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Operational Semantics of Statements

» Evaluation of an expression in a state yields a value

X + 2 *y

A : Aexp — State — Val

» Execution of a statement modifies the state

X =2 *y

» Operational semantics describe how the state Is
modified during the execution of a statement

Peter Muller—Semantics of Programming Languages, SS04 — p.57



Big-Step and Small-Step Semantics

» Big-step semantics describe how the overall results
of the executions are obtained

- Natural semantics

» Small-step semantics describe how the individual
steps of the computations take place

- Structural operational semantics
- Abstract state machines
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2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP

2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics
2.3 Equivalence
2.4 Applications of Operational Semantics
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Transition Systems

» A transition system is a tuple (I, T', >>)
- I': a set of configurations
- T a set of terminal configurations, T'C I
- >: a transition relation, >C I' x T

» Example: Finite automaton

' ={{(w,S) |we{abc}t* S e{l,23,4}} @
= {{e,S) | S €{1,2,3,4}} @/ \@
= {({aw, 1) — (w,2)), ({aw, 1) \@/
((bw, 2) — (w,4)), ({cw,3) — (w, 4>>}
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Transitions In Natural Semantics

» Two types of configurations for operational semantics

1. (s,0), which represents that the statement s is to be
executed in state o

2. o, which represents a terminal state
» The transition relation — describes how executions
take place
- Typical transition: (s,o) — o’
- Example: (ski p,0) — o

['={(s,0) | s € Stm, o € State} U State
1" = State
—C {(s,0) | s € Stm, 0 € State} X State
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Rules

» [ransition relation is specified by rules

L1, w n it Condition

where ¢4, ..., p, and y are transitions

» Meaning of the rule

If Condition and ¢4, ...y, then ¥

» Terminology
- ©1,...,p, are called premises
- 7y Is called conclusion
- A rule without premises is called axiom
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Notation

» Updating States: o[y — v] is the function that
- overrides the association of y in o by y — v or
- adds the new association y +— v to ¢

7
v f r =y

(oly = v])(z) = < o(z) £y

\
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Natural Semantics of IMP

» Ski p does not modify the state

(skip,o) — 0o

» r. =e assigns the value of e to variable e

(x: =e,0) — oz — Ale|o]

» Seqguential composition si; ss
- First, s; Is executed in state o, leading to ¢’
- Then s, IS executed in state o’

(s1,0) — o', (s9,0") — o
<81; 82,0'> — o
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Natural Semantics of IMP (cont’d)

» Conditional statementi f bt hen s; el se s, end
- If b holds, s; IS executed
- If b does not hold, s, IS executed

(s1,0) — o . B
(if bthen s; el se syend,o) — o tBlblo =

<82,0'> %OJ _ -
(if bthen s; el se syend,o) — o tB[blo = Jf
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Natural Semantics of IMP (cont’d)

» Loop statementwhi | e b do s end
- If b holds, s is executed once, leading to state o’
- Then the whole while-statement is executed again o’

(s,0) — o', (whilebdo send,o’) — o
(whi l e bdo send,o) — o

if B[b]o = tt

- If b does not hold, the while-statement does not modify the
state

(while bdo send,c) — o it B[b]o = ff
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Rule Instantiations

» Rules are actually rule schemes
- Meta-variables stand for arbitrary variables, expressions,
statements, states, etc.

- To apply rules, they have to be instantiated by selecting
particular variables, expressions, statements, states, etc.

» Assignment rule scheme

(x: =e,0) — olz — Ale]o]

» Assignment rule instance
(v:=v+1l {v — 3}) — {v — 4}
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Derivations: Example

» What is the final state If statement

Z:=X; XI=y, Y=z

is executed in state {x — 5,y — 7,z — 0}
(abbreviated by |5, 7, 0])?

(z:=x,[5,7,0]) — [5,7,5],(X: =y,[5,7,5
(z:=x; x:=y,[5,7,0)) = [7,7

[) = [7,7,5]

75] 7
(y:=z,[7,7,5]) — [7,5, 5]

(z:=x; x:=y; y:=z,[5,7,0]) — [7,5,5]
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Derivation Trees

» Rule Instances can be combined to derive a
transition (s, o) — o’

» The resultis a derivation tree
- The root is the transition (s, o) — o’
- The leaves are axiom instances

- The internal nodes are conclusions of rule instances and
have the corresponding premises as immediate children

» T he conditions of all instantiated rules must be
satisfied

» T here can be several derivations for one transition
(non-deterministic semantics)

Eidgendssische Technische Hochschule Zarich
E"I'I'lixr'd 1 ks - ¥ Tl g
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Termination

» The execution of a statement s in state o
- terminates iff there is a state ¢’ such that (s, o) — ¢’
- loops iff there is no state ¢’ such that (s,o) — o’

» A Statement s

- always terminates if the execution in a state ¢ terminates
for all choices of o

- always loops if the execution in a state ¢ loops for all
choices of o
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2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics
2.3 Equivalence
2.4 Applications of Operational Semantics
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Semantic Equivalence

» Definition
Two statements s; and sy are semantically
equivalent (denoted by s; = s9) If the follow-
ing property holds for all states o, o’

(s1,0) = 0" & (s9,0) — o

» Example

while b do s end =
I1f bthen s; while b do s end
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Unfolding Loops Iin C, C++, and Java

Int 1 = 0;
while(i <2 ) {

while(l < 1)
1 f (1 == 0) Dbreak;
I =1 + 1
}
printf("i = %", i);
| = 2

int 1 = 0O;
while(i <2 ) {
f(i < 1) {
1 f(1 == 0) break;
while(i < 1)
1f(1 == 0) break;

printf("i = %", i);

1 =0

» Equivalence does not hold in these languages

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol
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Unfolding Loops in IMP

» We prove the equivalence based on the natural
semantics

(while b do s end,o) — 0" & (%)
(if bthen s; while b do s end,o) — o” (*x)

» Proof idea
- Consider the derivation tree for one transition
- Show that there Is a derivation tree for the other transition
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Proof: Case “="

» Consider the derivation tree for
(while b do s end,o) — o

» The last rule application is one of the rules for whi | e
» For the case

/!

(s,0) — o', (whilebdosend, o) — o
(whi | e bdo send,o) — o

if B[bjo = tt

we know

1. There is a derivation tree 77 with root (s,o) — o’

2. There is a derivation tree 75 with root
(whi | e bdo send,o’) — o”

3. Blb|o = tt
ETH

rendasische Technische Hochschule Zarich
ks - ¥ Tl g
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Proof:. Case “=-" (cont’d)

» We can construct the derivation tree

T17T2
(s;whil e bdo send,o) — o”

» Since B[b|oc = tt we can use the rule for i f to derive

T17T2
(s;whil e bdo send,o) — o”
(if bthens;whilebdosendel seskipend, o) — o

» We have a derivation tree for (xx), which completes
this case

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I
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Proof:. Case “=-" (cont’d)

» For the case
(whil e bdo send,s) — o if B[b]o = ff

we know

1. o0 =o"

2. Bblo = ff
» We can construct the derivation tree

(skip,o) — o
(if bthen s;whilebdo sendel seskipend,og)— o"

» We have a derivation tree for (xx), which completes
Case "="

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I
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Induction on Derivations

Induction on the shape of derivation trees

1. Induction base: Prove that the property holds for all
the simple derivation trees by showing that it holds
for the axioms of the transition system

2. Induction step: Prove that the property holds for all
composite derivation trees:

» Induction hypothesis: For each rule, assume that the
property holds for its premises

» Prove that it also holds for the conclusion, provided that
the conditions of the rule are satisfied

Induction on derivations Is a special case of well-
founded induction (derivations are finite)
ETH
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Using Induction on Derivations

Lemma: The natural semantics of IMP Is deterministic

.Weprove
s.oy—o N(s,0) =o' = =0
<7> <7>

by induction on the shape of the derivation tree for
(s,0) — o

» Structural induction does not work since definition of
transition relation is not compositional

Eidgendssische Technische Hochschule Zarich
Swiss Federal Imstila af Technol I
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Induction Base

» Case skip-axiom: The derivation tree Is the axiom
instance (ski p,o) — ¢’ and we know:

-0 =0
- The only axiom or rule that gives (ski p,o) — ¢” is the
ski p-axiom, which implies, ¢” = o

» Case assign-axiom: The derivation tree Is the axiom
instance (x: =e, o) — ¢’ and we know:
- o' =olr — Ale]o]
- The only axiom or rule that gives (x: =e, o) — ¢” is the
assign-axiom, which implies, ¢"” = o|x — A|e]|o]

» Case while-rule (B|b]c = ff): Analogously

Eidgendssische Technische Hochschule Zarich
E"I'I'lixr'd 1 ks - ¥ Tl g
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Induction Step: Seq. Composition

» Case sequence-rule: The root of the derivation tree
1S <81; 82,0'> — .
- There are derivation trees for (s;,0) — oy and (sy, 0¢) — o’
for some state o

- The only rule that gives (s;; s2,0) — ¢” is the
sequence-rule. Therefore, there are derivation trees for
(s1,0) — o1 and (s, 01) — ¢ for some state o,

- By the induction hypothesis, (si,0) — oy and (s;,0) — o0,
Imply Op = 01

- By the induction hypothesis, (s3,0¢) — ¢’ and (s, 1) — o”
imply ¢’ = o”
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Induction Step: | f

» Case if-rule (B[b]o = tt): The root of the derivation
treeis (if bthen s; el se s, end, o) — o

- There is a derivation tree for (s;,0) — o’

- The only rule that gives

(if bthen s; el se sy end,o) — o” is the if-rule. Since
B|b]o = tt, there is a derivation tree for (s;,0) — o”

- By the induction hypothesis, (s;,0) — ¢’ and (s;,0) — ¢”
imply ¢’ = o”

» Case if-rule (B|b]o = ff): Analogously
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Induction Step: whi | e

» Case while-rule (B[b]|oc = tt): The root of the
derivation tree is (whi l e bdo send, o) — o’

- There are derivation trees for (s,o) — 0 and
(whi |l e bdo s end,oy) — o' for some state o

- The only rule that gives (whi | e b do s end, o) — ¢” is the
while-rule. Since B[b|o = tt, there are derivation trees for
(s,0) — o1 and (whi | e bdo s end,s;) — ¢” for some
state o

- By the induction hypothesis, (s,o) — ¢ and (s,o) — o,
Imply Op = 01

- By the induction hypothesis, (whi | e b do s end, oy) — ¢’
and (whil e bdo send,o;) — " imply ¢’ = o”

» Case while-rule (B[b]o = ff): See induction base

Eidgendssische Technische Hochschule Zarich
Swiss Federal Eik T
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2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics
2.3 Equivalence
2.4 Applications of Operational Semantics
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| ocal Variable Declarations

» Statement var z: =e i n s end declares a hew
variable that is visible in the statement sequence of

the declaration, s (block)

» Semantics
- Expression e Is evaluated in the initial state

- Statement s IS executed In a state in which x has the value

of e
- After the execution of s, the initial value of x Is restored

» Rule

(s,0lx — Ale]o]) — o
(var z:=einsend,o) — o'[r — o(x)]
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Procedure Declarations and Calls

procedure p(zy...x, vi...Y,) begin s end

» Formal parameters
- r1...x, are value parameters (call-by-value)
- Y1 ...Yn are variable parameters (call-by-name)

» Context conditions

- The variables x,; and y;, are pairwise disjoint

- r1...x, and y; ...y, are the only free variables in s (no
global variables)

- For calls p(ey...e,; 91 ... ym), the actual variable
parameters y;, have to be pairwise disjoint (no aliasing)
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Procedures: Example

procedure fac(n; res)
begi n
if n <=1 then
res .= 1
el se
fac( n-1; res );
res .= n * res
end
end
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Vector Notation

» 10 simplify notations for procedures, we write x for
1,29, ... ,a:m(m > O) and ¢ for €1,€9, ... ,6n(n > O)

» For state updates, we write a[gjr—> f(v)] for

olyr = flo)llye = f(02)]. .- [yn = flon)]
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Natural Semantics of Procedure Calls

» Procedure call p( e; 2) with declaration
procedure p(z;, y) beginsend
- The call-by-value arguments ¢ are evaluated in the initial
state to values v

- The body of the procedure, s, Is executed in a new state In
which the value parameters are initialized by the values v,
and the variable parameters are initialized by the values of
Z In the initial state

- After termination of p, execution continues in the initial
state with the values of ¢ assigned to the variables z

(5, {7 — Ale]o,§ — o(Z)}) — o
(p(€& 2) ,0) = o[Z— o' ()]
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Abortion

» Statement abort stops the execution of the
complete program

» Abortion is modeled in the operational semantics by
ensuring that the configurations (abort , o) are
stuck

» There Is no additional rule for abort In the natural
semantics
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Abortion: Observations

» abort and ski p are not semantically equivalent
since there is a derivation tree for (ski p,o) — o, but
not for (abort ,o) — o’

» abort andwhi | etrue do ski p end are
semantically equivalent!

» Natural semantics cannot distinguish between
looping and abnormal termination

- Natural semantics is only concerned with programs that
terminate normally

- Abortion could be modeled by “normal termination” in a
special error configuration
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Non-determinism

» For the statement s, || s, either s; or sy IS
non-deterministically chosen to be executed

» The statement

x: =1[|x:=2; x:=x+2

could result in a state in which x has the value 1 or 4

» Rules

(s1,0) — o (89,0) — o
<81U82,0'>—>O', <81|:|82,0'>%0'/

e tianet lhrasiagy Tidch Peter Milller—Semantics of Programming Languages, SS04 — p.92



Non-determinism: Observations

» There are derivation trees for
- (x: =1]|x: =2; X:=x+2,0) — o[X — 1] and
- (x: =1]|x: =2; X:=x+2,0) — o[X — 4]

» There Is a derivation tree for

(while true do skip end||x: =2; X:=x+2,0) — o[X — 4]

» A natural semantics always chooses the "right”
branch of a non-deterministic choice

» INn a natural semantics non-determinism will
suppress looping, if possible
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Parallelism

» For the statement s; par s, both statements s; and
S, are executed, but execution can be interleaved

» | he statement

X: =1 par x:=2; X:=X+2

could result in a state in which x has the value 4, 1,
or 3

- Execute x: =1, then x: =2, and then x: =x+2

- Execute x: =2, then x: =x+2, and then x: =1

- Execute x: =2, then x: =1, and then x: =x+2
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Parallelism: Observations

» Attempt to define rules

(s1,0) — 0, (s9,0") — o
(s1 par sy, 0) — o

(89,0) — o', (s1,0") — o
(s1 par sy, 0) — o

» Rules do not allow interleaving execution

» In a natural semantics the execution of the
Immediate constituents is an atomic entity so we
cannot express interleaving of computations
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Problems of Natural Semantics

» Properties of looping programs cannot be expressed
» NoO distinction between abortion and looping
» Non-determinism suppresses looping (if possible)

» Parallelism cannot be modeled

» Definition of equivalence is too coarse
- All sorting programs are equivalent
- All looping programs are equivalent
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