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Semantic Functions

» The meaning of statements can be expressed as a
partial function from State to State:

Sng : Stm — (State — State)
(
o’ if (s,0) — o’

SNs[[S]]O' E— <

undefined otherwise

\

Ssos : Stm — (State <— State)

/

o’ if (s,0) —7 o’

Ssos|s]o = 4

undefined otherwise

\

» 1 he semantic functions are well-defined because the
semantics are deterministic
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Equivalence Theorem

Theorem: For every statement of
IMP we have SNS[[S]] = SSOS[[S]]

» If the execution of s from some state terminates In
one of the semantics then it also terminates in the
other and the resulting states will be equal

» If the execution of s from some state loops in one of
the semantics then it will also loop Iin the other
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Equivalence Lemma 1

Lemma: For every statement s of IMP and
states o and ¢’ we have
(s,0) = o' = (s,0) =% o

» If the execution of s from o terminates In the natural
semantics then it will terminate in the same state In
the structural operational semantics

» The proof runs by induction on the shape of the
derivation tree for (s, o) — o’
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Induction Base

» Case assign-axiom:
The derivation tree Is the axiom instance
(x: =e,0) — olr — Ale]o].
From the SOS rule we get
(x: =e,0) —1 olx — Ale|o]

» Case skip-axiom: Analogously

» Case while-rule (B|b]c = ff): Analogously
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Induction Step: Seq. Composition

» Case sequence-rule:
The root of the derivation tree is (s1; s9,0) — o’

- There are derivation trees for (s;,0) — oy and (sy, 0¢) — o’
for some state o

- By the induction hypothesis, we get (s;,0) — 09 and

* /

(82,00) =1 0
- By Exercise 16, we get (s1; s3,0) —7 (s2,00)
- Fina”y, <81; 82,0'> —>>{ <82,0'0> and <82,0'0> —>>{ o’ Imply

* /

<81; 3270> —1 0
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Induction Step: | f

» Case if-rule (B[b]o = tt):
The root of the derivation tree Is
(if bthen s;elsesyend, o) — 0o

- There is a derivation tree for (s,0) — o’

- By B|b]o = tt and the induction hypothesis, we get
(iIf bthen s; el sesyend, o) — (s1,0) =7 o

» Case if-rule (B|b]o = ff): Analogously
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Induction Step: whi | e

» Case while-rule (B[b]o = tt):
The root of the derivation tree Is
(whi l e bdo send,o) — o’

- There are derivation trees for (s,o) — 0 and
(whi | e bdo s end, oy) — ¢’ for some state o

- By the induction hypothesis, we get (s, o) —7 0o and
(whi | e bdo s end, o) —7 o

- We derive:

(whi | e bdo send, o) — while-rule]
(if bthens;whilebdosendend,o) —; [B]blo = ti]
(s; whil e bdo send,o) —7 Exercise 16]
(whil e bdo send, o) —7 o
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Equivalence Lemma 2

Lemma: For every statement s of IMP, states

o and ¢’, and natural number k& we have that

(s,0) —=F o' = (s,0) — 0

» If the execution of s from o terminates In the
structural operational semantics then it will terminate
In the same state In the natural semantics

» The proof runs by induction on the length of the
derivation sequence for (s, o) —% o, that is, by
Induction on £

» Induction base: For k£ = 0, the result holds trivially

Eidgendssische Technische Hochschule Zarich
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Induction Step

» Assume that lemma holds for £k < m

» Prove that lemma holds for m <+ 1:

s,0y ="l ol = (5. 0) — o
1

» We consider the first step of the derivation sequence
(s,0) =17 =" 0" = (s,0) — 0

» We inspect the derivation tree for the first step
<87 O> —1 Y
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Induction Step (cont’'d)

» Case assign-axiom
- We have (z: =e,0) —1 oz — Ale]o]
- In this case v = g|x — Ale]o] = ¢’ is a state and m = 0
- From the NS-axiom we get (s,0) — o’

» Case skip-axiom: Analogously

» Case Sequential composition
We have <81, 82,0’> %T—H o’

There are a state ¢” and numbers k;, k5 such that

<81, O'> —>]1€1 o and <82, > k2 o’ where ki +ko=m+1
By the induction hypothesis, we get (s;,0) — ¢” and
<82,O'//> — g

By the NS-rule, we get (sy; s3,0) — o’
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Induction Step (cont’'d)

» Case if-axiom (B[b]o = tt)
- We have (if bthen s; el se sy end, o) —1 (s1,0) =" o’
- By the induction hypothesis, we get (s;,0) — o’
- By the NS-rule, we get (i f bt hen s; el se s, end, o) — o’

» Case if-axiom (B[b]o = ff): Analogously

» Case while-axiom

- We have (whi l e bdo send,o) —;
(if bthen s;whilebdosendend, o) =7 o

- By the induction hypothesis, we get
(iIf bthens;whilebdo sendend,o) — o

- By the lemma about unfolding loops, we get
(whi | e bdo send, o) — o’
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Equivalence Theorem: Proof

(

o' if (s,0) — o
Svealslo = ’
NS[H] < undefined otherwise
\
o if (s,0) —7% o

Ssoss]o = <

undefined otherwise
\

» We have proved: Sys[s]o = 0’ < Ssos[s]o = o

» This is sufficient to prove Sys|s| = Ssos|s| because
one function is defined Iff the other Is defined
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Equivalence: Summary

» The natural semantics and structural operational
semantics are equivalent

- Proof of Lemma 1 runs by induction on the shape of the
derivation tree

- Proof of Lemma 2 runs by induction on the length of the
derivation sequence
» For extended languages, different formalization of
the equivalence theorem could be necessary
- Non-deterministic languages

- Consider only finite derivation sequences that end in
terminal configurations

Peter Muller—Semantics of Programming Languages, SS04 — p.149



	2. Operational Semantics
	Semantic Functions
	Equivalence Theorem
	Equivalence Lemma 1
	Induction Base
	Induction Step: Seq. Composition
	Induction Step: 	exttt {if}
	Induction Step: 	exttt {while}
	Equivalence Lemma 2
	Induction Step
	Induction Step (cont'd)
	Induction Step (cont'd)
	Equivalence Theorem: Proof
	Equivalence: Summary

