
Semantics of Programming
Languages

Operational Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.135



2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.3 Equivalence

2.4 Applications of Operational Semantics

Peter Müller—Semantics of Programming Languages, SS04 – p.136



Semantic Functions

� The meaning of statements can be expressed as a
partial function from State to State:

SNS : Stm → (State ↪→ State)

SNS[[s]]σ =







σ′ if 〈s, σ〉 → σ′

undefined otherwise

SSOS : Stm → (State ↪→ State)

SSOS[[s]]σ =







σ′ if 〈s, σ〉 →∗

1 σ′

undefined otherwise

� The semantic functions are well-defined because the
semantics are deterministic

Peter Müller—Semantics of Programming Languages, SS04 – p.137



Equivalence Theorem

Theorem: For every statement of
IMP we have SNS[[s]] = SSOS[[s]]

� If the execution of s from some state terminates in
one of the semantics then it also terminates in the
other and the resulting states will be equal

� If the execution of s from some state loops in one of
the semantics then it will also loop in the other

Peter Müller—Semantics of Programming Languages, SS04 – p.138



Equivalence Lemma 1

Lemma: For every statement s of IMP and
states σ and σ′ we have
〈s, σ〉 → σ′ ⇒ 〈s, σ〉 →∗

1 σ′

� If the execution of s from σ terminates in the natural
semantics then it will terminate in the same state in
the structural operational semantics

� The proof runs by induction on the shape of the
derivation tree for 〈s, σ〉 → σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.139



Induction Base

� Case assign-axiom:
The derivation tree is the axiom instance

〈x:=e, σ〉 → σ[x 7→ A[[e]]σ].
From the SOS rule we get

〈x:=e, σ〉 →1 σ[x 7→ A[[e]]σ]

� Case skip-axiom: Analogously

� Case while-rule (B[[b]]σ = ff ): Analogously

Peter Müller—Semantics of Programming Languages, SS04 – p.140



Induction Step: Seq. Composition

� Case sequence-rule:
The root of the derivation tree is 〈s1;s2, σ〉 → σ′.
- There are derivation trees for 〈s1, σ〉 → σ0 and 〈s2, σ0〉 → σ′

for some state σ0

- By the induction hypothesis, we get 〈s1, σ〉 →
∗

1 σ0 and
〈s2, σ0〉 →

∗

1 σ′

- By Exercise 16, we get 〈s1;s2, σ〉 →
∗

1 〈s2, σ0〉

- Finally, 〈s1;s2, σ〉 →
∗

1 〈s2, σ0〉 and 〈s2, σ0〉 →
∗

1 σ′ imply
〈s1;s2, σ〉 →

∗

1 σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.141



Induction Step: if

� Case if-rule (B[[b]]σ = tt):
The root of the derivation tree is
〈if b then s1 else s2 end, σ〉 → σ′

- There is a derivation tree for 〈s1, σ〉 → σ′

- By B[[b]]σ = tt and the induction hypothesis, we get
〈if b then s1 else s2 end, σ〉 →1 〈s1, σ〉 →

∗

1 σ′

� Case if-rule (B[[b]]σ = ff ): Analogously

Peter Müller—Semantics of Programming Languages, SS04 – p.142



Induction Step: while

� Case while-rule (B[[b]]σ = tt):
The root of the derivation tree is
〈while b do s end, σ〉 → σ′

- There are derivation trees for 〈s, σ〉 → σ0 and
〈while b do s end, σ0〉 → σ′ for some state σ0

- By the induction hypothesis, we get 〈s, σ〉 →∗

1 σ0 and
〈while b do s end, σ0〉 →

∗

1 σ′

- We derive:

〈while b do s end, σ〉 →1 [while-rule]

〈if b then s;while b do s end end, σ〉 →1 [B[[b]]σ = tt ]

〈s;while b do s end, σ〉 →∗

1 [Exercise 16]

〈while b do s end, σ0〉 →
∗

1 σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.143



Equivalence Lemma 2

Lemma: For every statement s of IMP, states
σ and σ′, and natural number k we have that

〈s, σ〉 →k
1 σ′ ⇒ 〈s, σ〉 → σ′

� If the execution of s from σ terminates in the
structural operational semantics then it will terminate
in the same state in the natural semantics

� The proof runs by induction on the length of the
derivation sequence for 〈s, σ〉 →k

1 σ′, that is, by
induction on k

� Induction base: For k = 0, the result holds trivially

Peter Müller—Semantics of Programming Languages, SS04 – p.144



Induction Step

� Assume that lemma holds for k ≤ m

� Prove that lemma holds for m + 1:
〈s, σ〉 →m+1

1
σ′ ⇒ 〈s, σ〉 → σ′

� We consider the first step of the derivation sequence
〈s, σ〉 →1 γ →m

1 σ′ ⇒ 〈s, σ〉 → σ′

� We inspect the derivation tree for the first step
〈s, σ〉 →1 γ

Peter Müller—Semantics of Programming Languages, SS04 – p.145



Induction Step (cont’d)

� Case assign-axiom
- We have 〈x:=e, σ〉 →1 σ[x 7→ A[[e]]σ]

- In this case γ = σ[x 7→ A[[e]]σ] = σ′ is a state and m = 0

- From the NS-axiom we get 〈s, σ〉 → σ′

� Case skip-axiom: Analogously

� Case Sequential composition
- We have 〈s1;s2, σ〉 →

m+1

1 σ′

- There are a state σ′′ and numbers k1, k2 such that
〈s1, σ〉 →

k1

1 σ′′ and 〈s2, σ
′′〉 →k2

1 σ′ where k1 + k2 = m + 1

- By the induction hypothesis, we get 〈s1, σ〉 → σ′′ and
〈s2, σ

′′〉 → σ′

- By the NS-rule, we get 〈s1;s2, σ〉 → σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.146



Induction Step (cont’d)

� Case if-axiom (B[[b]]σ = tt)
- We have 〈if b then s1 else s2 end, σ〉 →1 〈s1, σ〉 →

m

1 σ′

- By the induction hypothesis, we get 〈s1, σ〉 → σ′

- By the NS-rule, we get 〈if b then s1 else s2 end, σ〉 → σ′

� Case if-axiom (B[[b]]σ = ff ): Analogously

� Case while-axiom
- We have 〈while b do s end, σ〉 →1

〈if b then s;while b do s end end, σ〉 →m

1 σ′

- By the induction hypothesis, we get
〈if b then s;while b do s end end, σ〉 → σ′

- By the lemma about unfolding loops, we get
〈while b do s end, σ〉 → σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.147



Equivalence Theorem: Proof

SNS[[s]]σ =

{

σ′ if 〈s, σ〉 → σ′

undefined otherwise

SSOS[[s]]σ =

{

σ′ if 〈s, σ〉 →∗
1 σ′

undefined otherwise

� We have proved: SNS[[s]]σ = σ′ ⇔ SSOS[[s]]σ = σ′

� This is sufficient to prove SNS[[s]] = SSOS[[s]] because
one function is defined iff the other is defined

Peter Müller—Semantics of Programming Languages, SS04 – p.148



Equivalence: Summary

� The natural semantics and structural operational
semantics are equivalent
- Proof of Lemma 1 runs by induction on the shape of the

derivation tree
- Proof of Lemma 2 runs by induction on the length of the

derivation sequence

� For extended languages, different formalization of
the equivalence theorem could be necessary
- Non-deterministic languages
- Consider only finite derivation sequences that end in

terminal configurations

Peter Müller—Semantics of Programming Languages, SS04 – p.149


	2. Operational Semantics
	Semantic Functions
	Equivalence Theorem
	Equivalence Lemma 1
	Induction Base
	Induction Step: Seq. Composition
	Induction Step: 	exttt {if}
	Induction Step: 	exttt {while}
	Equivalence Lemma 2
	Induction Step
	Induction Step (cont'd)
	Induction Step (cont'd)
	Equivalence Theorem: Proof
	Equivalence: Summary

