s has security context hi gh
- By Lemma 2.4.3, we get 0, =1, 07 and oy =, 05
- By Lemma 2.4.2, we get 0] =, 04 and

Peter Muller—Semantics of Programming Languages, SS04 — p.188

Induction Step: whi | e

» Case2: I'Hb:: | ow

- By Lemma 2.4.1, we get B[b]o, = B[b] o

If B|b]o, = tt, we have

(s',01) — of and (whi | e bdo s’ end, o{) — o}
as well as

(s',09) — o and (whi | e bdo s’ end, dl)) — o}
By applying the induction hypothesis to (s’, o) — ¢} and
(', 09) — 0y, we get o =, o)

By applying the induction hypothesis to

(whi | e bdo s’ end, s!) — o7 and

(whil e bdo s’ end, o) — o5, we get o1 =, 0
The case for B|b|o, = ff is trivial

Peter Muller—Semantics of Programming Languages, SS04 — p.189

Discussion

» The type system can be used to check
noninterference statically

» Like all type systems, it is a static approximation of
the semantics

- It rejects statements that are safe

» Example

| := h; |

I
I
-

- The statement is not typeable
- However, it is secure (¢'(1) = 0 for all inputs h)

Peter Muller—Semantics of Programming Languages, SS04 — p.190

References

» D. Volpano, C. Irvine, G. Smith: A sound type system
for secure flow analysis. Journal of Computer
Security, 4(2,3):167-187, 1996

» A. Sabelfeld and A. C. Myers: Language-Based
Information-Flow. Security IEEE Journal on Selected
Areas in Communications, 21(1):5-19, 2003

» D. Denning: A Lattice Model of Secure Information
Flow. Communications of the ACM 20(7):236—242,
1976

» The papers are available on the course web site

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I

Peter Muller—Semantics of Programming Languages, SS04 — p.191

Summary: Operational Semantics

» Operational semantics describe how the effects of a
computation are achieved

- Close to the intuition about languages
- Can be executable
- Simple mathematical background

» Main forms

- Natural semantics, with predominant proof principle
“Induction on the shape of derivation trees”

- Structural operational semantics, with predominant proof
principle “induction on the length of derivation sequences”

- Abstract state machines will be presented by Robert Stark

Peter Muller—Semantics of Programming Languages, SS04 — p.192

	2. Operational Semantics
	Static Safety
	Static Safety: Example
	Type System
	Types
	Type Ckecking
	Declaration Environments
	Type Judgments
	Type Rules
	Static Type Safety
	Type Invariant
	Discussion
	2. Operational Semantics
	Secrecy
	Information Flow
	Noninterference
	Formalization: Preliminaries
	Formalization: Noninterference
	Noninterference: Examples
	Summary
	2. Operational Semantics
	Approach
	Type Judgments
	Type Rules: Expressions
	Type Rules: sskip and Assignment
	Type Rules: Conditional and Loop
	Type Rules: Seq. Composition
	Subsumption: Example
	Type Rules: Examples
	Type Safety
	Lemmas: Expressions
	Lemmas (cont'd)
	Proof: Overview
	Induction Base: sskip
	Induction Base: Assignment
	Induction Step: Seq. Composition
	Induction Step: 	exttt {if}
	Induction Step: 	exttt {while}
	Induction Step: 	exttt {while}
	Discussion
	References
	Summary: Operational Semantics

