
Software Engineering
Introduction

Summer Semester 06

Prof. Dr. Peter Müller
Software Component Technology

2

Peter Müller – Software Engineering, SS 06

1. Introduction

1.1 Motivation
1.2 Course Outline
1.3 Software Qualities
1.4 Software Engineering Principles
1.5 Principles of Project Management

1. Introduction – Motivation

3

Peter Müller – Software Engineering, SS 06

Software – a Poor Track Record

 Software bugs cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the
gross domestic product

31%

53%16%

 84% of all software projects are
unsuccessful
- Late, over budget, less features than

specified, cancelled
 The average unsuccessful project

- 222% longer than planned
- 189% over budget
- 61% of originally specified features

1. Introduction – Motivation

4

Peter Müller – Software Engineering, SS 06

Quality of Today’s Software …
1. Introduction – Motivation

5

Peter Müller – Software Engineering, SS 06

… Has Major Impact on Users
1. Introduction – Motivation

6

Peter Müller – Software Engineering, SS 06

The Therac-25 Accident

 Therac-25 is a medical linear accelerator
 High-

energy
X-ray
and
electron
beams
destroy
tumors

1. Introduction – Motivation

7

Peter Müller – Software Engineering, SS 06

Therac-25 System Design

 Therac-25 is completely computer-controlled
- Software written in assembler code
- Therac-25 has its own real-time operating system

 Software partly taken from ancestor machines
- Software functionality limited
- Hardware safety features and interlocks

 Hazard analysis
- Extensive testing on hardware simulator
- Program software does not degrade due to wear, fatigue,

or reproduction process
- Computer errors are caused by hardware or by alpha

particles

1. Introduction – Motivation

8

Peter Müller – Software Engineering, SS 06

Therac-25 Software Design

Keyboard
Controller

Treatment
Controller

Mode and
Energy

Data Entry
Complete

Mode and energy
level stored in

shared variable

Beamer set to
energy level

(takes 8 secs)

Cursor in lower
right corner of

screen

Proceed if data
entry complete

Check for changes

1. Introduction – Motivation

9

Peter Müller – Software Engineering, SS 06

Accident

Keyboard
Controller

Treatment
Controller

Mode and
Energy

Data Entry
Complete

X-Ray mode
entered (sets

default energy)

Beamer set to
high energy level

(takes 8 secs)

Cursor in lower
right corner of

screen

Overdose (100x)
Patient dies

Mode switched
to electron

Check for changes
contains bug

1. Introduction – Motivation

10

Peter Müller – Software Engineering, SS 06

Analysis of the Therac-25 Accident

 Changed requirements were not considered
- In Therac-25 software is safety-critical

 Design is too complex
- Concurrent system, shared variables (race conditions)

 Code is buggy
- Check for changes done at wrong place

 Testing was insufficient
- System test only, almost no separate software test

 Maintenance was poor
- Correction of bug instead of re-design (root cause)

1. Introduction – Motivation

11

Peter Müller – Software Engineering, SS 06

Challenge: Complexity

 Complexity is caused by
- Complexity of the problem domain
- Complexity of the development process
- Flexibility of software

 Aspects of complexity

- Multi-person construction (team-effort)
- Multi-version software
- Often conflicting objectives
- Development and operation lasts many years

1. Introduction – Motivation

12

Peter Müller – Software Engineering, SS 06

Challenge: Change

 Change is caused by
- Bug fixes
- Changing requirements

(adding, enhancing, removing features)
- Changing environment
- Changing development team

 Each implemented change erodes the structure of

the system, which makes the next change even
more expensive

1. Introduction – Motivation

13

Peter Müller – Software Engineering, SS 06

Software Engineering: Definition 1

 A collection of techniques, methodologies, and
tools that help with the production of
- a high quality software system
- with a given budget
- before a given deadline
- while change occurs

 [Brügge]

 Constraints are important

1. Introduction – Motivation

14

Peter Müller – Software Engineering, SS 06

Software Engineering: Definition 2

 The application of a systematic, disciplined, and
quantifiable approach to the development,
operation, and maintenance of Software; that is, the
application of engineering to software
 [IEEE, ANSI]

 Software engineering spans whole product lifecycle

1. Introduction – Motivation

15

Peter Müller – Software Engineering, SS 06

Science vs. Engineering

Engineering
- The application of science to the needs of

humanity
- Application of knowledge, mathematics,

and practical experience to the design of
useful objects or processes

Science
- Knowledge covering general truths or the

operation of general laws

1. Introduction – Motivation

16

Peter Müller – Software Engineering, SS 06

Computer Science vs. Software Engineering

Software Engineering
- The application of computer science,

mathematics, project management to build
high quality software

Computer Science
- Computability, algorithms and complexity,

programming languages, data structures,
databases, artificial intelligence, etc.

1. Introduction – Motivation

17

Peter Müller – Software Engineering, SS 06

Related Areas

 Systems Engineering
- Complex systems with

software and hardware
- Interdisciplinary
- Example: Therac-25

 Project Management
- Organizes and leads the

project work to meet
project requirements

- Concerned with time,
budget, procurement,
communication, etc.

Will the project be
completed in time

and budget?

Is this requirement
addressed on hardware

or software level (or
both)?

1. Introduction – Motivation

18

Peter Müller – Software Engineering, SS 06

1. Introduction

1.1 Motivation
1.2 Course Outline
1.3 Software Qualities
1.4 Software Engineering Principles
1.5 Principles of Project Management

1. Introduction – Course Outline

19

Peter Müller – Software Engineering, SS 06

Approach

 This course will entirely focus on object-oriented
software engineering

 Instead of classical exercises, you will have to carry
out a project from the problem statement to
deployment

 Exercise sessions will be used for
- Student presentations
- Discussions
- Introductions to software engineering tools

1. Introduction – Course Outline

20

Peter Müller – Software Engineering, SS 06

After this Course, you should

 Be able to produce high-quality software
 Be able to deal with complexity and change

 Have the technical knowledge (main emphasis)
 Have an overview of the managerial knowledge
 Have an overview of relevant tools

1. Introduction – Course Outline

21

Peter Müller – Software Engineering, SS 06

Course Outline (tentative)

1. Introduction
2. Requirements Elicitation
3. Analysis
4. System Design
5. Detailed Design
6. Implementation
7. Testing and Quality Assurance
8. Maintenance
9. Process Models
10.Effort Estimation

1. Introduction – Course Outline

22

Peter Müller – Software Engineering, SS 06

Guest Lectures

 Erich Gamma, Object Technology International:

Inside the Eclipse Development process - Agile,
Open Source, Distributed, and On-Time
- To be announced

 Walter Bischofberger, Software-Tomography:

Software Metrics
- June 22, 2006

1. Introduction – Course Outline

23

Peter Müller – Software Engineering, SS 06

How to Use this Course

 This course is a Kernfach for the Bachelor in
Computer Science

 In the Diplom program, this course counts as
- Kernfach if you did not take System Software
- Vertiefungsfach if you did take System Software

 To complete the course successfully, you

- Have to complete a project successfully and
- Must pass the written exam

 6 credit points for successful completion

1. Introduction – Course Outline

24

Peter Müller – Software Engineering, SS 06

Grading

 Exam
- Written exam in the exam session
- Exam will be in English

 Projects
- Six graded deliverables

 Grade is determined

- 60% based on the project
- 40% based on the exam

1. Introduction – Course Outline

25

Peter Müller – Software Engineering, SS 06

Course Infrastructure

 Web page:
sct.inf.ethz.ch/teaching/ss2006/kse/index.html

 Slides will be available on the web page two days
before the lecture

1. Introduction – Course Outline

26

Peter Müller – Software Engineering, SS 06

Literature

 No single book covers course content

 Good general books on Software Engineering
- Bernd Bruegge, Allen H. Dutoit: Object-Oriented

Software Engineering. Prentice Hall, 2004.
- Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli:

Fundamentals of Software Engineering. Prentice Hall,
2002.

 See course web page for a comprehensive list

1. Introduction – Course Outline

27

Peter Müller – Software Engineering, SS 06

The Projects

 Software Engineering projects
- Not just programming projects

 Topic: A brushed-up version of Battleship

- Focus on development process rather than result

 Projects can be done in teams of three

 Details will be explained in first exercise session

1. Introduction – Course Outline

28

Peter Müller – Software Engineering, SS 06

Background Knowledge

 The lecture focuses on concepts

 For the projects, you will also need knowledge
about the technology
- UML
- Java
- Various tools

 We expect you to acquire this knowledge!

1. Introduction – Course Outline

29

Peter Müller – Software Engineering, SS 06

Exercise Sessions

 Wednesday, 8:00-10:00
- Werner Dietl
- Alan Fehr / Daniel Schregenberger
- Jenny Jin
- Hermann Lehner / Adam Darvas
- Arsenii Rudich

 Friday, 13:00-15:00
- Martin Nordio
- Joseph Ruskiewicz

1. Introduction – Course Outline

30

Peter Müller – Software Engineering, SS 06

1. Introduction

1.1 Motivation
1.2 Course Outline
1.3 Software Qualities
1.4 Software Engineering Principles
1.5 Principles of Project Management

1. Introduction – Software Qualities

31

Peter Müller – Software Engineering, SS 06

Representative Software Qualities

Scalability

Repairability

Portability

Reusability

Understandability

Maintainability

Security

Usability

Reliability

Robustness

Performance

Correctness

Interoperability

Verifiability

Evolvability

1. Introduction – Software Qualities

32

Peter Müller – Software Engineering, SS 06

Correctness

 Correct software meets its functional
requirements specification

 Correctness is a mathematical property
 Can be enhanced by

- Appropriate tools (e.g., high-level languages)
- Standard algorithms and libraries
- An established development process

 Example: security control system of the "Meteor"
line of the Paris metro is proven to be correct

1. Introduction – Software Qualities

33

Peter Müller – Software Engineering, SS 06

Robustness

 Robust software behaves “reasonably”, even in
circumstances not covered by the specification

 Can be enhanced by
- Assertions (Design by Contract)
- Software monitoring
- Defensive programming

 Example: database system performs a controlled
shutdown when hardware error occurs
- No data is corrupted
- Behavior is logged for later analysis or retry

1. Introduction – Software Qualities

34

Peter Müller – Software Engineering, SS 06

Security

 Secure software is protected against
unauthorized access to or modification of
information
- Confidentiality, integrity, availability

 Can be enhanced by
- Cryptography
- Proven protocols

 Example: internet banking uses cryptography to
protect transmitted data from leaking and
manipulation

1. Introduction – Software Qualities

35

Peter Müller – Software Engineering, SS 06

Reliability

 Reliable software has a high probability to
operate as expected over a specified interval

 Reliability is a statistical property
 Can be enhanced by

- Fault avoidance (e.g., careful design)
- Fault tolerance (e.g., redundancy)
- Fault detection (e.g., testing)

 Example: telephone system establishes a
connection > 99.9% of the time

1. Introduction – Software Qualities

36

Peter Müller – Software Engineering, SS 06

Performance

 High-performance software is fast and consumes a
small amount of memory
- Response time
- Throughput
- Memory usage

 Can be enhanced by
- Considering performance when designing the software

architecture
- Code optimization (performance tuning)

 Example: a stock trading system handles up to
100’000 orders per hour

1. Introduction – Software Qualities

37

Peter Müller – Software Engineering, SS 06

Scalability

 Scalable software shows increased performance
under an increased load when resources (typically
hardware) are added

 Can be enhanced by
- De-centralized architectures
- Low complexity of algorithms

 Examples
- Peer-to-peer file exchange systems scale easily to

millions of users
- A routing protocol is scalable if the size of the routing

table grows as O(log N), where N is the number of nodes

1. Introduction – Software Qualities

38

Peter Müller – Software Engineering, SS 06

Usability (User Friendliness)

 Usable software is found easy to use by humans
- Subjective (e.g., experts and novices have difference

requirements)
 Can be enhanced by

- Offering different user interfaces
- Adaptable user interfaces (maybe even automatically)
- New forms of human computer interaction (e.g., speech)

 Example: order system offers a GUI for occasional
users and a command line interface for experts

1. Introduction – Software Qualities

39

Peter Müller – Software Engineering, SS 06

Interoperability

 Interoperable software can coexist and cooperate
with other systems

 Can be enhanced by
- Well-documented interfaces (e.g., file formats, protocols)
- Standard interface formats (e.g., XML)

 Examples
- A word processor can incorporate a spreadsheet table or

graph
- By using a web service, any application can query

Google

1. Introduction – Software Qualities

40

Peter Müller – Software Engineering, SS 06

Maintainability

 Maintainable software enables or simplifies
modification after initial development
- Corrective maintenance (bug fixing)
- Adaptive maintenance (adaptation to changed

environment, e.g., new version of operating system)
- Perfective maintenance (improvement, e.g., new

functions)

Understandability

Maintainability

Repairability Evolvability

1. Introduction – Software Qualities

41

Peter Müller – Software Engineering, SS 06

Maintainability (cont’d)

 Can be enhanced by
- Modular design, narrow interfaces
- Good documentation
- Extensive test suite (preferably automated)

 Example: Deutsche Bank order system was
developed in 1960s and has been maintained since
then
- New hardware, operating system, database system
- New functionality (internet banking, intraday trading)

1. Introduction – Software Qualities

42

Peter Müller – Software Engineering, SS 06

Verifiability

 Properties of verifiable software can be verified
easily
- Testing
- Formal verification

 Can be enhanced by
- Software monitors (e.g., to measure performance)
- Modular design

 Example: Assertions (contracts) enable runtime
assertion checking to find bugs

1. Introduction – Software Qualities

43

Peter Müller – Software Engineering, SS 06

Reusability

 Reusable software can be reused, adapted, and
composed to develop new products
- Different levels of granularity from methods to

applications
 Can be enhanced by

- Modular design, narrow interfaces, parameterization
- Good documentation
- Object technology (inheritance, overriding)

 Example: class libraries of OO-languages such as
C#, Eiffel, Java, etc.

1. Introduction – Software Qualities

44

Peter Müller – Software Engineering, SS 06

Portability

 Portable software can run in different
environments (e.g., hardware, operating system)

 Can be enhanced by
- Isolation of dependencies on environment
- Layered architectures
- Virtual machines

 Example: Java applications can run in any
environment that provides a virtual machine
(“write once, run anywhere”)

1. Introduction – Software Qualities

45

Peter Müller – Software Engineering, SS 06

1. Introduction

1.1 Motivation
1.2 Course Outline
1.3 Software Qualities
1.4 Software Engineering Principles
1.5 Principles of Project Management

1. Introduction – Software Engineering Principles

46

Peter Müller – Software Engineering, SS 06

The Role of Principles

Principles

Methods and techniques

Methodologies

Tools

General and abstract
descriptions of desirable

properties of products
and processes

General guidelines
that govern activities

More technical and
mechanic than

methods

Packages of methods
and techniques

Support the application of
methods, techniques,
and methodologies

1. Introduction – Software Engineering Principles

47

Peter Müller – Software Engineering, SS 06

Important Software Engineering Principles

 Rigor and formality
 Separation of concerns
 Modularity
 Abstraction
 Anticipation of change
 Generality
 Incrementality

1. Introduction – Software Engineering Principles

48

Peter Müller – Software Engineering, SS 06

Rigor and Formality

 Rigor means strict precision
- Various degrees of rigor can be achieved
- Example: mathematical proofs

 Formality is the highest degree of rigor
- Development process driven and evaluated by

mathematical laws
- Examples: refinement
- Formality enables tool support

 Degree of rigor depends on application

1. Introduction – Software Engineering Principles

49

Peter Müller – Software Engineering, SS 06

Rigor and Formality: Examples

Analysis

Validation

System Design

Implementation

Requirements Elicitation

Detailed Design

Typical Application

Analysis

Validation

System Design

Implementation

Requirements Elicitation

Detailed Design

Safety-Critical Application

Requirements are
typically fuzzy

Programs are
formal entities

Safety
requirements

must be
stated

formally

1. Introduction – Software Engineering Principles

50

Peter Müller – Software Engineering, SS 06

Rigor and Formality: Compiler Case Study

 Compilers are critical products
- Errors are multiplied on a mass scale

 Very high degree of formalization
- Syntax: regular expressions, grammars, BNF
- Semantic analysis: attribute grammars

 Formalization enables tool support
- Scanner generators (lex)
- Parser generators (yacc)

1. Introduction – Software Engineering Principles

51

Peter Müller – Software Engineering, SS 06

Separation of Concerns

 Deal with different aspects of a problem
separately
- Reduce complexity
- Functionality, reliability, performance, environment, etc.

 Many aspects are related and interdependent
- Separate unrelated concerns
- Consider only the relevant details of a related concern

 Tradeoff
- Risk to miss global optimizations
- Chance to make optimized decisions in the face of

complexity is very limited

1. Introduction – Software Engineering Principles

52

Peter Müller – Software Engineering, SS 06

Ways to Achieve Separation of Concerns

Complexity

Time
(waterfall model)

Qualities
(focus on correctness,

performance later)

Views
(data flow, control flow)

Size
(modularization)

Domains
(problem domain,

implementation domain)

1. Introduction – Software Engineering Principles

53

Peter Müller – Software Engineering, SS 06

Separation of Concerns: Compiler Case Study

 Correctness is primary concern
 Other concerns

- Efficiency of compiler and of generated code
- User friendliness (helpful warnings, etc.)

 Example for interdependencies:

runtime diagnostics vs. efficient code
- Example: runtime assertion checking
- Diagnostics simplify testing, but create overhead
- Typical solution: option to disable checks

1. Introduction – Software Engineering Principles

54

Peter Müller – Software Engineering, SS 06

Modularity

 Divide system into modules to reduce complexity

 Decompose a complex system into simpler pieces
 Compose a complex system from existing modules
 Understand the system in terms of its pieces
 Modify a system by modifying only a small number

of its pieces

 See Software Architecture, Lecture 2

1. Introduction – Software Engineering Principles

55

Peter Müller – Software Engineering, SS 06

Cohesion and Coupling

 Cohesion measures interdependence of the
elements of one module

 Coupling measures interdependence between
different module

 Goal: high cohesion and low coupling

Low
cohesion

High
coupling

Low
coupling

High
cohesion

1. Introduction – Software Engineering Principles

56

Peter Müller – Software Engineering, SS 06

Modularity: Compiler Case Study

 Compilers are modularized into phases
 Each phase has precisely defined input and output

- High cohesion: common functionality in each phase
- Low coupling: pipe-and-filter architecture, symbol table

Lexical
Analysis Parsing Semantic

Analysis
Code

Generation

Source
Code

Object
Code

Symbol Table

1. Introduction – Software Engineering Principles

57

Peter Müller – Software Engineering, SS 06

Abstraction

 Identify the important aspects and ignore the
details

 Abstraction in software engineering

- Models of the real world (omit irrelevant details)
- Subtyping and inheritance (factor out commonalities)
- Interfaces and information hiding (hide implementation

details)
- Parameterization (templates)
- Structured programming (loops, methods)
- Layered systems (hide deeper layers in the stack)

1. Introduction – Software Engineering Principles

58

Peter Müller – Software Engineering, SS 06

Abstraction: Compiler Case Study

 Abstract syntax
- Abstract while loop syntax: while(BoolExpr Stmt)
- Concrete Pascal syntax: WHILE BoolExpr DO Stmt ;
- Concrete Java syntax: while (BoolExpr) Stmt

 Abstract machines
- Generate intermediate code for abstract machine
- Simplifies code generation for different hardware

Code Generation

Intermediate
Code Gen. Optimization Assembler

Code Gen.

1. Introduction – Software Engineering Principles

59

Peter Müller – Software Engineering, SS 06

Anticipation of Change

 Prepare software for changes
- Modularization: single out elements that are likely to

change in the future
- Abstraction: narrow interfaces reduce effects of a

change
 Risk: developers spend too much time to make

software changeable and reusable
 Software product lines

- Many similar versions of software (e.g., for different
hardware)

- Examples: software for cell phones, sensors

1. Introduction – Software Engineering Principles

60

Peter Müller – Software Engineering, SS 06

Anticipation of Change: Example

 Fee computation for bank accounts

 Original design: computation
and values hard-coded

 Changes (within two years)
- Different values → required program change
- Different rules → required program change
- Different groups of clients → required additional logic

int computeFee() {
 if(balance >= 2000)
 return 0;
 else
 return monthlyFee;
}

1. Introduction – Software Engineering Principles

61

Peter Müller – Software Engineering, SS 06

Anticipation of Change: Example (cont’d)

 Better design: interpreter

 Parameters and rules can be changed by banker

- For instance, by editing an Excel file
 Code remains unchanged (less testing)

Parameters
(database) Rules

Interpreter

1. Introduction – Software Engineering Principles

62

Peter Müller – Software Engineering, SS 06

Anticipation of Change: Compiler Case Study

 Typical changes
- New versions of processors and operating systems
- New target machines
- Language and library extensions (e.g., standards)

 Preparation

- Use intermediate code
- Put machine-dependent code (e.g., I/O, threads) into

standard library

1. Introduction – Software Engineering Principles

63

Peter Müller – Software Engineering, SS 06

Generality

 Attempt to find more general problem behind
problem at hand
- Apply standard solutions and tools

 A general solution is more likely to be reusable
- Examples: spreadsheets, database

 General solution may be less efficient
 Example

- Semantic analysis: Is C a subclass of D?
- Subclass relation is an acyclic graph
- Use adjacency matrix and compute transitive closure

1. Introduction – Software Engineering Principles

64

Peter Müller – Software Engineering, SS 06

Generality: Compiler Case Study

 The GNU compiler decouples
- Frontend (scanner, parser, analysis)
- Backend (code generation, optimization)

 Frontends and backends can be combined in
various ways

Frontends
Ada
C

C++
Fortran
Java

Objective-C

Backtends
Alpha

System 390
x86

MIPS
PowerPC
SPARC

Frontends
Ada
C

C++
Fortran
Java

Objective-C

Backtends
Alpha

System 390
x86

MIPS
PowerPC
SPARC

Generic
Tree

Format

1. Introduction – Software Engineering Principles

65

Peter Müller – Software Engineering, SS 06

Incrementality

 Characterizes a process which proceeds in a
stepwise fashion
- The desired goal is reached by creating successively

closer approximations to it
 Examples

- Incremental software life cycles (e.g., spiral model)
- Prototypes, early feedback
- Project management is inherently incremental

1. Introduction – Software Engineering Principles

66

Peter Müller – Software Engineering, SS 06

Incrementality: Compiler Case Study

 Language can be extended incrementally
- Java 1.0: core language
- Java 1.1: inner classes
- Java 1.2: Swing GUI library
- Java 1.4: enhanced libraries
- Java 1.5: genericity, boxing

 Compiler can be enhanced incrementally
- Supported language subset
- Runtime diagnostics
- Optimizations

1. Introduction – Software Engineering Principles

67

Peter Müller – Software Engineering, SS 06

1. Introduction

1.1 Motivation
1.2 Course Outline
1.3 Software Qualities
1.4 Software Engineering Principles
1.5 Principles of Project Management

1. Introduction – Principles of Project Management

68

Peter Müller – Software Engineering, SS 06

What is a Project?

 Definition:
A project is a temporary endeavor undertaken to
create a unique product or service

 In contrast: Operations are ongoing and repetitive

Every project has a
definite beginning and

a definite end

The product or service is
different in some

distinguishing way from
all similar products and

services

1. Introduction – Principles of Project Management

69

Peter Müller – Software Engineering, SS 06

Examples for Projects and Operations

 Projects
- Developing a new software application
- Implementing a new business procedure
- Adding functionality to an IT system
- Doing a Diplomarbeit

 Operations
- Bugfixing of an existing software application
- Selling train tickets
- Running a car factory

1. Introduction – Principles of Project Management

70

Peter Müller – Software Engineering, SS 06

From Projects to Operations

Project
(Development)

Operation
(Production)

Ideas,
studies

Project
start

Project
end

Time Project duration

Project
management

Operation
management

 Applications are neither projects nor operations, but
products

1. Introduction – Principles of Project Management

71

Peter Müller – Software Engineering, SS 06

Core Activities and Project Management

Core Activities

Project Management organizes and leads
the project work to
meet project
requirements

ultimately create the
product of a project

1. Introduction – Principles of Project Management

72

Peter Müller – Software Engineering, SS 06

Typical Core Activities in IT-Projects

 Design of a graphical user interface
 Installation of a local area network
 Integration test of all system components
 Training of users on a new application
 Implementation of a set of Java classes
 Documentation of design decisions and code

 This course focuses on core activities

1. Introduction – Principles of Project Management

73

Peter Müller – Software Engineering, SS 06

Typical Project Management Activities

 Communication with team, clients, management
 Effort estimations
 Planning activities and assigning resources
 Comparing actual performance to plan
 Risk analysis
 Negotiation with subcontractors
 Staff acquisition

 Covered by Informatik-Projektentwicklung

1. Introduction – Principles of Project Management

74

Peter Müller – Software Engineering, SS 06

Waterfall Model of Project Life Cycle

Analysis

Validation
(Test)

System Design

Implementation

Deployment

Requirements
Elicitation

Detailed Design

1. Introduction – Principles of Project Management

75

Peter Müller – Software Engineering, SS 06

Product Life Cycle

Business R
equirem

ents

Product

Project

Operation

Customer
Request

1. Introduction – Principles of Project Management

76

Peter Müller – Software Engineering, SS 06

Project Management Life Cycle

Initiating
Processes

Planning
Processes

Executing
Processes

Controlling
Processes

Closing
Processes

1. Introduction – Principles of Project Management

	Slide Number 1
	1. Introduction
	Software – a Poor Track Record
	Quality of Today’s Software …
	… Has Major Impact on Users
	The Therac-25 Accident
	Therac-25 System Design
	Therac-25 Software Design
	Accident
	Analysis of the Therac-25 Accident
	Challenge: Complexity
	Challenge: Change
	Software Engineering: Definition 1
	Software Engineering: Definition 2
	Science vs. Engineering
	Computer Science vs. Software Engineering
	Related Areas
	1. Introduction
	Approach
	After this Course, you should
	Course Outline (tentative)
	Guest Lectures
	How to Use this Course
	Grading
	Course Infrastructure
	Literature
	The Projects
	Background Knowledge
	Exercise Sessions
	1. Introduction
	Representative Software Qualities
	Correctness
	Robustness
	Security
	Reliability
	Performance
	Scalability
	Usability (User Friendliness)
	Interoperability
	Maintainability
	Maintainability (cont’d)
	Verifiability
	Reusability
	Portability
	1. Introduction
	The Role of Principles
	Important Software Engineering Principles
	Rigor and Formality
	Rigor and Formality: Examples
	Rigor and Formality: Compiler Case Study
	Separation of Concerns
	Ways to Achieve Separation of Concerns
	Separation of Concerns: Compiler Case Study
	Modularity
	Cohesion and Coupling
	Modularity: Compiler Case Study
	Abstraction
	Abstraction: Compiler Case Study
	Anticipation of Change
	Anticipation of Change: Example
	Anticipation of Change: Example (cont’d)
	Anticipation of Change: Compiler Case Study
	Generality
	Generality: Compiler Case Study
	Incrementality
	Incrementality: Compiler Case Study
	1. Introduction
	What is a Project?
	Examples for Projects and Operations
	From Projects to Operations
	Core Activities and Project Management
	Typical Core Activities in IT-Projects
	Typical Project Management Activities
	Waterfall Model of Project Life Cycle
	Product Life Cycle
	Project Management Life Cycle

