
Exercise session 7

– Fixed point theory –

Exercise 25. Unique least upper bound

Consider a partially ordered set (D,�) and assume that we have a subset Y of
D. Show that if Y has a least upper bound d then d is unique.

Exercise 26. State ↪→ State not a lattice

Construct a subset Y of State ↪→ State such that Y has no upper bound and
hence no least upper bound on relation �.

Exercise 27. Monotone functions

Consider the ccpo (P (N),⊆). Determine which of the following functions in
P (N) → P (N) are monotone:

• f1(X) = N \ X

• f2(X) = X ∪ {27}
• f3(X) = X ∩ {7, 9, 13}
• f4(X) = {n ∈ X | n is a prime}
• f5(X) = {2 ∗ n | n ∈ X}

Exercise 28. Monotone functionals

Determine which of the following functionals of (State ↪→ State) → (State ↪→ State)
are monotone:

F1(g) = g

F2(g) =

{
h1 if g = h2

h2 otherwise
where h1 �= h2

F3(g)σ =

{
g(σ) if σ(x) �= 0
σ if σ(x) = 0

Exercise 29. Continuity

Show that the functional of statement while x#0 do skip end is continuous.
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Solutions

Exercise 25. Unique least upper bound

The definition of least upper bound (d) of subset Y means that

(1) ∀ d′ ∈ Y : d′ � d
(2) if d′′ is another upper bound then d � d′′.

Assume Y has two least upper bounds d1 and d2.
Since d1 is a least upper bound d1 � d2.
Since d2 is a least upper bound d2 � d1.
By anti-symmetry of � we get d1 = d2.

Exercise 26. State ↪→ State not a lattice

We have to construct a subset Y of State ↪→ State such that there is no function
g for which ∀ g′ ∈ Y : g′ � g holds.
Consider the following two functions:

g1(σ) =

{
σ if σ(x) = 0
undefined otherwise

g2(σ) =

{
σ[x 
→ 1] if σ(x) = 0
undefined otherwise

We can observe that there is no function g for which g1 � g and g2 � g, because
in states where σ(x) = 0, function g should give (at the same time) σ[x 
→ 0]
due to g1 and σ[x 
→ 1] due to g2.

Exercise 27. Monotone functions

To prove monotonicity of function fi, we have to show that

∀ X, Y : X ⊆ Y ⇒ fi(X) ⊆ fi(Y ).

1. f1(X) = N \X
We show that the function is not monotone by a counter-example. Assume
X = {1} and Y = {1, 2}, thus X ⊆ Y .
f1(X) contains 2, but f1(Y ) does not. Thus, f1(X) �⊆ f1(Y ).

2. f2(X) = X ∪ {27}
We have to show that ∀ X, Y : X ⊆ Y ⇒ X ∪ {27} ⊆ Y ∪ {27}.
We do it by showing that if a ∈ N is an element of X ∪ {27} then it is also an
element of Y ∪ {27}.
We do a case distinction:
A) a ∈ X . By the assumption we get that a ∈ Y , thus a ∈ Y ∪ {27} holds.
B) a = 27. In this case a ∈ Y ∪ {27} trivially holds.
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3. f3(X) = X ∩ {7, 9, 13}
We have to show that ∀ X, Y : X ⊆ Y ⇒ X ∩ {7, 9, 13} ⊆ Y ∩ {7, 9, 13}.
Again, we show that if a ∈ N is an element of X ∩ {7, 9, 13} then it is also an
element of Y ∩ {7, 9, 13}.
An element a can only be in X ∩ {7, 9, 13} if a ∈ X ∧ a ∈ {7, 9, 13}.
Using the assumption on the first conjunct, this yields a ∈ Y ∧ a ∈ {7, 9, 13}.
Thus, a ∈ Y ∩ {7, 9, 13}.

4. f4(X) = {n ∈ X | n is a prime}
Proof is analogous to 3 as the function can be rewritten as
f4(X) = X ∩ {2, 3, 5, 7, . . .}.

5. f5(X) = {2 ∗ n | n ∈ X}
f5 is an injective (or one-to-one) function, which preserves monotonicity on ⊆.

Exercise 28. Monotone functionals

Monotonicity of F means that for any functions g1, g2, if g1 � g2 then F (g1) � F (g2).

1. By the definition of F1, we get F1(g1) = g1 and F1(g2) = g2. Applying these
on F1(g1) � F1(g2) we get g1 � g2 which holds by assumption.

2. We show that the functional is not monotone by contradiction. Assume that
F2 is monotone, we continue by case distinction:

A) h2 =⊥. There is a function a, where h2 � a ∧ h2 �= a. By the monotonicity
of F2, we get F2(h2) = h1 � F2(a) = h2. From h1 � h2 and monotonicity, we
get F2(h1) = h2 � F2(h2) = h1. Now we have h1 � h2 and h2 � h1, which im-
plies by anti-symmetry that h1 = h2, which is a contradiction to the definition
of F2.

B) h2 �=⊥. There is a function b, where b � h2 ∧ b �= h2. By the monotonicity of
F2, we get F2(b) = h2 � F2(h2) = h1. From h2 � h1 and monotonicity, we get
F2(h2) = h1 � F2(h1) = h2. Now we have h2 � h1 and h1 � h2, which implies
by anti-symmetry that h1 = h2, which is a contradiction to the definition of F2.

The fact that we got a contradiction in both cases means that our assumption
that F2 is monotone was wrong.

3. We make a case distinction according to the definition of F3:
A) σ(x) �= 0. Applying the definition of F3 we get F3(g1)σ = g1(σ) and
F3(g2)σ = g2(σ). Applying these on F3(g1)σ � F3(g2)σ we get g1(σ) � g2(σ)
which holds by assumption.

B) σ(x) = 0. The definition can be seen as F3(g)σ = id(σ) for any function
g. Applying these on F3(g1)σ � F3(g2)σ we get id(σ) � id(σ) which holds by
reflexivity of �.

Exercise 29. Continuity

3



The functional F of the statement is:

F (g)σ =

{
g(σ) if σ(x) �= 0
σ otherwise

To show that it is continuous, we have to prove that:
1) It is monotone,
2) For all non-empty chains Y , �{F (g) | g ∈ Y } = F (�Y ) holds.

1. We have proved that F is monotone in the previous exercise (see F3).
2. From Lemma 3.4 we know that (State ↪→ State,�) is a ccpo and the least
upper bound �Y of a chain Y is given by

�Y (σ) =
{

σ′ if ∃g ∈ Y : g(σ) = σ′

undefined otherwise

Since F is monotone and Y is a chain, by Lemma 3.6 we get that {F (g)|g ∈ Y }
is also a chain, and �{F (g)|g ∈ Y } � F (�Y ).
By anti-symmetry of �, it remains to prove F (�Y ) � �{F (g)|g ∈ Y }. This can
be rewritten as F (�Y )σ = σ′ ⇒ �{F (g)|g ∈ Y }σ = σ′

We make a case split on the value of σ(x) (according to the definition of F ):
A) σ(x) �= 0.
– By the definition of F , we get F (�Y )σ = �Y (σ) = σ′ for some state σ′. By
Lemma 3.4 we know that there is a g′ ∈ Y such that g′(σ) = σ′.
– By the definition of F , we get �{F (g)|g ∈ Y }σ = �{g|g ∈ Y }σ.
– g′(σ) = σ′ implies �{g|g ∈ Y }σ = σ′ since the least upper bound summarizes
all information.

B) σ(x) = 0.
– By the definition of F , we get F (�Y )σ = σ.
– By the definition of F , we get (�{F (g)|g ∈ Y })σ = (�{id})σ = id(σ) = σ.
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