
Semantics of Programming
Languages

Semantics of COOL

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.400

5. Semantics of Cool

5.1 Language

5.2 Object Stores

5.3 Axiomatic Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.401

Motivation

� Realistic programming languages are significantly
more complex than IMP

� For semantics, the main challenges of sequential
object-oriented languages are:

- Heap-allocated data structures (objects)
- References (pointers)
- Subtyping
- Dynamic method binding

Peter Müller—Semantics of Programming Languages, SS04 – p.402

Objects and References

� Objects are accessed
via references

� Static and dynamic
aliasing

� Destructive Updates

x

y
4f: f: 7

Peter Müller—Semantics of Programming Languages, SS04 – p.403

Objects and References

� Objects are accessed
via references

� Static and dynamic
aliasing

� Destructive Updates

x

y
4f: f: 7

{y = V }

x:=e

{y = V }

{y.f = V }

x.f:=e

{y.f = V }

Not valid if x and y point to
the same object

Peter Müller—Semantics of Programming Languages, SS04 – p.403

Subtyping

� Types of objects are not known statically

� At runtime, objects can have additional / different
behavior

Without subtyping
{tt}

var x: T := e1;
var y: S := e2;

{x 6= y}

With subtyping
{tt}

var x: T := e1;
var y: S := e2;

{x 6= y}

Not valid if S and T are sub-
types and e1 and e2 evaluate
to the same value

Peter Müller—Semantics of Programming Languages, SS04 – p.404

Dynamic Method Binding

� Method implementation is selected at runtime

� No static connection between method call and
method implementation

Static binding
{ P } body(p) { Q }

{ P } call p { Q }

Dynamic binding
{ P } body(m) { Q }

{ P } x.m() { Q }

body(m) not known at com-
pile time

Peter Müller—Semantics of Programming Languages, SS04 – p.405

The COOL Language

� COOL stands for Core Object-Oriented Language

� COOL is a subset of sequential Java

� It provides

- Classes and interfaces
- Fields and methods
- Objects and values

� We do not consider arrays, exceptions, etc.

Peter Müller—Semantics of Programming Languages, SS04 – p.406

Example

interface Set {
Set insert(int p);
}

class List
implements Set {

int elem;
List next;

boolean isElem(int p) {
List ptr := this;
while (ptr # null) {
int e := ptr.elem;
if (e = p)
return true;
ptr := ptr.next;
}
return false;
}

List insert(int p) {
...
}
}

Peter Müller—Semantics of Programming Languages, SS04 – p.407

Syntax of COOL

� The syntax for interfaces, classes, fields, and
methods is identical to Java

- ClassId and InterfaceId are the sets of globally unique
class and interface names

- TypeId = ClassId ∪ InferfaceId

- FieldId is the set of globally unique field names

� Expressions

Exp = Var | Integer | ’null’
| Exp Op Exp | Unop Exp

- Op and Unop are the usual unary and binary operators
- Expressions are side effect free

Peter Müller—Semantics of Programming Languages, SS04 – p.408

Syntax of COOL: Statements

Stm = . . .
| Var ’.’ FieldId ’:=’ Exp
| Var ’:=’ Var ’.’ FieldId
| Var ’:=’ ’(’ TypeId ’)’ Exp
| Var ’:=’ ’new’ ClassId

� Composition, conditional, etc. are like in IMP

� We will not discuss method invocations

Peter Müller—Semantics of Programming Languages, SS04 – p.409

Types and Subtyping

� Types

Type = boolT | intT | nullT | ClassId | InterfaceId

- nullT is the type of the null reference

� Subtyping

�: Type × Type → Bool (subtype relation)
≺: Type × Type → Bool (proper subtype relation)

� Examples

- List � List, List � Set , nullT � List

- List 6≺ List, intT 6≺ List

Peter Müller—Semantics of Programming Languages, SS04 – p.410

5. Semantics of Cool

5.1 Language

5.2 Object Stores

5.3 Axiomatic Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.411

Values, States, and Stores in IMP

� Values: Sort Val = Z

- Cool has integers, booleans, references

� States: Finite functions Var → Val

- In Cool, values are not only stored in local variables, but
also in fields of objects

� Stores: Finite functions Loc → Val

- Stores were used to model static scope rules
- We will use stores to model the heap memory

Peter Müller—Semantics of Programming Languages, SS04 – p.412

Recursive Data Types

datatype Sort
cons1(Sort11, . . . , Sortn1)
. . .

consm(Sort1
m
, . . . , Sortk

m
)

end

� Recursive data types declare

- A sort (Sort)
- The constructors for this sort (cons1, . . . , consm) and their

arguments

Peter Müller—Semantics of Programming Languages, SS04 – p.413

Values

datatype Val

b(Bool)

i(Z)

null
ref(ClassId, ObjId)

end

typeof : Val → Type

typeof(b(B)) = boolT

typeof(i(I)) = intT

typeof(null) = nullT

typeof(ref(C,X)) = C

� A value is a boolean value, an integer, the null
reference, or an object reference

� Objects are identified by their class and an object
identifier (sort ObjId)

Peter Müller—Semantics of Programming Languages, SS04 – p.414

Locations

� In the denotational semantics of IMP, we determined
the state by a variable environment and a store

Var
ΦV−→ Loc

$
−→ Val

- The variable environment statically maps variables to
locations

� Fields are mappings from objects to locations

Val
FieldId
↪→ Loc

$
−→ Val

- The location for field f of the object referenced by X is
denoted by X.f

Peter Müller—Semantics of Programming Languages, SS04 – p.415

Stores

� Stores are modeled by sort Store and the following
five operations:

_ (_) : Store × Loc → Val

_ 〈_ := _〉 : Store × Loc × Val → Store

new : Store × ClassId → Val

_ 〈_〉 : Store × ClassId → Store

alloc : Val × Store → Bool

� Object creation is modeled by two functions

- _ 〈_〉 yields new store
- new yields reference to new object

Peter Müller—Semantics of Programming Languages, SS04 – p.416

Properties of Stores

st1: L 6= K ⇒ OS〈L := X〉(K) = OS(K)

st2: OS〈X.f := Y 〉(X.f) = Y

st3: OS〈C〉(L) = OS(L)

� A location update modifies only the updated location
(st1 and st2)

� Object creation does not change the values of
locations (st3)

Peter Müller—Semantics of Programming Languages, SS04 – p.417

Properties of Stores (cont’d)

st4: alloc(X, OS〈L := Y 〉) ⇔ alloc(X, OS)

st5: alloc(X, OS〈C〉) ⇔ alloc(X, OS) ∨ X = new(OS, C)

st6: alloc(OS(L), OS)

� Updating a location does not change liveness (st4)

� An object is allocated in the store after an object
creation iff it was allocated in the store before the
creation or if it is the new object (st5)

� Locations never hold references to non-allocated
objects (st6)

Peter Müller—Semantics of Programming Languages, SS04 – p.418

Properties of Stores (cont’d)

st7: ¬alloc(new(OS, C), OS)

st8: typeof(new(OS, C)) = C

� A new object is not allocated in the store in which it
was created (st7)

� The type of a new object is the class specified in the
new operation (st8)

Peter Müller—Semantics of Programming Languages, SS04 – p.419

Reachability

� Object can reach each other via reference chains

reach_ : N × Val × Val × Store × FieldId → Bool

reach0(X,Y, OS, f) ⇔ X = Y

reachN+1(X,Y, OS, f) ⇔ ∃Z : OS(X.f) = Z∧

reachN(Z, Y, OS, f)

reach : Val × Val × Store × FieldId → Bool

reach(X,Y, OS, f) ⇔ ∃N : reachN(X,Y, OS, f)

Peter Müller—Semantics of Programming Languages, SS04 – p.420

Reachability: Example

� We can express that a singly-linked list is acyclic

class List implements Set {
int elem;
List next;
...

∀X,OS : typeof(X) � List ⇒ reach(X, null, OS,next)

� Such properties are often specified as class or object
invariant

Peter Müller—Semantics of Programming Languages, SS04 – p.421

Abstraction Functions

� Abstraction functions map values, objects, or object
structures to mathematical entities

� Important concept for specification and verification

- Clients of a class only have to know how methods
manipulate the abstract value of a data structure

- Implementation details can be hidden from clients

� Abstraction function for integer values

aI : Val → Z

aI(i(I)) = I

Peter Müller—Semantics of Programming Languages, SS04 – p.422

Abstraction Functions: Example

� Abstraction function for List structures

- The empty list is represented by the null reference
- Recursive definition is only well-defined if list is acyclic

aS : Val × Store → P(Z)

aS(null, OS) = ∅

typeof(X) � List ∧ X 6= null ∧ reach(X, null, OS,next) ⇒

aS(X, OS) = aS(OS(X.next), OS) ∪ { aI(OS(X.elem)) }

� Subtyping

- aS can also be used for interface Set

- Defintion of aS depends on concrete subtype of Set

Peter Müller—Semantics of Programming Languages, SS04 – p.423

5. Semantics of Cool

5.1 Language

5.2 Object Stores

5.3 Axiomatic Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.424

Meaning of Assertions

� The meaning of { P } s { Q } is a refined partial
correctness

If P holds in the initial state σ then the execution of
s from σ

1. terminates in a state in which Q will hold,

2. leads to an out-of-memory exception, or

3. loops

� Memory errors are outside the scope of language
semantics

- They require a model of the hardware and/or operating
system

Peter Müller—Semantics of Programming Languages, SS04 – p.425

Field Read

� Assignment in IMP: x:=e

{ P[x 7→ A[[e]]] } x:=e { P }

� Field read: x:=y.f

- We use the store to determine the value of the right hand
side

- The receiver object has to be different from null

{ y 6= null∧P[x 7→ $(y.f)] } x:=y.f { P }

Peter Müller—Semantics of Programming Languages, SS04 – p.426

Field Update

� Assignment in IMP: x:=e

{ P[x 7→ A[[e]]] } x:=e { P }

� Field update: x.f:=e

- Updates modify the object store
- The rule works like the assignment rule, but substitutes the

store
- E [[e]] is the evaluation of expression e

{ x 6= null ∧ P[$ 7→ $〈x.f := E [[e]]〉] } x.f:=e { P }

Peter Müller—Semantics of Programming Languages, SS04 – p.427

Field Access: Example

� We prove termination of
method isElem

� Loop variant:

V(N) ≡

reachN (ptr,null, $,next)

� We show the following
total correctness asser-
tion

boolean isElem(int p) {
List ptr := this;
result := false;
boolean c := true;
while (ptr#null && c) {
int e := ptr.elem;
if (e = p) {
result := true;
c := false;
}
ptr := ptr.next;
}
}

{ reach(this,null, $,next) } body(isElem) { ⇓ tt }

Peter Müller—Semantics of Programming Languages, SS04 – p.428

Object Creation

� The new statement allocates a new object and
returns a reference to it

� The rules works like the assignment rule, but
substitutes the store and the variable

{ P[$ 7→ $〈C〉][x 7→ new($, C)] } x:=new C { P }

� Memory errors are not considered

Peter Müller—Semantics of Programming Languages, SS04 – p.429

Purity

� A statement or method is called pure if it does not
modify the locations of objects that are allocated in
the prestate

- Objects can be created and initialized
- Purity is important for sharing, contracts, thread

synchronization, etc.

� To show purity of s, one has to prove for all X, f :

{ alloc(X, $) ∧ $(X.f) = V } s { $(X.f) = V }

Peter Müller—Semantics of Programming Languages, SS04 – p.430

Purity: Example

� We prove that method insert is pure

List insert(int p) {
result := new List;
result.elem := p;
result.next := this;
}

{ alloc(X, $)∧$(X.f) = V } body(insert) { $(X.f) = V }

Peter Müller—Semantics of Programming Languages, SS04 – p.431

Type Casts

� The cast statement converts the static type of an
expression

� In COOL, casts are combined with an assignment:
x:=(T)e

� A runtime check guarantees that the type conversion
is legal

- The type of the value denoted by e must be a subtype of T

{ typeof(E [[e]]) � T ∧ P[x 7→ E [[e]]] } x:=(T)e { P }

Peter Müller—Semantics of Programming Languages, SS04 – p.432

Type Cast: Example

� We prove that the following statement terminates
normally:

Set s := new List;
List l := (List) s;
l.next := null

{ tt } s:=new List;l:=(List)s;l.next:=null { tt }

Peter Müller—Semantics of Programming Languages, SS04 – p.433

Further Reading

� We have developed an axiomatic semantics for a
large subset of sequential Java

- A. Poetzsch-Heffter and P. Müller: Logical Foundations for
Typed Object-Oriented Languages. In D. Gries and W. P.
De Roever: Programming Concepts and Methods
(PROCOMET), 1998.

- A. Poetzsch-Heffter and P. Müller: A Programming Logic
for Sequential Java. In S. D. Swierstra: Programming
Languages and Systems (ESOP), Lecture Notes in
Computer Science 1576, Springer-Verlag, 1999.

� The papers are available from the course web site

Peter Müller—Semantics of Programming Languages, SS04 – p.434

Soundness and Completeness

� Soundess is proven w.r.t. an operational Java
semantics

� The logic is not complete

x := null;
x.f := e;

- This statement would lead to a stuck configuration in an
operational semantics

- It is not possible to prove anything about the above
statement in the axiomatic semantics

- To achieve completeness, we would have to include
exceptions in the axiomatic semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.435

	5. Semantics of Cool
	Motivation
	Objects and References
	Objects and References
	Subtyping
	Dynamic Method Binding
	The COOL Language
	Example
	Syntax of COOL
	Syntax of COOL: Statements
	Types and Subtyping
	5. Semantics of Cool
	Values, States, and Stores in IMP
	Recursive Data Types
	Values
	Locations
	Stores
	Properties of Stores
	Properties of Stores (cont'd)
	Properties of Stores (cont'd)
	Reachability
	Reachability: Example
	Abstraction Functions
	Abstraction Functions: Example
	5. Semantics of Cool
	Meaning of Assertions
	Field Read
	Field Update
	Field Access: Example
	Object Creation
	Purity
	Purity: Example
	Type Casts
	Type Cast: Example
	Further Reading
	Soundness and Completeness

