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Motivation

� Realistic programming languages are significantly
more complex than IMP

� For semantics, the main challenges of sequential
object-oriented languages are:

- Heap-allocated data structures (objects)
- References (pointers)
- Subtyping
- Dynamic method binding
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Objects and References

� Objects are accessed
via references

� Static and dynamic
aliasing

� Destructive Updates

x

y
4f: f: 7
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Objects and References

� Objects are accessed
via references

� Static and dynamic
aliasing

� Destructive Updates

x

y
4f: f: 7

{y = V }

x:=e

{y = V }

{y.f = V }

x.f:=e

{y.f = V }

Not valid if x and y point to
the same object
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Subtyping

� Types of objects are not known statically

� At runtime, objects can have additional / different
behavior

Without subtyping
{tt}

var x: T := e1;
var y: S := e2;

{x 6= y}

With subtyping
{tt}

var x: T := e1;
var y: S := e2;

{x 6= y}

Not valid if S and T are sub-
types and e1 and e2 evaluate
to the same value
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Dynamic Method Binding

� Method implementation is selected at runtime

� No static connection between method call and
method implementation

Static binding
{ P } body(p) { Q }

{ P } call p { Q }

Dynamic binding
{ P } body(m) { Q }

{ P } x.m() { Q }

body(m) not known at com-
pile time
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The COOL Language

� COOL stands for Core Object-Oriented Language

� COOL is a subset of sequential Java

� It provides

- Classes and interfaces
- Fields and methods
- Objects and values

� We do not consider arrays, exceptions, etc.
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Example

interface Set {
Set insert(int p);
}

class List
implements Set {

int elem;
List next;

boolean isElem(int p) {
List ptr := this;
while (ptr # null) {
int e := ptr.elem;
if (e = p)
return true;
ptr := ptr.next;
}
return false;
}

List insert(int p) {
...
}
}
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Syntax of COOL

� The syntax for interfaces, classes, fields, and
methods is identical to Java

- ClassId and InterfaceId are the sets of globally unique
class and interface names

- TypeId = ClassId ∪ InferfaceId

- FieldId is the set of globally unique field names

� Expressions

Exp = Var | Integer | ’null’
| Exp Op Exp | Unop Exp

- Op and Unop are the usual unary and binary operators
- Expressions are side effect free
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Syntax of COOL: Statements

Stm = . . .
| Var ’.’ FieldId ’:=’ Exp
| Var ’:=’ Var ’.’ FieldId
| Var ’:=’ ’(’ TypeId ’)’ Exp
| Var ’:=’ ’new’ ClassId

� Composition, conditional, etc. are like in IMP

� We will not discuss method invocations
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Types and Subtyping

� Types

Type = boolT | intT | nullT | ClassId | InterfaceId

- nullT is the type of the null reference

� Subtyping

�: Type × Type → Bool (subtype relation)
≺: Type × Type → Bool (proper subtype relation)

� Examples

- List � List, List � Set , nullT � List

- List 6≺ List, intT 6≺ List
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Values, States, and Stores in IMP

� Values: Sort Val = Z

- Cool has integers, booleans, references

� States: Finite functions Var → Val

- In Cool, values are not only stored in local variables, but
also in fields of objects

� Stores: Finite functions Loc → Val

- Stores were used to model static scope rules
- We will use stores to model the heap memory
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Recursive Data Types

datatype Sort
cons1(Sort11, . . . , Sortn1)
. . .

consm(Sort1
m
, . . . , Sortk

m
)

end

� Recursive data types declare

- A sort (Sort)
- The constructors for this sort (cons1, . . . , consm) and their

arguments
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Values

datatype Val

b(Bool)

i(Z)

null
ref(ClassId, ObjId)

end

typeof : Val → Type

typeof(b(B)) = boolT

typeof(i(I)) = intT

typeof(null) = nullT

typeof(ref(C,X)) = C

� A value is a boolean value, an integer, the null
reference, or an object reference

� Objects are identified by their class and an object
identifier (sort ObjId)
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Locations

� In the denotational semantics of IMP, we determined
the state by a variable environment and a store

Var
ΦV−→ Loc

$
−→ Val

- The variable environment statically maps variables to
locations

� Fields are mappings from objects to locations

Val
FieldId
↪→ Loc

$
−→ Val

- The location for field f of the object referenced by X is
denoted by X.f
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Stores

� Stores are modeled by sort Store and the following
five operations:

_ (_) : Store × Loc → Val

_ 〈_ := _〉 : Store × Loc × Val → Store

new : Store × ClassId → Val

_ 〈_〉 : Store × ClassId → Store

alloc : Val × Store → Bool

� Object creation is modeled by two functions

- _ 〈_〉 yields new store
- new yields reference to new object
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Properties of Stores

st1: L 6= K ⇒ OS〈L := X〉(K) = OS(K)

st2: OS〈X.f := Y 〉(X.f) = Y

st3: OS〈C〉(L) = OS(L)

� A location update modifies only the updated location
(st1 and st2)

� Object creation does not change the values of
locations (st3)
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Properties of Stores (cont’d)

st4: alloc(X, OS〈L := Y 〉) ⇔ alloc(X, OS)

st5: alloc(X, OS〈C〉) ⇔ alloc(X, OS) ∨ X = new(OS, C)

st6: alloc(OS(L), OS)

� Updating a location does not change liveness (st4)

� An object is allocated in the store after an object
creation iff it was allocated in the store before the
creation or if it is the new object (st5)

� Locations never hold references to non-allocated
objects (st6)
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Properties of Stores (cont’d)

st7: ¬alloc(new(OS, C), OS)

st8: typeof(new(OS, C)) = C

� A new object is not allocated in the store in which it
was created (st7)

� The type of a new object is the class specified in the
new operation (st8)
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Reachability

� Object can reach each other via reference chains

reach_ : N × Val × Val × Store × FieldId → Bool

reach0(X,Y, OS, f) ⇔ X = Y

reachN+1(X,Y, OS, f) ⇔ ∃Z : OS(X.f) = Z∧

reachN(Z, Y, OS, f)

reach : Val × Val × Store × FieldId → Bool

reach(X,Y, OS, f) ⇔ ∃N : reachN(X,Y, OS, f)
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Reachability: Example

� We can express that a singly-linked list is acyclic

class List implements Set {
int elem;
List next;
...

∀X,OS : typeof(X) � List ⇒ reach(X, null, OS,next)

� Such properties are often specified as class or object
invariant
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Abstraction Functions

� Abstraction functions map values, objects, or object
structures to mathematical entities

� Important concept for specification and verification

- Clients of a class only have to know how methods
manipulate the abstract value of a data structure

- Implementation details can be hidden from clients

� Abstraction function for integer values

aI : Val → Z

aI(i(I)) = I
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Abstraction Functions: Example

� Abstraction function for List structures

- The empty list is represented by the null reference
- Recursive definition is only well-defined if list is acyclic

aS : Val × Store → P(Z)

aS(null, OS) = ∅

typeof(X) � List ∧ X 6= null ∧ reach(X, null, OS,next) ⇒

aS(X, OS) = aS(OS(X.next), OS) ∪ { aI(OS(X.elem)) }

� Subtyping

- aS can also be used for interface Set

- Defintion of aS depends on concrete subtype of Set
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Meaning of Assertions

� The meaning of { P } s { Q } is a refined partial
correctness

If P holds in the initial state σ then the execution of
s from σ

1. terminates in a state in which Q will hold,

2. leads to an out-of-memory exception, or

3. loops

� Memory errors are outside the scope of language
semantics

- They require a model of the hardware and/or operating
system
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Field Read

� Assignment in IMP: x:=e

{ P[x 7→ A[[e]]] } x:=e { P }

� Field read: x:=y.f

- We use the store to determine the value of the right hand
side

- The receiver object has to be different from null

{ y 6= null∧P[x 7→ $(y.f)] } x:=y.f { P }
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Field Update

� Assignment in IMP: x:=e

{ P[x 7→ A[[e]]] } x:=e { P }

� Field update: x.f:=e

- Updates modify the object store
- The rule works like the assignment rule, but substitutes the

store
- E [[e]] is the evaluation of expression e

{ x 6= null ∧ P[$ 7→ $〈x.f := E [[e]]〉] } x.f:=e { P }
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Field Access: Example

� We prove termination of
method isElem

� Loop variant:

V(N) ≡

reachN (ptr,null, $,next)

� We show the following
total correctness asser-
tion

boolean isElem(int p) {
List ptr := this;
result := false;
boolean c := true;
while (ptr#null && c) {
int e := ptr.elem;
if (e = p) {
result := true;
c := false;
}
ptr := ptr.next;
}
}

{ reach(this,null, $,next) } body(isElem) { ⇓ tt }
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Object Creation

� The new statement allocates a new object and
returns a reference to it

� The rules works like the assignment rule, but
substitutes the store and the variable

{ P[$ 7→ $〈C〉][x 7→ new($, C)] } x:=new C { P }

� Memory errors are not considered
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Purity

� A statement or method is called pure if it does not
modify the locations of objects that are allocated in
the prestate

- Objects can be created and initialized
- Purity is important for sharing, contracts, thread

synchronization, etc.

� To show purity of s, one has to prove for all X, f :

{ alloc(X, $) ∧ $(X.f) = V } s { $(X.f) = V }
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Purity: Example

� We prove that method insert is pure

List insert(int p) {
result := new List;
result.elem := p;
result.next := this;
}

{ alloc(X, $)∧$(X.f) = V } body(insert) { $(X.f) = V }
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Type Casts

� The cast statement converts the static type of an
expression

� In COOL, casts are combined with an assignment:
x:=(T)e

� A runtime check guarantees that the type conversion
is legal

- The type of the value denoted by e must be a subtype of T

{ typeof(E [[e]]) � T ∧ P[x 7→ E [[e]]] } x:=(T)e { P }
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Type Cast: Example

� We prove that the following statement terminates
normally:

Set s := new List;
List l := (List) s;
l.next := null

{ tt } s:=new List;l:=(List)s;l.next:=null { tt }
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Further Reading

� We have developed an axiomatic semantics for a
large subset of sequential Java

- A. Poetzsch-Heffter and P. Müller: Logical Foundations for
Typed Object-Oriented Languages. In D. Gries and W. P.
De Roever: Programming Concepts and Methods
(PROCOMET), 1998.

- A. Poetzsch-Heffter and P. Müller: A Programming Logic
for Sequential Java. In S. D. Swierstra: Programming
Languages and Systems (ESOP), Lecture Notes in
Computer Science 1576, Springer-Verlag, 1999.

� The papers are available from the course web site
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Soundness and Completeness

� Soundess is proven w.r.t. an operational Java
semantics

� The logic is not complete

x := null;
x.f := e;

- This statement would lead to a stuck configuration in an
operational semantics

- It is not possible to prove anything about the above
statement in the axiomatic semantics

- To achieve completeness, we would have to include
exceptions in the axiomatic semantics
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