
Semantics of Programming
Languages

Denotational Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.223

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.2 Fixed Point Theory

3.2.1 Partially Ordered Sets
3.2.2 Complete Partially Ordered Sets
3.2.3 Continuous Functions

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.224

Partial Ordering

� A partial order is a relation that is
- reflexive: d v d,
- transitive: d1 v d2 ∧ d2 v d3 ⇒ d1 v d3, and
- anti-symmetric: d1 v d2 ∧ d2 v d1 ⇒ d1 = d2

� We formalize the requirements for the desired fixed
point by introducing a partial order v on partial
functions State ↪→ State

� We set g1 v g2 when the partial function
g1 : State ↪→ State shares its results with the partial
function g2 : State ↪→ State in the sense that
g1(σ) = σ′ ⇒ g2(σ) = σ′ for all σ, σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.225

Partial Ordering: Example

g1(σ) = σ

g2(σ) =







σ if σ(x) ≥ 0

undefined otherwise

g3(σ) =







σ if σ(x) = 0

undefined otherwise

g4(σ) =







σ if σ(x) ≤ 0

undefined otherwise

g
1

g
3

g
4

g
2

Peter Müller—Semantics of Programming Languages, SS04 – p.226

Partially Ordered Sets

� Definition

A partially ordered set is a pair (D,vD) where D is
a set and vD is a partial order on D.

� We say that d1 shares information with d2 if
d1 vD d2

� We omit the subscript from vD if it is clear from the
context

Peter Müller—Semantics of Programming Languages, SS04 – p.227

Least Elements

� Definition

An element d of D satisfying

∀d′ ∈ D : d vD d′

is a least element of the partially ordered set
(D,vD)

� We say that a least element contains no information

Peter Müller—Semantics of Programming Languages, SS04 – p.228

Unique Least Elements

� Lemma 3.1:

If a partially ordered set (D,vD) has a least
element d, then d is unique

� Proof
- Assume that d1 and d2 are two least elements of (D,vD)

- By the definition of least elements, we get d1 v d2 and
d2 v d1

- Anti-symmetry implies d1 = d2

� The least element of D, if one exists, is denoted by
⊥D (or simply ⊥)

Peter Müller—Semantics of Programming Languages, SS04 – p.229

Partially Ordered Sets: Example

� Let S be a non-empty
set and
P(S) = {K|K ⊆ S} the
power set of S

� (P(S),⊆) is a partially
ordered set
- ⊆ is reflexive: K ⊆ K

- ⊆ is transitive:
K1 ⊆ K2 ∧ K2 ⊆ K3 ⇒
K1 ⊆ K3

- ⊆ is anti-symmetric:
K1 ⊆ K2 ∧ K2 ⊆ K1 ⇒
K1 = K2

{a,c}

{ }

{b,c}

{c}{a} {b}

{a,b}

{a,b,c}

Ordering for S = {a, b, c}

Peter Müller—Semantics of Programming Languages, SS04 – p.230

Back to Semantics

� Lemma 3.2:

(State ↪→ State,v) is a partially ordered set. The
partial function ⊥: State ↪→ State defined by

⊥ (σ) = undefined for all σ

is the least element of State ↪→ State

� Proof
- Part 1: v is a partial order
- Part 2: ⊥ is the least element of State ↪→ State

Peter Müller—Semantics of Programming Languages, SS04 – p.231

Proof: Part 1

� Recall: g1 v g2 means that g1(σ) = σ′ ⇒ g2(σ) = σ′

for all σ, σ′

� Reflexivity: g v g since g(σ) = σ′ ⇒ g(σ) = σ′

� Transitivity: g1 v g2 ∧ g2 v g3 ⇒ g1 v g3 follows from
the transitivity of implication “⇒”

� Anti-symmetry: g1 v g2 ∧ g2 v g1 ⇒ g1 = g2

- If g1(σ) = σ′ then g2(σ) = σ′

- If g1(σ) = undefined then g2(σ) = undefined (otherwise, we
would get a contradiction)

Peter Müller—Semantics of Programming Languages, SS04 – p.232

Proof: Part 2

� We show that ⊥ is the least element of State ↪→ State

� ⊥ is an element of State ↪→ State

� ⊥v g holds for all g since ⊥ (σ) = σ′ vacuously
implies g(σ) = σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.233

The Desired Fixed Point

Requirements on FIX F :

� FIX F is a fixed point of F , that is

F (FIX F) = FIX F

� FIX F is the least fixed point of F , that is
if F (g) = g then FIX F v g

Peter Müller—Semantics of Programming Languages, SS04 – p.234

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.2 Fixed Point Theory

3.2.1 Partially Ordered Sets
3.2.2 Complete Partially Ordered Sets
3.2.3 Continuous Functions

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.235

Least Upper Bounds

� Definition of upper bound

Let (D,v) be a partially ordered set and Y a subset
of D. An element d of D is an upper bound of Y if

∀d′ ∈ Y : d′ v d

� Definition of least upper bound

An upper bound d of Y is a least upper bound if
and only if

d′′ is an upper bound implies that d v d′′

� If Y has a least upper bound, then it is unique (see
exercise session 7), and denoted by tY

Peter Müller—Semantics of Programming Languages, SS04 – p.236

Least Upper Bounds: Example

� Let S be a non-empty
set and
P(S) = {K|K ⊆ S}
the power set of S

� Every subset Y of
(P(S),⊆) has the
least upper bound
⋃

d∈Y

d

{a,c}

{ }

{b,c}

{c}{a} {b}

{a,b}

{a,b,c}

Ordering for S = {a, b, c}

Peter Müller—Semantics of Programming Languages, SS04 – p.237

Least Upper Bounds: Example

�

⋃

d∈Y

d is an upper bound

-
⋃

d∈Y

d is in P(S) since it is a subset of S

- ∀d′ ∈ Y : d′ ⊆
⋃

d∈Y

d

�

⋃

d∈Y

d is the least upper bound

- We have to show that if u is an upper bound, then
⋃

d∈Y

d ⊆ u

- For all x ∈ S, we get: x ∈
⋃

d∈Y

d ⇒ ∃d′ ∈ Y : x ∈ d′ ⇒ x ∈ u

because d′ has to be a subset of the upper bound u

Peter Müller—Semantics of Programming Languages, SS04 – p.238

Chains

� A subset Y is called a chain if it is consistent in the
sense that if we take any two elements of Y then one
will share its information with the other

� Definition

A subset Y is called a chain if
∀d1, d2 ∈ Y : d1 v d2 ∨ d2 v d1

Peter Müller—Semantics of Programming Languages, SS04 – p.239

Example: Power Sets

� Consider the partially ordered set (P({a, b, c}),⊆)

� Y1 = { {}, {a}, {a, c} } is a chain

- {a, c} and {a, b, c} are upper bounds of Y1

- {a, c} is the least upper bound of Y1

- {a, b} is not an upper bound of Y1 because {a, c} 6⊆ {a, b}

� Y2 = { {}, {a}, {c}, {a, c} } is not a chain
because {a} and {c} are unrelated by the ordering

- {a, c} is the least upper bound of Y2

� Y3 = {} is a chain

- Any element of P({a, b, c}) is an upper bound of {}
- {} is the least upper bound of {}

Peter Müller—Semantics of Programming Languages, SS04 – p.240

Example: Chains and Upper Bounds

� Let S be a non-empty set and
Pfin(S) = {K|K is finite and K ⊆ S}

� For some choices of S, there are chains of
(Pfin(S),⊆) that do not have an upper bound

� For Pfin(N), the infinite chain of finite subsets of N

Y =
⋃

n∈N

{i|i ≤ n} = { {0}, {0, 1}, {0, 1, 2}, . . . }

has no upper bound, because N is the only superset
of all sets in Y

- N is an infinite set: N 6∈ Pfin(N)

Peter Müller—Semantics of Programming Languages, SS04 – p.241

Example: Partial Functions

� Let gn : State ↪→ State be defined by

gn(σ) =















undefined if σ(x) > n

σ[x 7→ −1] if 0 ≤ σ(x) ≤ n

σ if σ(x) < 0

� n ≤ m ⇒ gn v gm because gn will be undefined for
more states than gm

� Y0 = {gn|n ≥ 0} is a chain.

� The partial function g is the least upper bound of Y0

g(σ) =







σ[x 7→ −1] if 0 ≤ σ(x)

σ if σ(x) < 0

Peter Müller—Semantics of Programming Languages, SS04 – p.242

CCPOs and Complete Lattices

� Definition of Chain complete partially ordered set

A partially ordered set (D,v) is a chain complete
partially ordered set (ccpo) whenever tY exists
for all chains Y

� Definition of Complete lattice

A partially ordered set (D,v) is a complete lat-
tice whenever tY exists for all subsets Y of D

Peter Müller—Semantics of Programming Languages, SS04 – p.243

Examples

� (P(S),⊆) is a
complete lattice (and,
thus, a ccpo)

- We have shown that
each subset has a
least upper bound

� (Pfin(N),⊆) is neither
a complete lattice nor
a ccpo

{a,c}

{ }

{b,c}

{c}{a} {b}

{a,b}

{a,b,c}

Ordering for S = {a, b, c}

Peter Müller—Semantics of Programming Languages, SS04 – p.244

Least Elements

Lemma 3.3:

If (D,v) is a ccpo then it has a least
element ⊥= t∅

Proof:

� ∅ is a chain

� Since (D,v) is a ccpo, t∅ exists

� All elements d of D are upper bounds of ∅:
∀d′ ∈ ∅ : d′ v d

� Since t∅ is the least upper bound, we get t∅ v d

Peter Müller—Semantics of Programming Languages, SS04 – p.245

CCPO of Semantic Functions

� Lemma 3.4:

(State ↪→ State,v) is a ccpo. The least upper
bound tY of a chain Y is given by

tY (σ) =

{

σ′ if ∃g ∈ Y : g(σ) = σ′

undefined otherwise

� For the proof, we have to show that
1. tY is indeed a partial function in State ↪→ State

2. tY is an upper bound of Y

3. tY is the least upper bound of Y

Peter Müller—Semantics of Programming Languages, SS04 – p.246

Proof: Part 1—Partial Function

� Let g1 and g2 be two functions in Y with
- g1(σ) = σ′

- g2(σ) = σ′′

� We prove that σ′ = σ′′

� Since Y is a chain, we have g1 v g2 or g2 v g1

� By the definition of v, we get
g1(σ) = σ′ ⇒ g2(σ) = σ′ or g2(σ) = σ′ ⇒ g1(σ) = σ′

� Therefore, we have σ′ = σ′′

Peter Müller—Semantics of Programming Languages, SS04 – p.247

Proof: Part 2—Upper Bound

� For any function g ∈ Y , we have to show g v tY ,
that is g(σ) = σ′ ⇒ tY (σ) = σ′

� This is a trivial consequence of the definition of tY

tY (σ) =

{

σ′ if ∃g ∈ Y : g(σ) = σ′

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.248

Proof: Part 3—Least Upper Bound

� We show that tY is less than any other upper bound
of Y

� Let g′ be an upper bound of Y , that is, ∀g ∈ Y : g v g ′

� This means that if there is a function g ∈ Y with
g(σ) = σ′, then g′(σ) = σ′

� By the definition of tY , we get
tY (σ) = σ′ ⇒ (∃g ∈ Y : g(σ) = σ′) ⇒ g′(σ) = σ′

� Therefore, we have tY v g′, which completes the
proof

Peter Müller—Semantics of Programming Languages, SS04 – p.249

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.2 Fixed Point Theory

3.2.1 Partially Ordered Sets
3.2.2 Complete Partially Ordered Sets
3.2.3 Continuous Functions

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.250

Monotone Functions

� Recall that we want to ensure that SDS and, in
particular, F (g) = cond(B[[b]], g ◦ SDS[[s]], id) always
has a least fixed point

� Since F maps functions in State ↪→ State to functions
in State ↪→ State, we consider functions on ccpo’s

� Definition of Monotone Functions

Let (D,v) and (D′,v′) be ccpo’s, and f : D →
D′ a (total) function. f is monotone if

∀d1, d2 ∈ D : d1 v d2 ⇒ f(d1) v
′ f(d2)

Peter Müller—Semantics of Programming Languages, SS04 – p.251

Monotone Functions: Examples

� Consider the ccpo’s (P({a, b}),⊆) and (P({d, e}),⊆)

� The function f1 is monotone

X {a, b} {a} {b} ∅

f1(X) {d, e} {d} {e} ∅

f1 changes a’s to d’s and
b’s to e’s

� The function f2 is not monotone

X {a, b} {a} {b} ∅

f2(X) {d} {d} {e} {e}

f2 maps sets that contain
an a to {d} and sets that do
not contain an a to {e}

- {b} ⊆ {a, b} but f2({b}) 6⊆ f2({a, b})

Peter Müller—Semantics of Programming Languages, SS04 – p.252

Composition of Monotone Functions
Lemma 3.5:

Let (D,v), (D′,v′), and (D′′,v′′) be ccpo’s
and let f : D → D′ and f ′ : D′ → D′′ be
monotone functions. Then f ′ ◦ f : D → D′′ is
a monotone function

Proof:

� Assume that d1 v d2

� Monotonicity of f gives f(d1) v
′ f(d2)

� Monotonicity of f ′ gives f ′(f(d1)) v
′′ f ′(f(d2))

Peter Müller—Semantics of Programming Languages, SS04 – p.253

Monotonicity and Chains

� Lemma 3.6:

Let (D,v) and (D′,v′) be ccpo’s and let f :
D → D′ be a monotone function. If Y is a
chain in D then {f(d)|d ∈ Y } is a chain in D′.
Furthermore, t′{f(d)|d ∈ Y } v′ f(tY)

� Proof of Case 1: Y = ∅

- ∅ is a chain in both D and D′

- By the monotonicity of f , we get ⊥′v′ f(⊥) and, thus,
t′∅ v′ f(t∅)

Peter Müller—Semantics of Programming Languages, SS04 – p.254

Proof of Case 2—Chain

� We show that {f(d)|d ∈ Y } is a chain in D′

� Let d′
1

and d′
2

be two elements of {f(d)|d ∈ Y }

� There are elements d1 and d2 with d′
1

= f(d1) and
d′

2
= f(d2)

� Since Y is a chain, we have d1 v d2 or d2 v d1

� By the monotonicity of f , we get f(d1) v
′ f(d2) or

f(d2) v
′ f(d1)

� Consequently, we have d′
1
v′ d′

2
or d′

2
v′ d′

1

Peter Müller—Semantics of Programming Languages, SS04 – p.255

Proof of Case 2—Least Upper Bound

� We show that t′{f(d)|d ∈ Y } v′ f(tY)

� For an arbitrary d ∈ Y , we have d v tY

� By the monotonicity of f , we get f(d) v′ f(tY)

� Since this property holds for all d ∈ Y , we get that
f(tY) is an upper bound on {f(d)|d ∈ Y }

Peter Müller—Semantics of Programming Languages, SS04 – p.256

Monotonicity and Least Upper Bounds

� Monotone functions preserve chains, but not
necessarily least upper bounds (see Example 4.31 in
the book)

� Monotone functions that do preserve least upper
bounds are called continuous functions

� Such functions satisfy t′{f(d)|d ∈ Y } = f(tY)

� Intuitively, we obtain the same information
independently of whether we determine the least
upper bound before or after applying the monotone
function f

Peter Müller—Semantics of Programming Languages, SS04 – p.257

Continuous Functions

� Definition of Continuous Functions

A function f : D → D′ defined on ccpo’s (D,v)
and (D′,v′) is continuous if it is monotone and
t′{f(d)|d ∈ Y } = f(tY) holds for all non-empty
chains Y

� Definition of Strict Functions

A function is strict if t′{f(d)|d ∈ Y } = f(tY)
holds for the empty chain, that is ⊥′= f(⊥)

Peter Müller—Semantics of Programming Languages, SS04 – p.258

Continuous Functions: Example

� Consider the ccpo’s (P({a, b}),⊆) and (P({d, e}),⊆)

� The function f1 is continuous

X {a, b} {a} {b} ∅

f1(X) {d, e} {d} {e} ∅

f1 changes a’s to d’s and
b’s to e’s

� Proof

- Let X0 be the least upper bound of a chain Y of P({a, b})

- Since X0 ∈ Y , we get f1(tY) = f1(X0) ⊆ t{f1(X)|X ∈ Y }

- By Lemma 3.6, we get t{f1(X)|X ∈ Y } ⊆ f1(tY)

� f1 is strict because f1(∅) = ∅

Peter Müller—Semantics of Programming Languages, SS04 – p.259

Composition of Continuous Functions
Lemma 3.7:

Let (D,v), (D′,v′), and (D′′,v′′) be ccpo’s
and let f : D → D′ and f ′ : D′ → D′′ be
continuous functions. Then f ′ ◦ f : D → D′′ is
a continuous function

Proof:

� From Lemma 3.5, we know that f ′ ◦ f is monotone

� It remains to show that least upper bounds are
preserved

Peter Müller—Semantics of Programming Languages, SS04 – p.260

Proof

� Let y be a non-empty chain in D

� The continuity of f gives t′{f(d)|d ∈ Y } = f(tY)

� Since {f(d)|d ∈ Y } is a non-empty chain in D′, we
get by the continuity of f ′:

t′′{f ′(d′)|d′ ∈ {f(d)|d ∈ Y }} = f ′(t′{f(d)|d ∈ Y })

� This is equivalent to t′′{f ′(f(d))|d ∈ Y } = f ′(f(tY))

Peter Müller—Semantics of Programming Languages, SS04 – p.261

Knaster-Tarski Fixed Point Theorem

� Theorem 3.8

Let f : D → D be a continuous function on the
ccpo (D,v) with least element ⊥. Then

FIXf = t{fn(⊥)|n ≥ 0}

defines an element of D that is the least fixed
point of f

where f 0 = id and fn+1 = f ◦ fn for n ≥ 0

� We have to prove that

1. FIXf is well-defined
2. FIXf is a fixed point of f

3. FIXf is the least fixed point of f

Peter Müller—Semantics of Programming Languages, SS04 – p.262

Proof: Part 1—Well-Definedness

� Since D is a ccpo, FIXf exists if {fn(⊥)|n ≥ 0} is a
non-empty chain of D

� {fn(⊥)|n ≥ 0} is non-empty since it contains ⊥

� By a trivial induction, one can show that
fn(⊥) v fn(d) holds for all d ∈ D

� We use this result to prove fn(⊥) v fm(⊥) for n ≤ m

- fn(⊥) v fn(fm−n(⊥)) = fm(⊥)

Peter Müller—Semantics of Programming Languages, SS04 – p.263

Proof: Part 2—Fixed Point

� We have to show that f(FIXf) = FIXf

f(FIXf) = [Definition of FIXf]

f(t{fn(⊥)|n ≥ 0}) = [Continuity of f]

t{f(fn(⊥))|n ≥ 0} =

t{fn(⊥)|n ≥ 1} = [t (Y ∪ {⊥}) = tY]

t({fn(⊥)|n ≥ 1} ∪ {⊥}) = [f 0(⊥) =⊥]

t{fn(⊥)|n ≥ 0} = [Definition of FIXf]

FIXf

Peter Müller—Semantics of Programming Languages, SS04 – p.264

Proof: Part 3—Least Fixed Point

� We show that FIXf is less than any other fixed
point of f

� Let d be a fixed point of f

� We have fn(⊥) v fn(d) = d for n ≥ 0

� Thus, d is an upper bound on {fn(⊥)|n ≥ 0}

� Since FIXf = t{fn(⊥)|n ≥ 0} is the least upper
bound, we get FIXf v d

Peter Müller—Semantics of Programming Languages, SS04 – p.265

Fixed Point Iteration: Example

� We determine the least fixed point of the functional
F ′

F ′(g)σ =

{

g(σ) if σ(x) 6= 0

σ otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.266

Fixed Point Theory: Summary

To guarantee the existence of a least fixed point, the
following steps have been taken

1. We restrict ourselves to chain complete partially
ordered sets—ccpo’s

2. We restrict ourselves to continuous functions on
ccpo’s

3. We show that continuous functions on ccpo’s always
have least fixed points

Peter Müller—Semantics of Programming Languages, SS04 – p.267

	3. Denotational Semantics
	Partial Ordering
	Partial Ordering: Example
	Partially Ordered Sets
	Least Elements
	Unique Least Elements
	Partially Ordered Sets: Example
	Back to Semantics
	Proof: Part 1
	Proof: Part 2
	The Desired Fixed Point
	3. Denotational Semantics
	Least Upper Bounds
	Least Upper Bounds: Example
	Least Upper Bounds: Example
	Chains
	Example: Power Sets
	Example: Chains and Upper Bounds
	Example: Partial Functions
	{C}CPOs and Complete Lattices
	Examples
	Least Elements
	{C}CPO of Semantic Functions
	Proof: Part 1---Partial Function
	Proof: Part 2---Upper Bound
	Proof: Part 3---Least Upper Bound
	3. Denotational Semantics
	Monotone Functions
	Monotone Functions: Examples
	Composition of Monotone Functions
	Monotonicity and Chains
	Proof of Case 2---Chain
	Proof of Case 2---Least Upper Bound
	Monotonicity and Least Upper Bounds
	Continuous Functions
	Continuous Functions: Example
	Composition of Continuous Functions
	Proof
	Knaster-Tarski Fixed Point Theorem
	Proof: Part 1---Well-Definedness
	Proof: Part 2---Fixed Point
	Proof: Part 3---Least Fixed Point
	Fixed Point Iteration: Example
	Fixed Point Theory: Summary

