Exercise session 7
— Fixed point theory —

Exercise 25. Unique least upper bound

Consider a partially ordered set (D, C) and assume that we have a subset Y of
D. Show that if Y has a least upper bound d then d is unique.

Exercise 26. State — State not a lattice

Construct a subset Y of State — State such that Y has no upper bound and
hence no least upper bound on relation LC.

Exercise 27. Monotone functions

Consider the ccpo (P(N),C). Determine which of the following functions in
P(N) — P(N) are monotone:

o fi(X)=N\X

o L(X)=X U {27}

(X)

(X)

o f3(X)=Xn{7,9,13}
o fi(X)={ne X |nisa prime}
o f5(X)={2xn|neX}

Exercise 28. Monotone functionals

Determine which of the following functionals of (State < State) — (State < State)
are monotone:

Fi(g) =9

h1 if g = hg
F = here h h
2(9) { hs otherwise where hy 7 ho
9(0) if o(x) £0
F =
3(9) { o ifo(x)=0

Exercise 29. Continuity

Show that the functional of statement while x#0 do skip end is continuous.



Solutions
Exercise 25. Unique least upper bound
The definition of least upper bound (d) of subset Y means that

()VdeY:dCd
(2) if d” is another upper bound then d C d".

Assume Y has two least upper bounds d; and d».
Since d; is a least upper bound d; C ds.
Since ds is a least upper bound ds C d;.
By anti-symmetry of C we get d; = ds.

Exercise 26. State — State not a lattice

We have to construct a subset Y of State — State such that there is no function
g for whichV ¢ € Y : ¢’ C ¢ holds.
Consider the following two functions:

(0) = o ifo(x) =0
ag) = undefined otherwise

olx—1] ifo(x)=0
92(0) = .
undefined otherwise
We can observe that there is no function g for which g; C g and g2 C g, because
in states where o(x) = 0, function g should give (at the same time) o[x +— 0]
due to g1 and o[x — 1] due to go.

Exercise 27. Monotone functions
To prove monotonicity of function f;, we have to show that
VXY : XCY = fi(X) C fi(Y).

L fA(X)=N\X

We show that the function is not monotone by a counter-example. Assume
X={1l}and Y ={1,2}, thus X C Y.

f1(X) contains 2, but f1(Y) does not. Thus, f1(X) € f1(Y).

2. fo(X) =X U {27}

We have to show that V X, Y : X CY = X U {27} CY U{27}.

We do it by showing that if @ € N is an element of X U {27} then it is also an
element of Y U {27}.

We do a case distinction:

A) a € X. By the assumption we get that a € Y, thus a € Y U {27} holds.

B) a = 27. In this case a € Y U {27} trivially holds.



3. f3(X)=Xn{7,9,13}

We have to show that V X, Y : X CY = X n{7,9,13} CY N{7,9,13}.
Again, we show that if @ € N is an element of X N {7,9,13} then it is also an
element of Y N {7,9,13}.

An element a can only be in X N {7,9,13} if a € X Aa € {7,9,13}.

Using the assumption on the first conjunct, this yields a € Y Aa € {7,9,13}.
Thus, a € Y N {7,9,13}.

4. f4(X)={n € X | nis a prime}
Proof is analogous to 3 as the function can be rewritten as
fa(X)=Xn{2,3,5,7,...}.

5. f5(X)={2+n|ne X}
f5 is an injective (or one-to-one) function, which preserves monotonicity on C.

Exercise 28. Monotone functionals
Monotonicity of F' means that for any functions g1, g2, if g1 C g2 then F\(g1) E F(g2).

1. By the definition of Fy, we get Fi(g1) = g1 and Fi(g2) = g2. Applying these
on Fi(g1) C Fi(g2) we get g1 C g2 which holds by assumption.

2. We show that the functional is not monotone by contradiction. Assume that
F5, is monotone, we continue by case distinction:

A) ho =1. There is a function a, where hy C a A he # a. By the monotonicity
of Fy, we get Fo(ha) = h1 C Fy(a) = hy. From hy C hy and monotonicity, we
get Fy(hy) = ho C Fy(h2) = hy. Now we have hy C hy and ho C hq, which im-
plies by anti-symmetry that h; = ho, which is a contradiction to the definition
of F2.

B) ho #L. There is a function b, where b C hy A b # ha. By the monotonicity of
Fy, we get Fy(b) = ha C Fy(he) = hy. From hy C hy and monotonicity, we get
F5(ha) = h1 C Fa(h1) = ho. Now we have hy C hy and hq C hg, which implies
by anti-symmetry that h; = hs, which is a contradiction to the definition of F5.

The fact that we got a contradiction in both cases means that our assumption
that F5 is monotone was wrong.

3. We make a case distinction according to the definition of Fj:

A) o(x) # 0. Applying the definition of F3 we get F3(g1)c = ¢1(o) and
F5(g2)o = g2(0). Applying these on F5(g1)o C F5(g2)o we get g1(0) C ga2(0)
which holds by assumption.

B) o(x) = 0. The definition can be seen as F3(g)o = id(o) for any function
g. Applying these on F3(g1)o C F3(g2)o we get id(o) C id(o) which holds by
reflexivity of C.

Exercise 29. Continuity



The functional F' of the statement is:

Flgo - {g(o) if o(x) £ 0

o otherwise

To show that it is continuous, we have to prove that:
1) It is monotone,
2) For all non-empty chains Y, LI{F(g)|g € Y} = F(LY") holds.

1. We have proved that F' is monotone in the previous exercise (see F3).
2. From Lemma 3.4 we know that (State — State,C) is a ccpo and the least
upper bound UY of a chain Y is given by

[ if3dgeY :g(o) =0
WY (o) = { undefined otherwise
Since F is monotone and Y is a chain, by Lemma 3.6 we get that {F(g)|g € Y}
is also a chain, and L{F(g)|g € Y} C F(UY).
By anti-symmetry of C, it remains to prove F(UY) C U{F(g)|g € Y}. This can
be rewritten as F(LWY)o =o' = L{F(g)lg € Y}o =0’

We make a case split on the value of o(x) (according to the definition of F'):
A) o(x) #0.

— By the definition of F, we get F(LY )o = UY (o) = ¢’ for some state ¢’. By
Lemma 3.4 we know that there is a g’ € Y such that ¢'(c) = o’.

— By the definition of F', we get L{F(g)|g € Y}o =LH{g|lg € Y}o.

- ¢'(0) = o’ implies L{g|g € Y}o = o’ since the least upper bound summarizes
all information.

B) o(x) = 0.
— By the definition of F', we get F(LUY )o = 0.
— By the definition of F', we get (L{F(g)|g € Y})o = (U{id})o =id(o) = 0.



