Exercise session 2
— Structural induction —

Exercise 6. Unfolding Loops in IMP
On the lecture we completed Case ”=" of the equivalence proof of

(while b do s end,0) — ¢” < (if b then s; while b do s end,o) — o

Prove the other direction!
Exercise 7. Free variables

Let 0 and ¢’ be two states satisfying that o(x) = o'(x) for all x in FV(e).
Using structural induction prove that Afe]o = Ale]o’.

Substitution

The notation ey — ¢€’] means replacing each occurence of a variable y in an
arithmetic expression e with another arithmetic expression e’. The formal defi-
nition is as follows:

ily — €] =i
oly— ¢ -{¢ L
(exop e2)ly— €] = (ex[y — €']) op (e2]y — €'])

For example (z+1)[z — 3] = 3+1 and (z+y=*x)[x — y—5] = (y—5)+y*(y—5).

Exercise 8. Substitution

Prove that Afely — egl]o = Ale](oly — Aleg]o]) for all states o. What is
the intuition of the theorem?

Exercise 9. Extending Bexp

The syntactic category Bexp’ is defined as the following extension of Bexp:



= true|false|ej=ex|e;1 #ex| el <=ea|el >=e
| e1<ez|er >ex|notbd]| b and by | by or by
| by implies bo | by equivalent by

Give a compositional extension of the semantic function B.

Exercise 10. Equivalence of Bexp and Bexp’

Two boolean expressions by and by are equivalent if for all states o,
Blbi]o = B[b2]o

Show that for each b’ of Bexp’ there exists a boolean expression b of Bexp
such that b’ and b are equivalent.



Solutions
Exercise 6. Unfolding Loops in IMP

On the lecture we used the following proof idea:
e Consider the derivation tree for one transition
e Show that there is a derivation tree for the other transition

In Case ”"<=" we assume that there is a derivation tree T for

(if b then s;while b do s end else skip end,o) — o” (%)
and have to show that there is a derivation tree for

(while b do s end,o) — o”. (%)

The last rule application in the construction of T can only be one of the rules
for if.

For the case B[b]o = ¢, T was constructed using the if rule with condition
B[b]o = tt. Thus we get a derivation tree T7 with root

(s;while b do s end, o) — o

The statement has the form sq; sy thus the only rule that could give this is the
sequential composition rule. Therefore there are derivation trees T and T3 for
(s,0) — o’ and (while b do s end,o’) — ¢”, respectively, for some state o”’.

Now using the fact that B[b]o = tt, we can construct (*) using the while rule:

T27T3
(while b do s end,0) — 0

- if B[b]o = ¢t

In the case when B[bJoc = ff, T was constructed using the if rule with
condition B[b]o = ff. Thus we get a derivation tree

(skip,o) — o”

and according to the skip axiom it must be the case that o = o”'.
Now using the fact that B[b]o = ff and o = ¢”, we can construct (*) using the
while axiom:

5 it Blblo =

(while b do s end,0) — o

Exercise 7. Free variables

We do the proof by induction on the structure of arithmetic expressions.

1. Base cases:



(a) The case when e is an integer, i: using the definition of A we have
Ale]e =i and Afe]o’ = i. So Afe]o = Ale]o’ clearly holds in this

case.

(b) The case when e is a variable, x: we have Afe]o = o(x) and Afe]o’ =
o'(z). From the assumption we have o(z) = o'(x) because z €
FV(z). Thus, the statement holds in this case.

2. Composite elements: In this case e is of the form e; op es: we have
Aler op es]o = Ale1]o op Alez]o and Afey op es]o’ = Ale1]o’ op Alez]o’.
Since e; (for i=1,2) is an immediate subexpression of e; op ez and FV(e;)
C FV(e1 op e2) we can apply the induction hypothesis to e; and get
Alei]o = Ale;]o’.

It is now easy to see that the statement holds for e; op es.

Exercise 8. Substitution

Again we do structural induction on arithmetic expressions.
1. Base cases:

(a) The case when e is an integer, :
We have to show that

Alily = eollo = Alil(aly — Aleo]o])

On the left-hand side first we use the definition of substitution and
get A[iJo. Then we can use the definition of the semantic function
A and get 1.

The right-hand side is of the form A[i]o’ (where ¢/ = o[y — Afeo]o])
and the definition of A gives ¢. Thus, this case is proven.

(b) The case when e is a variable, x:
We have to show that

Alzly = eollo = Alz](oly — Aleolo])

We have to differentiate two cases:

i. when & = y. In this case the left-hand side gives A[eg]o when
using the definition of substitution. On the right-hand side we
first use the definition of A and get (o]y — Afeo]o])(x). Apply-
ing the definition of state-updates we get A[eg]o. Thus, the two
sides are equal.

ii. when x # y. In this case on the left-hand side we first use the
definition of substitution and get A[x]o and now the definition
of A gives o(z). On the right-hand side we first use the definition
of A and get (o[y — Afeo]o])(z). Now using the definition of
state-updates we get o(x). Thus, the two sides are equal in this
case.

2. Composite elements:
In this case e is of the form ey op es:
We have to show that



Al(er op e)[y — eol]o = Aler op es](aly — Aleo]o])

In the first step we use the definition of substitution on the left-hand side
and get
Alerly = eo] op ealy — eol]o

As a second step we can use the definition of A and get

Aleily = eollo op Alezly — eol]o

Now we can use the induction hypothesis which gives

Alei1](oly — Aleo]o]) op Ale2](o[y — Aleo]o])

Now using the definition of A we can see that this equals

Aler op e3](oly — Aleo]o])

The intuition of the theorem is that we can either
e first do syntactical substitution on e and then apply A in state o or
e leave e unchanged and apply A in the updated state.

Exercise 9. Extending Bexp

The only extensions to Bexp are true, false, implies and equivalent.
The definitions are as follows:

B'[true]o = it

B'[false]o = f

B'[b] implies bh]o

{ tt it B'[b)]o = ff or B'[by]o = tt

ff otherwise

ttif B'b,]o = B[by]o

/ ’ . / —
B[[bl equivalent bz]]a - { ff otherwise

Exercise 10. Equivalence of Bexp and Bexp’

We use induction on the structure of boolean expressions of Bexp’.

1. (base case) ' = true.
Let’s guess that a corresponding b € Bexp expression is 1 = 1. We have
to show that

B'[true]o = B[1=1]c

Using the definition of B we get B[1=1]c = (A[1]oc = A[1]o) = (1 =1) =
tt which gives the same definition as B'[true]o.



2. (base case) b/ = false.
Let’s guess that a corresponding b € Bexp expression is 1 = 0. We have
to show that

B'[false]o = B[1=0]o

Using the definition of B we get B[1=0]c = (A[1]c = A[0]o) = (1 =0) =
ff which gives the same definition as B'[false]o.

3. (composite element) b’ = b} implies bj.
Our guess here is b = not by or by, where B'[b)] = B[b1] and B'[by] =
B[bs]. From the induction hypothesis we know that there exist such by
and by € Bexp expressions.

We have to show that
B[V} implies by]o = Blnot bior ba]o
Using the definition of Bexp’ and the induction hypothesis, we get

BI[Y, implies bylo — { tt if B[b1]Jo = ff or Bba]o = tt

ff otherwise

Using the definition of Bexp we get

B[not by or by]o { tt  if B[not bi]o = tt or Blby]o = tt

ff otherwise

{ tt i B[b1]o = ff or B[bz]o = tt

ff otherwise

4. (composite element) b’ = b} equivalent bj.
Our guess this time is

b = (b1 and bs) or (not by and not bs)

where B'[b}] = B[b1] and B'[b5] = B[b2]. Again, from the induction hy-
pothesis we know that there exist such b; and b, € Bexp expressions.

We have to show that
B'[b} equivalent by]o = B[(b; and by) or (not by and not be)]o

Using the definition of Bexp’ and the induction hypothesis, we get

it if Blbi]o = B[b2]o

/! / . / —
B[V} equivalent by]o = {ﬁ otherwise

Using the definition of Bexp we get



tt  if B[by and bo]o = #t or
B[(b1 and b3) or (not by and not be)]Jo = Blnot by and not byo = t

ff otherwise

Blnot b1]o = tt and Bnot byo = tt

ff otherwise

it if Blb1]o = tt and Bbs]o = it or
Blbi]o = ff and Blba]o = ff

ff otherwise

{ it if B[bi]o = tt and Blbs]o = it or

it if B[bi]o = Blb2]o

ff otherwise

5. Other composite elements are just applications of the induction hypothe-
sis.



