
Exercise session 11

– Hoare logic –

Exercise 36. Division and modulo operation

Use the Hoare logic to prove that if statement z:=0; while (y≤x) do (z:=z+1; x:=x-y) executed
from a state σ with σ(x) > 0 and σ(y) > 0 terminates, then in the final state σ′, we get σ′(z) =
σ(x) div σ(y) and σ′(x) = σ(x) mod σ(y).

Exercise 37. Inference rule for repeat S until b

Suggest an inference rule for repeat S until b. You are not allowed to rely on the existence of a
while-construct in the language.

Exercise 38. Weakest postcondition always provable

Show that � { P } S { true } for all statements S and properties P .
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Solutions

Exercise 36. Division and modulo operation

First of all, we have to determine the pre- and postcondition of the statement.
Precondition: from the informal specification we can see that in the starting state σ, x and y is greater
than zero. This yields x > 0 ∧ y > 0. Furthermore, we see that in the final state σ′, the values of z and
x depend on the initial values of x and z. Thus, we have to introduce two logical variables for the initial
values of x and z.
Thus, we get the following precondition: {x > 0 ∧ y > 0 ∧ x = N ∧ y = M}

Postcondition: from the informal specification we can see that we are interested in the final values of x
and z. These can be easily given by the logical variables: {z = N div M ∧ x = N mod M}

From the informal specification we can also deduce that we are interested in partial correctness only.

Before starting the proof, we have to determine the loop invariant. We do that by inspecting the itera-
tions of the loop:

Iteration 0 1 2 . . . i . . .
x N N − M N − 2 ∗ M . . . N − i ∗ M . . .
y M M M . . . M . . .
z 0 1 2 . . . i . . .

From the table we can observe the following invariants: x = N − y ∗ z, y = M , and z ≥ 0. Furthermore,
by inspecting the condition and the body of the loop, we can see that x ≥ 0. We get our loop invariant
by conjoining these four predicates (since z ≥ 0 will not be used throughout the proof, we drop it from
the invariant for simplicity).

Now we can start the proof by first adding the pre- and postcondition around the whole statement and
adding the predicates arising from the invariant and loop condition around the while-statement. Then
we have to complete the proof by using the Hoare rules as follows:

{x > 0 ∧ y > 0 ∧ x = N ∧ y = M}
=⇒
{x = N − y ∗ 0 ∧ y = M ∧ x ≥ 0}

z:=0;

{x = N − y ∗ z ∧ y = M ∧ x ≥ 0}
while (y≤x) do

{y ≤ x ∧ x = N − y ∗ z ∧ y = M ∧ x ≥ 0}
=⇒
{x− y = N − y ∗ (z + 1) ∧ y = M ∧ x− y ≥ 0}

z:=z+1;

{x− y = N − y ∗ z ∧ y = M ∧ x− y ≥ 0}
x:=x-y;

{x = N − y ∗ z + ∧ y = M ∧ x ≥ 0}
end

{y > x ∧ x = N − y ∗ z ∧ y = M ∧ x ≥ 0}
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=⇒
{0 ≤ x < M ∧ x = N − M ∗ z}

=⇒
{z = N div M ∧ x = N mod M}

The validity of the last implication is not trivial, so we show it in more details. We prove z = N div M
and x = N mod M separately:

A) by definition z = N div M iff ∃ x : z ∗ M + x = N ∧ 0 ≤ x < M . This is exactly what we have on
the left-hand side of the implication.

B) x = N mod M can be expressed as x = N − (N div M) ∗ M . As we know that z = N div M , we
get x = N−z∗M , which is exactly what we have as second conjunct in the left-hand side of the implication.

Exercise 37. Inference rule for repeat S until b

Partial correctness: before and after the first execution of S we do not know whether b holds or not.
Thus, we can just give the most general form of an assertion: { P } S { Q }. We know that if after the
execution of S condition b holds then we exit the loop, thus we know that Q ∧ b holds. Otherwise (i.e. b
does not hold), the iteration continues and S will be executed again. This imposes the requirement that
Q ∧ ¬b ⇒ P . This predicate can also be seen as the invariant of the loop.

So the rule looks as follows:

{ P } S { Q }
{ P } repeat S until b { Q ∧ b } Q ∧ ¬b ⇒ P

Total correctness: we have to extend the above rule with the loop variant just as we did for the while-rule:

{ P ∧ V (Z + 1) } S { ⇓ Q ∧ V (Z) }
{ P ∧ ∃Z : V (Z) } repeat S until b { ⇓ Q ∧ b } Q ∧ ¬b ⇒ P

Exercise 38. Weakest postcondition always provable

We do the proof by structural induction on statement S.

Base case:

Skip: The antecedent is the skip-axiom.

{ P } skip { P }
{ P } skip { true } consequence rule with P ⇒ true

Assignment: The antecedent is the assignment-axiom with P = true.

{ true[x 	→ A[[e]]] } x:=e { true }
{ P } x:=e { true } consequence rule with P ⇒ true[x �→ A[[e]]

Step case:

Composition: From the induction hypothesis we know that the two triples in the antecedent can be
inferred.
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{ P } S1 { true } { true } S2 { true }
{ P } S1;S2 { true } sequential composition

If-statement: From the induction hypothesis we know that the two triples in the antecedent can be
inferred.

{ B[[b]] ∧ P } S1 { true } { ¬B[[b]] ∧ P } S2 { true }
{ P } if b then S1 else S2 end { true } if rule

While-statement: From the induction hypothesis we know that the triple in the topmost antecedent can
be inferred.

{ B[[b]] ∧ true } S { true }
{ true } while b do S end { ¬B[[b]] ∧ true } while rule

{ P } while b do S end { true } consequence rule with P ⇒ true and B[[b]] ∧ true ⇒ true
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