Exercise session &8
— Fixed point theory (cont’d) —

Exercise 30. Fixed point iteration
Consider the statement
z:=0;while y < x do z:=z+1;x:=x — y end

First determine the fixed point of the functional of the loop, then determine the final state if the initial
state is {x — 3,y — 1}.

Exercise 31.

Let f : D — D be a continuous function on ccpo (D,C) and let d € D satisfy f(d) C d. Prove
that FIX f Cd.

Exercise 32.
Show that Spg[while true do skip end] is the totally undefined function L.
Exercise 33. Semantical equivalence

Show that the following statements are semantically equivalent:

e S; skip and S
e Si; (S2; 83) and (S1; S2); S3

e while b do S end and
if b then S;while b do S end else skip end



Solutions
Exercise 30. Fixed point iteration

We start by determining the fixed point of the functional of the loop.
We know that Spg[while y < x do z:=z+1;x:=x — y end] = FIX F, where

F(g)o = cond(Bly <x],g90S8ps|z:=z+1;x:=x — y], id)o
= cond(B[y < x],g o Sps[x:=x — y] 0 Spg[z:=2z+1], id)c

_ { (9o Spslxi=x —y] 0 Spslz:=z+1])o if o(y) < o(x)
o if o(y) > o(x)

_ { glolz—o(z) +1x = o(x) —a(y)]) ifo(y) <o(x)
o if o(y) > o(x)

Now we can start the fixed point iteration:

1L (olz—o(z) +1][x—o(x) —oa(y)]) ifo(y) <o(x)
P = { Lot o) il o) oty o) <ol

_ { undefined if o(y) < o(x)

o if o(y) > o(x)
F?(L)o =F(F(l))o
_ { F(L)(olz = o(z) + 1][x = o(x) —o(y)]) ifoy) <o(x)
o if o(y) > o(x)
undefined ifo(y) <o(x) A o(y) <o(x)—o(y)
=4 oz o@) +lx—ox) —a(y)] ifo(y) <a(x) A a(y) >a(x) - a(y)
o if o(y) > o(x)
undefined ifo(y) <o(x) A 2x0(y) <o(x)
=S olz—o@z)+ 1)z~ o(x)—o(y)] ifo(y)<o(x)<2x0(y)
o if o(y) > o(x)

_{ Ptz o) e o9 —ow)) ) <ot
o if o(y) > o(x)
undefined ifo(y) <o(x) A oly) <o(x)—o(y) A 2xa(y) <o(x)—o(y)
_ ) oz o) +1+1x—o(x)—o(y) —aly)] ifoly) <o(x) A aly) <o(x)—o(y) <2xa(y)
olz = o(z) +1][x = o(x) - a(y)] ifo(y) <o(x) A oy)>o(x)—aly)
o if o(y) > o(x)
undefined ifo(y)<o(x) A 2x0(y) <o(x) A 3x0(y) <o(x)
) ol o) + 2k o(x) 25 0(y)] it oly) < o(x) A 2x0(y) < olx) <3+ 0ly)
olz — o(z) + 1][x — o(x) — o(y)] ifo(y) <o(x) A 2x0(y) > o(x)
o if o(y) > o(x)
undefined ifo(y) <o(x) A 3x0(y) <o(x)
_ ) ozmo(2)+2x—o(x) —2x0(y)] if2x0(y) <o(x) <3*0(y)
olz—o(z)+1]x—o(x)—o(y)]  ifo(y) <o(x) <2x0(y)
o if o(y) > o(x)



Now we can see the pattern how the iteration works, thus we can give F"(L)o:

undefined ifo(y) <o(x) A nxo(y) < o(x)
F'(l)o =4 olz—o(z)+ (- Dlx—oEx)—-G-Dxa(y)] if(-1)xo(y) <olx)<jxo(y) A 1<j<n
o if o(y) > o(x)

Now we can also give the fixed point of F":

undefined ifo(y)<o(x) A o(y) <0
(FIX F)o =X} oz—o(z)+(n—1)|x—ox —(n—1)*o(y)] f(n—1)x0(y)<o(x)<nxo(y) A 1<n
o if o(y) > o(x)

As we see, the second conjunct of the first condition has been simplified. This is due to the fact that in
case o(y) is positive, the left-hand side gets arbitrary big, as n can be arbitrary big. Thus, there is no
value o(x) that can be greater-equal to the left-hand side.

Now we can go back to our original task: determining Spg[z:=0;while y < x do z:=z+1;x:=x—7y end]oy,
where 09 = {x — 3,y — 1}.

We know that

Spsfz:=0;while y < x do z:=z+1;x:=x — y end]oy = [sequential composition
(Sps[while y < x do z:=z+1;x:=x — y end] o Sps[z:=0])og = [Sps of assignment and loop
(FIX F)oglz — 0] = |applying FIX f withn=4
oolz — 0][z — oglz — 0](z) + (4 — 1)][x — oolz — 0](x) — (4 — 1) *x og[z — 0](y)] = [simplication
oolz — 0+ 3][x— 3 —3x1] = [state update

{x—0,y— 1,z 3}

]
]
]
]
]



Exercise 31.

The important thing to observe is that f(d) C d. Due to monotonicity of f, this means that f(f(d)) C
f(d), fF(f(f(d)) E f(f(d)) and so on. Due to transitivity of C, we get V d’ € {f"(d)|n > 0} : d’' C d.
This means that d is an upper bound of {f™(d)|n > 0}. Since by definition FIX f is the least upper
bound of {f™(d)|n > 0}, we get FIX f=U{f"(d)|n > 0} C d as required. Note that {f™(d)|n > 0} is a
chain, thus it has a least upper bound.

Exercise 32.

From the direct style semantics of loops we know that Sps[while true do skip end] = FIX F, where
functional F' is defined as

F(g) = cond(B[b], g o Sps[s], id).
In our case this gives
F(g) = cond(B[true], g o Sps[skip], id).
Since the condition is true and Spg[skip] = id, it can be simplified to F(g) = g o id = g. Now we have
to find the least fixed point of this functional. We do that by fixed point iteration:
F(1) =1, which means that L is the least fixed point, thus Sps[while true do skip end] =1.
Exercise 33. Semantical equivalence

To show semantical equivalence of statements S; and Sy, we have to prove that Sps[S1] = Sps[S2]-

1) S; skip and 8.

Sps[[s; Skip]] = Sps[[skip]] o Sps[[S]] =ido Sps[[S]] = Sps[[S]].

2) S1; (S2; S3) and (S1; Sa); Ss.

Sps[S1; (S2; S3)] = Sps[S2; S3] 0 Sps[Si] = Sps[S3] 0 Sps[S2] o Sps[Si].
Sps[(S1; S2); Ss] = Sps[Ss] 0 Sps[S1; S2] = Sps[Ss] 0 Sps[S2] o Sps[Si]-

3) while bdo S end and if b then S;while b do S end else skip end.
We know that Spgwhile b do S end] = FIX F, where functional F is defined as

F(g) = cond(B[b], g o Sps[S], id)

We can apply the if-axiom on the conditional statement and simplify the result as follows:

Sps[if b then S;while b do S end else skip end] = [Sps of conditional]
cond(B[b],Sps[S; while b do S end],Sps[skip]) = [Sps of composition and skip]
cond(B[b],Spswhile b do S end] o Sps[S],id) = [Sps of loop]
cond(B[b], FIX F o Sps[S],id) = [FIX F = ¢
cond(B[b], g o Sps[9], id)

Now we can see that the semantic function gives the same function for the two statements.



