
Exercise session 2

– Structural induction –

Exercise 6. Unfolding Loops in IMP

On the lecture we completed Case ”⇒” of the equivalence proof of

〈while b do s end, σ〉 → σ′′ ⇔ 〈if b then s; while b do s end, σ〉 → σ′′

Prove the other direction!

Exercise 7. Free variables

Let σ and σ′ be two states satisfying that σ(x) = σ′(x) for all x in FV(e).
Using structural induction prove that A[[e]]σ = A[[e]]σ′.

Substitution
The notation e[y �→ e′] means replacing each occurence of a variable y in an
arithmetic expression e with another arithmetic expression e′. The formal defi-
nition is as follows:

i[y �→ e′] = i

x[y �→ e′] =
{

e′ if x = y
x if x �= y

(e1 op e2)[y �→ e′] = (e1[y �→ e′]) op (e2[y �→ e′])

For example (x+1)[x �→ 3] = 3+1 and (x+y∗x)[x �→ y−5] = (y−5)+y∗(y−5).

Exercise 8. Substitution

Prove that A[[e[y �→ e0]]]σ = A[[e]](σ[y �→ A[[e0]]σ]) for all states σ. What is
the intuition of the theorem?

Exercise 9. Extending Bexp

The syntactic category Bexp’ is defined as the following extension of Bexp:

1

b ::= true | false | e1 = e2 | e1 # e2 | e1 <= e2 | e1 >= e2

| e1 < e2 | e1 > e2 | not b | b1 and b2 | b1 or b2

| b1 implies b2 | b1 equivalent b2

Give a compositional extension of the semantic function B.

Exercise 10. Equivalence of Bexp and Bexp’

Two boolean expressions b1 and b2 are equivalent if for all states σ,

B[[b1]]σ = B[[b2]]σ

Show that for each b′ of Bexp’ there exists a boolean expression b of Bexp
such that b′ and b are equivalent.

2

Solutions

Exercise 6. Unfolding Loops in IMP

On the lecture we used the following proof idea:

• Consider the derivation tree for one transition

• Show that there is a derivation tree for the other transition

In Case ”⇐” we assume that there is a derivation tree T for

〈if b then s;while b do s end else skip end, σ〉 → σ′′ (∗∗)

and have to show that there is a derivation tree for

〈while b do s end, σ〉 → σ′′. (∗)

The last rule application in the construction of T can only be one of the rules
for if.

For the case B[[b]]σ = tt , T was constructed using the if rule with condition
B[[b]]σ = tt . Thus we get a derivation tree T1 with root

〈s;while b do s end, σ〉 → σ′′

The statement has the form s1; s2 thus the only rule that could give this is the
sequential composition rule. Therefore there are derivation trees T2 and T3 for
〈s, σ〉 → σ′ and 〈while b do s end, σ′〉 → σ′′, respectively, for some state σ′.
Now using the fact that B[[b]]σ = tt , we can construct (*) using the while rule:

T2, T3

〈while b do s end, σ〉 → σ′′ if B[[b]]σ = tt

In the case when B[[b]]σ = ff , T was constructed using the if rule with
condition B[[b]]σ = ff . Thus we get a derivation tree

〈skip, σ〉 → σ′′

and according to the skip axiom it must be the case that σ = σ′′.
Now using the fact that B[[b]]σ = ff and σ = σ′′, we can construct (*) using the
while axiom:

〈while b do s end, σ〉 → σ′′ if B[[b]]σ = ff

�

Exercise 7. Free variables

We do the proof by induction on the structure of arithmetic expressions.

1. Base cases:

3

(a) The case when e is an integer, i: using the definition of A we have
A[[e]]σ = i and A[[e]]σ′ = i. So A[[e]]σ = A[[e]]σ′ clearly holds in this
case.

(b) The case when e is a variable, x: we have A[[e]]σ = σ(x) and A[[e]]σ′ =
σ′(x). From the assumption we have σ(x) = σ′(x) because x ∈
FV(x). Thus, the statement holds in this case.

2. Composite elements: In this case e is of the form e1 op e2: we have
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ and A[[e1 op e2]]σ′ = A[[e1]]σ′ op A[[e2]]σ′.
Since ei (for i=1,2) is an immediate subexpression of e1 op e2 and FV(ei)
⊆ FV(e1 op e2) we can apply the induction hypothesis to ei and get
A[[ei]]σ = A[[ei]]σ′.
It is now easy to see that the statement holds for e1 op e2.

Exercise 8. Substitution

Again we do structural induction on arithmetic expressions.

1. Base cases:

(a) The case when e is an integer, i:
We have to show that

A[[i[y �→ e0]]]σ = A[[i]](σ[y �→ A[[e0]]σ])

On the left-hand side first we use the definition of substitution and
get A[[i]]σ. Then we can use the definition of the semantic function
A and get i.
The right-hand side is of the form A[[i]]σ′ (where σ′ = σ[y �→ A[[e0]]σ])
and the definition of A gives i. Thus, this case is proven.

(b) The case when e is a variable, x:
We have to show that

A[[x[y �→ e0]]]σ = A[[x]](σ[y �→ A[[e0]]σ])

We have to differentiate two cases:

i. when x = y. In this case the left-hand side gives A[[e0]]σ when
using the definition of substitution. On the right-hand side we
first use the definition of A and get (σ[y �→ A[[e0]]σ])(x). Apply-
ing the definition of state-updates we get A[[e0]]σ. Thus, the two
sides are equal.

ii. when x �= y. In this case on the left-hand side we first use the
definition of substitution and get A[[x]]σ and now the definition
of A gives σ(x). On the right-hand side we first use the definition
of A and get (σ[y �→ A[[e0]]σ])(x). Now using the definition of
state-updates we get σ(x). Thus, the two sides are equal in this
case.

2. Composite elements:
In this case e is of the form e1 op e2:
We have to show that

4

A[[(e1 op e2)[y �→ e0]]]σ = A[[e1 op e2]](σ[y �→ A[[e0]]σ])

In the first step we use the definition of substitution on the left-hand side
and get

A[[e1[y �→ e0] op e2[y �→ e0]]]σ

As a second step we can use the definition of A and get

A[[e1[y �→ e0]]]σ op A[[e2[y �→ e0]]]σ

Now we can use the induction hypothesis which gives

A[[e1]](σ[y �→ A[[e0]]σ]) op A[[e2]](σ[y �→ A[[e0]]σ])

Now using the definition of A we can see that this equals

A[[e1 op e2]](σ[y �→ A[[e0]]σ]) �

The intuition of the theorem is that we can either

• first do syntactical substitution on e and then apply A in state σ or

• leave e unchanged and apply A in the updated state.

Exercise 9. Extending Bexp

The only extensions to Bexp are true, false, implies and equivalent.
The definitions are as follows:

B′[[true]]σ = tt

B′[[false]]σ = ff

B′[[b′1 implies b′2]]σ =
{

tt if B′[[b′1]]σ = ff or B′[[b′2]]σ = tt
ff otherwise

B′[[b′1 equivalent b′2]]σ =
{

tt if B′[[b′1]]σ = B′[[b′2]]σ
ff otherwise

Exercise 10. Equivalence of Bexp and Bexp’

We use induction on the structure of boolean expressions of Bexp’.

1. (base case) b′ = true.
Let’s guess that a corresponding b ∈ Bexp expression is 1 = 1. We have
to show that

B′[[true]]σ = B[[1=1]]σ

Using the definition of B we get B[[1=1]]σ = (A[[1]]σ = A[[1]]σ) = (1 = 1) =
tt which gives the same definition as B′[[true]]σ.

5

2. (base case) b′ = false.
Let’s guess that a corresponding b ∈ Bexp expression is 1 = 0. We have
to show that

B′[[false]]σ = B[[1=0]]σ

Using the definition of B we get B[[1=0]]σ = (A[[1]]σ = A[[0]]σ) = (1 = 0) =
ff which gives the same definition as B′[[false]]σ.

3. (composite element) b′ = b′1 implies b′2.
Our guess here is b = not b1 or b2, where B′[[b′1]] = B[[b1]] and B′[[b′2]] =
B[[b2]]. From the induction hypothesis we know that there exist such b1

and b2 ∈ Bexp expressions.

We have to show that

B′[[b′1 implies b′2]]σ = B[[not b1or b2]]σ

Using the definition of Bexp’ and the induction hypothesis, we get

B′[[b′1 implies b′2]]σ =
{

tt if B[[b1]]σ = ff or B[[b2]]σ = tt
ff otherwise

Using the definition of Bexp we get

B[[not b1 or b2]]σ =
{

tt if B[[not b1]]σ = tt or B[[b2]]σ = tt
ff otherwise

=
{

tt if B[[b1]]σ = ff or B[[b2]]σ = tt
ff otherwise �

4. (composite element) b′ = b′1 equivalent b′2.
Our guess this time is

b = (b1 and b2) or (not b1 and not b2)

where B′[[b′1]] = B[[b1]] and B′[[b′2]] = B[[b2]]. Again, from the induction hy-
pothesis we know that there exist such b1 and b2 ∈ Bexp expressions.

We have to show that

B′[[b′1 equivalent b′2]]σ = B[[(b1 and b2) or (not b1 and not b2)]]σ

Using the definition of Bexp’ and the induction hypothesis, we get

B′[[b′1 equivalent b′2]]σ =
{

tt if B[[b1]]σ = B[[b2]]σ
ff otherwise

Using the definition of Bexp we get

6

B[[(b1 and b2) or (not b1 and not b2)]]σ =

tt if B[[b1 and b2]]σ = tt or
B[[not b1 and not b2]]σ = tt

ff otherwise

=

tt if B[[b1]]σ = tt and B[[b2]]σ = tt or
B[[not b1]]σ = tt and B[[not b2]]σ = tt

ff otherwise

=

tt if B[[b1]]σ = tt and B[[b2]]σ = tt or
B[[b1]]σ = ff and B[[b2]]σ = ff

ff otherwise

=
{

tt if B[[b1]]σ = B[[b2]]σ
ff otherwise �

5. Other composite elements are just applications of the induction hypothe-
sis.

7

