
Exercise session 3

– Natural semantics –

Exercise 11. Termination and looping

For each of the following statements determine whether or not it always ter-
minates and whether or not it always loops. Try to argue for your answers
using the axioms and rules of natural semantics of IMP.

1. while not (x=1) do y:=y*x; x:=x-1 end

2. while 1≤x do y:=y*x; x:=x-1 end

3. while true do skip end

Exercise 12. Factorial

Consider the factorial statement

y:=1; while not (x=1) do y:=y*x; x:=x-1 end

and let σ be a state with σ(x)=3.
Show that

〈y:=1; while not (x=1) do y:=y*x; x:=x-1 end, σ〉 �→ σ[y �→ 6][x �→ 1] (∗)

Exercise 13. Semantical equivalence / inequivalence

Prove that the two statements S1;(S2;S3) and (S1;S2);S3 are semantically
equivalent. What does this result imply for compiler construction?
Construct a statement showing that S1;S2 is not, in general, semantically equiv-
alent to S2;S1.

Exercise 14. Extension with repeat

Extend the language IMP with the statement repeat S until b and define
the relation → for it.
The semantics of the repeat-construct is not allowed to rely on the existence
of a while-construct in the language.

Prove that
repeat s until b

1

and

s; if b then skip else repeat s until b end

are semantically equivalent.

2

Solutions

Exercise 11. Termination and looping

In IMP the execution of statement s on a state σ loops iff the while ax-
iom is not applicable when trying to construct the derivation tree with root
〈s, σ〉 → σ′.
Statement s always loops iff the fact that the while axiom is not applicable
when constructing the derivation tree is independent of the choice of σ.

1. Does not always terminate and does not always loop since the applicability
of the while axiom depends on the initial state:

• if initially x ≥ 1 then the axiom will be applicable and the statement
terminates,

• otherwise the while axiom will not be applicable (only the rule) and
the statement loops.

2. Always terminates as the while axiom is eventually applicable indepen-
dently of the initial state (it only determines when the axiom becomes
applicable).

3. Always loops as the while axiom is never applicable.

Exercise 12. Factorial

In a bottom-up manner we construct a derivation tree T for (*) starting from
root

〈y:=1; while not (x=1) do y:=y*x; x:=x-1 end, σ〉 �→ σ61

The statement in the configuration on the left-hand side is a composition of two
statements, thus the last step in constructing T must have used the composition
rule:

〈y:=1, σ〉 → σ13, 〈while not (x=1) do y:=y*x; x:=x-1 end, σ13〉 �→ σ61 (∗∗)
〈y:=1; while not (x=1) do y:=y*x; x:=x-1 end, σ〉 �→ σ61

for some state σ13.
Since 〈y:=1, σ〉 → σ13 is an instance of the assignment axiom, we get
σ13 = σ[y �→ 1].

The statement of (**) must have been constructed by applying either the while
rule or the while axiom. Since B[[not(x = 1)]]σ13 = tt we see that only the
while rule could have been applied. Thus the derivation tree of (**) has the
form:

〈y:=y*x;x:=x-1, σ13〉 → σ32, 〈while not (x=1) do y:=y*x; x:=x-1 end, σ32〉 �→ σ61

〈while not (x=1) do y:=y*x; x:=x-1 end, σ13〉 �→ σ61
(∗∗∗)

for some state σ32.

3

The premise on the left-hand side of (***) contains sequential composition in
the statement, thus we know it was constructed as:

〈y:=y*x, σ13〉 → σ33, 〈x:=x-1, σ33〉 �→ σ32

〈y:=y*x;x:=x-1, σ13〉 �→ σ32

where, after applying the assignment axiom twice, we get σ33 = σ[y �→ 3] and
σ32 = σ[y �→ 3][x �→ 2].
In a similar way as we proceeded with (**) we can construct the derivation tree
for the premise on the right-hand side of (***):

〈y:=y*x, σ32〉 → σ62, 〈x:=x-1, σ62〉 �→ σ61

〈y:=y*x;x:=x-1, σ13〉 → σ32
, 〈while not (x=1) do y:=y*x; x:=x-1 end, σ61〉 �→ σ61

〈while not (x=1) do y:=y*x; x:=x-1 end, σ32〉 �→ σ61

where σ62 = σ[y �→ 6][x �→ 2] and σ61 = σ[y �→ 6][x �→ 1].
(Hint: first we applied the while rule and then the compositional rule on the
premise to the left.)

Finally we see that the premise on the right-hand side is an instance of the
while axiom since B[[not(x = 1)]]σ61 = ff . This completes the construction of
the derivation tree T.

Exercise 13. Semantical equivalence / inequivalence

We have to show that for all σ, σ′

〈S1; (S2; S3), σ〉 → σ′ ⇔ 〈(S1; S2); S3), σ〉 → σ′

holds.

1. Direction =⇒: we know that there is a derivation tree for 〈S1; (S2; S3), σ〉 →
σ′ and have to show that there exists one for 〈(S1; S2); S3), σ〉 → σ′.

The only derivation tree for S1; (S2; S3) is

〈S1, σ〉 → σ′′,
〈S2, σ

′′〉 → σ′′′, 〈S3, σ
′′′〉 → σ′

〈S2; S3, σ
′′〉 → σ′

〈S1; (S2; S3), σ〉 → σ′

Thus, we know that transitions 〈S1, σ〉 → σ′′, 〈S2, σ
′′〉 → σ′′′ and 〈S3, σ

′′′〉 →
σ′ hold. Putting them together in a different way, we can get the following
derivation tree:

〈S1, σ〉 → σ′′, 〈S2, σ
′′〉 → σ′′′

〈S1; S2, σ〉 → σ′′′ , 〈S3, σ
′′′〉 → σ′

〈(S1; S2); S3, σ〉 → σ′

2. Direction ⇐=: Analogous.

To show that S1; S2 and S2; S1 are in general not equivalent, consider statements
x:=1 and x:=2. Depending on the order we compose them, starting from σ the

4

final states are σ[x �→ 1][x �→ 2] = σ[x �→ 2] and σ[x �→ 2][x �→ 1] = σ[x �→ 1]
which are not identical states.

Exercise 14. Extension with repeat

For the repeat construct we need two rules

〈s, σ〉 → σ′

〈repeat s until b, σ〉 → σ′ B[[b]]σ′ = tt

〈s, σ〉 → σ′, 〈repeat s until b, σ′〉 → σ′′

〈repeat s until b, σ〉 → σ′′ B[[b]]σ′ = ff

The equivalence proof is as follows:

1. Direction =⇒: we assume there is a derivation tree T for

〈repeat s until b, σ〉 → σ′

and have to show that there exists one for

〈s;if b then skip else repeat s until b end, σ〉 → σ′.

We make a case split on the value of B[[b]] in the state we get after executing s
once in state σ.

• B[[b]]σ′ = tt
The last step in the construction of T was to use the first repeat rule.
Thus, we know that 〈s, σ〉 → σ′ holds. Furthermore, we know that for all
states σ′ transition 〈skip, σ′〉 → σ′ holds. Using these two transitions and
condition B[[b]]σ′ = tt we can construct derivation tree:

〈s, σ〉 → σ′,
〈skip, σ′〉 → σ′

〈if b then skip else repeat s until b end, σ′〉 → σ′ B[[b]]σ′ = tt

〈s; if b then skip else repeat s until b end, σ〉 → σ′

• B[[b]]σ′′ = ff
The last step in the construction of T was to use the second repeat rule.
Thus, we know that 〈s, σ〉 → σ′′ and 〈repeat s until b, σ′′〉 → σ′ hold.
Using these two transitions and condition B[[b]]σ′′ = ff we can construct
derivation tree:

〈s, σ〉 → σ′′,
〈repeat s until b, σ′′〉 → σ′

〈if b then skip else repeat s until b end, σ′′〉 → σ′ B[[b]]σ′′ = ff

〈s; if b then skip else repeat s until b end, σ〉 → σ′

2. Direction ⇐=: we assume there is a derivation tree T for

〈s;if b then skip else repeat s until b end, σ〉 → σ′′

5

and have to show that there exists one for

〈repeat s until b, σ〉 → σ′′.

The last step in the construction of T was to use the composition rule:

〈s, σ〉 → σ′, 〈if b then skip else repeat s until b end, σ′〉 → σ′′

〈s; if b then skip else repeat s until b end, σ〉 → σ′′ (∗)

We make a case split on the value of B[[b]]σ′.

• B[[b]]σ′ = tt
Using the left-hand side premise of (*), we can use the first repeat rule
to construct derivation tree T1:

〈s, σ〉 → σ′

〈repeat s until b, σ〉 → σ′ B[[b]]σ′ = tt

Since B[[b]]σ′ = tt , from the right-hand side premise of (*) we can deduce
〈skip, σ′〉 → σ′′, thus we know that σ′ = σ′′. Using this result and the
root of T1 we get 〈repeat s until b, σ〉 → σ′′.

• B[[b]]σ′ = ff
From the right-hand side premise of (*) we can deduce 〈repeat s until b, σ′〉 →
σ′′. Using this result and the left-hand side premise of (*) we can use the
second repeat rule to construct derivation tree:

〈s, σ〉 → σ′, 〈repeat s until b, σ′〉 → σ′′

〈repeat s until b, σ〉 → σ′′ B[[b]]σ′ = ff

6

