
Exercise session 4

– Structural operational semantics –

Exercise 15. Factorial

Assume that σ(x)=3. Using SOS determine the final state of configuration

〈y:=1; while not (x=1) do y:=y*x; x:=x-1 end, σ〉

Exercise 16. Non-interference of statements

Prove that

if 〈S1, σ〉 →k
1 σ′ then 〈S1; S2, σ〉 →k

1 〈S2, σ
′〉

that is, the execution of S1 is not influenced by the statement following it.

Exercise 17. Properties of SOS

Show that the structural operational semantics is deterministic. Deduce that
there is exactly one derivation sequence starting in a configuration 〈s, σ〉. Argue
that a statement s of IMP cannot both terminate and loop on a state σ and
hence it cannot both be always terminating and looping.

Exercise 18. Equivalence of statements

Show that the following statements are semantically equivalent:

• S;skip and S

• while b do S end and
if b then S;while b do S end else skip end

• S1;(S2;S3) and (S1;S2);S3

Exercise 19. Holds or not?

Suppose that 〈S1; S2, σ〉 →∗
1 〈S2, σ

′〉. Is it the case that 〈S1, σ〉 →∗
1 σ′? Ei-

ther prove that it is the case or give a counter-example to show that it is not
the case.

1



Solutions

Exercise 15. Factorial

In order to determine the final state (if there is one), we have to give the
derivation sequence starting from the given configuration.
Let’s introduce notation σab for state σ[y �→ a][x �→ b].
The derivation sequence is as follows:

〈y := 1; while not (x=1) do y:=y*x; x:=x-1 end, σ〉→1

〈while not (x=1) do y:=y*x; x:=x-1 end, σ13〉 →1

〈if not (x=1) then y:=y*x; x:=x-1;
while not (x=1) do y:=y*x; x:=x-1 end

else skip end, σ13〉 →1

〈(y:=y*x; x:=x-1); while not (x=1) do y:=y*x; x:=x-1 end, σ13〉→1

〈x:=x-1; while not (x=1) do y:=y*x; x:=x-1 end, σ33〉→1

〈while not (x=1) do y:=y*x; x:=x-1 end, σ32〉 →1

〈if not (x=1) then y:=y*x; x:=x-1;
while not (x=1) do y:=y*x; x:=x-1 end

else skip end, σ32〉 →1

〈(y:=y*x; x:=x-1); while not (x=1) do y:=y*x; x:=x-1 end, σ32〉→1

〈x:=x-1; while not (x=1) do y:=y*x; x:=x-1 end, σ62〉→1

〈while not (x=1) do y:=y*x; x:=x-1 end, σ61〉 →1

〈if not (x=1) then y:=y*x; x:=x-1;
while not (x=1) do y:=y*x; x:=x-1 end

else skip end, σ61〉 →1

〈skip, σ61〉 →1 σ61

Thus, the final state is σ[y �→ 6][x �→ 1].
However, we are not ready yet, since we have to verify that the transitions above
are valid. We have to give the derivation trees for each step. Fortunately, most
of the steps were taken by using axioms, for which there are no derivation trees.
The 5 transitions for which we have to give derivation trees are marked with
bold arrow (→1) and they are the following, respectively.

1. 〈y:=1, σ〉 →1 σ13

〈y := 1; while not (x=1) do y:=y*x; x:=x-1 end, σ〉 →1

〈while not (x=1) do y:=y*x; x:=x-1 end, σ13〉

2



2.

〈y:=y*x, σ13〉 →1 σ33

〈y:=y*x; x:=x-1, σ13〉 →1 〈x:=x-1, σ33〉
〈(y:=y*x; x:=x-1); while not (x=1) do y:=y*x; x:=x-1 end, σ13〉 →1

〈x:=x-1; while not (x=1) do y:=y*x; x:=x-1 end, σ33〉
3.

〈x:=x-1, σ33〉 →1 σ32

〈x:=x-1; while not (x=1) do y:=y*x; x:=x-1 end, σ33〉 →1

〈while not (x=1) do y:=y*x; x:=x-1 end, σ32〉
4.

〈y:=y*x, σ32〉 →1 σ62

〈y:=y*x; x:=x-1, σ32〉 →1 〈x:=x-1, σ62〉
〈(y:=y*x; x:=x-1); while not (x=1) do y:=y*x; x:=x-1 end, σ32〉 →1

〈x:=x-1; while not (x=1) do y:=y*x; x:=x-1 end, σ62〉
5.

〈x:=x-1, σ62〉 →1 σ61

〈x:=x-1; while not (x=1) do y:=y*x; x:=x-1 end, σ62〉 →1

〈while not (x=1) do y:=y*x; x:=x-1 end, σ61〉
Note that the 2nd and 4th tree could have been constructed in one step as the
brackets around the inner statement of the loop are not necessary when unfold-
ing the loop.

Exercise 16. Non-interference of statements

We do the proof by induction on the length of the derivation sequence.

Base case: k = 0, the property holds as 〈S1, σ〉 →0
1 σ′ is not a valid transition.

Induction step: we assume that the property holds for k ≤ m and prove
it for m + 1. Thus, we assume 〈S1, σ〉 →m+1

1 σ′, which can be written as
〈S1, σ〉 →1 γ →m

1 σ′ for some intermediate configuration γ. Now we have to
make a case distinction depending on whether S1 was executed in one or in
multiple steps.

1. γ was obtained by executing S1 in one step by transition 〈S1, σ〉 →1

σ′. Using this transition we can construct a derivation tree for transition
〈S1; S2, σ〉 →1 〈S2, σ

′〉. (In this case m = 0 and γ = σ′.)

2. γ was obtained by completing the first step of the execution of S1. In
this case we get derivation sequence 〈S1, σ〉 →1 〈S′

1, σ
′′〉 →m

1 σ′ for some
statement S′

1 and state σ′′. Using the induction hypothesis on 〈S′
1, σ

′′〉 →m
1

σ′ we get 〈S′
1; S2, σ

′′〉 →m
1 〈S2, σ

′〉. Using these results we can construct
derivation sequence

〈S1; S2, σ〉 →1 〈S′
1; S2, σ

′′〉 →m
1 〈S2, σ

′〉.

3



The validity of the first step is given by the following derivation tree:

〈S1, σ〉 →1 〈S′
1, σ

′′〉
〈S1; S2, σ〉 →1 〈S′

1; S2, σ
′′〉

Exercise 17. Properties of SOS

We have to prove that

∀ s, σ, γ, γ′. 〈s, σ〉 →1 γ ∧ 〈s, σ〉 →1 γ′ =⇒ γ = γ′

We prove determinism by induction on the shape of the derivation tree for
〈s, σ〉 →1 γ.

We have the following base cases:

Assignment. To get γ we have to use the assignment axiom which gives transi-
tion 〈x:=e, σ〉 →1 σ[x �→ A[[e]]σ]. Thus, γ = σ[x �→ A[[e]]σ]. The only way to get
γ′ is to use the assignment axiom on 〈x:=e, σ〉, which yields γ′ = σ[x �→ A[[e]]σ].
We can see that γ = γ′.

Cases for Skip and While are analogous.

Conditional. We have to make a case split on the value of B[[b]]σ.

• B[[b]]σ = tt . In this case we can only apply the if axiom with the corre-
sponding condition and get transition 〈if b then s1 else s2 end, σ〉 →1

〈s1, σ〉. Thus, γ = 〈s1, σ〉. The only way to get γ′ is to apply the corre-
sponding if axiom which leads to γ′ = 〈s1, σ〉. Thus, γ = γ′.

• B[[b]]σ = ff . Analogous.

The induction step is the case of Composition: 〈s1; s2, σ〉 →1 γ.

We have to make a case split on whether s1 is executed in one step or not.

• s1 can be executed in one step.
Let’s assume that transition 〈s1, σ〉 →1 σ′ holds. Then transition 〈s1; s2, σ〉 →1

〈s2, σ
′〉 is valid which yields γ = 〈s2, σ

′〉.
Let’s assume we can get γ′ = 〈s2, σ

′′〉 by using transition 〈s1, σ〉 →1 σ′′.
Applying the induction hypothesis to 〈s1, σ〉 →1 σ′ we learn that it is
deterministic, thus σ′ = σ′′. This also yields γ = γ′.

• s1 is executed in multiple steps.
Let’s assume that transition 〈s1, σ〉 →1 〈s′1, σ′〉 holds. Then transition
〈s1; s2, σ〉 →1 〈s′1; s2, σ

′〉 is valid which yields γ = 〈s′1; s2, σ
′〉.

Let’s assume we can get γ′ = 〈s′′1 ; s2, σ
′′〉 by using transition 〈s1, σ〉 →1

〈s′′1 , σ′′〉. Applying the induction hypothesis to 〈s1, σ〉 →1 〈s′1, σ′〉 we learn
that it is deterministic, thus σ′ = σ′′ and s′1 = s′′1 . This also yields γ = γ′.

4



We have shown that one step in SOS is deterministic. Since a derivation se-
quence is a chain of such steps and all of these steps are deterministic, there can
only be a unique sequence starting from a given configuration 〈s, σ〉.

Since the derivation sequence of statement s on state σ is unique, it cannot both
terminate and loop as the two cases would require different derivation sequences.
We have seen that there exists a state σ for which s cannot both terminate and
loop, thus s cannot both terminate and loop for all states. This means s cannot
both always terminate and always loop.

Exercise 18. Equivalence of statements

Statement s1 and s2 are semantically equivalent if for all states:

1. 〈s1, σ〉 →∗
1 γ ⇔ 〈s2, σ〉 →∗

1 γ
where γ is either a stuck configuration or a terminal state.

2. both s1 and s2 loop.

Since in the (basic) IMP language we cannot get a stuck configuration we only
have to look at termination and looping.

• S; skip ≡ S.

Direction =⇒

Case a: S; skip terminates, that is, there exists a derivation sequence
〈S; skip, σ〉 →∗

1 σ′. Using Lemma 2.19 (p.37 in book, p.116 on slides)
we get that transition 〈S, σ〉 →∗

1 σ′′ and 〈skip, σ′′〉 →∗
1 σ′ hold for some

state σ′′. The second transition also gives σ′ = σ′′. Using transition
〈S, σ〉 →∗

1 σ′′ and the fact that σ′ = σ′′ we can get 〈S, σ〉 →∗
1 σ′.

Case b: S; skip loops. Since statement skip always terminates it can
only be S that loops.

Direction ⇐=

Case a: S terminates, that is, there exists a derivation sequence 〈S, σ〉 →∗
1

σ′. Using Exercise 16, we get 〈S; skip, σ〉 →∗
1 〈skip, σ′〉. Now using the

skip axiom we can get final state σ′. This gives us the required sequence.

Case b: S loops, thus its sequential composition will loop too.

• while b do S end ≡ if b then S; while b do S end else skip end.

Direction =⇒

Case a: while b do S end terminates, that is, there exists a derivation
sequence 〈while b do S end, σ〉 →1 γ →∗

1 σ′. The first step of the sequence

5



could only be 〈while b do S end, σ〉 →1 〈if b then S; while b do S end else skip end, σ〉.
Thus, there is also a derivation sequence

〈if b then S; while b do S end else skip end, σ〉 →∗
1 σ′.

Case b: the statement loops, that is, we have an infinite derivation se-
quence 〈while b do S end, σ〉 →1 γ →∗

1 . . .
The first step could again only be

〈while b do S end, σ〉 →1 〈if b then S; while b do S end else skip end, σ〉

thus we can get the infinite sequence

〈if b then S; while b do S end else skip end, σ〉 →∗
1 . . .

Direction ⇐=

Case a: the statement terminates, that is, there exists a derivation se-
quence 〈if b then S; while b do S end else skip end, σ〉 →∗

1 σ′. Using
the while axiom, transition

〈while b do S end〉 →1 〈if b then S; while b do S end else skip end, σ〉

holds. Using this transition and the assumption, we can compose a deriva-
tion sequence 〈while b do S end〉 →∗

1 σ′.

Case b: the statement loops, that is, we have an infinite derivation se-
quence 〈if b then S; while b do S end else skip end, σ〉 →1 γ →∗

1 . . .
This can only occur if B[[b]]σ = tt , then using the while axiom we get tran-
sition 〈if b then S; while b do S end else skip end, σ〉 →1 〈while b do S end, σ〉.
Thus, we can get the infinite sequence 〈while b do S end, σ〉 →∗

1 . . .

• S1;(S2;S3) ≡(S1;S2);S3

Direction =⇒

Case a: all three sub-statements terminate.
Using Lemma 2.19 we can get derivation sequences 〈S1, σ〉 →∗

1 σ′′ and
〈S2;S3, σ

′′〉 →∗
1 σ′ for some state σ′′. We can apply the lemma again on

the second sequence and get 〈S2, σ
′′〉 →∗

1 σ′′′ and 〈S3, σ
′′′〉 →∗

1 σ′ for some
state σ′′′. Using the result of Exercise 16 on sequence 〈S1, σ〉 →∗

1 σ′′ we
get 〈S1;S2, σ〉 →∗

1 〈S2, σ
′′〉. This, combined with sequence 〈S2, σ

′′〉 →∗
1 σ′′′

yields 〈S1;S2, σ〉 →∗
1 σ′′′. Using the result of Exercise 16 on this se-

quence gives 〈(S1;S2);S3, σ〉 →∗
1 〈S3, σ

′′′〉. This, combined with sequence
〈S3, σ

′′′〉 →∗
1 σ′ yields the required sequence 〈(S1;S2);S3, σ〉 →∗

1 σ′.

Case b: any of the three sub-statements loops.
Since we have a looping statement in sequential composition with other
statements, the whole composition will loop. Thus, both S1;(S2;S3) and
(S1;S2);S3 will loop.

Direction ⇐= Analogous.

6



Exercise 19. Holds or not?

A counter-example is the following statement skip; while true do x:=x+1 end
because we can construct the derivation sequence

〈skip; while true do x:=x+1 end, σ〉 →1

〈while true do x:=x+1 end, σ〉 →3
1

〈while true do x:=x+1 end, σ[x �→ σ(x) + 1]〉

Thus,

〈skip; while true do x:=x+1 end, σ〉 →∗
1 〈while true do x:=x+1 end, σ[x �→ σ(x)+1]〉

holds, but 〈skip, σ〉 →∗
1 σ[x �→ σ(x) + 1] is not a valid sequence.

7


