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5. Detailed Design 
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 5.2.1 Design Patterns 
 5.2.2 Case Study: Patterns in the Java AWT 
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5.4 Object Model Restructuring and Optimization 

5. Detailed Design – Overview 
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Bloopers 

 Speed 
- Harry’s partner shoots Harry in the right leg 
- Throughout the movie, Harry limps on the left leg 

 
 Star Wars 

- At the end of Episode V, Han Solo is frozen into 
carbonite 

- When being frozen, Han Solo is wearing a dark jacket 
- When thawed, he is wearing a white shirt 

5. Detailed Design – Overview 
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Why do Movies Contain Bugs? 

Cooperation of 
many different 

people 

High pressure 
of release date 
during editing 

Details (props, 
costumes) 

changed during 
production 

Some scenes 
re-shot out of 

schedule 

Scenes shot 
out of 

sequence 

5. Detailed Design – Overview 
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Waterfall Model of Project Life Cycle 

Analysis 

Validation 
(Test) 

System Design 

Implementation 

Deployment 

Requirements 
Elicitation 

Detailed Design 

Design 

5. Detailed Design – Overview 
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Detailed Design: Closing the Gap 

Real Machine 

Application Objects 

Solution Objects 

Analysis defines 
application 

objects 

System design 
selects  

off-the-shelf 
components and 

frameworks 

Virtual Machine 

Detailed design 
identifies new 
objects and 

adjusts 
components 

5. Detailed Design – Overview 
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Detailed Design 

 Adding details to the requirements analysis and 
system design, and making implementation 
decisions 

 

 Choosing among different ways to implement the 
analysis model and system design 
- Goals: minimize execution time, memory, and other 

measures of cost 
 

 Providing the basis for implementation 

5. Detailed Design – Overview 
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Detailed Design Activities 

Identify Patterns 

Adjust Components 

Adjust Patterns 

Identify Components 

Select Subsystem 
Reuse 

5. Detailed Design – Overview 
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Why do Movies Contain Bugs? 

Cooperation of 
many different 

people 

High pressure 
of release date 
during editing 

Details (props, 
costumes) 

changed during 
production 

Some scenes 
re-shot out of 

schedule 

Scenes shot 
out of 

sequence 
Details 

(interfaces, 
contracts) 

changed during 
development 

Cooperation of 
many different 

people 

High pressure 
of release date 

Some classes 
re-designed out 

of schedule 

Classes 
implemented 
independently 

Software Systems Face Similar Problems 
5. Detailed Design – Overview 
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Detailed Design Activities (cont’d) 

Identify Patterns 

Adjust Components 

Adjust Patterns 

Identify Components 

Select Subsystem 

Specify types and 
signatures 

Specify visibility 

Specify constraints 

Identify missing 
attributes & methods 

Specify exceptions 

Reuse Specification 

5. Detailed Design – Overview 
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Detailed Design Activities (cont’d) 

Delay complex 
computations 

Cache complex 
computations 

Optimize access 
paths 

Check use cases 

Collapse classes 

Revisit inheritance 

Optimization Restructuring 

5. Detailed Design – Overview 
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5. Detailed Design 

 
5.1 Overview 
5.2 Reuse 
 5.2.1 Design Patterns 
 5.2.2 Case Study: Patterns in the Java AWT 
5.3 Interface Specification 
5.4 Object Model Restructuring and Optimization 

5. Detailed Design – Reuse 
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Implementation of Application Domain Objects 

 New classes are often needed during detailed 
design 
 

 The implementation of algorithms may necessitate 
objects to hold values (e.g., arrays) 

 New low-level operations may be needed during 
the decomposition of high-level operations 

5. Detailed Design – Reuse 
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Application vs. Solution Objects: Example 

Requirements Analysis 
(Language of application 

domain) 
 

Detailed Design 
(Language of solution 

domain) 

Account Account 

DB_Handler ClientId 

5. Detailed Design – Reuse 
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Application vs. Solution Objects 

 Application objects 
- Also called domain objects 
- Represent relevant concepts of the domain  
- Are identified by application domain specialists and by 

end users 
 Solution objects 

- Represent concepts that have no counterpart in the 
application domain 

- Are identified by developers 
- Examples: persistent data stores, user interface objects, 

middleware 

5. Detailed Design – Reuse 
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Finding Solution Objects 

 There is a need for reusable and flexible designs 
 Design knowledge complements application 

domain knowledge and solution domain knowledge 

“Many objects in a design come from the analysis 
model. But object-oriented designs often end up with 
classes that have no counterparts in the real world. 
[…] Strict modeling of the real world leads to a 
system that reflects today's realities but not 
necessarily tomorrow's. The abstractions that emerge 
during design are key to making a design flexible.” 
      [Gamma et al., 1995] 

5. Detailed Design – Reuse 
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Design Patterns 

“Design patterns help you identify less-obvious 
abstractions and the objects that can capture them. 
For example, objects that represent a process or 
algorithm don't occur in nature, yet they are a crucial 
part of flexible design. […] These objects are seldom 
found during analysis or even the early stages of 
design; they're discovered later in the course of 
making a design more flexible and reusable.” 
      [Gamma et al., 1995] 

5. Detailed Design – Reuse 
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Composite Pattern: Motivation 

 A program manipulates 
- Individual units (e.g., graphical objects) 

 
 

 

- Groups of units 
 
 
 

 Wanted: a design that allows algorithms to deal 
with single units and groups in a uniform way 

Account 

Account 
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Composite Pattern: Example 

Line 
Draw( ) 

Box 
Draw( ) 

Text 
Draw( ) 

Group 

Draw( ) 
Add( Graphic ) 
Remove( Graphic ) 
GetChild( int ) 

* Graphic 
Draw( ) 

Used by 
client 

5. Detailed Design – Reuse 
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Composite Pattern: Structure 

 Allows hierarchical grouping of components 

Leaf 
Operation( ) 

Composite 

Operation( ) 
Add( Component ) 
Remove( Component ) 
GetChild( int ) 

* Component 
Operation( ) 

children 

forall g in children: 
g.Operation() 

5. Detailed Design – Reuse 
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Composite Pattern: Statement Syntax 

Simple 
Statement 

* Statement 

If 
Statement 

Return 
Statement 

Assignment 
Statement 

1..2 

Block 
Statement 

5. Detailed Design – Reuse 
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Composite Pattern: Properties 

 Defines class hierarchies consisting of primitive 
objects and composite objects 
- Objects can be composed hierarchically 
- Composite objects can be used like primitive objects 

 Makes client simple 
 Makes it easier to add new kinds of components 
 Can make the design overly general 

- Difficult to restrict composites 
- Example: no return statement in a block 

5. Detailed Design – Reuse 
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 Select a design pattern and implement it 
 

 Is it as simple as that? 

Floral Patterns 
5. Detailed Design – Reuse 

http://images.google.de/imgres?imgurl=http://www.hortus-domicilium.de/images/big/blumenmusterrot.jpg&imgrefurl=http://www.hortus-domicilium.de/d_PB0314_Hochwertiges_Dekorationspapier_Rotes_Blumenmuster183.htm&h=640&w=480&sz=139&tbnid=lSTohFkDEOYJ:&tbnh=135&tbnw=101&hl=de&start=3&prev=/images%3Fq%3Dblumenmuster%26svnum%3D10%26hl%3Dde%26lr%3D%26rls%3DGGLG,GGLG:2005-46,GGLG:de%26sa%3DN
http://www.best-size.de/media/fr_so_05.139.jpg
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Composite Pattern: Implementation Issues 

 Explicit parent references 
- Simplifies traversal and deletion of components 

 Sharing components 
- Reduces storage requirements 

 Child ordering 
- Might be required by the design (e.g., Block Statement) 

 Caching to improve performance 
- Improves performance (e.g., bounding box for Group) 

 Data structure for storing components 
- Affects performance (lists, trees, arrays, hash tables) 

5. Detailed Design – Reuse 
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Abstract Factory Pattern: Motivation 

 A client class wants to create sockets for network 
communication 

 
 
 

 The concrete implementation of the socket 
depends on the operating system 
 
 

 The client class should be platform-independent 

Windows 
Socket 

Unix 
Socket 

Client Socket 

5. Detailed Design – Reuse 
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Abstract Factory Pattern: Example 

Client 

Socket 

SocketFactory 

Unix 
Socket 

Windows 
Socket 

Windows 
SocketFactory 

Unix 
SocketFactory 

Creates 
object 

5. Detailed Design – Reuse 
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Abstract Factory Pattern: Structure 

Client 

Abstract 
ProductA 

Abstract 
Factory 

Concrete 
ProductA1 

Concrete 
ProductA2 

Concrete 
Factory2 

Concrete 
Factory1 

Creates 
object 

Abstract 
ProductB 

Concrete 
ProductB1 

Concrete 
ProductB2 

CreateProductA( ) 
CreateProductB( ) 

CreateProductA( ) 
CreateProductB( ) 

CreateProductA( ) 
CreateProductB( ) 

5. Detailed Design – Reuse 
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Abstract Factory Pattern: Properties 

 Isolates concrete classes 
- Helps control what classes are instantiated 
- Isolates clients from implementation classes  

(clients manipulate objects through interfaces) 
 

 Makes exchanging product families easy 
- Class of concrete factory appears only once in program 

 

 Supporting new kinds of products is difficult 
- Affects interface of abstract factory and all concrete 

factories 

5. Detailed Design – Reuse 
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Observer Pattern: Motivation 

 Maintaining consistency between loosely  
coupled objects 

 Many dependent objects have to be informed when 
one object changes its state 

0

10

20

30

40

50

60

a b c

a b c
X 60 30 10
Y 50 30 20
Z 80 10 10

a

b

c

a = 50% 
b = 30% 
c = 20% Change notification 

Requests, modifications 

5. Detailed Design – Reuse 
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Observer Pattern: Structure 

Observer 
Update( ) * 

Subject 
Attach( Observer ) 
Detach( Observer ) 
Notify( ) 

observers 

ConcreteSubject 

GetState( ) 
SetState( … ) 

subjectState 
ConcreteObserver 

Update( ) 

observerState 
subject 

forall o in 
observers: 
o.Update( ) 

return 
subjectState 

observerState = 
subject.GetState( ) 

5. Detailed Design – Reuse 
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Observer Pattern: Collaborations 
aConcreteSubject concreteObserver1 concreteObserver2 

setState( … ) 

notify( ) 

update( ) 

getState( ) 

update( ) 

getState( ) 

5. Detailed Design – Reuse 
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Observer Pattern: Properties 

 Abstract coupling between subject and observer 
- Subject does not know concrete class of observer 

 Support for broadcast communication 
- Freedom to add and remove observers 

 
 Example 

- Debuggers (subject) broadcasts event when it reaches a 
breakpoint 

- Editor (observer) shows line of code 
- Stack tracer (observer) shows stack trace. 

5. Detailed Design – Reuse 
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Strategy Pattern: Motivation 

 A program uses 3D-shapes that can be rendered 
- Rendering code too complex to be included in Shape 

 Different rendering algorithms are appropriate at 
different times 
- Do not implement the ones we do not use 

 
 
 

 Rendering algorithm should not be hard-wired 
- New algorithms may be added 

5. Detailed Design – Reuse 
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Strategy Pattern: Example 

Shape 
Render( ) 

RayTracer 
Render( ) 

Radiosity 
Render( ) 

Renderer 
Render( ) 

Used by 
client 

5. Detailed Design – Reuse 
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Strategy Pattern: Structure 

Context 

ContextInter( ) 

Concrete 
Strategy_1 

AlgorithmInter( ) 

Concrete 
Strategy_2 

AlgorithmInter( ) 

Strategy 

AlgorithmInter( ) 

strategy 

5. Detailed Design – Reuse 
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Strategy Pattern: Properties 

 Supports families of algorithms 
- Sorting, line breaking, layouting, etc. 
- Clients have a choice (e.g., different space and time 

trade-offs) 
 

 Alternative to inheritance 
- Behavior not hard-wired into context (dynamic exchange) 
- Separates context from algorithm (easier to maintain) 

 

 Communication overhead 
- Arguments must be passed to strategies 

5. Detailed Design – Reuse 



37 

Peter Müller – Software Engineering, SS 06 

Adapter Pattern: Motivation 

 A program expects an interface that is 
incompatible with the interface of a reusable class 
 

 
 

 
 
 

 Common problem with legacy code 
 Also known as wrapper 

Line 
BoundingBox( ) 

TextShape 
BoundingBox( ) 

Shape 
BoundingBox( ) 

TextEditor 
GetExtent( ) 

Legacy 
code 

Legacy 
code 

Used by 
client 

5. Detailed Design – Reuse 
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Adapter Pattern: Example 

Line 
BoundingBox( ) 

DrawingEditor 

TextShape 
BoundingBox( ) 

Shape 
BoundingBox( ) 

TextEditor 
GetExtent( ) 

text 

return 
text.GetExtent( ) 

5. Detailed Design – Reuse 
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Adapter Pattern: Structure 

 Delegation used to bind Adapter and Adaptee 
 Subtyping used to specify interface of Adapter 
 Target and Adaptee exist before Adapter 
 Target may be realized as interface in Java 

Adapter 
Request( ) 

Target 
Request( ) 

Adaptee 
SpecificRequest( ) 

adaptee 

Used by 
client 

adaptee.SpecificRequest( ) 

5. Detailed Design – Reuse 
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Adapter Pattern: Properties 

 How much adaptation does an adapter do? 
- From simple interface conversion (renaming) to entirely 

different set of operations 
 

 Variant: class adapter 
- Adapter inherits from Target and Adaptee 
- No aggregation and delegation 
- Requires multiple inheritance if Target is a class 

5. Detailed Design – Reuse 
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Bridge Pattern: Motivation 

 A program uses 
socket abstractions 
to communicate 
 

 Different socket 
abstractions 
 

 Different socket 
implementations 

Socket 

Open( ) 

SSLSocket 

Socket 

Open( ) 

Unix 
Socket 

Open( ) 

Windows 
Socket 

Open( ) 

Compression 
Socket  

5. Detailed Design – Reuse 
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Bridge Pattern: Motivation (cont’d) 

SSLSocket Compression 
Socket 

Socket 

Open( ) 

Windows 
SSLSocket 

Open( ) 

Unix 
SSLSocket 

Open( ) 

Windows 
Compression 

Socket 
Open( ) 

Unix 
Compression 

Socket 
Open( ) 

Implementation 
cannot be changed 

dynamically 

Specialization in 
two dimensions 

leads to explosion 
of class hierarchy 

5. Detailed Design – Reuse 
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Socket Implementation Socket Abstraction 

Bridge Pattern: Example 

Socket 

Open( ) 

SSLSocket 

SocketImpl 

Open( ) 

Unix 
SocketImpl 
Open( ) 

Windows 
SocketImpl 
Open( ) 

Compression 
Socket  

Used by 
client 

5. Detailed Design – Reuse 
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Bridge Pattern: Structure 

 Decouples an abstraction from its implementation 
 Allows different implementations of an interface to 

be exchanged dynamically 

Refined 
Abstraction_A 

Refined 
Abstraction_B 

Abstraction 

Operation( ) 

Concrete 
Implementor_1 
OperationImpl( ) 

Concrete 
Implementor_2 
OperationImpl( ) 

Implementor 

OperationImpl( ) 

imp 

imp.OperationImpl( ) 

5. Detailed Design – Reuse 
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Adapter vs. Bridge 

 Both are used to hide the details of the underlying 
implementation 

 Adapter pattern 
- Makes unrelated components work together 
- Applied to systems after they are designed 

(reengineering, interface engineering) 
 Bridge Pattern 

- Used up-front in a design to let abstractions and 
implementations vary independently 

- Green field engineering of an “extensible system” 

5. Detailed Design – Reuse 
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Facade Pattern: Motivation 

 Subsystem 1 can call 
operations on any 
component of Subsystem 2 

 Advantages 
- Efficiency 

 Disadvantages 
- Caller does not understand 

how the subsystem works 
- Subsystem will be misused, 

leading to non-maintainable 
code 

Subsystem 1 

Subsystem 2 

5. Detailed Design – Reuse 
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Facade Pattern: Example 

 Provides a unified 
interface to a set of 
objects in a subsystem 

 Defines a higher-level 
interface that makes the 
subsystem easier to use 

 Reduces coupling 
 Does not prevent direct 

usage of objects in a 
subsystem 

Subsystem 1 

Subsystem 2 

Facade 

5. Detailed Design – Reuse 
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Subsystem Design with Facade and Adapter 

 Ideal structure of a subsystem 
 An interface object  

(boundary object) 
 A set of application domain 

objects (entity objects) 
modeling real entities or 
existing systems 
- Some of the entity objects are 

interfaces to existing systems 
 One or more control objects 

Facade 

Interface to existing 
systems: Adapter 
 Provides interface 

to existing system 
 Existing system is 

not necessarily 
object-oriented! 

5. Detailed Design – Reuse 
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Design Patterns Encourage Reusable Designs 

 Facade should be used by all subsystems  
- Defines all the services of the subsystem 
- Delegates requests to components within the subsystem 
- Most of the time the facade need not be changed when 

the component is changed 
 Adapters should be used to interface to existing 

components 
 Bridges should be used to interface sets of objects 

- Where the full set is not completely known at design time 
- When the subsystem must be extended later after the 

system has been deployed (dynamic extension) 

5. Detailed Design – Reuse 
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The “Ingredients” of Design Patterns 

 Inheritance (subclassing) 
- Establishes “is-a” relation 
- Enables subtype polymorphism 

 
 Aggregation 

- Establishes “has-a” relation 
- No subtyping in general 

Person 

Student 

Car Motor 

 Design patterns provide guidance how to use 
inheritance and aggregation 

5. Detailed Design – Reuse 
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Inheritance and Aggregation: Bridge Pattern 

Refined 
Abstraction_A 

Refined 
Abstraction_B 

Abstraction 

Operation( ) 

Concrete 
Implementor_1 
OperationImpl( ) 

Concrete 
Implementor_2 
OperationImpl( ) 

Implementor 

OperationImpl( ) 

Subtyping enables 
polymorphic client 

code 

Specialization of 
operations 

Aggregation 
decouples caller 

from 
implementation 

5. Detailed Design – Reuse 
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Textual Clues in Nonfunctional Requirements 

 Use textual clues to identify design patterns 
- (similar to Abbot’s technique in analysis) 

“complex structure” Composite 

“must interface with an existing object” Adapter 
“must interface to a set of existing objects” Facade 
“must deal with the interface to several 
systems some of them to be developed in 
the future” 

Bridge 

“must be extensible”, “must be scalable” Observer 
“policy independent from mechanism” Strategy 

5. Detailed Design – Reuse 
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5. Detailed Design 

 
5.1 Overview 
5.2 Reuse 
 5.2.1 Design Patterns 
 5.2.2 Case Study: Patterns in the Java AWT 
5.3 Interface Specification 
5.4 Object Model Restructuring and Optimization 

5. Detailed Design – Reuse 
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AWT: Overview 

 AWT: Abstract Window Toolkit 
 Elements of the GUI are 

represented by components 
 Display and layout of the 

components have to be 
specified 

 Components receive events 
from the window system and 
propagate them to so-called 
listeners 

5. Detailed Design – Reuse 
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Component Hierarchy: Composite Pattern 

 Components can be 
grouped into containers 

 Containers are also 
components 

* Component 

Window Panel 

Container Button Checkbox 

Frame 

Panel 

5. Detailed Design – Reuse 
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Event Communication 

 Objects can register 
at a component as 
observer (listener) 
for one or several 
event types 

 Upon occurrence of 
an event, the event 
source informs all 
registered objects 
by invoking a 
method 

1. User clicks 
on Button 2. actionPerformed 

event is associated 
with button 

listener1 

button 

listener2 3. Listeners 
are informed 

5. Detailed Design – Reuse 
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Component / Listener: Observer Pattern 

ActionListener 
actionPerformed( … ) 

* actionListener Button 

MyActionListener 
actionPerformed( … ) 

addActionListener( … ) 
removeActionListener( … ) 
processActionEvent( … ) 

Update method receives 
event as parameter 

Notify method called 
by the underlying 
window system 

No abstract 
Subject 

ConcreteObserver 
does not know 

ConcreteSubject 

5. Detailed Design – Reuse 
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Platform Independence: Bridge Pattern 

 AWT components are platform-independent 
 Operations that depend on the window system are 

delegated to platform-specific peer objects  

Component 

Button Checkbox 

Component 
Peer 

Button 
Peer 

Checkbox 
Peer 

X 
ButtonPeer 

Motif 
ButtonPeer 

Platform-specific 
implementation 

Interface 
hierarchy 

5. Detailed Design – Reuse 
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Platform Independence: Peer Creation 

 Component objects have references to their peers 
 
 
 

 Platform-independent components cannot 
instantiate platform-dependent peers 

 
 
 

 Solution: abstract factory 

Component Component 
Peer 

Button Button 
Peer 

5. Detailed Design – Reuse 
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Platform Independence: Abstract Factory 

Button Toolkit 

X11.XToolkit motif.MToolkit 

Client createButton( … ) 
createCheckbox( … ) 

createButton( … ) 
createCheckbox( … ) 

createButton( … ) 
createCheckbox( … ) 

Button 
Peer 

X 
ButtonPeer 

Motif 
ButtonPeer 

Abstract 
factory 

Concrete 
factory 

Concrete 
product 

Abstract 
product 

5. Detailed Design – Reuse 
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Displaying Containers: Layout Managers 

 Layout of components in 
one container is 
computed by a layout 
manager 

 The layout manager can 
be set for each container 

Border- 
Layout 

Flow- 
Layout 

Frame 

Panel 

5. Detailed Design – Reuse 
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Layout Managers: Strategy Pattern 

Container 

layout( ) 

BorderLayout 

layoutContainer( ) 

FlowLayout 

layoutContainer( ) 

LayoutManager 

layoutContainer( ) 

5. Detailed Design – Reuse 
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5. Detailed Design 

 
5.1 Overview 
5.2 Reuse 
 5.2.1 Design Patterns 
 5.2.2 Case Study: Patterns in the Java AWT 
5.3 Interface Specification 
5.4 Object Model Restructuring and Optimization 

5. Detailed Design – Interface Specification 
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Specifying Interfaces 

Requirements Analysis 
 Attributes 
 Operations without 

parameters and types 

Detailed Design 
 Visibility 
 Signatures 
 Contracts 

Account 
Amount 
AccountId 
Deposit( ) 
Withdraw( ) 
GetBalance( ) 

Account 
–Amount: int 
#AccountId: int 
+Deposit( a: int ) 
+Withdraw( a: int ) 
+GetBalance( ): int 

<<precondition>> 
a >= 0 

5. Detailed Design – Interface Specification 
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Information Hiding 
 Definition 

Information hiding is a technique for reducing the 
dependencies between modules: 
- The intended client is provided with all the information 

needed to use the module correctly, and with nothing 
more 

- The client uses only the (publicly) available information 

5. Detailed Design – Interface Specification 
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Visibility Information 

 UML defines three levels of visibility 
- Similar to C++, Java, and C# 

 

 Private (implementation interface): “–” 
- Private features can be accessed only by the class in 

which they are declared (not even subclasses) 
 Protected (subclass interface): “#” 

- Protected features can be accessed by the class in which 
they are defined and by any descendent of the class 

 Public (client interface): “+” 
- Public features can be accessed by any class 

5. Detailed Design – Interface Specification 
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Implementation of UML Visibility in Java 

 protected has a slightly different meaning in Java 
- Also visible to classes in the same package 

 Eiffel provides more fine-grained visibility control 

Account 
–Amount: int 
#AccountId: int 
+Deposit( a: int ) 
+Withdraw( a: int ) 
+GetBalance( ): int 

class Account { 
  private int amount; 
  protected int accountId; 
 
  public void deposit( int a )  {…} 
  public void withdraw( int a )  {…} 
  public int getBalance( )   {…} 
} 

5. Detailed Design – Interface Specification 
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Information Hiding Heuristics 

 Public interface for classes and subsystems 
- Use the facade pattern  
- Define abstract interfaces that mediate between system 

and external world as well as between subsystems 
 The less an operation knows the less likely it will be 

affected by any changes 
 Access attributes only via operations 

- Only the operations of a class should manipulate its 
attributes (no public attributes) 

- Trade-off: Information hiding vs. efficiency 

5. Detailed Design – Interface Specification 
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UML is not Enough 

 Urs is married to Sile, Sile is married to Beat, and 
Beat is not married at all 

 A valid instantiation of the class diagram! 
 Associations describe relations between classes 

Person 

Marry( ) 

spouse 

0..1 
Urs: Person 

Sile: Person Beat: Person 

spouse 

spouse “is married to” 

5. Detailed Design – Interface Specification 
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UML is not Enough (cont’d) 

 Urs is married to Sile, who is only eleven 
 A valid instantiation of the class diagram! 
 Class diagrams do not restrict values of attributes 

Person 

age 

spouse 

0..1 

Married persons are at 
least 16 years old Sile: Person 

spouse 

spouse 

age = 11 

Urs: Person 

age = 18 

5. Detailed Design – Interface Specification 
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Expressing Contracts 

 Natural language 
- Advantage: Easy to 

understand and use 
- Disadvantage: Ambiguous 

 Mathematical notation 
- Advantage: Precise 
- Disadvantage: Difficult for 

normal customers 
 Contract language 

- Formal, but easy to use 
- Examples: Eiffel, JML 

spouse expresses 
“is married to” 

spouse /= Void implies  
spouse /= Current and  
spouse.spouse = Current 

spouse: Person → Person 
  spouse = spouse–1 

  souse ∩ id = ∅ 

5. Detailed Design – Interface Specification 

∀p: Person: p ∈ dom( spouse ) ⇒ 
  spouse( p ) ∈ dom( spouse ) ∧ 
  p ≠ spouse( p ) ∧ 
  p = spouse( spouse( p ) ) 
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Contracts in Eiffel: Object Invariants 

 
 Associated with classes  

 
 Describe consistency 

criteria of objects and 
object structures 

 
 Hold for all instances of a 

class 

class PERSON feature 
 
  age: INTEGER 
  spouse: PERSON  
 
  invariant 
    spouse /= Void  
    implies 
      spouse /= Current  
    and 
      spouse.spouse = Current 
    and 
      age >= 16 
   
end -- class PERSON  

5. Detailed Design – Interface Specification 



73 

Peter Müller – Software Engineering, SS 06 

Object Constraint Language – OCL 

 The contract language for UML 
 

 Used to specify 
- Invariants of objects 
- Pre- and postconditions of operations 
- Guards (for instance, in state diagrams) 

 

 Special support for 
- Navigation through UML class diagram 
- Associations with multiplicities 

5. Detailed Design – Interface Specification 
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Form of OCL Invariants 

 Constrains can mention 
- self: the contextual 

instance 
- Attributes and role names 
- Side-effect free methods 

(stereotype <<query>>) 
- Logical connectives 
- Operations on integers, 

reals, strings, sets, bags, 
sequences 

- Etc. 
 

context Person inv:  
self.age >= 0 

The context is 
an instance of 
a class in the 
UML diagram  

Declares an 
invariant 

A boolean 
constraint 

5. Detailed Design – Interface Specification 
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OCL Invariants: Example 

 A savings account has 
a non-negative balance 

 

 Checking accounts are 
owned by adults 

context SavingsAccount inv:  
self.amount >= 0 

Account 
amount 

CheckingAccount SavingsAccount 

Customer 
age 

* owner 

context CheckingAccount inv:  
self.owner.age >= 18 

Role name 

5. Detailed Design – Interface Specification 
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OCL Invariants: Contexts 

 Checking accounts are 
owned by adults 

 

 Accounts are owned by 
adults 

 

 Customers are adults 

context CheckingAccount inv:  
self.owner.age >= 18 

context Account inv:  
self.owner.age >= 18 

context Customer inv:  
self.age >= 18 

Account 
amount 

CheckingAccount SavingsAccount 

Customer 
age 

* owner 

5. Detailed Design – Interface Specification 
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forAll( expression ) 

isEmpty( ) 

exists( expression ) 

size( ) 

includes( object ) 

Collections 

 OCL provides three predefined collection types 
- Set, Sequence, Bag 

 Common operations on collections 

True iff expression is true for all elements 

True iff collection contains no elements 

True iff expression is true for at least one 
element 

Number of elements in the collection 

True iff the object is an element 

5. Detailed Design – Interface Specification 
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Generating Collections 

 Explicitly enumerating the elements 
 

 By navigating along 1:n associations 
- Navigation along a single 1:n 

association yields a Set 
- Navigation along a single 1:n 

association labeled with the constraint  
{ ordered } yields a Sequence 

Account 
amount 

Customer 
age 

* 
accounts 

{ ordered } 

Set { 1, 7, 16 } 

self.accounts 

5. Detailed Design – Interface Specification 
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Example: Multiplicity Zero or One 

Person 

age 

spouse 

0..1 

context Person inv:  
spouse->size( ) = 1 implies   
age >= 16 and spouse.spouse = self and spouse <> self 
 

self can be 
omitted 

spouse 
used as set 

spouse used 
as object 

5. Detailed Design – Interface Specification 
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Example: Quantification and Type Information 

Account 
amount 

CheckingAccount SavingsAccount 

Customer 
age 

* owner 
accounts 

context Customer inv:  
age <= 18 implies 
accounts->forAll( a | a.oclIsKindOf( SavingsAccount ) ) 

Subtype 
relation 

∀a∈accounts: a.oclIsKindOf( Savingsaccount )  

5. Detailed Design – Interface Specification 
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Example: Composite Pattern 

 A composite is 
the parent of its 
components 

 A component is 
contained in its 
parent composite 

Leaf Composite 

* Component children 

parent 
0..1 

context Composite inv:  
children->forAll( c | c.parent = self ) 

context Component inv:  
parent->size( ) = 1 implies 
parent.children->includes( self ) 

5. Detailed Design – Interface Specification 
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Contracts in Eiffel: Method Specifications 

 Method precondition 
- Must be true before the method is executed 

 Method postcondition 
- Must be true after the method terminates 
- old expressions is used to refer to values of the pre-state 

class interface ACCOUNT feature 
 
  withdraw ( a: INTEGER ) is 
    require a >= 0 
    ensure GetBalance( ) = old( GetBalance( ) – a ) 
       
end 

5. Detailed Design – Interface Specification 
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Pre- and Postconditions in OCL 

 result is used to refer to return value 
 Pre- and postconditions can be named (like in Eiffel) 

context Account::Withdraw( a: int ) 
pre:  a >= 0 
post:  GetBalance( ) = GetBalance@pre( ) - a 

Context specifies 
method signature 

Suffix @pre is 
used to refer to 
prestate values 

5. Detailed Design – Interface Specification 
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Alternative Notation 

 Contracts can be depicted as notes in diagrams 
- Stereotypes instead of keywords inv, pre, post 

Account 
–Amount: int 
#AccountId: int 
+Deposit( a: int ) 
+Withdraw( a: int ) 
+GetBalance( ): int 

<<precondition>> 
a >= 0 

<<invariant>> 
AccountId >= 0 

<<postcondition>> 
GetBalance( ) = GetBalance@pre( ) - a 

5. Detailed Design – Interface Specification 
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5. Detailed Design 

 
5.1 Overview 
5.2 Reuse 
 5.2.1 Design Patterns 
 5.2.2 Case Study: Patterns in the Java AWT 
5.3 Interface Specification 
5.4 Object Model Restructuring and Optimization 
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Object Model Restructuring and Optimization 

Delay complex 
computations 

Cache complex 
computations 

Optimize access 
paths 

Check use cases 

Collapse classes 

Revisit inheritance 

Optimization Restructuring 

5. Detailed Design – Object Model Restructuring and Optimization 
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Increasing Inheritance 

 Rearrange and adjust classes and operations to 
prepare for inheritance 
- Generalization 
- Specialization 

 Generalization is a common modeling activity 
- Abstracts common behavior out of a group of classes 
- If operations or attributes are repeated in 2 classes the 

classes might be instances of a more general class 
 Superclasses are desirable 

- Increase of modularity, extensibility, and reusability 

5. Detailed Design – Object Model Restructuring and Optimization 
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Increasing Inheritance: Example 

Student Professor 

Person 

email: Address 

Student 

email: Address 

Professor 

eaddr: Address 

Object model 
transformation 

Adaptation of 
attribute name 

necessary 
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Collapsing Classes 

 Collapse a class without interesting behavior into 
an attribute  
- If the only operations defined on the attributes are Set( ) 

and Get( ) 
 
 
 
 
 

 Associations are more flexible than attributes but 
often introduce unnecessary indirection 

Person 

SocialSecurity 
Number 

number: String 

Person 

SSN: String 
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Optimizing Access Paths 

 Add redundant associations to minimize access 
cost 
- What are the most frequent operations? 
- How often is the operation called? (30 times a month, 

every 50 ms) 
 

 Turn classes into attributes (collapse classes) 
 

5. Detailed Design – Object Model Restructuring and Optimization 
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Caching Complex Computations 

 ShortestPath is an expensive 
operation 

 Result can be cached 

Node 

Edge 

distance: int 

Graph 

shortestPath( ) 

start: Node 
end: Node 
 

* 

* 
2 

2 

6 

4 
1 

1 

3 

4 
7 

3 

4 

5 

3 

start: Node 
end: Node 
sp: Path 

return sp; 
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Keeping Caches Up-to-Date: Eager Update 

 Operations that change 
the state of the data 
structure update the 
cache 

 

 Possible if cache update 
is cheap or state 
changes are rare 

 

 Also called push 
solution 

void addEdge( Node n, Node m ) { 
  // add (n,m) to edges 
  sp = computeShortestPath( ); 
} 
 
Path shortestPath( ) { 
  return sp; 
} 
 

5. Detailed Design – Object Model Restructuring and Optimization 
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Keeping Caches Up-to-Date: Lazy Update 

 Operations that change 
the state of the data 
structure increment a 
version counter or set 
a flag 

 

 Access to cached value 
updates cache if cache 
is outdated 

 

 Also called pull solution 

void addEdge( Node n, Node m ) { 
  // add (n,m) to edges 
  sp = null;  // invalidate cache 
} 
 
Path shortestPath( ) { 
  if ( sp == null ) 
    sp = computeShortestPath( ); 
  return sp; 
} 

5. Detailed Design – Object Model Restructuring and Optimization 
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Keeping Caches Up-to-Date: Active Values  

 Observer pattern 
- Active value is subject  
- Cache is observer 

 

 Operations that change 
the state of the data 
structure trigger an 
event (notify) 

 

 Cache can be updated 
eagerly or lazily 

void addEdge( Node n, Node m ) { 
  // add (n,m) to edges 
  notify( );  // trigger event 
} 
 
void update( ) {  // eager update 
  sp = computeShortestPath( ); 
} 
 
Path shortestPath( ) { 
  return sp; 
} 

5. Detailed Design – Object Model Restructuring and Optimization 
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Delaying Complex Computations 

 Computation is delayed until result is accessed 
 Example: lazy object initialization 

Image 

filename: String 
data: byte[ ] 
paint( ) 

RealImage 

data: byte[ ] 
paint( ) 

Image 

filename: String 
paint( ) 

ImageProxy 

filename: String 
paint( ) 

1 0..1 
image 
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Design Optimizations: Summary 

 Design optimizations are an important part of the 
detailed design phase 
- The requirements analysis model is semantically correct 

but often too inefficient if directly implemented 
- Strike a balance between efficiency and clarity 

Source  
code space Model space 

Aim for 
clarity Implementation 

Measure 
performance 

Optimize 
where 

necessary 

5. Detailed Design – Object Model Restructuring and Optimization 
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