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Agenda for Today
1. Introduction

1.1 Motivation
1.2 Overview
1.3 Course Outline
1.4 The Language IMP
1.5 Semantics of Expressions
1.6 Properties of the Semantics

Objectives

� Motivation for formal language semantics

� Foundations for the rest of the course
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C: Expression Evaluation

int print(char* text) {
printf("%s\n", text);
return 5;

}

print("One")+print("Two");

In C and C++ evaluation
order of expressions is
undefined

� Precedence and
associativity define
rules for structuring
expressions

� But do not define
operand evaluation
order
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C: Expression Evaluation

int print(char* text) {
printf("%s\n", text);
return 5;

}

print("One")+print("Two");

One
Two

Two
One

In C and C++ evaluation
order of expressions is
undefined

� Precedence and
associativity define
rules for structuring
expressions

� But do not define
operand evaluation
order
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Haskell and SML: Evaluation

Haskell
const :: Int -> Int
const x = 1

const ( div 2 0 )

SML
fun const (x: int):int = 1;

const ( 2 div 0 );
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Haskell and SML: Evaluation

Haskell
const :: Int -> Int
const x = 1

const ( div 2 0 )

1

SML
fun const (x: int):int = 1;

const ( 2 div 0 );

uncaught exception divide by zero

� Haskell uses lazy evaluation: Arguments are
evaluated when they are needed

� SML uses eager evaluation: Arguments are
evaluated when function is applied
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Java: Dynamic Method Binding

class C1 {
int x;
public void inc1( )

{ this.inc2( ); }
private void inc2( )

{ x++; }
}

class CS1 extends C1 {
public void inc2( )

{ inc1( ); }
}

CS1 cs = new CS1(5);
cs.inc2( );
System.out.println(cs.x);
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Java: Dynamic Method Binding

class C1 {
int x;
public void inc1( )

{ this.inc2( ); }
private void inc2( )

{ x++; }
}

class CS1 extends C1 {
public void inc2( )

{ inc1( ); }
}

CS1 cs = new CS1(5);
cs.inc2( );
System.out.println(cs.x);

class C2 {
int x;
public void inc1( )
{ this.inc2( ); }

protected void inc2( )
{ x++; }

}

class CS2 extends C2 {
public void inc2( )
{ inc1( ); }

}

CS2 cs = new CS2(5);
cs.inc2( );
System.out.println(cs.x);
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Java: Class Initialization

class C {
public static int x;

}

class D {
public static char y;

}

C.x = 0;
D.y = ’?’;
System.out.println(C.x);
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Java: Class Initialization

class C {
public static int x;

}

class D {
public static char y;
static { C.x = C.x + 1; }

}

C.x = 0;
D.y = ’?’;
System.out.println(C.x);

1
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Why Formal Semantics?

� Programming language design
- Formal verification of language properties
- Reveal ambiguities
- Support for standardization

� Implementation of programming languages
- Compilers
- Interpreters
- Portability

� Reasoning about programs
- Formal verification of program properties
- Extended static checking

Peter Müller—Semantics of Programming Languages, SS04 – p.7



Language Properties

� Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T

� Very important question for language designers

� Example:
If String is a subtype of Object, should String[] be
a subtype of Object[]?
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Language Properties

� Type safety:
In each execution state, a variable of type T holds a
value of T or a subtype of T

� Very important question for language designers

� Example:
If String is a subtype of Object, should String[] be
a subtype of Object[]?

void m(Object[] oa) {
oa[0]=new Integer(5);

}

String[] sa=new String[10];
m(sa);
String s = sa[0];
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Compiler Optimization

� Common subexpression elimination

d = a * Math.sqrt(c);
e = b * Math.sqrt(c);

double tmp=Math.sqrt(c);
d = a * tmp;
e = b * tmp;
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Compiler Optimization

� Common subexpression elimination

d = a * Math.sqrt(c);
e = b * Math.sqrt(c);

double tmp=Math.sqrt(c);
d = a * tmp;
e = b * tmp;

� Optimization works only for side-effect free
expressions

d = a * c++;
e = b * c++;

double tmp = c++;
d = a * tmp;
e = b * tmp;
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Formal Verification

/* returns the
factorial of n */

int fac(int n) {
if (n>1)

return n*fac(n-1);
else

return 1;
}
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Formal Verification

/* returns the
factorial of n */

int fac(int n) {
if (n>1)

return n*fac(n-1);
else

return 1;
}

fac(17); -288522240
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Formal Verification

/* returns the
factorial of n */

int fac(int n) {
if (n>1)

return n*fac(n-1);
else

return 1;
}

fac(17); -288522240
� Verification could run by

induction

� Induction hypothesis:
n ≥ 0 ⇒ fac(n) = n!

� Induction base is trivial

� Induction step requires
to prove n×(n−1)! = n!
which is not the case in
computer arithmetic
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Language Definition

Dynamic Semantics

Static Semantics

Syntax
� State of a program execution

� Transformation of states

� Type rules

� Name resolution

� Syntax rules, defined by
grammar
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Compilation and Execution

Execution

Semantic Analysis,
Type Checking

Scanning, Parsing

Abstract 
Syntax Tree

Annotated Abstract 
Syntax Tree
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Three Kinds of Semantics

� Operational semantics
- Describes execution on an abstract machine
- Describes how the effect is achieved

� Denotational semantics
- Programs are regarded as functions in a

mathematical domain
- Describes only the effect, not how it is obtained

� Axiomatic semantics
- Specifies properties of the effect of executing a

program are expressed
- Some aspects of the computation may be ignored
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Operational Semantics

y := 1;
while not(x=1) do ( y := x*y; x := x-1 )

� “First we assign 1 to y, then we test whether x is 1 or
not. If it is then we stop and otherwise we update y
to be the product of x and the previous value of y
and then we decrement x by 1. Now we test whether
the new value of x is 1 or not. . . ”

� Two kinds of operational semantics
- Natural Semantics
- Structural Operational Semantics
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Denotational Semantics

y := 1;
while not(x=1) do ( y := x*y; x := x-1 )

� “The program computes a partial function from states
to states: the final state will be equal to the initial
state except that the value of x will be 1 and the
value of y will be equal to the factorial of the value of
x in the initial state”

� Two kinds of denotational semantics
- Direct Style Semantics
- Continuation Style Semantics
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Axiomatic Semantics

y := 1;
while not(x=1) do ( y := x*y; x := x-1 )

� “If x= n holds before the program is executed then
y= n! will hold when the execution terminates (if it
terminates)”

� Two kinds of axiomatic semantics
- Partial correctness
- Total correctness
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Abstraction

Concrete language implementation

Operational semantics

Denotational semantics

Axiomatic semantics

Abstract descrption
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Selection Criteria

� Constructs of the
programming language
- Imperative
- Functional
- Concurrent
- Object-oriented
- Non-deterministic
- Etc.

� Application of the
semantics
- Understanding the

language
- Program verification
- Prototyping
- Compiler

construction
- Program analysis
- Etc.
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After this Course, you should

� Understand the fundamental ideas behind the three
major approaches to semantics

� Be able to compare the approaches and understand
their relationship

� Be able to apply formal semantics as a tool

� Have a better understanding of programming
languages in general
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Approach

� We discuss the major approaches to semantics for a
small imperative language IMP
- Similarities and differences
- Applications
- Important theoretical results

� We discuss the semantics of a simple object-oriented
language COOL
- Advanced language features
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Course Outline
1. Introduction
2. Operational Semantics

� Natural and structural operational semantics of IMP

� Equivalence

3. Denotational Semantics of IMP

� Direct style denotational semantics of IMP

� Equivalence of denotational and operational semantics

4. Axiomatic Semantics

� Axiomatic semantics of IMP

� Soundness and completeness

5. Semantics of COOL
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Organization

� Exam: There will be a 90 minute written exam in the
exam period
- Contents of exercises are crucial for the exam

� Web site:
sct.inf.ethz.ch/teaching/ss2004/sps/index.html
- Check regularly for announcements
- Slides will be available three days before the lecture.

Please bring a hardcopy to the lecture
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Using this Course

� Master Program:
This course is a Specialized Course
(Vertiefungsfach) for the Major in Software
Engineering

� Diploma Program:
This course is a Specialized Course
(Vertiefungsfach)
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Related Courses

� Abstract State Machines (Stärk, SS)

� Informatik III (Basin, Stärk, WS)

� Konzepte objektorientierter Programmierung (Müller,
WS)

� Trusted Components (Meyer, WS)

� Compiler Design I and II (Th. Gross)

� Formal Verification (Biere, WS)
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Related Seminars

� Specification and Verification of Object-Oriented
Software (Biere, Müller, WS)

� References and Aliasing in Object-Oriented
Programs (Biere, Müller, SS)

� FATS Formal Approaches to Software (Biere, Meyer,
Müller, Stärk)
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www.daimi.au.dk/˜bra8130/Wiley_book/wiley.html

� Glynn Winskel. The Formal Semantics of
Programming Languages: an Introduction. The MIT
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� Betrand Meyer. Introduction to the Theory of
Programming Languages. Prentice Hall, 1990.
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The Language IMP

� Expressions
- Boolean and arithmetic expressions
- No side-effects in expressions

� Variables
- All variables range over integers
- All variables are initialized
- No global variables

� IMP does not include
- Heap allocation and pointers
- Variable declarations
- Procedures
- Concurrency
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Syntax of IMP: Characters and Tokens

Characters

Letter = ’A’ . . . ’Z’ | ’a’ . . . ’z’
Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Tokens

Ident = Letter { Letter | Digit }
Integer = Digit { Digit }
Var = Ident
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Syntax of IMP: Expressions
Arithmetic expressions

Aexp = Aexp Op Aexp | Var | Integer
Op = ’+’ | ’-’ | ’*’ | ’/’ | ’mod’

Boolean expressions

Bexp = Bexp ’or’ Bexp | Bexp ’and’ Bexp
| ’not’ Bexp | Aexp RelOp Aexp

RelOp = ’=’ | ’#’ | ’<’ | ’<=’ | ’>’ | ’>=’
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Syntax of IMP: Statemens

Stm = ’skip’
| Var ’:=’ Aexp
| Stm ’;’ Stm
| ’if’ Bexp ’then’ Stm ’else’ Stm ’end’
| ’while’ Bexp ’do’ Stm ’end’
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Notation

Meta-variables (written in italic font)

x, y, z for variables (Var)
e, e′, e1, e2 for arithmetic expressions (Aexp)
b, b1, b2 for boolean expressions (Bexp)
s, s′, s1, s2 for statements (Stm)

Keywords are written in typewriter font
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Syntax of IMP: Example

res := 1;
while n > 1 do
res := res * n;
n := n - 1

end
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Semantic Categories

Syntactic category: Integer Semantic category: Val = Z

101 - 5

101 - 101

� Semantic functions map elements of syntactic
categories to elements of semantic categories

� To define the semantics of IMP, we need semantic
functions for
- Arithmetic expressions (syntactic category Aexp)
- Boolean expressions (syntactic category Bexp)
- Statements (syntactic category Stm)
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States

x+1 - ??

� The meaning of an expression depends on the
values bound to the variables that occur in it

� A state associates a value to each variable

State : Var → Val

� We represent a state σ as a finite function

σ = {x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn}

where x1, x2, . . . , xn are different elements of Var and
v1, v2, . . . , vn are elements of Val.
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Semantics of Arithmetic Expressions

The semantic function

A : Aexp → State → Val

maps an arithmetic expression e and a state σ to a value
A[[e]]σ

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z

A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

op is the operation Val × Val → Val corresponding to op
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Semantics of Boolean Expressions

The semantic function

B : Bexp → State → Bool

maps a boolean expression b and a state σ to a truth
value B[[b]]σ

B[[e1 op e2]]σ =

{

tt if A[[e1]]σ op A[[e2]]σ

ff otherwise

op ∈ RelOp and op is the relation Val × Val corresponding
to op
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Boolean Expressions (cont’d)

B[[b1 or b2]]σ =

{

tt if B[[b1]]σ = tt or B[[b2]]σ = tt

ff otherwise

B[[b1 and b2]]σ =

{

tt if B[[b1]]σ = tt and B[[b2]]σ = tt

ff otherwise

B[[not b]]σ =

{

tt if B[[b]]σ = ff

ff otherwise
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Mathematical Induction

Principle of mathematical induction

(P (0)∧

(∀m ∈ N : P (m) ⇒ P (m + 1)))

⇔ ∀n ∈ N : P (n)
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Well-Founded Relations

� Definition

A binary relation ≺ on a set A is well-founded
iff there are no infinite descending chains

. . . ≺ ai ≺ . . . ≺ a1 ≺ a0

� Examples
< is a well-founded relation on N

< is not well-founded on Z

≤ is not well-founded on N

� Well-founded relations are also called Noetherian
orders.
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Well-Founded Induction

� Principle of well-founded induction

Let ≺ be a well-founded relation on a set A.
Let P be a property. Then the following equiv-
alence holds.
(∀a ∈ A : ((∀b ∈ A : b ≺ a ⇒ P (b)) ⇒ P (a)))

⇔ ∀a ∈ A : P (a)

� Mathematical induction is a special case of
well-founded induction
- Set: N

- Relation: n ≺ m iff m = n + 1
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Well-Founded Relations on Trees

� The syntactic categories are
specified by an abstract
syntax giving a unique
decomposition of each
element into its constituents

� For each syntactic category
we can define a well-founded
relation, for instance, < on
the height of the abstract
syntax tree

x + 2 * y

ex

e

2 y

+

*
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Structural Induction

Structural induction on syntactic categories

1. Induction base: Prove that the property holds for all
the basis elements of the syntactic category

2. Induction step: Prove that the property holds for all
the composite elements of the syntactic category

� Induction hypothesis: Assume that the property holds for
all the immediate constituents of the elements

� Prove that it also holds for the element itself

Structural induction is a special case of well-founded in-

duction
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Structural Induction: Example

Structural induction for arithmetic
expressions

(∀i ∈ Integer : P (i))∧

(∀x ∈ Var : P (x))∧

(∀e1, e2 ∈ Aexp : P (e1) ∧ P (e2) ⇒

P (e1 op e2))

⇔

∀e ∈ Aexp : P (e)

x + 2 * y

ex

e

2 y

+

*
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Compositional Definitions

� The semantics is defined by compositional
definitions of functions
- The values for the basis elements are defined directly
- The values for composite elements are defined in terms of

the immediate constituents

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z

A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

- Since the decomposition of the elements is unique this
means that the semantics is well-defined

� Compositional definitions are also called inductive
definitions or well-founded recursion
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Using Structural Induction

� Compositional definitions enable proofs by structural
induction

� Lemma: The equations for A define a total function
A : Aexp → State → Val

� To prove the lemma, we show that for each e ∈ Aexp
and σ ∈ State there is exactly one v ∈ Val such that
A[[e]]σ = v
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Proof
1. Induction base

� Case 1: e ≡ i
The equations define A[[i]]σ = i, i ∈ Val

� Case 2: e ≡ x

The equations define A[[x]]σ = σ(x)
σ is a total function, σ(x) ∈ Val

2. Induction step: e ≡ e1 op e2

� The equations define A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ

� There is exactly one value for A[[e1]]σ and A[[e2]]σ,
respectively (induction hypothesis)
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Compositional Definitions: Example
New arithmetic expression: -e

� Compositional
definition of A[[-e]]σ

A[[-e]]σ = 0 −A[[e]]σ

� e is an immediate
constituent of -e

� For the induction step
we may assume the
induction hypothesis
for e

� Non-compositional
definition of A[[-e]]σ

A[[-e]]σ = A[[0-e]]σ

� 0-e is no immediate
constituent of -e

� For the induction step
we may not assume
the induction hypoth-
esis for 0-e
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Free Variables in Expressions
Arithmetic expressions

FV (e1 op e2) = FV (e1) ∪ FV (e2)

FV (i) = ∅, i is an integer

FV (x) = {x}

Boolean expressions

FV (b1 op b2) = FV (b1) ∪ FV (b2), op ∈ RelOp

FV (not b) = FV (b)

FV (b1 or b2) = FV (b1) ∪ FV (b2)

FV (b1 and b2) = FV (b1) ∪ FV (b2)
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Free Variables in Statements

FV (skip) = ∅

FV (x:=e) = {x} ∪ FV (e)

FV (s1;s2) = FV (s1) ∪ FV (s2)

FV (if b then s1 else s2 end) = FV (b) ∪ FV (s1) ∪ FV (s2)

FV (while b do s end) = FV (b) ∪ FV (s)

Peter Müller—Semantics of Programming Languages, SS04 – p.54



Syntactic Abbreviations

if b then s end if b then s else skip end

repeat s until b s; while not b do s end

for x := e1 to e2 do s

end

x 6∈ FV (e2), y 6∈ FV (s)

x := e1;

var y := e2 in

while x <= y do

s; x := x + 1

end

end

true 1=1

Peter Müller—Semantics of Programming Languages, SS04 – p.55


	Agenda for Today
	1. Introduction
	C: Expression Evaluation
	C: Expression Evaluation
	Haskell and SML: Evaluation
	Haskell and SML: Evaluation
	Java: Dynamic Method Binding
	Java: Dynamic Method Binding
	Java: Class Initialization
	Java: Class Initialization
	Why Formal Semantics?
	Language Properties
	Language Properties
	Compiler Optimization
	Compiler Optimization
	Formal Verification
	Formal Verification
	Formal Verification
	1. Introduction
	Language Definition
	Compilation and Execution
	Three Kinds of Semantics
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics
	Abstraction
	Selection Criteria
	1. Introduction
	After this Course, you should
	Approach
	Course Outline
	Organization
	Using this Course
	Related Courses
	Related Seminars
	Literature
	1. Introduction
	The Language IMP
	Syntax of IMP: Characters and Tokens
	Syntax of IMP: Expressions
	Syntax of IMP: Statemens
	Notation
	Syntax of IMP: Example
	1. Introduction
	Semantic Categories
	States
	Semantics of Arithmetic Expressions
	Semantics of Boolean Expressions
	Boolean Expressions (cont'd)
	1. Introduction
	Mathematical Induction
	Well-Founded Relations
	Well-Founded Induction
	Well-Founded Relations on Trees
	Structural Induction
	Structural Induction: Example
	Compositional Definitions
	Using Structural Induction
	Proof
	Compositional Definitions: Example
	Free Variables in Expressions
	Free Variables in Statements
	Syntactic Abbreviations

