
Prof. Dr. Peter Müller
Software Component Technology

The slides in this section are partly based on the courses

“Software Engineering I” by Prof. Bernd Brügge, TU München and
“Software Engineering” by Prof. Jan Vitek, Purdue University

Software Engineering
Testing

Summer Semester 06

2

Peter Müller – Software Engineering, SS 06

Why Does Software Contain Bugs?

 Our ability to predict the behavior of our creations
is imperfect
- Software is extremely complex
- No developer can understand the whole system

 We make mistakes

- Unclear requirements, miscommunication
- Wrong assumptions (e.g., behavior of operating system)
- Design errors (e.g., capacity of data structure too small)
- Coding errors (e.g., wrong loop condition)

7. Testing – Overview

3

Peter Müller – Software Engineering, SS 06

“First actual case of bug being found.”
7. Testing – Overview

4

Peter Müller – Software Engineering, SS 06

Increasing Software Reliability

Fault Avoidance
 Detect faults statically without executing the program
 Includes development methodologies, reviews, and

program verification

Fault Detection
 Detect faults by executing the program
 Includes testing

Fault Tolerance
 Recover from faults at runtime (e.g., transactions)
 Includes adding redundancy (e.g., n-version programming)

7. Testing – Overview

5

Peter Müller – Software Engineering, SS 06

Goal of Testing

 An error is a deviation of the observed behavior
from the required (desired) behavior
- Functional requirements (e.g., user-acceptance testing)
- Nonfunctional requirements (e.g., performance testing)

 Testing is a process of executing a program with

the intent of finding an error

 A successful test is a test that finds errors

7. Testing – Overview

6

Peter Müller – Software Engineering, SS 06

Limitations of Testing

 It is impossible to completely test any nontrivial
module or any system
- Theoretical limitations: termination
- Practical limitations: prohibitive in time and cost

“Testing can only show the presence of bugs, not
their absence.”
 [E. W. Dijkstra]

7. Testing – Overview

7

Peter Müller – Software Engineering, SS 06

Test Stages

Analysis

System Design

Implementation

Detailed Design Unit Test

Integration Test

System Test

7. Testing – Overview

8

Peter Müller – Software Engineering, SS 06

Unit Testing

 Testing individual subsystems (collection of
classes)

 Goal: Confirm that subsystem is correctly coded
and carries out the intended functionality

Unit Test Subsystem
Code

Detailed Design
Model

7. Testing – Overview

9

Peter Müller – Software Engineering, SS 06

Integration Testing

 Testing groups of subsystems and eventually the
entire system

 Goal: Test interfaces between subsystems

Subsystem
Code

Subsystem
Code

Subsystem
Code

Integration
Test

Software
Architecture

7. Testing – Overview

10

Peter Müller – Software Engineering, SS 06

System Testing

 Testing the entire system

 Goal: Determine if the system meets the
requirements (functional and non-functional)

Entire
System

System
Test

Requirements
Specification

7. Testing – Overview

11

Peter Müller – Software Engineering, SS 06

7. Testing

7.1 Testing Strategies
7.2 Unit Testing
7.3 Integration Testing
7.4 System Testing
7.5 Managing Testing

7. Testing – Strategies

12

Peter Müller – Software Engineering, SS 06

Test Case Design

 UUT = “Unit under test”

Black-box testing
 Testing that UUT satisfies

requirements
 Focus: I/O behavior

 No knowledge of the

internals of the UUT
 Goal: Cover all the

requirements

White-box testing
 Testing control structures

 Focus: Thoroughness

(coverage)
 Knowledge of the internal

structure of the UUT
 Goal: Cover all the code

7. Testing – Strategies

13

Peter Müller – Software Engineering, SS 06

Testing Steps

Select what will be tested

Define test cases

Select test approach

Create test oracle

What parts of the system?
What aspects of the system?

Black-box or white-box?
What integration strategy?

What are the test data?
How is the test carried out?

What are the expected results?
Defined before executing tests

7. Testing – Strategies

14

Peter Müller – Software Engineering, SS 06

Black-Box Testing

 Attempts to find
- Incorrect or missing functions
- Interface errors
- Performance errors
- Initialization and termination errors

 Use analysis knowledge about requirements
- Use cases
- Expected input data
- Invalid input data

 Impossible to generate all possible inputs

7. Testing – Strategies

15

Peter Müller – Software Engineering, SS 06

Black-Box Testing: Equivalence Testing

 Divide input conditions into equivalence classes
- Choose test cases for each equivalence class

 Coverage
- Each possible input belongs to one of the equivalence

classes
 Disjointness

- No input belongs to more than one equivalence class
 Representation

- If one test case of an equivalence class produces an
error then the same error can be detected by using any
other test case of the same equivalence class

7. Testing – Strategies

16

Peter Müller – Software Engineering, SS 06

Black-Box Testing: Valid and Invalid Input

 Equivalence classes have to cover valid and
invalid values

 Input from a range of valid values
- Below the range
- Within the range
- Above the range

 Input from a discrete set of valid values
- Valid discrete value
- Invalid discrete value

7. Testing – Strategies

17

Peter Müller – Software Engineering, SS 06

Black-Box Testing: Example

 Requires six test cases to cover all equivalence
classes of valid input values

static int getDaysPerMonth(int month, int year)
 requires 1 <= month && month <= 12;
{ … }

Equivalence classes for month
1. Months with 30 days
2. Months with 31 days
3. February with 28 or 29 days

Equivalence classes for year
1. Non-leap years
2. Leap years

Partitioning ignores special
rules for leap years

7. Testing – Strategies

18

Peter Müller – Software Engineering, SS 06

Black-Box Testing: Boundary Testing

 Large number of errors tend to occur at
boundaries of the input domain

 Rather than select any element in an equivalence
class, select those at the “edge” of the class

 Examples for boundary values
- Leap years: 1900, 2000
- Invalid months: 0, 13
- Numbers in general: zero, a very small number, a very

large number

7. Testing – Strategies

19

Peter Müller – Software Engineering, SS 06

White-Box Testing

 Why do white-box testing when black-box testing is
used to test conformance to requirements?
- "Bugs lurk in corners and congregate at boundaries”

 [B. Beizer]
 Use design knowledge about system structure,

algorithms, data structures
- Control structures (branches, loops, etc.)
- Data structures (fields, arrays, etc.)

 Use implementation knowledge about algorithms
- Force division by zero

7. Testing – Strategies

20

Peter Müller – Software Engineering, SS 06

White-Box Testing: Coverage

 Path Testing
- Execute each possible path
- Not practical with many nested conditionals
- Impossible for most loops

 Branch Testing
- Test each possible outcome from a condition

 Loop Testing
- Cause execution of the loop to be skipped completely
- Execute loop exactly once
- Execute loop more than once

7. Testing – Strategies

21

Peter Müller – Software Engineering, SS 06

White-Box Testing: Example
void printMean(float[] scores) {
 float sum = 0.0; int number = 0;
 for(int i = 0; i < scores.length; i++) {
 if(scores[i] > 0.0) {
 sum += scores[i]; number++;
 }
 }
 if(number > 0)
 System.out.println(“The mean is: “ + sum / number);
 else
 System.out.println(“No scores found”);
}

7. Testing – Strategies

22

Peter Müller – Software Engineering, SS 06

White-Box Testing: Logic Flow Diagram
Start

2

3

4 5

6

7

8 9

Exit

1
F

T F

T F

T

void printMean(float[] scores) {
 float sum = 0.0; int number = 0;
 for(int i = 0; i < scores.length; i++) {
 if(scores[i] > 0.0) {
 sum += scores[i]; number++;
 }
 }
 if(number > 0)
 System.out.println(…);
 else
 System.out.println(…);
}

1

8
7

6

5
4

3
2

9

7. Testing – Strategies

23

Peter Müller – Software Engineering, SS 06

White-Box Testing: Finding the Test Cases
Start

2

3

4 5

6

7

8 9

Exit

1
F

T F

T F

T

At least one
value in array

Negative score Positive score

Array empty

At least one
positive score

No positive
score

7. Testing – Strategies

24

Peter Müller – Software Engineering, SS 06

White-Box Testing: Test Cases

 Test case 1: skip loop body
- Test data: []

 Test case 2: execute loop

exactly once
- Test data: [-1]

 Test case 3: execute loop

more than once
- Test data: [3, 2]

Start

2

3

4 5

6

7

8 9

Exit

1
F

T F

T F

T

Start

2

3

4 5

6

7

8 9

Exit

1
F

T F

T F

T

Start

2

3

4 5

6

7

8 9

Exit

1
F

T F

T F

T

7. Testing – Strategies

25

Peter Müller – Software Engineering, SS 06

Dynamic Method Binding in Path Testing

 Dynamic method
binding requires
more test cases

 Analogous to
conditional over
type information

 Execute each
method
implementation

Context

Context()

Concrete
Strategy_1
Algorithm()

Concrete
Strategy_2
Algorithm()

Strategy

Algorithm()

7. Testing – Strategies

26

Peter Müller – Software Engineering, SS 06

White-Box Versus Black-Box Testing

 Both types of testing are needed

 Black-box testing
- Potential combinatorial explosion of test cases

(valid and invalid data)
- Cannot detect extraneous use cases ("features")

 White-box testing
- Potentially infinite number of paths
- Often tests what is done, instead of what should be done
- Cannot detect missing use cases

7. Testing – Strategies

27

Peter Müller – Software Engineering, SS 06

7. Testing

7.1 Testing Strategies
7.2 Unit Testing
7.3 Integration Testing
7.4 System Testing
7.5 Managing Testing

7. Testing – Unit Testing

28

Peter Müller – Software Engineering, SS 06

Creation of Unit Tests

 Create tests as soon as detailed design is completed
- Black-box test: Test functional requirements
- White-box test: Test the dynamic model
- Data-structure test: Test the object model

 Find the minimal number of test cases to cover as
many paths as possible
- Cross-check the test cases to eliminate duplicates

Implementation

Detailed Design Unit Test

7. Testing – Unit Testing

29

Peter Müller – Software Engineering, SS 06

Creation of Unit Tests: Movie Rental Example

RegularPrice

getCharge()

NewReleasePrice

getCharge()
getFRP()

ChildrenPrice

getCharge()

Price

getCharge()
getFRP()

Movie

getCharge()
getFRP()

Title: String
1

Customer

statement()
htmlStatement()
getTotalCharge()
getTotalFRP()

Name: String
Rental

getCharge()
getFRP()

daysRented: int

1

*

Equivalence
testing:

subclasses

Boundary
testing:

empty set

7. Testing – Unit Testing

30

Peter Müller – Software Engineering, SS 06

Creation of Unit Tests: Example (cont’d)
aCustomer aRental aMovie

* [for all rentals] getCharge()
getPriceCode()

getTotalCharge()

* [for all rentals] getFrequentRenterPoints()
getPriceCode()

getTotalRenterPoints()

Loop
testing

Loop
testing

7. Testing – Unit Testing

31

Peter Müller – Software Engineering, SS 06

Creation of Test Harness

 Test driver
- Class that applies test cases to UUT including setup and

clean-up
- Created automatically by JUnit using reflection

(classes TestRunner and TestSuite)
 Test stub

- Partial, temporary implementation of a component used
by UUT

Test Stub

Test Stub
Test Driver UUT uses uses

7. Testing – Unit Testing

32

Peter Müller – Software Engineering, SS 06

Creation of Test Oracle

 Test Oracle
- Produces the results expected for a test case

 JUnit
- Compares actual result and expected result using assert

methods
- Expected result is produced manually

 Specification-based testing
- Uses contracts (postconditions) as test oracles
- Limited by expressiveness of contract language

7. Testing – Unit Testing

33

Peter Müller – Software Engineering, SS 06

Test Execution

 Execute the test cases
 Re-execute test cases after every change

- Automate as much as possible
- For instance, after each refactoring

 Regression testing

- Testing that everything that used to work still works after
changes are made to the system

- Also important for system testing

7. Testing – Unit Testing

34

Peter Müller – Software Engineering, SS 06

Eight Rules of Testing
1. Make sure all tests are

fully automatic and check
their own results

2. A test suite is a powerful
bug detector that reduces
the time it takes to find
bugs

3. Run your tests frequently–
every test at least once a
day

4. When you get a bug report,
start by writing a unit test
that exposes the bug

5. Better to write and run
incomplete tests than not
run complete tests

6. Concentrate your tests on
boundary conditions

7. Do not forget to test
exceptions raised when
things are expected to go
wrong

8. Do not let the fear that
testing can’t catch all bugs
stop you from writing tests
that will catch most bugs
 [M. Fowler]

7. Testing – Unit Testing

35

Peter Müller – Software Engineering, SS 06

Complement: Code Reviews

 Form team of technical experts including the
programmer

 Finds 70%-90% of bugs in studies
 Finds bugs earlier than testing
 Dramatically reduces cost of finding bugs
 Teaches everyone the code
 Variations

- Walk-through (informal)
- Code inspection (formal: records, metrics)

7. Testing – Unit Testing

36

Peter Müller – Software Engineering, SS 06

Complement: Static Analyses

 Code checkers (PMD, lint, PreFIX)
- Find certain classes of errors
- Easy to apply

 Program verifiers (ESC/Java, Boogie, SDV)

- Typically cause significant overhead for programmers
- First successful industrial applications in very specific

areas (e.g., device drivers)

7. Testing – Unit Testing

37

Peter Müller – Software Engineering, SS 06

7. Testing

7.1 Testing Strategies
7.2 Unit Testing
7.3 Integration Testing
7.4 System Testing
7.5 Managing Testing

7. Testing – Integration Testing

38

Peter Müller – Software Engineering, SS 06

Steps in Integration-Testing

1. Select a component to be tested
- Unit test all the classes in the component

2. Put selected components together
- Make the integration test operational (drivers, stubs)

3. Do the testing
- Functional testing, structural testing, performance testing

4. Keep records of the test cases and testing
activities

5. Repeat steps 1 to 4 until the full system is tested

7. Testing – Integration Testing

39

Peter Müller – Software Engineering, SS 06

Integration Testing Strategy

 The order in which the
subsystems are selected
for testing and integration

 Typical strategies
- Big-bang integration

(Nonincremental)
- Bottom-up integration
- Top-down integration
- Sandwich testing
- Variations of the above

Call hierarchy

E F

D C B

A

G

7. Testing – Integration Testing

40

Peter Müller – Software Engineering, SS 06

Big-Bang Strategy: Example

E

F

D

C

B

A

G

Whole
System

Don’t try this!

Integration
Test

7. Testing – Integration Testing

41

Peter Müller – Software Engineering, SS 06

Bottom-Up Strategy

 Strategy
1. Start with subsystems in lowest layer of call hierarchy
2. Test subsystems that call the previously tested

subsystems
3. Repeat until all subsystems are included

 Pros
- Useful for integrating

object-oriented systems
and systems with strict
performance
requirements

 Cons
- Tests the most important

subsystem (UI) last

7. Testing – Integration Testing

42

Peter Müller – Software Engineering, SS 06

Bottom-Up Strategy: Example

E F

D C B

A

G
E

F

B

B,E,F

D

G
D,G

C

A Whole
System

7. Testing – Integration Testing

43

Peter Müller – Software Engineering, SS 06

Top-Down Strategy

 Strategy
1. Start with subsystems in top layer of call hierarchy
2. Include subsystems that are called by the previously

tested subsystems
3. Repeat until all subsystems are included

 Requires test stubs
- Simulates the activity of a missing subsystem by

answering to the calling sequence of the calling
subsystem and returning back fake data

7. Testing – Integration Testing

44

Peter Müller – Software Engineering, SS 06

Top-Down Strategy: Example

E F

D C B

A

G

C

D

B

A

A,B,C,
D

F

E

G

Whole
System

7. Testing – Integration Testing

45

Peter Müller – Software Engineering, SS 06

Top-Down Strategy: Discussion

 Pros
- Supports test cases for

the functionality of the
system

 Cons
- Writing stubs can be

difficult: Stubs must
allow all possible
conditions to be tested

- Possibly very large
number of stubs
required

7. Testing – Integration Testing

46

Peter Müller – Software Engineering, SS 06

Sandwich Strategy

 Combines top-down with bottom-up strategy

 The system is view as having three layers
- A target layer in the middle
- A layer above the target
- A layer below the target
- Testing converges at the target layer

 How do you select the target layer if there are more
than 3 layers?
- Try to minimize the number of stubs and drivers

7. Testing – Integration Testing

47

Peter Müller – Software Engineering, SS 06

Sandwich Strategy: Example

E F

D C B

A

G

E

B

F

B,E,F

G

D
D,G

C

A A,B,C,
D

Whole
System

Target layer

Top / target

Bottom / target Bottom / target

7. Testing – Integration Testing

48

Peter Müller – Software Engineering, SS 06

Sandwich Strategy: Discussion

 Pros
- Top and bottom layer

can be tested in parallel
- Fewer drivers and stubs

needed (target layer
instead of driver for
bottom layer and stub
for top layer)

 Cons
- Does not test the

individual subsystems
thoroughly before
integration

7. Testing – Integration Testing

49

Peter Müller – Software Engineering, SS 06

Modified Sandwich Strategy

 Test in parallel
- Middle layer with drivers and stubs
- Top layer with stubs
- Bottom layer with drivers

 Test in parallel
- Top layer accessing middle layer (top layer replaces

drivers)
- Bottom accessed by middle layer (bottom layer replaces

stubs)

7. Testing – Integration Testing

50

Peter Müller – Software Engineering, SS 06

Choosing an Integration Strategy

 Amount of test harness (stubs and drivers)

 Availability of hardware (e.g., parallelization)

 Scheduling concerns
- Availability of components
- Location of critical parts in the system

7. Testing – Integration Testing

51

Peter Müller – Software Engineering, SS 06

7. Testing

7.1 Testing Strategies
7.2 Unit Testing
7.3 Integration Testing
7.4 System Testing
7.5 Managing Testing

7. Testing – System Testing

52

Peter Müller – Software Engineering, SS 06

System Testing Stages

Entire System

Functional
Test

Functional
requirements

Performanc
e Test

Non-functional
requirements

Acceptance
Test

Client’s understanding
of requirements

Installation
Test User Environment

7. Testing – System Testing

53

Peter Müller – Software Engineering, SS 06

Functional Testing

.

.

 Goal: Test functionality of system
- System is treated as black box

 Test cases are designed from requirements
analysis document
- Based on use cases
- Alternative source: user manual

 Test cases describe
- Input data
- Flow of events
- Results to check

7. Testing – System Testing

54

Peter Müller – Software Engineering, SS 06

Performance Testing

 Stress Testing
- Stress limits of system (maximum number of users, peak

demands)
 Volume testing

- Large amounts of data
 Configuration testing

- Various software and hardware configurations
 Compatibility testing

- Backward compatibility with existing systems
 Security testing

- Try to violate security requirements (“red team”)

7. Testing – System Testing

55

Peter Müller – Software Engineering, SS 06

Performance Testing (cont’d)

 Timing testing
- Response times and time to perform a function

 Environmental test
- Tolerances for heat, humidity, motion

 Quality testing
- Reliability, maintainability, and availability

 Recovery testing
- System’s response to presence of errors or loss of data

 Usability testing
- Tests user interface with user

7. Testing – System Testing

56

Peter Müller – Software Engineering, SS 06

Acceptance Testing

 Goal: Demonstrate that the system meets customer
requirements and is ready to use

 Choice of tests is made by client
- Many tests can be taken from integration testing

 Performed by the client, not by the developer

7. Testing – System Testing

57

Peter Müller – Software Engineering, SS 06

Acceptance Testing (cont’d)

 Majority of bugs is typically found by the client, not
by the developers or testers

 Alpha test
- Client uses the software at the developer’s site
- Software used in a controlled setting, with the developer

always ready to fix bugs
 Beta test

- Conducted at client’s site (developer is not present)
- Software gets a realistic workout in target environment
- Potential client might get discouraged

7. Testing – System Testing

58

Peter Müller – Software Engineering, SS 06

7. Testing

7.1 Testing Strategies
7.2 Unit Testing
7.3 Integration Testing
7.4 System Testing
7.5 Managing Testing

7. Testing – Managing Testing

59

Peter Müller – Software Engineering, SS 06

Independent Testing

 Programmers have a hard time believing they
made a mistake
- Plus a vested interest in not finding mistakes
- Often stick to the data that makes the program work

 Designing and programming are constructive tasks

- Testers must seek to break the software

 Testing is done best by independent testers

7. Testing – Managing Testing

60

Peter Müller – Software Engineering, SS 06

Independent Testing: Responsibilities

 Performed by independent test
team
- Exception: Acceptance test performed

by client
 Performed by independent test

team

 Performed by programmer
- Requires detailed knowledge of the

code
- Immediate bug fixing

Unit Test

Integration Test

System Test

7. Testing – Managing Testing

61

Peter Müller – Software Engineering, SS 06

Independent Testing: Wrong Conclusions

 The developer should not be testing at all
- “Test before you code”

 Testers get only involved once software is done

 Toss the software over the wall for testing
- Testers and developers collaborate in developing the test

suite

 Testing team is responsible for assuring quality
- Quality is assured by a good software process

7. Testing – Managing Testing

62

Peter Müller – Software Engineering, SS 06

When to Stop Testing?

 In practice, typically determined by budget and
schedule constraints

 White-box testing
- Achieved coverage

 Black-box testing

- High coverage difficult to achieve
- Always perform at least boundary and regression testing

7. Testing – Managing Testing

63

Peter Müller – Software Engineering, SS 06

Fault Seeding

 Test team 1 inserts faults (errors) into the program
 Test team 2 performs the test
 Assumption

 Problem: Difficult to make seeded faults

representative of the real ones
 Conclusion: most useful for testing systems that are

similar to ones we have built before

detected seeded faults detected non-seeded faults
total seeded faults total non-seeded faults

=

7. Testing – Managing Testing

64

Peter Müller – Software Engineering, SS 06

Summary

 Main objective
- Design tests that systematically uncover different classes

of errors with a minimum amount of time and effort
- A good test has a high probability of finding an error
- A successful test uncovers an error

 Secondary benefits
- Demonstrate that software appears to be working

according to specification (functional and non-functional)
- Data collected during testing provides indication of

software reliability and software quality
- Good testers clarify the specification (creative work)

7. Testing – Summary

	Software Engineering�Testing
	Why Does Software Contain Bugs?
	“First actual case of bug being found.”
	Increasing Software Reliability
	Goal of Testing
	Limitations of Testing
	Test Stages
	Unit Testing
	Integration Testing
	System Testing
	7. Testing
	Test Case Design
	Testing Steps
	Black-Box Testing
	Black-Box Testing: Equivalence Testing
	Black-Box Testing: Valid and Invalid Input
	Black-Box Testing: Example
	Black-Box Testing: Boundary Testing
	White-Box Testing
	White-Box Testing: Coverage
	White-Box Testing: Example
	White-Box Testing: Logic Flow Diagram
	White-Box Testing: Finding the Test Cases
	White-Box Testing: Test Cases
	Dynamic Method Binding in Path Testing
	White-Box Versus Black-Box Testing
	7. Testing
	Creation of Unit Tests
	Creation of Unit Tests: Movie Rental Example
	Creation of Unit Tests: Example (cont’d)
	Creation of Test Harness
	Creation of Test Oracle
	Test Execution
	Eight Rules of Testing
	Complement: Code Reviews
	Complement: Static Analyses
	7. Testing
	Steps in Integration-Testing
	Integration Testing Strategy
	Big-Bang Strategy: Example
	Bottom-Up Strategy
	Bottom-Up Strategy: Example
	Top-Down Strategy
	Top-Down Strategy: Example
	Top-Down Strategy: Discussion
	Sandwich Strategy
	Sandwich Strategy: Example
	Sandwich Strategy: Discussion
	Modified Sandwich Strategy
	Choosing an Integration Strategy
	7. Testing
	System Testing Stages
	Functional Testing
	Performance Testing
	Performance Testing (cont’d)
	Acceptance Testing
	Acceptance Testing (cont’d)
	7. Testing
	Independent Testing
	Independent Testing: Responsibilities
	Independent Testing: Wrong Conclusions
	When to Stop Testing?
	Fault Seeding
	Summary

