
Prof. Dr. Peter Müller
Software Component Technology

The slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Software Engineering
Detailed Design

Summer Semester 06

2

Peter Müller – Software Engineering, SS 06

5. Detailed Design

5.1 Overview
5.2 Reuse
 5.2.1 Design Patterns
 5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

5. Detailed Design – Overview

3

Peter Müller – Software Engineering, SS 06

Bloopers

 Speed
- Harry’s partner shoots Harry in the right leg
- Throughout the movie, Harry limps on the left leg

 Star Wars

- At the end of Episode V, Han Solo is frozen into
carbonite

- When being frozen, Han Solo is wearing a dark jacket
- When thawed, he is wearing a white shirt

5. Detailed Design – Overview

4

Peter Müller – Software Engineering, SS 06

Why do Movies Contain Bugs?

Cooperation of
many different

people

High pressure
of release date
during editing

Details (props,
costumes)

changed during
production

Some scenes
re-shot out of

schedule

Scenes shot
out of

sequence

5. Detailed Design – Overview

5

Peter Müller – Software Engineering, SS 06

Waterfall Model of Project Life Cycle

Analysis

Validation
(Test)

System Design

Implementation

Deployment

Requirements
Elicitation

Detailed Design

Design

5. Detailed Design – Overview

6

Peter Müller – Software Engineering, SS 06

Detailed Design: Closing the Gap

Real Machine

Application Objects

Solution Objects

Analysis defines
application

objects

System design
selects

off-the-shelf
components and

frameworks

Virtual Machine

Detailed design
identifies new
objects and

adjusts
components

5. Detailed Design – Overview

7

Peter Müller – Software Engineering, SS 06

Detailed Design

 Adding details to the requirements analysis and
system design, and making implementation
decisions

 Choosing among different ways to implement the
analysis model and system design
- Goals: minimize execution time, memory, and other

measures of cost

 Providing the basis for implementation

5. Detailed Design – Overview

8

Peter Müller – Software Engineering, SS 06

Detailed Design Activities

Identify Patterns

Adjust Components

Adjust Patterns

Identify Components

Select Subsystem
Reuse

5. Detailed Design – Overview

9

Peter Müller – Software Engineering, SS 06

Why do Movies Contain Bugs?

Cooperation of
many different

people

High pressure
of release date
during editing

Details (props,
costumes)

changed during
production

Some scenes
re-shot out of

schedule

Scenes shot
out of

sequence
Details

(interfaces,
contracts)

changed during
development

Cooperation of
many different

people

High pressure
of release date

Some classes
re-designed out

of schedule

Classes
implemented
independently

Software Systems Face Similar Problems
5. Detailed Design – Overview

10

Peter Müller – Software Engineering, SS 06

Detailed Design Activities (cont’d)

Identify Patterns

Adjust Components

Adjust Patterns

Identify Components

Select Subsystem

Specify types and
signatures

Specify visibility

Specify constraints

Identify missing
attributes & methods

Specify exceptions

Reuse Specification

5. Detailed Design – Overview

11

Peter Müller – Software Engineering, SS 06

Detailed Design Activities (cont’d)

Delay complex
computations

Cache complex
computations

Optimize access
paths

Check use cases

Collapse classes

Revisit inheritance

Optimization Restructuring

5. Detailed Design – Overview

12

Peter Müller – Software Engineering, SS 06

5. Detailed Design

5.1 Overview
5.2 Reuse
 5.2.1 Design Patterns
 5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

5. Detailed Design – Reuse

13

Peter Müller – Software Engineering, SS 06

Implementation of Application Domain Objects

 New classes are often needed during detailed
design

 The implementation of algorithms may necessitate
objects to hold values (e.g., arrays)

 New low-level operations may be needed during
the decomposition of high-level operations

5. Detailed Design – Reuse

14

Peter Müller – Software Engineering, SS 06

Application vs. Solution Objects: Example

Requirements Analysis
(Language of application

domain)

Detailed Design
(Language of solution

domain)

Account Account

DB_Handler ClientId

5. Detailed Design – Reuse

15

Peter Müller – Software Engineering, SS 06

Application vs. Solution Objects

 Application objects
- Also called domain objects
- Represent relevant concepts of the domain
- Are identified by application domain specialists and by

end users
 Solution objects

- Represent concepts that have no counterpart in the
application domain

- Are identified by developers
- Examples: persistent data stores, user interface objects,

middleware

5. Detailed Design – Reuse

16

Peter Müller – Software Engineering, SS 06

Finding Solution Objects

 There is a need for reusable and flexible designs
 Design knowledge complements application

domain knowledge and solution domain knowledge

“Many objects in a design come from the analysis
model. But object-oriented designs often end up with
classes that have no counterparts in the real world.
[…] Strict modeling of the real world leads to a
system that reflects today's realities but not
necessarily tomorrow's. The abstractions that emerge
during design are key to making a design flexible.”
 [Gamma et al., 1995]

5. Detailed Design – Reuse

17

Peter Müller – Software Engineering, SS 06

Design Patterns

“Design patterns help you identify less-obvious
abstractions and the objects that can capture them.
For example, objects that represent a process or
algorithm don't occur in nature, yet they are a crucial
part of flexible design. […] These objects are seldom
found during analysis or even the early stages of
design; they're discovered later in the course of
making a design more flexible and reusable.”
 [Gamma et al., 1995]

5. Detailed Design – Reuse

18

Peter Müller – Software Engineering, SS 06

Composite Pattern: Motivation

 A program manipulates
- Individual units (e.g., graphical objects)

- Groups of units

 Wanted: a design that allows algorithms to deal
with single units and groups in a uniform way

Account

Account

19

Peter Müller – Software Engineering, SS 06

Composite Pattern: Example

Line
Draw()

Box
Draw()

Text
Draw()

Group

Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)

* Graphic
Draw()

Used by
client

5. Detailed Design – Reuse

20

Peter Müller – Software Engineering, SS 06

Composite Pattern: Structure

 Allows hierarchical grouping of components

Leaf
Operation()

Composite

Operation()
Add(Component)
Remove(Component)
GetChild(int)

* Component
Operation()

children

forall g in children:
g.Operation()

5. Detailed Design – Reuse

21

Peter Müller – Software Engineering, SS 06

Composite Pattern: Statement Syntax

Simple
Statement

* Statement

If
Statement

Return
Statement

Assignment
Statement

1..2

Block
Statement

5. Detailed Design – Reuse

22

Peter Müller – Software Engineering, SS 06

Composite Pattern: Properties

 Defines class hierarchies consisting of primitive
objects and composite objects
- Objects can be composed hierarchically
- Composite objects can be used like primitive objects

 Makes client simple
 Makes it easier to add new kinds of components
 Can make the design overly general

- Difficult to restrict composites
- Example: no return statement in a block

5. Detailed Design – Reuse

23

Peter Müller – Software Engineering, SS 06

 Select a design pattern and implement it

 Is it as simple as that?

Floral Patterns
5. Detailed Design – Reuse

http://images.google.de/imgres?imgurl=http://www.hortus-domicilium.de/images/big/blumenmusterrot.jpg&imgrefurl=http://www.hortus-domicilium.de/d_PB0314_Hochwertiges_Dekorationspapier_Rotes_Blumenmuster183.htm&h=640&w=480&sz=139&tbnid=lSTohFkDEOYJ:&tbnh=135&tbnw=101&hl=de&start=3&prev=/images%3Fq%3Dblumenmuster%26svnum%3D10%26hl%3Dde%26lr%3D%26rls%3DGGLG,GGLG:2005-46,GGLG:de%26sa%3DN
http://www.best-size.de/media/fr_so_05.139.jpg

24

Peter Müller – Software Engineering, SS 06

Composite Pattern: Implementation Issues

 Explicit parent references
- Simplifies traversal and deletion of components

 Sharing components
- Reduces storage requirements

 Child ordering
- Might be required by the design (e.g., Block Statement)

 Caching to improve performance
- Improves performance (e.g., bounding box for Group)

 Data structure for storing components
- Affects performance (lists, trees, arrays, hash tables)

5. Detailed Design – Reuse

25

Peter Müller – Software Engineering, SS 06

Abstract Factory Pattern: Motivation

 A client class wants to create sockets for network
communication

 The concrete implementation of the socket
depends on the operating system

 The client class should be platform-independent

Windows
Socket

Unix
Socket

Client Socket

5. Detailed Design – Reuse

26

Peter Müller – Software Engineering, SS 06

Abstract Factory Pattern: Example

Client

Socket

SocketFactory

Unix
Socket

Windows
Socket

Windows
SocketFactory

Unix
SocketFactory

Creates
object

5. Detailed Design – Reuse

27

Peter Müller – Software Engineering, SS 06

Abstract Factory Pattern: Structure

Client

Abstract
ProductA

Abstract
Factory

Concrete
ProductA1

Concrete
ProductA2

Concrete
Factory2

Concrete
Factory1

Creates
object

Abstract
ProductB

Concrete
ProductB1

Concrete
ProductB2

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

5. Detailed Design – Reuse

28

Peter Müller – Software Engineering, SS 06

Abstract Factory Pattern: Properties

 Isolates concrete classes
- Helps control what classes are instantiated
- Isolates clients from implementation classes

(clients manipulate objects through interfaces)

 Makes exchanging product families easy
- Class of concrete factory appears only once in program

 Supporting new kinds of products is difficult
- Affects interface of abstract factory and all concrete

factories

5. Detailed Design – Reuse

29

Peter Müller – Software Engineering, SS 06

Observer Pattern: Motivation

 Maintaining consistency between loosely
coupled objects

 Many dependent objects have to be informed when
one object changes its state

0

10

20

30

40

50

60

a b c

a b c
X 60 30 10
Y 50 30 20
Z 80 10 10

a

b

c

a = 50%
b = 30%
c = 20% Change notification

Requests, modifications

5. Detailed Design – Reuse

30

Peter Müller – Software Engineering, SS 06

Observer Pattern: Structure

Observer
Update() *

Subject
Attach(Observer)
Detach(Observer)
Notify()

observers

ConcreteSubject

GetState()
SetState(…)

subjectState
ConcreteObserver

Update()

observerState
subject

forall o in
observers:
o.Update()

return
subjectState

observerState =
subject.GetState()

5. Detailed Design – Reuse

31

Peter Müller – Software Engineering, SS 06

Observer Pattern: Collaborations
aConcreteSubject concreteObserver1 concreteObserver2

setState(…)

notify()

update()

getState()

update()

getState()

5. Detailed Design – Reuse

32

Peter Müller – Software Engineering, SS 06

Observer Pattern: Properties

 Abstract coupling between subject and observer
- Subject does not know concrete class of observer

 Support for broadcast communication
- Freedom to add and remove observers

 Example

- Debuggers (subject) broadcasts event when it reaches a
breakpoint

- Editor (observer) shows line of code
- Stack tracer (observer) shows stack trace.

5. Detailed Design – Reuse

33

Peter Müller – Software Engineering, SS 06

Strategy Pattern: Motivation

 A program uses 3D-shapes that can be rendered
- Rendering code too complex to be included in Shape

 Different rendering algorithms are appropriate at
different times
- Do not implement the ones we do not use

 Rendering algorithm should not be hard-wired
- New algorithms may be added

5. Detailed Design – Reuse

34

Peter Müller – Software Engineering, SS 06

Strategy Pattern: Example

Shape
Render()

RayTracer
Render()

Radiosity
Render()

Renderer
Render()

Used by
client

5. Detailed Design – Reuse

35

Peter Müller – Software Engineering, SS 06

Strategy Pattern: Structure

Context

ContextInter()

Concrete
Strategy_1

AlgorithmInter()

Concrete
Strategy_2

AlgorithmInter()

Strategy

AlgorithmInter()

strategy

5. Detailed Design – Reuse

36

Peter Müller – Software Engineering, SS 06

Strategy Pattern: Properties

 Supports families of algorithms
- Sorting, line breaking, layouting, etc.
- Clients have a choice (e.g., different space and time

trade-offs)

 Alternative to inheritance
- Behavior not hard-wired into context (dynamic exchange)
- Separates context from algorithm (easier to maintain)

 Communication overhead
- Arguments must be passed to strategies

5. Detailed Design – Reuse

37

Peter Müller – Software Engineering, SS 06

Adapter Pattern: Motivation

 A program expects an interface that is
incompatible with the interface of a reusable class

 Common problem with legacy code
 Also known as wrapper

Line
BoundingBox()

TextShape
BoundingBox()

Shape
BoundingBox()

TextEditor
GetExtent()

Legacy
code

Legacy
code

Used by
client

5. Detailed Design – Reuse

38

Peter Müller – Software Engineering, SS 06

Adapter Pattern: Example

Line
BoundingBox()

DrawingEditor

TextShape
BoundingBox()

Shape
BoundingBox()

TextEditor
GetExtent()

text

return
text.GetExtent()

5. Detailed Design – Reuse

39

Peter Müller – Software Engineering, SS 06

Adapter Pattern: Structure

 Delegation used to bind Adapter and Adaptee
 Subtyping used to specify interface of Adapter
 Target and Adaptee exist before Adapter
 Target may be realized as interface in Java

Adapter
Request()

Target
Request()

Adaptee
SpecificRequest()

adaptee

Used by
client

adaptee.SpecificRequest()

5. Detailed Design – Reuse

40

Peter Müller – Software Engineering, SS 06

Adapter Pattern: Properties

 How much adaptation does an adapter do?
- From simple interface conversion (renaming) to entirely

different set of operations

 Variant: class adapter
- Adapter inherits from Target and Adaptee
- No aggregation and delegation
- Requires multiple inheritance if Target is a class

5. Detailed Design – Reuse

41

Peter Müller – Software Engineering, SS 06

Bridge Pattern: Motivation

 A program uses
socket abstractions
to communicate

 Different socket
abstractions

 Different socket
implementations

Socket

Open()

SSLSocket

Socket

Open()

Unix
Socket

Open()

Windows
Socket

Open()

Compression
Socket

5. Detailed Design – Reuse

42

Peter Müller – Software Engineering, SS 06

Bridge Pattern: Motivation (cont’d)

SSLSocket Compression
Socket

Socket

Open()

Windows
SSLSocket

Open()

Unix
SSLSocket

Open()

Windows
Compression

Socket
Open()

Unix
Compression

Socket
Open()

Implementation
cannot be changed

dynamically

Specialization in
two dimensions

leads to explosion
of class hierarchy

5. Detailed Design – Reuse

43

Peter Müller – Software Engineering, SS 06

Socket Implementation Socket Abstraction

Bridge Pattern: Example

Socket

Open()

SSLSocket

SocketImpl

Open()

Unix
SocketImpl
Open()

Windows
SocketImpl
Open()

Compression
Socket

Used by
client

5. Detailed Design – Reuse

44

Peter Müller – Software Engineering, SS 06

Bridge Pattern: Structure

 Decouples an abstraction from its implementation
 Allows different implementations of an interface to

be exchanged dynamically

Refined
Abstraction_A

Refined
Abstraction_B

Abstraction

Operation()

Concrete
Implementor_1
OperationImpl()

Concrete
Implementor_2
OperationImpl()

Implementor

OperationImpl()

imp

imp.OperationImpl()

5. Detailed Design – Reuse

45

Peter Müller – Software Engineering, SS 06

Adapter vs. Bridge

 Both are used to hide the details of the underlying
implementation

 Adapter pattern
- Makes unrelated components work together
- Applied to systems after they are designed

(reengineering, interface engineering)
 Bridge Pattern

- Used up-front in a design to let abstractions and
implementations vary independently

- Green field engineering of an “extensible system”

5. Detailed Design – Reuse

46

Peter Müller – Software Engineering, SS 06

Facade Pattern: Motivation

 Subsystem 1 can call
operations on any
component of Subsystem 2

 Advantages
- Efficiency

 Disadvantages
- Caller does not understand

how the subsystem works
- Subsystem will be misused,

leading to non-maintainable
code

Subsystem 1

Subsystem 2

5. Detailed Design – Reuse

47

Peter Müller – Software Engineering, SS 06

Facade Pattern: Example

 Provides a unified
interface to a set of
objects in a subsystem

 Defines a higher-level
interface that makes the
subsystem easier to use

 Reduces coupling
 Does not prevent direct

usage of objects in a
subsystem

Subsystem 1

Subsystem 2

Facade

5. Detailed Design – Reuse

48

Peter Müller – Software Engineering, SS 06

Subsystem Design with Facade and Adapter

 Ideal structure of a subsystem
 An interface object

(boundary object)
 A set of application domain

objects (entity objects)
modeling real entities or
existing systems
- Some of the entity objects are

interfaces to existing systems
 One or more control objects

Facade

Interface to existing
systems: Adapter
 Provides interface

to existing system
 Existing system is

not necessarily
object-oriented!

5. Detailed Design – Reuse

49

Peter Müller – Software Engineering, SS 06

Design Patterns Encourage Reusable Designs

 Facade should be used by all subsystems
- Defines all the services of the subsystem
- Delegates requests to components within the subsystem
- Most of the time the facade need not be changed when

the component is changed
 Adapters should be used to interface to existing

components
 Bridges should be used to interface sets of objects

- Where the full set is not completely known at design time
- When the subsystem must be extended later after the

system has been deployed (dynamic extension)

5. Detailed Design – Reuse

50

Peter Müller – Software Engineering, SS 06

The “Ingredients” of Design Patterns

 Inheritance (subclassing)
- Establishes “is-a” relation
- Enables subtype polymorphism

 Aggregation

- Establishes “has-a” relation
- No subtyping in general

Person

Student

Car Motor

 Design patterns provide guidance how to use
inheritance and aggregation

5. Detailed Design – Reuse

51

Peter Müller – Software Engineering, SS 06

Inheritance and Aggregation: Bridge Pattern

Refined
Abstraction_A

Refined
Abstraction_B

Abstraction

Operation()

Concrete
Implementor_1
OperationImpl()

Concrete
Implementor_2
OperationImpl()

Implementor

OperationImpl()

Subtyping enables
polymorphic client

code

Specialization of
operations

Aggregation
decouples caller

from
implementation

5. Detailed Design – Reuse

52

Peter Müller – Software Engineering, SS 06

Textual Clues in Nonfunctional Requirements

 Use textual clues to identify design patterns
- (similar to Abbot’s technique in analysis)

“complex structure” Composite

“must interface with an existing object” Adapter
“must interface to a set of existing objects” Facade
“must deal with the interface to several
systems some of them to be developed in
the future”

Bridge

“must be extensible”, “must be scalable” Observer
“policy independent from mechanism” Strategy

5. Detailed Design – Reuse

53

Peter Müller – Software Engineering, SS 06

5. Detailed Design

5.1 Overview
5.2 Reuse
 5.2.1 Design Patterns
 5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

5. Detailed Design – Reuse

54

Peter Müller – Software Engineering, SS 06

AWT: Overview

 AWT: Abstract Window Toolkit
 Elements of the GUI are

represented by components
 Display and layout of the

components have to be
specified

 Components receive events
from the window system and
propagate them to so-called
listeners

5. Detailed Design – Reuse

55

Peter Müller – Software Engineering, SS 06

Component Hierarchy: Composite Pattern

 Components can be
grouped into containers

 Containers are also
components

* Component

Window Panel

Container Button Checkbox

Frame

Panel

5. Detailed Design – Reuse

56

Peter Müller – Software Engineering, SS 06

Event Communication

 Objects can register
at a component as
observer (listener)
for one or several
event types

 Upon occurrence of
an event, the event
source informs all
registered objects
by invoking a
method

1. User clicks
on Button 2. actionPerformed

event is associated
with button

listener1

button

listener2 3. Listeners
are informed

5. Detailed Design – Reuse

57

Peter Müller – Software Engineering, SS 06

Component / Listener: Observer Pattern

ActionListener
actionPerformed(…)

* actionListener Button

MyActionListener
actionPerformed(…)

addActionListener(…)
removeActionListener(…)
processActionEvent(…)

Update method receives
event as parameter

Notify method called
by the underlying
window system

No abstract
Subject

ConcreteObserver
does not know

ConcreteSubject

5. Detailed Design – Reuse

58

Peter Müller – Software Engineering, SS 06

Platform Independence: Bridge Pattern

 AWT components are platform-independent
 Operations that depend on the window system are

delegated to platform-specific peer objects

Component

Button Checkbox

Component
Peer

Button
Peer

Checkbox
Peer

X
ButtonPeer

Motif
ButtonPeer

Platform-specific
implementation

Interface
hierarchy

5. Detailed Design – Reuse

59

Peter Müller – Software Engineering, SS 06

Platform Independence: Peer Creation

 Component objects have references to their peers

 Platform-independent components cannot
instantiate platform-dependent peers

 Solution: abstract factory

Component Component
Peer

Button Button
Peer

5. Detailed Design – Reuse

60

Peter Müller – Software Engineering, SS 06

Platform Independence: Abstract Factory

Button Toolkit

X11.XToolkit motif.MToolkit

Client createButton(…)
createCheckbox(…)

createButton(…)
createCheckbox(…)

createButton(…)
createCheckbox(…)

Button
Peer

X
ButtonPeer

Motif
ButtonPeer

Abstract
factory

Concrete
factory

Concrete
product

Abstract
product

5. Detailed Design – Reuse

61

Peter Müller – Software Engineering, SS 06

Displaying Containers: Layout Managers

 Layout of components in
one container is
computed by a layout
manager

 The layout manager can
be set for each container

Border-
Layout

Flow-
Layout

Frame

Panel

5. Detailed Design – Reuse

62

Peter Müller – Software Engineering, SS 06

Layout Managers: Strategy Pattern

Container

layout()

BorderLayout

layoutContainer()

FlowLayout

layoutContainer()

LayoutManager

layoutContainer()

5. Detailed Design – Reuse

63

Peter Müller – Software Engineering, SS 06

5. Detailed Design

5.1 Overview
5.2 Reuse
 5.2.1 Design Patterns
 5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

5. Detailed Design – Interface Specification

64

Peter Müller – Software Engineering, SS 06

Specifying Interfaces

Requirements Analysis
 Attributes
 Operations without

parameters and types

Detailed Design
 Visibility
 Signatures
 Contracts

Account
Amount
AccountId
Deposit()
Withdraw()
GetBalance()

Account
–Amount: int
#AccountId: int
+Deposit(a: int)
+Withdraw(a: int)
+GetBalance(): int

<<precondition>>
a >= 0

5. Detailed Design – Interface Specification

65

Peter Müller – Software Engineering, SS 06

Information Hiding
 Definition

Information hiding is a technique for reducing the
dependencies between modules:
- The intended client is provided with all the information

needed to use the module correctly, and with nothing
more

- The client uses only the (publicly) available information

5. Detailed Design – Interface Specification

66

Peter Müller – Software Engineering, SS 06

Visibility Information

 UML defines three levels of visibility
- Similar to C++, Java, and C#

 Private (implementation interface): “–”
- Private features can be accessed only by the class in

which they are declared (not even subclasses)
 Protected (subclass interface): “#”

- Protected features can be accessed by the class in which
they are defined and by any descendent of the class

 Public (client interface): “+”
- Public features can be accessed by any class

5. Detailed Design – Interface Specification

67

Peter Müller – Software Engineering, SS 06

Implementation of UML Visibility in Java

 protected has a slightly different meaning in Java
- Also visible to classes in the same package

 Eiffel provides more fine-grained visibility control

Account
–Amount: int
#AccountId: int
+Deposit(a: int)
+Withdraw(a: int)
+GetBalance(): int

class Account {
 private int amount;
 protected int accountId;

 public void deposit(int a) {…}
 public void withdraw(int a) {…}
 public int getBalance() {…}
}

5. Detailed Design – Interface Specification

68

Peter Müller – Software Engineering, SS 06

Information Hiding Heuristics

 Public interface for classes and subsystems
- Use the facade pattern
- Define abstract interfaces that mediate between system

and external world as well as between subsystems
 The less an operation knows the less likely it will be

affected by any changes
 Access attributes only via operations

- Only the operations of a class should manipulate its
attributes (no public attributes)

- Trade-off: Information hiding vs. efficiency

5. Detailed Design – Interface Specification

69

Peter Müller – Software Engineering, SS 06

UML is not Enough

 Urs is married to Sile, Sile is married to Beat, and
Beat is not married at all

 A valid instantiation of the class diagram!
 Associations describe relations between classes

Person

Marry()

spouse

0..1
Urs: Person

Sile: Person Beat: Person

spouse

spouse “is married to”

5. Detailed Design – Interface Specification

70

Peter Müller – Software Engineering, SS 06

UML is not Enough (cont’d)

 Urs is married to Sile, who is only eleven
 A valid instantiation of the class diagram!
 Class diagrams do not restrict values of attributes

Person

age

spouse

0..1

Married persons are at
least 16 years old Sile: Person

spouse

spouse

age = 11

Urs: Person

age = 18

5. Detailed Design – Interface Specification

71

Peter Müller – Software Engineering, SS 06

Expressing Contracts

 Natural language
- Advantage: Easy to

understand and use
- Disadvantage: Ambiguous

 Mathematical notation
- Advantage: Precise
- Disadvantage: Difficult for

normal customers
 Contract language

- Formal, but easy to use
- Examples: Eiffel, JML

spouse expresses
“is married to”

spouse /= Void implies
spouse /= Current and
spouse.spouse = Current

spouse: Person → Person
 spouse = spouse–1

 souse ∩ id = ∅

5. Detailed Design – Interface Specification

∀p: Person: p ∈ dom(spouse) ⇒
 spouse(p) ∈ dom(spouse) ∧
 p ≠ spouse(p) ∧
 p = spouse(spouse(p))

72

Peter Müller – Software Engineering, SS 06

Contracts in Eiffel: Object Invariants

 Associated with classes

 Describe consistency

criteria of objects and
object structures

 Hold for all instances of a

class

class PERSON feature

 age: INTEGER
 spouse: PERSON

 invariant
 spouse /= Void
 implies
 spouse /= Current
 and
 spouse.spouse = Current
 and
 age >= 16

end -- class PERSON

5. Detailed Design – Interface Specification

73

Peter Müller – Software Engineering, SS 06

Object Constraint Language – OCL

 The contract language for UML

 Used to specify
- Invariants of objects
- Pre- and postconditions of operations
- Guards (for instance, in state diagrams)

 Special support for
- Navigation through UML class diagram
- Associations with multiplicities

5. Detailed Design – Interface Specification

74

Peter Müller – Software Engineering, SS 06

Form of OCL Invariants

 Constrains can mention
- self: the contextual

instance
- Attributes and role names
- Side-effect free methods

(stereotype <<query>>)
- Logical connectives
- Operations on integers,

reals, strings, sets, bags,
sequences

- Etc.

context Person inv:
self.age >= 0

The context is
an instance of
a class in the
UML diagram

Declares an
invariant

A boolean
constraint

5. Detailed Design – Interface Specification

75

Peter Müller – Software Engineering, SS 06

OCL Invariants: Example

 A savings account has
a non-negative balance

 Checking accounts are
owned by adults

context SavingsAccount inv:
self.amount >= 0

Account
amount

CheckingAccount SavingsAccount

Customer
age

* owner

context CheckingAccount inv:
self.owner.age >= 18

Role name

5. Detailed Design – Interface Specification

76

Peter Müller – Software Engineering, SS 06

OCL Invariants: Contexts

 Checking accounts are
owned by adults

 Accounts are owned by
adults

 Customers are adults

context CheckingAccount inv:
self.owner.age >= 18

context Account inv:
self.owner.age >= 18

context Customer inv:
self.age >= 18

Account
amount

CheckingAccount SavingsAccount

Customer
age

* owner

5. Detailed Design – Interface Specification

77

Peter Müller – Software Engineering, SS 06

forAll(expression)

isEmpty()

exists(expression)

size()

includes(object)

Collections

 OCL provides three predefined collection types
- Set, Sequence, Bag

 Common operations on collections

True iff expression is true for all elements

True iff collection contains no elements

True iff expression is true for at least one
element

Number of elements in the collection

True iff the object is an element

5. Detailed Design – Interface Specification

78

Peter Müller – Software Engineering, SS 06

Generating Collections

 Explicitly enumerating the elements

 By navigating along 1:n associations
- Navigation along a single 1:n

association yields a Set
- Navigation along a single 1:n

association labeled with the constraint
{ ordered } yields a Sequence

Account
amount

Customer
age

*
accounts

{ ordered }

Set { 1, 7, 16 }

self.accounts

5. Detailed Design – Interface Specification

79

Peter Müller – Software Engineering, SS 06

Example: Multiplicity Zero or One

Person

age

spouse

0..1

context Person inv:
spouse->size() = 1 implies
age >= 16 and spouse.spouse = self and spouse <> self

self can be
omitted

spouse
used as set

spouse used
as object

5. Detailed Design – Interface Specification

80

Peter Müller – Software Engineering, SS 06

Example: Quantification and Type Information

Account
amount

CheckingAccount SavingsAccount

Customer
age

* owner
accounts

context Customer inv:
age <= 18 implies
accounts->forAll(a | a.oclIsKindOf(SavingsAccount))

Subtype
relation

∀a∈accounts: a.oclIsKindOf(Savingsaccount)

5. Detailed Design – Interface Specification

81

Peter Müller – Software Engineering, SS 06

Example: Composite Pattern

 A composite is
the parent of its
components

 A component is
contained in its
parent composite

Leaf Composite

* Component children

parent
0..1

context Composite inv:
children->forAll(c | c.parent = self)

context Component inv:
parent->size() = 1 implies
parent.children->includes(self)

5. Detailed Design – Interface Specification

82

Peter Müller – Software Engineering, SS 06

Contracts in Eiffel: Method Specifications

 Method precondition
- Must be true before the method is executed

 Method postcondition
- Must be true after the method terminates
- old expressions is used to refer to values of the pre-state

class interface ACCOUNT feature

 withdraw (a: INTEGER) is
 require a >= 0
 ensure GetBalance() = old(GetBalance() – a)

end

5. Detailed Design – Interface Specification

83

Peter Müller – Software Engineering, SS 06

Pre- and Postconditions in OCL

 result is used to refer to return value
 Pre- and postconditions can be named (like in Eiffel)

context Account::Withdraw(a: int)
pre: a >= 0
post: GetBalance() = GetBalance@pre() - a

Context specifies
method signature

Suffix @pre is
used to refer to
prestate values

5. Detailed Design – Interface Specification

84

Peter Müller – Software Engineering, SS 06

Alternative Notation

 Contracts can be depicted as notes in diagrams
- Stereotypes instead of keywords inv, pre, post

Account
–Amount: int
#AccountId: int
+Deposit(a: int)
+Withdraw(a: int)
+GetBalance(): int

<<precondition>>
a >= 0

<<invariant>>
AccountId >= 0

<<postcondition>>
GetBalance() = GetBalance@pre() - a

5. Detailed Design – Interface Specification

85

Peter Müller – Software Engineering, SS 06

5. Detailed Design

5.1 Overview
5.2 Reuse
 5.2.1 Design Patterns
 5.2.2 Case Study: Patterns in the Java AWT
5.3 Interface Specification
5.4 Object Model Restructuring and Optimization

5. Detailed Design – Object Model Restructuring and Optimization

86

Peter Müller – Software Engineering, SS 06

Object Model Restructuring and Optimization

Delay complex
computations

Cache complex
computations

Optimize access
paths

Check use cases

Collapse classes

Revisit inheritance

Optimization Restructuring

5. Detailed Design – Object Model Restructuring and Optimization

87

Peter Müller – Software Engineering, SS 06

Increasing Inheritance

 Rearrange and adjust classes and operations to
prepare for inheritance
- Generalization
- Specialization

 Generalization is a common modeling activity
- Abstracts common behavior out of a group of classes
- If operations or attributes are repeated in 2 classes the

classes might be instances of a more general class
 Superclasses are desirable

- Increase of modularity, extensibility, and reusability

5. Detailed Design – Object Model Restructuring and Optimization

88

Peter Müller – Software Engineering, SS 06

Increasing Inheritance: Example

Student Professor

Person

email: Address

Student

email: Address

Professor

eaddr: Address

Object model
transformation

Adaptation of
attribute name

necessary

5. Detailed Design – Object Model Restructuring and Optimization

89

Peter Müller – Software Engineering, SS 06

Collapsing Classes

 Collapse a class without interesting behavior into
an attribute
- If the only operations defined on the attributes are Set()

and Get()

 Associations are more flexible than attributes but
often introduce unnecessary indirection

Person

SocialSecurity
Number

number: String

Person

SSN: String

5. Detailed Design – Object Model Restructuring and Optimization

90

Peter Müller – Software Engineering, SS 06

Optimizing Access Paths

 Add redundant associations to minimize access
cost
- What are the most frequent operations?
- How often is the operation called? (30 times a month,

every 50 ms)

 Turn classes into attributes (collapse classes)

5. Detailed Design – Object Model Restructuring and Optimization

91

Peter Müller – Software Engineering, SS 06

Caching Complex Computations

 ShortestPath is an expensive
operation

 Result can be cached

Node

Edge

distance: int

Graph

shortestPath()

start: Node
end: Node

*

*
2

2

6

4
1

1

3

4
7

3

4

5

3

start: Node
end: Node
sp: Path

return sp;

5. Detailed Design – Object Model Restructuring and Optimization

92

Peter Müller – Software Engineering, SS 06

Keeping Caches Up-to-Date: Eager Update

 Operations that change
the state of the data
structure update the
cache

 Possible if cache update
is cheap or state
changes are rare

 Also called push
solution

void addEdge(Node n, Node m) {
 // add (n,m) to edges
 sp = computeShortestPath();
}

Path shortestPath() {
 return sp;
}

5. Detailed Design – Object Model Restructuring and Optimization

93

Peter Müller – Software Engineering, SS 06

Keeping Caches Up-to-Date: Lazy Update

 Operations that change
the state of the data
structure increment a
version counter or set
a flag

 Access to cached value
updates cache if cache
is outdated

 Also called pull solution

void addEdge(Node n, Node m) {
 // add (n,m) to edges
 sp = null; // invalidate cache
}

Path shortestPath() {
 if (sp == null)
 sp = computeShortestPath();
 return sp;
}

5. Detailed Design – Object Model Restructuring and Optimization

94

Peter Müller – Software Engineering, SS 06

Keeping Caches Up-to-Date: Active Values

 Observer pattern
- Active value is subject
- Cache is observer

 Operations that change
the state of the data
structure trigger an
event (notify)

 Cache can be updated
eagerly or lazily

void addEdge(Node n, Node m) {
 // add (n,m) to edges
 notify(); // trigger event
}

void update() { // eager update
 sp = computeShortestPath();
}

Path shortestPath() {
 return sp;
}

5. Detailed Design – Object Model Restructuring and Optimization

95

Peter Müller – Software Engineering, SS 06

Delaying Complex Computations

 Computation is delayed until result is accessed
 Example: lazy object initialization

Image

filename: String
data: byte[]
paint()

RealImage

data: byte[]
paint()

Image

filename: String
paint()

ImageProxy

filename: String
paint()

1 0..1
image

5. Detailed Design – Object Model Restructuring and Optimization

96

Peter Müller – Software Engineering, SS 06

Design Optimizations: Summary

 Design optimizations are an important part of the
detailed design phase
- The requirements analysis model is semantically correct

but often too inefficient if directly implemented
- Strike a balance between efficiency and clarity

Source
code space Model space

Aim for
clarity Implementation

Measure
performance

Optimize
where

necessary

5. Detailed Design – Object Model Restructuring and Optimization

	Software Engineering�Detailed Design
	5. Detailed Design
	Bloopers
	Why do Movies Contain Bugs?
	Waterfall Model of Project Life Cycle
	Detailed Design: Closing the Gap
	Detailed Design
	Detailed Design Activities
	Why do Movies Contain Bugs?
	Detailed Design Activities (cont’d)
	Detailed Design Activities (cont’d)
	5. Detailed Design
	Implementation of Application Domain Objects
	Application vs. Solution Objects: Example
	Application vs. Solution Objects
	Finding Solution Objects
	Design Patterns
	Composite Pattern: Motivation
	Composite Pattern: Example
	Composite Pattern: Structure
	Composite Pattern: Statement Syntax
	Composite Pattern: Properties
	Floral Patterns
	Composite Pattern: Implementation Issues
	Abstract Factory Pattern: Motivation
	Abstract Factory Pattern: Example
	Abstract Factory Pattern: Structure
	Abstract Factory Pattern: Properties
	Observer Pattern: Motivation
	Observer Pattern: Structure
	Observer Pattern: Collaborations
	Observer Pattern: Properties
	Strategy Pattern: Motivation
	Strategy Pattern: Example
	Strategy Pattern: Structure
	Strategy Pattern: Properties
	Adapter Pattern: Motivation
	Adapter Pattern: Example
	Adapter Pattern: Structure
	Adapter Pattern: Properties
	Bridge Pattern: Motivation
	Bridge Pattern: Motivation (cont’d)
	Bridge Pattern: Example
	Bridge Pattern: Structure
	Adapter vs. Bridge
	Facade Pattern: Motivation
	Facade Pattern: Example
	Subsystem Design with Facade and Adapter
	Design Patterns Encourage Reusable Designs
	The “Ingredients” of Design Patterns
	Inheritance and Aggregation: Bridge Pattern
	Textual Clues in Nonfunctional Requirements
	5. Detailed Design
	AWT: Overview
	Component Hierarchy: Composite Pattern
	Event Communication
	Component / Listener: Observer Pattern
	Platform Independence: Bridge Pattern
	Platform Independence: Peer Creation
	Platform Independence: Abstract Factory
	Displaying Containers: Layout Managers
	Layout Managers: Strategy Pattern
	5. Detailed Design
	Specifying Interfaces
	Information Hiding
	Visibility Information
	Implementation of UML Visibility in Java
	Information Hiding Heuristics
	UML is not Enough
	UML is not Enough (cont’d)
	Expressing Contracts
	Contracts in Eiffel: Object Invariants
	Object Constraint Language – OCL
	Form of OCL Invariants
	OCL Invariants: Example
	OCL Invariants: Contexts
	Collections
	Generating Collections
	Example: Multiplicity Zero or One
	Example: Quantification and Type Information
	Example: Composite Pattern
	Contracts in Eiffel: Method Specifications
	Pre- and Postconditions in OCL
	Alternative Notation
	5. Detailed Design
	Object Model Restructuring and Optimization
	Increasing Inheritance
	Increasing Inheritance: Example
	Collapsing Classes
	Optimizing Access Paths
	Caching Complex Computations
	Keeping Caches Up-to-Date: Eager Update
	Keeping Caches Up-to-Date: Lazy Update
	Keeping Caches Up-to-Date: Active Values
	Delaying Complex Computations
	Design Optimizations: Summary

