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Program Correctness

� Semantics can be used to prove correctness of a
program

� Partial correctness expresses that if a program
terminates then there will be a certain relationship
between the initial and the final state

� Total correctness expresses that a program will
terminate and there will be a certain relationship
between the initial and the final state

- The relationship is expressed by a formal specification

total correctness = partial correctness + termination
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Program Correctness: Example

� Consider the factorial statement

y := 1;
while not x = 1 do
y := y * x;
x := x - 1

end

� Specification: The final value of y is the factorial of
the initial value of x

� The statement is partially correct

- It does not terminate for x < 1
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Formal Specification

� Specification: The final value of y is the factorial of
the initial value of x

� We can express the specification formally based on a
formal semantics

〈y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ〉 → σ′

⇒ σ′(y) = σ(x)!

� This specification expresses partial correctness in
natural semantics
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Correctness Proof

� We prove partial correctness in three steps

� Step 1: The body of the loop satisfies
〈y:=y ∗ x;x:=x− 1, σ〉 → σ′′ ∧ σ′′(x) > 0 ⇒

σ(y) × σ(x)! = σ′′(y) × σ′′(x)! ∧ σ(x) > 0

� Step 2: The loop satisfies
〈while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ〉 → σ′′ ⇒

σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

� Step 3: The whole statement is partially correct
〈y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ〉 → σ′ ⇒

σ′(y) = σ(x)! ∧ σ(x) > 0
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Proof: Step 1—Loop Body

� Since we have the transition
〈y:=y ∗ x;x:=x− 1, σ〉 → σ′′, we can assume that
there are transitions 〈y:=y ∗ x, σ〉 → σ′

〈x:=x− 1, σ′〉 → σ′′

� We get σ′ = σ[y 7→ A[[y ∗ x]]σ] and
σ′′ = σ′[x 7→ A[[x− 1]]σ′], which imply
σ′′ = σ[y 7→ σ(y) × σ(x)][x 7→ σ(x) − 1]

� By σ′′(x) > 0, we calculate

σ′′(y) × σ′′(x)! =

σ(y) × σ(x) × (σ(x) − 1)! = σ(y) × σ(x)!

� By σ′′(x) = σ(x) − 1, we get σ(x) > 0
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Proof: Step 2—Loop

� Step 2: The loop satisfies
〈while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ〉 → σ′′ ⇒

σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

� We prove this property by induction on the shape of
the derivation tree

� Case 1: B[[not x = 1]]σ = ff

- We have σ(x) = 1 and σ = σ′′

- Since 1 = 1!, we get σ(y) × σ(x)! = σ(y) = σ′′(y)

- We trivially get σ′′(x) = 1 and σ(x) > 0
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Proof: Step 2—Loop (Case 2)

� Case 2: B[[not x = 1]]σ = tt

� From the rule of the natural semantics we get for
some σ′′′

(1) 〈y:=y ∗ x;x:=x− 1, σ〉 → σ′′′

(2) 〈while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ′′′〉 → σ′′

� Applying the induction hypothesis to (2) yields
σ′′′(y) × σ′′′(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ′′′(x) > 0

� By (1), σ′′′(x) > 0, and Proof Step 1, we get
σ(y) × σ(x)! = σ′′′(y) × σ′′′(x)! ∧ σ(x) > 0

� Combining these results yields
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0
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Proof: Step 3—Factorial Statement

� Step 3: The whole statement is partially correct
〈y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ〉 → σ′ ⇒

σ′(y) = σ(x)! ∧ σ(x) > 0

� From the natural semantics we get for some σ ′′

(1) 〈y:=1, σ〉 → σ′′

(2) 〈while not x = 1 do y:=y ∗ x;x:=x− 1 end, σ′′〉 → σ′

� By (1), we get σ′′ = σ[y 7→ 1] and, thus, σ′′(x) = σ(x)

� By (2), and Proof Step 2, we get
σ′′(y) × σ′′(x)! = σ′(y) ∧ σ′(x) = 1 ∧ σ′′(x) > 0

� We conclude 1 × σ(x)! = σ′(y) ∧ σ(x) > 0
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Verification Example: Observations

� We can prove correctness of a program based on a
formal semantics

- The proof would also be possible with SOS and
denotational semantics, but even more complicated

� Proofs are too detailed to be practical

- We have to consider how whole states are modified
- We would like to focus on certain properties of states

� Axiomatic Semantics describes essential
properties of syntactic constructs

- The choice of essential properties depends on what we
want to prove
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Assertions

� Properties of programs are specified as assertions

{ P } s { Q }

where s is a statement and P and Q are predicates

� Terminology

- Assertions are also called (Hoare) triples
- P is called precondition
- Q is called postcondition
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Meaning of Assertions

� The meaning of { P } s { Q } is

If P holds in the initial state σ, and
if the execution of s from σ terminates in a state σ ′

then Q will hold in σ′

� This meaning describes partial correctness, that is,
termination is not an essential property

� It is also possible to assign different meanings to
assertions
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Assertions: Example

� Specification of the factorial statement by an
assertion

{ true }

y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end

{ y = x! ∧ x > 0 }

� In general, this assertion does not hold

- Consider an initial state { x 7→ 2,y 7→ 0 }

- The final state will be { x 7→ 1,y 7→ 2 }

� We have to express that y in the final state is the
factorial of x in the initial state
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Logical Variables

� Assertions can contain logical variables
- Logical variables can occur only in pre- and postconditions
- Programs cannot access logical variables

� Logical variables can be used to save values of the
initial state for the final state

{ x = N }

y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end

{ y = N ! ∧ N > 0 }

� States map logical variables to their values

� The value of a logical variable can never change
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Assertion Language

� Pre- and postconditions are predicates, that is
functions State → Bool

� Each boolean expression b defines a predicate B[[b]]

� If P , P1, and P2 are predicates, then we use the
following notation for predicates

P1 ∧ P2 where (P1 ∧ P2)σ ⇔ P1(σ) ∧ P2(σ)

P1 ∨ P2 where (P1 ∨ P2)σ ⇔ P1(σ) ∨ P2(σ)

¬P where (¬P )σ ⇔ ¬P (σ)

P [x 7→ A[[e]]] where (P [x 7→ A[[e]]])σ ⇔ P (σ[x 7→ A[[e]]σ])

P1 ⇒ P2 where (P1 ⇒ P2)σ ⇔ P1(σ) ⇒ P2(σ)
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Inference System

� We can formalize the semantics of a programming
language by describing which assertions hold

� This is done by an inference system
- An inference system consists of a set of axioms and rules
- The formulas of the inference system are assertions

{ P } s { Q }

� The inference system specifies an axiomatic
semantics of the programming language
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Axiomatic Semantics of IMP

� skip does not modify the state

{ P } skip { P }

� x:=e assigns the value of e to variable x

{ P[x 7→ A[[e]]] } x:=e { P }

- Let σ be the initial state
- Precondition: P(σ[x 7→ A[[e]]σ])

- Final state: σ[x 7→ A[[e]]σ]

- Consequently, P holds in the final state

� These rules are axiom schemes
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Axiomatic Semantics of IMP (cont’d)

� Sequential composition s1;s2

{ P } s1 { Q } { Q } s2 { R }

{ P } s1;s2 { R }

� Conditional statement if b then s1 else s2 end

{ B[[b]] ∧ P } s1 { Q } { ¬B[[b]] ∧ P } s2 { Q }

{ P } if b then s1 else s2 end { Q }
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Axiomatic Semantics of IMP (cont’d)

� Loop statement while b do s end

{ B[[b]] ∧ P } s { P }

{ P } while b do s end { ¬B[[b]] ∧ P }

- P is the loop invariant

� Rule of consequence

{ P′ } s { Q′ }

{ P } s { Q }
if P ⇒ P′ and Q′ ⇒ Q

- We can strengthen preconditions
- We can weaken postconditions
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Inference Trees

� Axioms and rules are used like in natural semantics

� Derivation trees are called inference trees since
they show how to infer that an assertion holds

- The leaves are instances of axiom schemes
- The internal nodes correspond to instances of rules

� An inference tree gives a proof of the assertion at its
root

� To express that an assertion { P } s { Q } can be
proved, we write

` { P } s { Q }
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Inference Trees: Example

� Consider the non-terminating loop

while true do skip end

� We can build the following inference tree
{ true } skip { true }

{ true ∧ true } skip { true }

{ true } while true do skip end { ¬true ∧ true }

{ true } while true do skip end { true }

where we write true for B[[true]]

� This proof illustrates that we have partial
correctness
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Verification of Factorial Statement

{ x = N }

y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end

{ y = N ! ∧ N > 0 }

� Determining the loop invariant

Iteration 0 1 2 i N − 1

x N N − 1 N − 2 N − i 1

y 1 N N × (N − 1) N × (N − 1) × . . . × (N − i + 1) N !

� Invariant: x > 0 ⇒ y× x! = N ! ∧ N ≥ x
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Verification (cont’d)

� We verify the factorial statement in three steps

1. The precondition and the assignment establish the
loop invariant

2. The loop body preserves the loop invariant

3. The loop invariant and the negation of the loop
condition imply the postcondition

� The proof can be written

- as inference tree
- as proof outline
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Proving Properties

� We prove the lemma

If ` { P } skip { Q } then P ⇒ Q

by induction on the shape of the inference tree

� Induction base

- { P } skip { Q } is an instance of the skip axiom
- We get P = Q and, thus, P ⇒ Q

� Induction step

- { P } skip { Q } is infered by the rule of consequence
- We can apply the induction hypothesis to
{ P′ } skip { Q′ } to get P′ ⇒ Q′

- By P ⇒ P′ and Q′ ⇒ Q, we get P ⇒ Q
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Semantic Equivalence

Two statements s1 and s2 are provably equivalent if for
all preconditions P and postconditions Q we have

` { P } s1 { Q }if and only if ` { P } s2 { Q }

� Example: s;skip and s are equivalent

� Proof

- Part 1: “⇐” is trivial

{ P } s { Q } { Q } skip { Q }

{ P } s;skip { Q }

- Part 2 “⇒” runs by induction on the shape of the inference
tree for { P } s;skip { Q }
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Proof: Part 2

� The induction base is trivial

� The induction step has two interesting cases

� Case composition rule

- We have ` { P } s { R } and ` { R } skip { Q } for some
predicate R

- Applying the auxiliary lemma yields R ⇒ Q

- By the rule of consequence, we get { P } s { Q }

� Case rule of consequence

- We have { P′ } s;skip { Q′ } where P ⇒ P′ and Q′ ⇒ Q

- Applying the induction hypothesis yields { P′ } s { Q′ }

- By the rule of consequence, we get { P } s { Q }
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Induction on Inference Trees

1. Induction base: Prove that the property holds for all
the simple derivation trees by showing that it holds
for the axioms of the inference system

2. Induction step: Prove that the property holds for all
composite inference trees:

� Induction hypothesis: For each rule, assume that the
property holds for its premises

� Prove that it also holds for the conclusion, provided that
the conditions of the rule are satisfied

Induction on derivations is a special case of well-

founded induction (derivations are finite)
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Total Correctness

� The meaning of { P } s { ⇓ Q } is

If P holds in the initial state σ

then the execution of s from σ terminates
and Q will hold in the final state

� This meaning describes total correctness, that is,
termination is required

� All rules except the rule for loops are straightforward
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Loop Variants

� Termination is proved using loop variants

� A loop variant is a function from a state to a
well-founded set, for instance, N

� Each iteration decreases the value of the loop variant

� The loop has to terminate when the minimum of the
set is reached

- Standard loop variant yields number of iterations

� Example
x := 5;
while x # 0 do x := x -1 end

- Possible loop variant v : State → N where v(σ) = σ(x)
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While Rule

� We encode the loop invariant by a parameterized
family of predicates V(Z)

- Idea: V(Z)σ ⇔ v(σ) = Z

� For simplicity, we require that each iteration
decreases the loop variant by 1

� We have to make sure that the loop variant yields a
natural number before and after each loop iteration

{ B[[b]] ∧ P ∧V(Z + 1) } s { ⇓ P ∧ V(Z) }

{ P ∧ ∃Z : V(Z) } while b do s end { ⇓ ¬B[[b]] ∧P }

where Z ∈ N
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While Rule (cont’d)

� Why do we need the precondition ∃Z : V(Z)?

{ B[[b]] ∧P ∧ V(Z + 1) } s { ⇓ P ∧ V(Z) }

{ P } while b do s end { ⇓ ¬B[[b]] ∧ P }

where Z ∈ N

� With V(Z) ≡ x = Z, we can derive

{ x− 1 = Z } x:=x− 1 { ⇓ x = Z }

{ x#0 ∧ x = Z + 1 } x:=x− 1 { ⇓ x = Z }

{ true } while x#0 do x:=x− 1 end { ⇓ x = 0 }

� This derivation is not sound

� We cannot prove ∃Z ∈ N : V(Z) for x < 0
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Total Correctness of Factorial

{ x = N ∧ x > 0 }

y:=1;while not x = 1 do y:=y ∗ x;x:=x− 1 end

{ ⇓ y = N ! }

� Invariant: P ≡ x > 0 ∧ y× x! = N !

� Variant: V(Z) ≡ x = Z

� We verify the factorial statement and give a proof
outline
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Non-Recursive Procedures

Stm = . . .
| ’proc’ p ’is’ s ’end’
| ’call’ p

� For simplicity, we require that

- Procedures have no parameters
- Procedures cannot be hidden (unique procedure names)

{ P } s { Q }

{ P } call p { Q }

{ P } s { ⇓ Q }

{ P } call p { ⇓ Q }

where p is defined by proc p is s end
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Recursive Procedures

� We use the same procedures as before, but allow
them to be recursive

� The Hoare rule does not work for recursive
procedures

proc p is
if x > 0 then

x:=x-1; call p
end

end;
x := 5;
call p

{ P } . . .call p . . . { Q }

{ P } . . .call p . . . { Q }

{ P } call p { Q }
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Assumptions

� To prove an assertion for the body of a procedure,
we may assume that the assertion holds for
recursive calls

{ P } call p { Q } ` { P } s { Q }

{ P } call p { Q }

where p is defined by proc p is s end

� A full treatment of assumptions requires several
additional rules for

- Adapting assumptions
- Introducing and eliminating assumptions (mutually

recursive methods)
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Example

proc fac is
if x = 1

then skip
else y := x * y; x := x - 1; call fac

end
end;
y := 1;
call fac

� We prove

1. { x > 0 ∧ N = y× x! } call fac { y = N } `
{ x > 0 ∧ N = y× x! } body(fac) { y = N }

2. { x > 0 ∧ N = x! } y:=1;call fac { y = N }
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Total Correctness

� Idea: Like loop variants, we use a function that
decreases with each recursive call

� If we assume that the recursive call terminates after
Z recursions, then the procedure body will terminate
after Z + 1 recursions

{ P ∧ V(Z) } call p { ⇓ Q } ` { P ∧V(Z + 1) } s { ⇓ Q }

{ P ∧ ∃Z : V(Z) } call p { ⇓ Q }

where Z ∈ N and p is defined by proc p is s end

� For procedure fac, we could use V(Z) ≡ x = Z
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