
Semantics of Programming
Languages

Denotational Semantics

Prof. Peter Müller

Software Component Technology

Peter Müller—Semantics of Programming Languages, SS04 – p.193

Motivation

� Operational semantics is at a rather low abstraction
level

- Some arbitrariness in choice of rules (e.g., size of steps)
- Syntax involved in description of behavior

� Semantic equivalence in natural semantics

〈s1, σ〉 → σ′ ⇔ 〈s2, σ〉 → σ′

� Idea

- We can describe the behavior on an abstract level if we are
only interested in equivalence

- We specify only the partial function on states

Peter Müller—Semantics of Programming Languages, SS04 – p.194

Approach

� Denotational semantics describes the effect of a
computation

� A semantic function is defined for each syntactic
construct
- maps syntactic construct to a mathematical object, often a

function
- the mathematical object describes the effect of executing

the syntactic construct

Peter Müller—Semantics of Programming Languages, SS04 – p.195

Compositionality

� In denotational semantics, semantic functions are
defined compositionally

� There is a semantic clause for each of the basis
elements of the syntactic category

� For each method of constructing a composite
element (in the syntactic category) there is a
semantic clause defined in terms of the semantic
function applied to the immediate constituents of
the composite element

Peter Müller—Semantics of Programming Languages, SS04 – p.196

Examples

� The semantic functions A : Aexp → State → Val and
B : Bexp → State → Bool are denotational definitions

A[[x]]σ = σ(x)

A[[i]]σ = i for i ∈ Z

A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

B[[e1 op e2]]σ =

{

tt if A[[e1]]σ op A[[e2]]σ

ff otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.197

Counterexamples

� The semantic functions SNS and SSOS are not
denotational definitions because they are not defined
compositionally

SNS : Stm → (State ↪→ State)

SNS[[s]]σ =







σ′ if 〈s, σ〉 → σ′

undefined otherwise

SSOS : Stm → (State ↪→ State)

SSOS[[s]]σ =







σ′ if 〈s, σ〉 →∗

1 σ′

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.198

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.1.1 Direct Style Semantics of IMP
3.1.2 Requirements on the Fixed Point

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.199

Semantic Functions

� The effect of executing a statement is described by
the partial function SDS

SDS : Stm → (State ↪→ State)

� Partiality is needed to model non-termination

� The effects of evaluating expressions is defined by
the functions A and B

Peter Müller—Semantics of Programming Languages, SS04 – p.200

Direct Style Semantics of IMP

� skip does not modify the state

SDS[[skip]] = id

id : State → State

id(σ) = σ

� x:=e assigns the value of e to variable x

SDS[[x:=e]]σ = σ[x 7→ A[[e]]σ]

Peter Müller—Semantics of Programming Languages, SS04 – p.201

Direct Style Semantics of IMP (cont’d)

� Sequential composition s1;s2

SDS[[s1;s2]] = SDS[[s2]] ◦ SDS[[s1]]

� Function composition ◦ is defined in a strict way
- If one of the functions is undefined on the given argument

then the composition is undefined

(f ◦ g)σ =











f(g(σ)) if g(σ) 6= undefined

and f(g(σ)) 6= undefined

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.202

Direct Style Semantics of IMP (cont’d)

� Conditional statement if b then s1 else s2 end

SDS[[if b then s1 else s2 end]] =
cond(B[[b]],SDS[[s1]],SDS[[s2]])

� The function cond

- takes the semantic functions for the condition and the two
statements

- when supplied with a state selects the second or third
argument depending on the first

cond : (State → Bool)× (State ↪→ State)× (State ↪→ State) →

(State ↪→ State)

Peter Müller—Semantics of Programming Languages, SS04 – p.203

Definition of cond

cond : (State → Bool) × (State ↪→ State) × (State ↪→ State)

→ (State ↪→ State)

cond(b, f, g)σ =



























f(σ) if b(σ) = tt

and f(σ) 6= undefined

g(σ) if b(σ) = ff

and g(σ) 6= undefined

undefined otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.204

Semantics of Loop: Observations

� Defining the semantics of while is difficult

� The semantics of while b do s end must be equal to
if b then s;while b do s end else skip end

� This requirement yields:

SDS[[while b do s end]] =
cond(B[[b]],SDS[[while b do s end]] ◦ SDS[[s]], id)

� We cannot use this equation as a definition because
it is not compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.205

Functionals and Fixed Points

SDS[[while b do s end]] =
cond(B[[b]],SDS[[while b do s end]] ◦ SDS[[s]], id)

� The above equation has the form g = F (g)
- g = SDS[[while b do s end]]

- F (g) = cond(B[[b]], g ◦ SDS [[s]], id)

� F is a functional (a function from functions to
functions)

� SDS[[while b do s end]] is a fixed point of the
functional F

Peter Müller—Semantics of Programming Languages, SS04 – p.206

Fixed Points: Examples

� x is a fixed point of function f if f(x) = x holds

� Consider a function f : N → N

- f(x) = x + 1 does not have a fixed point
- f(x) = 0 has exactly one fixed point, 0

- f(x) = x2 has two fixed points, 0 and 1

- f(x) = x has an infinite number of fixed points

Peter Müller—Semantics of Programming Languages, SS04 – p.207

Direct Style Semantics of IMP: Loops

� Loop statement while b do s end

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

� We write FIX F to denote the fixed point of the
functional F :

FIX : ((State ↪→ State) → (State ↪→ State))

→ (State ↪→ State)

� This defintion of SDS[[while b do s end]] is
compositional

Peter Müller—Semantics of Programming Languages, SS04 – p.208

Example

� Consider the statement

while x # 0 do skip end

� The functional for this loop is defined by

F ′(g)σ = cond(B[[x#0]], g ◦ SDS[[skip]], id)σ

= cond(B[[x#0]], g ◦ id , id)σ

= cond(B[[x#0]], g, id)σ

=

{

g(σ) if σ(x) 6= 0

σ if σ(x) = 0

Peter Müller—Semantics of Programming Languages, SS04 – p.209

Example (cont’d)

� The function

g1(σ) =

{

undefined if σ(x) 6= 0

σ if σ(x) = 0

is a fixed point of F ′

� The function g2(σ) = undefined is not a fixed point for
F ′

Peter Müller—Semantics of Programming Languages, SS04 – p.210

Well-Definedness

SDS[[while b do s end]] = FIX F

where F (g) = cond(B[[b]], g ◦ SDS[[s]], id)

� The function SDS[[while b do s end]] is well-defined
if FIXF defines a unique fixed point for the
functional F

- There are functionals that have more than one fixed point
- There are functionals that have no fixed point at all

Peter Müller—Semantics of Programming Languages, SS04 – p.211

Examples

� F ′ from the previous example has more than one
fixed point

F ′(g)σ =







g(σ) if σ(x) 6= 0

σ otherwise

- Every function g′ : State ↪→ State with g′(σ) = σ if σ(x) = 0 is
a fixed point for F ′

� The functional F1 has no fixed point if g1 6= g2

F1(g) =







g1 if g = g2

g2 otherwise

Peter Müller—Semantics of Programming Languages, SS04 – p.212

3. Denotational Semantics

3.1 Direct Style Semantics: Specification

3.1.1 Direct Style Semantics of IMP
3.1.2 Requirements on the Fixed Point

3.2 Fixed Point Theory

3.3 Direct Style Semantics: Existence

3.4 Equivalence

3.5 Extensions of IMP

Peter Müller—Semantics of Programming Languages, SS04 – p.213

Achieving Well-Definedness

� To make sure that there is exactly one fixed point for
the functional F , we develop a framework where:

� we impose requirements on the fixed points and
show that there is at most one fixed point fulfilling
these requirements

� all functionals originating from statements in IMP do
have a fixed point that satisfies these requirements

Peter Müller—Semantics of Programming Languages, SS04 – p.214

Requirements on the Fixed Point

� To motivate the requirements on the fixed points, we
consider the three possible outcomes of a loop
while b do s end:

1. it terminates,
2. it loops locally, that is, there is a construct in s that loops, or
3. it loops globally, that is, the outer while construct loops

� We investigate the functional F and its fixpoints for
these three cases

Peter Müller—Semantics of Programming Languages, SS04 – p.215

Terminating Loops

� Execution of while b do s end from state σ0

terminates

� There are states σ0, . . . , σn such that

B[[b]]σi =







tt if i < n

ff if i = n

and SDS[[s]]σi = σi+1 for i < n

� Every fixed point g0 of F satisfies g0(σ0) = σn

� This case does not give us any help for choosing “the
right” fixed point

Peter Müller—Semantics of Programming Languages, SS04 – p.216

Terminating Loops (cont’d)

� Let g0 be any fixed point of F

� For i < n we get
g0(σi)

= F (g0)σi

= cond(B[[b]], g0 ◦ SDS[[s]], id)σi

= g0(SDS[[s]](σi))

= g0(σi+1)
� For i = n we get

g0(σn)

= F (g0)σn

= cond(B[[b]], g0 ◦ SDS [[s]], id)σn

= id(σn)

= σn

� Thus, any fixed point g0 satisfies g0(σ0) = σn

Peter Müller—Semantics of Programming Languages, SS04 – p.217

Local Looping

� Execution of while b do s end from state σ0 loops
locally

� There are states σ0, . . . , σn such that B[[b]]σi = tt for
i ≤ n and

SDS [[s]]σi =







σi+1 if i < n

undefined if i = n

� Every fixed point g0 of F satisfies g0(σ0) = undefined

� This case does not give us any help for choosing “the
right” fixed point

Peter Müller—Semantics of Programming Languages, SS04 – p.218

Local Looping (cont’d)

� Let g0 be any fixed point of F

� For i < n we get
g0(σi)

= F (g0)σi

= cond(B[[b]], g0 ◦ SDS[[s]], id)σi

= g0(SDS[[s]](σi))

= g0(σi+1)
� For i = n we get

g0(σn)

= F (g0)σn

= cond(B[[b]], g0 ◦ SDS [[s]], id)σn

= (g0 ◦ SDS [[s]])(σn)

= undefined

� Thus, any fixed point g0 satisfies g0(σ0) = undefined

Peter Müller—Semantics of Programming Languages, SS04 – p.219

Global Looping

� Execution of while b do s end from state σ0 loops
globally

� There are states σ0, σ1, . . . such that B[[b]]σi = tt and
SDS[[s]]σi = σi+1 for all i

� Let g0 be any fixed point of F

� Like in the other cases, we get g0(σi) = g0(σi+1) for
all i

� Therefore, we get g0(σ0) = g0(σi) for all i

� We cannot determine the value of g0(σ0) in this way

Peter Müller—Semantics of Programming Languages, SS04 – p.220

Global Looping: Example

� We revisit the example while x#0 do skip end
with its functional F ′

F ′(g)σ =







g(σ) if σ(x) 6= 0

σ otherwise

� Every function g′ : State ↪→ State with g′(σ) = σ if
σ(x) = 0 is a fixed point for F ′

� However, we want to record the looping. Therefore,
our preferred fixed point is g1:

g1(σ) =







undefined if σ(x) 6= 0

σ if σ(x) = 0

Peter Müller—Semantics of Programming Languages, SS04 – p.221

The Desired Fixed Point

g1(σ) =







undefined if σ(x) 6= 0

σ if σ(x) = 0

� The property that distinguishes g1 from all other fixed
points g′ of F ′ is that g1(σ) = σ′ ⇒ g′(σ) = σ′, but not
vice versa

� Requirement: The desired fixed point FIX F should
be some partial function g0 : State ↪→ State such that

- g0 is a fixed point of F , that is, F (g0) = g0

- if g′ is another fixed point of F , then g0(σ) = σ′ ⇒ g′(σ) = σ′

for all σ, σ′

Peter Müller—Semantics of Programming Languages, SS04 – p.222

	Motivation
	Approach
	Compositionality
	Examples
	Counterexamples
	3. Denotational Semantics
	Semantic Functions
	Direct Style Semantics of IMP
	Direct Style Semantics of IMP (cont'd)
	Direct Style Semantics of IMP (cont'd)
	Definition of $cond $
	Semantics of Loop: Observations
	Functionals and Fixed Points
	Fixed Points: Examples
	Direct Style Semantics of IMP: Loops
	Example
	Example (cont'd)
	Well-Definedness
	Examples
	3. Denotational Semantics
	Achieving Well-Definedness
	Requirements on the Fixed Point
	Terminating Loops
	Terminating Loops (cont'd)
	Local Looping
	Local Looping (cont'd)
	Global Looping
	Global Looping: Example
	The Desired Fixed Point

