
Exercise session 5

– Type systems –

Exercise 20. Proving Lemma 2.4.3

Prove the following lemma (see slide p.182) we used for the type safety proof of the noninterference
type system:

Γ, high � s ∧ 〈s, σ〉 → σ′ ⇒ σ ≡L σ′

Exercise 21. Secure or not?

Determine whether the following statements are secure or not. First try to use the type system to
show security of a statement. If that attempt fails then try to use operational semantics. If that also
fails then give an example showing that the statement is insecure.
Assume that Γ = { h �→ high, l �→ low}.

1. if l ≤ 0 then h := −1; l := −1
else while h ≥ l do h := h− l end
end

2. if l ≤ 0 or h < 0 then h := −1; l := −1
else while h ≥ l do h := h− l end; l := −1
end

3. if l ≤ 0 or h < 0 then h := −1; l := −1
else while h ≥ l do h := h− l end;
end

1



Solutions

Exercise 20. Proving Lemma 2.4.3

The proof goes by induction on the shape of the derivation tree for 〈s, σ〉 → σ′.

Base cases.

Case skip: transition 〈skip, σ〉 → σ′ yields that σ = σ′. Thus, we get σ ≡L σ′.

Case x := e: according to our assumption the assignment is typed high, thus x must be a high variable.
We have to show that σ ≡L σ[x �→ A[[e]]σ] holds when x is a high variable. This means (using the
definition of ≡L) we have to show that ∀ y : Γ(y) = low ⇒ σ(y) = σ[x �→ A[[e]]σ](y) holds. Since x is
a high variable, the left-hand side of the implication is false and thus the property holds for variable x.
Since other variables have not been modified the right-hand side of the implication yields true and thus
the property holds for all other variables.
(Intuitively: assigning any value to a high variable cannot have any effect on the low variables.)

Step cases.

Case if b then s1 else s2 end: as the statement is typed high we know that b, s1 and s2 are also typed
high. Depending on B[[b]]σ, either s1 or s2 will be executed and by the induction hypothesis we know
that

〈s1, σ〉 → σ′ ⇒ σ ≡L σ′ and 〈s2, σ〉 → σ′ ⇒ σ ≡L σ′

holds. Thus, independently of the evaluation of B[[b]]σ we get σ ≡L σ′.

Case while b do s end: as the statement is typed high we know that b and s are also typed high.
If B[[b]]σ yields false then the while-axiom gives σ = σ′, thus σ ≡L σ′.
If B[[b]]σ yields true then the while-rule gives transitions 〈s, σ〉 → σ′′ and 〈while b do s end, σ′′〉 → σ′.
By the induction hypothesis we get σ ≡L σ′′ and σ′′ ≡L σ′. By transitivity of ≡L we get σ ≡L σ′.

Case s1; s2: as the statement is typed high we know that s1 and s2 are also typed high. The sequential
composition rule gives transitions 〈s1, σ〉 → σ′′ and 〈s2, σ

′′〉 → σ′. By the induction hypothesis we get
σ ≡L σ′′ and σ′′ ≡L σ′. By transitivity of ≡L we get σ ≡L σ′.

Exercise 21. Secure or not?

1.
The first statement can be typed low as follows:

Γ(l) �= high

Γ � l ≤ 0 :: low
,

Γ(h) = high

Γ, low � h:=− 1
,

Γ � −1 :: low, Γ(l) = low

Γ, low � l:=− 1
Γ, low � h:=− 1;l:=− 1

,

Γ � h ≥ l :: high,
Γ(h) = high

Γ, high � h:=h− l

Γ, high � while h ≥ l do h:=h− l end

Γ, low � while h ≥ l do h:=h− l end
Γ, low � if l ≤ 0 then h:=− 1;l:=− 1 else while h ≥ l do h:=h− l end end

Note that if one builds the derivation tree from left to right then the first statement that “forces” ∆ to be
low is assignment l := -1 in the “then” branch (until then ∆ could be both high and low). Furthermore,
the loop can be typed low only by using the subsumption rule.

2.
The second statement cannot be typed: the condition can only be typed high, thus both branches should
be typed high too. This is not possible, because for the “then” branch we would get the following illegal
derivation:

2



Γ(h) = high

Γ, high � h:=− 1
, Γ, high � l:=− 1

Γ, high � h:=− 1;l:=− 1

The right-hand side premise cannot be verified by the type system. We get the same situation for the
other branch.

Let’s try to show that the statement is secure by using Natural Semantics. That is, we have to show that
the noninterference property holds:

∀σ1, σ2 : σ1 ≡L σ2 ⇒ SNS [[s]]σ1 ≈L SNS [[s]]σ2

Let’s use notation σab for state σ[l �→ a][h �→ b]. We set σ1 to {l �→ l, h �→ x} and σ2 to {l �→ l, h �→ y}
where we do not assume anything about x, y and l.

Let’s first see what SNS [[s]]σ1 gives. As the first step we evaluate the condition and choose one of the two
branches.
Case A: the “then” branch is selected. We get the derivation tree:

〈h := −1, σ1〉 → σl−1, 〈l := −1, σl−1〉 → σ−1−1

〈h := −1; l := −1, σ1〉 → σ−1−1

〈if l ≤ 0 or h < 0 then h := −1; l := −1 else while h ≥ l do h := h− l end; l := −1 end, σ1〉 → σ−1−1

Thus, the final state is σ−1−1.

Case B: the “else” branch is selected. Using the lemma proved in Exercise 20, we know that the while-
loop (that can be typed high) does not change the values of low variables. Thus, after the execution of
the loop we get a state σlv, where v is some value. After executing the assignment “l:= − 1” we finally
get state σ−1v.

We can now observe that both branches yield a final state in which l equals −1 independently of the
starting value of l and h. Thus, executing the statement in state σ2 would result in the same final value
for the low variable. This means that SNS [[s]]σ1 ≈L SNS [[s]]σ2 holds, the statement is secure.

3.
The third statement cannot be typed as the “then” branch is not typeable in high (just as in 2.).
We will use the same method of applying Natural Semantics to the statement as in 2.
When starting in state σ1 we again branch depending on the evaluation of the conditional.

Case A: the “then” branch is selected. Just as in 2. the final state will be σ−1−1.

Case B: the “else” branch is selected. Just as in 2. we apply the lemma and get that the final state is
σlv, where v is some value.

We can observe that the final low value might differ (-1 or the initial value, l) depending on which branch
was selected. Thus, if we can find two pairs of initial values for h and l so that in one case the “then”
branch, in the other case the “else” branch is selected, then we have showed that SNS [[s]]σ1 ≈L SNS [[s]]σ2

does not hold and the statement is not secure.
An example is initial states {l �→ 2, h �→ 0} and {l �→ 2, h �→ −1}.

3


