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Motivation

» Developing an axiomatic semantics is difficult

» Soundness:
If a property can be proved then it does indeed hold

- An unsound inference system is useless

» Completeness:
If a property does hold then it can be proved

- With an incomplete inference system, a program might be
correct, but we cannot prove it
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Unsoundness: While Rule

» Why do we need the precondition 47 : V(Z2)?

{B)]N\PAV(Z+1)}s{IPAV(Z)}
{P}whilebdosend{| —-B[p AP }
where Z € N

» With V(Z) = x = Z, we can derive

{x—-1=Z}x:=x—-1{{x=2}
{x#0AXx=Z+1}x:=x—-1{|x=2}
{true }whilex#0dox:=x—1lend{|x=0}

» This derivation Is not sound

» We cannot prove 37 € N : V(Z) for x < 0
ETH
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Incompleteness: Procedures

{Plcall p{Q}F{P}s{Q}

{P}lcall p{Q}
where p Is defined by proc pi s s end
proc p iIs
1f y >0 then

y 1=y - 1
X :=x - 1; call p; x :=x + 1;
end
end

» We cannot prove
{x=N}call p{x=N}+F{x=N }body(p){x=N}
because the assumption does not match the
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Soundness and Completeness

» Soundess and completeness can be proved w.r.t. an
operational or denotational semantics

The partial correctness assertion { P } s { Q }is
valid—writtenas E{ P } s { Q }—iff

Vo,0' € state : P(o) = tt A (s,0) — o' = Q(d') = it

» Soundness: F{P}s{Ql=EFE{P}s{Q}
» Completeness: E{P}s{Q}=F{P}s{Q}
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Theorem

Soundess and completeness theorem

For all partial correctness assertions{ P } s { Q }
of IMP we have

F{Pis{QieF{P}s{Q}
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4. AXiomatic Semantics

4.1 Hoare Logic
4.2 Soundness and Completeness

4.2.1 Proof of Soundness
4.2.2 Proof of Completeness

ETH
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Soundness Proof

» Weprove-F{P }s{Q}=F{P}s{Q}
» Thatis, we have to show

F{P}s{Q}AP(o)=1ttAN(s,0) = d" = Q(c") =1t

» The proof runs by induction on the shape of the
inferencetreefor-{ P } s { Q }
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Soundness Proof: Base Cases

» Case assign-axiom
- Assume (z: =¢,0) — o’
- We have to prove (P[z — Ale]])o = tt = P(0’) = it
- From the natural semantics, we get
(x: =e,0) — olx — Ale]o]
- We have (P|z — Ale]])o = it & P(o|z — Ale]o]) = tt

» Case skip-axiom: Trivial
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Soundness Proof: Composition

» Consider arbitrary states ¢ and ¢” where P (o) = tt
holds and (sq; s9,0) — o”

» From the natural semantics, we know that there Is a
state ¢’ such that (s;,0) — ¢’ and (s,,0") — o”

» From the induction hypothesis, we get
F{P}s11{QjandF{Q}s:{R}

» FromE{ P } s1{Q }, (s1,0) — ¢',and P(o) = tt,
we get Q(o') = tt

» From F { Q }ss{ R}, (s9,0") — ¢" and Q(o') = tt,
we get R(¢") = tt
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Soundness Proof: Conditional

» Case 1: B|b]o = tt

Consider arbitrary states o and ¢’ where P(o) = #t holds
and (if bthen s; el se s, end, o) — o

From the natural semantics, we get (s1,0) — o’

From the induction hypothesis, we get
S{BIIAP ;5 1Q

From P (o) = tt and B[b]o = tt, we get (B[b] AP)o = tt
FromE { B[] AP } s1{ Q } and (B[b] A P)o = tt, we get
Q") = tt

» Case 2: B|b|oc = ff is analogous
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Soundness Proof: Loop

» We have to prove

F{P }whilebdosend { B[ AP } A
P(o) =ttt A {Whilebdo send,o) — o”
= (=B[b] AP)d"

where o and ¢” are arbitrary states

» The proof runs by induction on the shape of the
derivation tree for (whi | e bdo s end, o) — o”
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Soundness Proof: Loop (cont’d)

» Case 1: B|b]o = tt
- From the natural semantics, we get (s,o) — ¢’ and
(whi | e bdo s end,o’) — o”
- From P(o0) = tt and B[b]o = tt, we get (B[b] AP)o = tt
- By applying the induction hypothesis of the outer induction
toE{ B[] NP }s{P}, wegetP(c') = tt
- Now we can apply the induction hypothesis of the nested

induction to (whi | e bdo s end,¢’) — ¢” to get
(=B[b] ANP)o" = tt

» Case 2: B|b]|o = ff

- From the natural semantics, we get o = ¢”
- P(o) = tt and B|b]o = ff imply (=B[b] AP)o” = tt
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Soundness Proof: Consequence

» Consider arbitrary states ¢ and ¢’ where P(o) = tt
holds and (s,0) — o'

» WehaveF{P' '} s{Q },P=P,and Q' = Q
» From P(0) = tt and P = P’, we get P'(0) = tt

» By applying the induction hypothesis, we get
Q'(d") = tt
» From Q'(¢') = tt and Q' = Q, we get Q(o’) = tt
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4. AXiomatic Semantics

4.1 Hoare Logic
4.2 Soundness and Completeness

4.2.1 Proof of Soundness
4.2.2 Proof of Completeness
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Weakest (Liberal) Preconditions

» The weakest precondition of a statement s and a
postcondition Q Is the weakest predicate that has to
hold in the Initial state of an execution of s to
guarantee that QQ holds in the final state

- The weakest precondition wp(s, Q) guarantees termination

- The weakest liberal precondition wip(s, Q) does not
guarantee termination

wp(s,Q)o =tt < do’: ({(s,0) — " AN Q(c"))
wip(s, Q)o = tt < Vo': ((s,0) — ' = Q(d'))

» In the following, we consider partial correctness
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wlp-Lemma

Lemma:. For every statement s and predicate Q we
have

1. E{wip(s,Q) }s{Q}
2. E{P}s{Q}= (P=wlp(sQ))
» Proof 1:

- Letwlp(s,Q)o = tt and (s,0) — o’
- From the definition of wip, we get Q(o')

» Proof 2:
- Let P(o) = tt and (s,0) — o’
- FromE{ P } s{Q },wegetQ(d) =1t

- From the definition of wip, we get wip(s, Q)o’
ETH
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Completeness Proof

» WeproveF{P}s{Q}=F{P}s{Q}
» It sufficestoinfer- { wip(s,Q) } s { Q }

- ByE{ P } s{Q}, the wip-lemma implies P = wlp(s, Q)

{Wip(s,Q) } s 1Q}
{Pis{Q;}

» We prove - { wip(s,Q) } s { Q } by structural
Induction on s
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Completeness Proof.: Base Cases

» Case assign-axiom

- From the natural semantics, we get
(x: =e,0) = olr — Ale]o]
- From the definition of wlp, we get
wip(z: =e, Q)o < Q(o|z — Ale]a]))
- Therefore, we get wip(z: =e, Q) = Qlz — Ale]]
- We caninfer-{ Q[x — Ale]] } z:=e { Q }

» Case skip-axiom:

- From the natural semantics, we get wip(ski p,Q) = Q
- Wecaninfer-{Q }skip{Q}
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Completeness Proof: Composition

» By the induction hypothesis, we get

—{wlp(s2,Q) } s2{ Q } and
= { wip(s1,wWlp(s2,Q)) } s1 { Wip(s2,Q) }

» We can infer = { wlp(si,wlp(s2,Q)) } s1; 52 { Q }
» It remains to prove that
Wlp(811 S2, Q) — Wlp(817 Wlp(827 Q))

» We assume that wip(si; s2, Q)o = tt and show that
wip(s1, wWip(s2, Q))o = ¢
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Completeness Proof: Composition (2)

» If there is no ¢’ such that (s;,0) — ¢’ then
wlp(s1, wlp(sz2, Q))o = tt follows immediately from
the definition of wip

» Otherwise, we have to show wip(ss, Q)o’ = tt

» Again, if there is no ¢” such that (s9,0’) — ¢” then
wlp(ss, Q)o’ = tt follows immediately from the
definition of wip

» Otherwise, we have to show Q(c")

» Q(o") follows from wip(sy; s, Q)o = tt and
(81} 89,0) — 0"
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Completeness Proof. Conditional

» By the induction hypothesis, we get

- {wip(s1,Q) ;511 Q } and
- {Wwip(s2,Q) } 52 { Q }

» Define P = (B[b] Awlp(s1, Q)) V (—B[b] Awlp(s2, Q))

» We have B[b] A P = wip(s1,Q) and
—B[b] AP = wilp(sz,Q)

» We derive
{Wlp(817Q> } S1 { Q} {Wlp(827Q) } S2 { Q}
{ B[] AP } 5 {Q} { BB AP }s2{Q}

{P}if bthens, elsesyend{Q}
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Completeness Proof: Conditional (2)

» We have
P = (B[b] Awlp(s1, Q) V (=B[b] A wip(sz, Q))

» It remains to show that
wip(i f bthen s; el se ssend, Q)o =it = P(o) = tt

» Case 1: B|b]o = tt
- If there is no ¢’ such that (s;,0) — ¢’ then wip(s;, Q)o = tt
follows immediately from the definition of wip

- Otherwise, we have to prove Q(o’)

- Fromwlp(i f bt hen s; el se s, end, Q)o = ¢t and
(if bthen s; el sesyend, o) — o', we get Qo)

» Case 2: B|b|oc = ff is analogous
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Completeness Proof: Loop

» Define P = wilp(whi | e bdo s end, Q)

» We will prove

(1) (=B[b] AP) = Q
(2) (B[b] AP) = wlp(s,P)

» By the induction hypothesis, we get
- {wip(s,P) } s { P}
» From (2), we get-{ B[b] AP } s { P }

» Be the while rule, we get
F{P }whilebdosend{-B[b AP }

» From (1), we get-{ P } while bdosend { Q }

Eidgendssische Technische Hochschule Zarich
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Completeness Proof: Loop (2)

» We prove (1): (—B[b] AP) = Q
» Assume (-B[b] AP)o = tt
» Then we have (whil e bdo send,o) =0

» By wip(whi | e bdo s end, Q)o = tt and the
definition of wip, we get Q(o) = ¢
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Completeness Proof: Loop (3)

» We prove (2): (B[b] AP) = wlp(s,P)
» We assume (B[b] A P)o = tt and show that
wlp(s, P)o = tt

» If there is no ¢’ such that (s, o) — ¢’ then
wlp(s, P)o = tt follows immediately from the
definition of wip

» Otherwise, we have to show P(¢') = tt
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Completeness Proof: Loop (4)

» Case 1: There is no ¢” such that
(whi l e bdo send,d’) = "

- By the definition of wip, we get that
wip(whi | e bdo s end, Q)c’ = tt and, thus, P(¢’) = ¢t

» Case 2: There is a ¢” such that
(whi | e bdo send,o’) = o”

- From (s,0) — ¢’ and (whi | e bdo s end, ¢’y = ", we get
(whi |l e bdo send, o) = o”

- By P(a) = tt and (whi | e bdo s end, o) = ", we get

Q(o") = tt

- By Q(¢”) = tt and (whi | e bdo s end, ¢’y = ", we get

wip(whi | e bdo s end, Q)o’ = tt and, thus, P(¢') = tt
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Summary:. Axiomatic Semantics

» AXxiomatic semantics

- expresses specific properties of the effect of executing a
program

- Some aspects of the computation may be ignored

» Axiomatic semantics Is used to verify programs

- Partial correctness
- Total correctness
- Other properties, e.g., resource consumption

» The inference system should be sound and
complete
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