
Semantics of Programming
Languages

Denotational Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.268

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.269

Requirements for Well-Definedness

� The denotational semantics is well-defined, if the
equations for SDS define a function

- Trivial for all equations except for loops

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

� For loops, we have to show that F is continuous

- (State ↪→ State,v) is a ccpo (Lemma 3.4)

Peter Müller—Semantics of Programming Languages, SS04 – p.270

Continuity of F

� Observe that

F (g) = cond(B[[b]], g ◦ SDS[[s]], id) = F1(F2(g))

where

- F1(g) = cond(B[[b]], g, id)

- F2(g) = g ◦ SDS [[s]]

� By Lemma 3.7, F is continuous if F1 and F2 are
continuous

� We prove these properties in the following

Peter Müller—Semantics of Programming Languages, SS04 – p.271

Continuity of cond

Lemma 3.9:

Let g, g0 : State ↪→ State, p : State → Bool and
define

F1(g) = cond(p, g, g0)

Then F1 is continuous.

We prove:

1. F1 is monotone

2. F1 preserves least upper bounds

Peter Müller—Semantics of Programming Languages, SS04 – p.272

Proof: Part 1—Monotonicity

� We have to show that g1 v g2 ⇒ F1(g1) v F1(g2)
where F1(g) = cond(p, g, g0)

� Case 1: p(σ) = tt

- We can assume g1(σ) = σ′ ⇒ g2(σ) = σ′

- We get F1(g1)σ = g1(σ) and F1(g2)σ = g2(σ)

- Therefore, F1(g1)σ = σ′ ⇒ F1(g2)σ = σ′

� Case 2: p(σ) = ff

- We get F1(g1) = g0 and F1(g2) = g0

Peter Müller—Semantics of Programming Languages, SS04 – p.273

Proof: Part 2—Continuity

� We have to show that F1(tY) = t{F1(g)|g ∈ Y }
where F1(g) = cond(p, g, g0) and Y is a non-empty
chain in State ↪→ State

� From monotonicity of F1 and Lemma 3.6, we get
t{F1(g)|g ∈ Y } v F1(tY)

� By anti-symmetry of v, it remains to prove
F1(tY) v t{F1(g)|g ∈ Y }

Peter Müller—Semantics of Programming Languages, SS04 – p.274

Proof: Part 2—Continuity (cont’d)

� Case 1: p(σ) = tt

- By the definition of F1, we get F1(tY)σ = tY (σ) = σ′ for
some σ′

- Therefore, there is a g ∈ Y such that g(σ) = σ′

(Lemma 3.4)
- The definition of F1 gives t{F1(g)|g ∈ Y }σ = t{g|g ∈ Y }σ

- g(σ) = σ′ implies t{g|g ∈ Y }σ = σ′ since the least upper
bound summarizes all information

� Case 2: p(σ) = ff

- Let F1(tY)σ = g0(σ) = σ′

- For every g ∈ Y we get F1(g)σ = g0(σ) = σ′

- Since the least upper bound summarizes all information,
we get t{F1(g)|g ∈ Y }σ = σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.275

Continuity of ◦
Lemma 3.10:

Let g0 : State ↪→ State and define

F2(g) = g ◦ g0

Then F2 is continuous.

We prove:

1. F2 is monotone

2. F2 preserves least upper bounds

Peter Müller—Semantics of Programming Languages, SS04 – p.276

Proof: Part 1—Monotonicity

� We have to show that g1 v g2 ⇒ F2(g1) v F2(g2)
where F2(g) = g ◦ g0

� We can assume g1(σ) = σ′ ⇒ g2(σ) = σ′

� Let F2(g1)σ0 = g1(g0(σ0)) = σ′

� There is a σ such that g0(σ0) = σ and g1(σ) = σ′

� Consequently, F2(g2)σ0 = g2(g0(σ0)) = g2(σ) = σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.277

Proof: Part 2—Continuity

� Like for cond , we have to show that
F2(tY) v t{F2(g)|g ∈ Y } where F2(g) = g ◦ g0 and
Y is a non-empty chain in State ↪→ State

F2(tY)σ = σ′ ⇒ [Definition of F2]

tY (g0(σ)) = σ′ ⇒ [Lemma 3.4]

∃g′ ∈ Y : g′(g0(σ)) = σ′ ⇒ [Definition of F2]

∃g′ ∈ Y : F2(g
′)σ = σ′ ⇒

∃g′′ ∈ {F2(g)|g ∈ Y } : g′′(σ) = σ′ ⇒ [Lemma 3.4]

t{F2(g)|g ∈ Y }σ = σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.278

Well-Definedness

Theorem 3.11:

The semantic equations for the denota-
tional semantics define a total function
SDS in Stm → (State ↪→ State)

The proof runs by structural induction on the statement

Peter Müller—Semantics of Programming Languages, SS04 – p.279

Proof of Well-Definedness
Induction Base:

� Case skip: The function id is well-defined

� Case x:=e: A function that maps σ to σ[x 7→ A[[e]]σ]
is well-defined

Induction Step:

� Case s1;s2:

- By the induction hypothesis, SDS [[s1]] and SDS [[s2]] are
well-defined

- The composition of two well-defined functions is
well-defined

Peter Müller—Semantics of Programming Languages, SS04 – p.280

Proof of Well-Definedness (cont’d)

� Case if b then s1 else s2 end:

- By the induction hypothesis, SDS [[s1]] and SDS [[s2]] are
well-defined

- cond preserves well-definedness

� Case while b do s end:

- By the induction hypothesis, SDS [[s]] is well-defined
- F (g) = F1(F2(g)) where F1(g) = cond(B[[b]], g, id) and

F2(g) = g ◦ SDS [[s]]

- F1 and F2 are continuous (Lemmas 3.9 and 3.10)
- Lemma 3.7 gives that F is continuous
- Theorem 3.8 gives that FIXF is well-defined

Peter Müller—Semantics of Programming Languages, SS04 – p.281

Example

� The denotational semantics of the factorial statement
SDS [[y:=1;while x#1 do y:=y ∗ x;x:=x− 1 end]]

F (g)σ =







g(SDS[[y:=y ∗ x;x:=x− 1]]) if B[[x#1]]σ = tt

σ if B[[x#1]]σ = ff

F (g)σ =







g(σ[y 7→ σ(y) ∗ σ(x)][x 7→ σ(x) − 1]) if σ(x) 6= 1

σ if σ(x) = 1

Peter Müller—Semantics of Programming Languages, SS04 – p.282

Example: Fixed Point Iteration

F 0(⊥)σ = undefined

F 1(⊥)σ =







undefined if σ(x) 6= 1

σ if σ(x) = 1

F 2(⊥)σ =















undefined if σ(x) 6= 1 ∧ σ(x) 6= 2

σ[y 7→ σ(y) ∗ 2][x 7→ 1] if σ(x) = 2

σ if σ(x) = 1

� If x is 1 or 2, F 2 gives the correct value for y

� For all other values, F 2 is undefined

Peter Müller—Semantics of Programming Languages, SS04 – p.283

Pattern of Fixed Point Iteration

� F n determines the correct value if it can be
computed with at most n unfoldings of the loop

F n(⊥)σ =















undefined if σ(x) < 1 ∨ σ(x) > n

σ[y 7→ σ(y) ∗ j ∗ . . . ∗ 2 ∗ 1][x 7→ 1]

if σ(x) = j ∧ 1 ≤ j ≤ n

� Then we have

(FIXF)σ =















undefined if σ(x) < 1

σ[y 7→ σ(y) ∗ n ∗ . . . ∗ 2 ∗ 1][x 7→ 1]

if σ(x) = n ∧ n ≥ 1

Peter Müller—Semantics of Programming Languages, SS04 – p.284

Example (cont’d)

� We apply the semantics of the factorial statement to
a state σ0 where x has the value 3.

� We have to compute FIXF (σ0[y 7→ 1])

(FIXF)σ =















undefined if σ(x) < 1

σ[y 7→ σ(y) ∗ n ∗ . . . ∗ 2 ∗ 1][x 7→ 1]

if σ(x) = n ∧ n ≥ 1

� In the final state, we get σ[y 7→ 3 ∗ 2 ∗ 1][x 7→ 1]

Peter Müller—Semantics of Programming Languages, SS04 – p.285

Well-Definedness: Summary

Well-definedness of SDS relies on the following results

1. The set State ↪→ State equipped with an appropriate
order v is a ccpo (Lemmas 3.2 and 3.4)

2. Certain functions

Ψ : (State ↪→ State) → (State ↪→ State)

are continuous (Lemmas 3.9 and 3.10)

3. In the definition of SDS we only apply the fixed point
operation to continuous functions (Theorem 3.11)

Peter Müller—Semantics of Programming Languages, SS04 – p.286

	3. Denotational Semantics
	Requirements for Well-Definedness
	Continuity of F
	Continuity of $cond $
	Proof: Part 1---Monotonicity
	Proof: Part 2---Continuity
	Proof: Part 2---Continuity (cont'd)
	Continuity of $circ $
	Proof: Part 1---Monotonicity
	Proof: Part 2---Continuity
	Well-Definedness
	Proof of Well-Definedness
	Proof of Well-Definedness (cont'd)
	Example
	Example: Fixed Point Iteration
	Pattern of Fixed Point Iteration
	Example (cont'd)
	Well-Definedness: Summary

