
Software Engineering
Requirements Elicitation

Prof. Dr. Peter Müller
Software Component Technology

The slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Summer Semester 06

2

Peter Müller – Software Engineering, SS 06

2. Requirements Elicitation

 2.1 Requirements
 2.2 Documenting Functional Requirements
 2.3 Requirements Elicitation Activities
 2.4 Requirements Documentation

2. Requirements Elicitation – Motivation

3

Peter Müller – Software Engineering, SS 06

4

Peter Müller – Software Engineering, SS 06

Software – a Poor Track Record

 Software bugs cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the
gross domestic product

31%

53%16%

 84% of all software projects are
unsuccessful
- Late, over budget, less features than

specified, cancelled
 The average unsuccessful project

- 222% longer than planned
- 189% over budget
- 61% of originally specified features

2. Requirements Elicitation – Motivation

5

Peter Müller – Software Engineering, SS 06

Why IT-Projects Fail
 Top 5 reasons measured by frequency of responses by IT

executive management
 Failure profiles of yellow projects

1. Lack of User Input
2. Incomplete Requirements
3. Changing Requirements
4. Lack of Executive Support
5. Technology Incompetence

 Failure profiles of red projects
1. Incomplete Requirements
2. Lack of User Involvement
3. Lack of Resources
4. Unrealistic Expectations
5. Lack of Executive Support

7,50%
11,80%

12,30%
12,80%

7%

9,90%
10,60%

12,40%

9%

13,10%

2. Requirements Elicitation – Motivation

6

Peter Müller – Software Engineering, SS 06

2. Requirements Elicitation

2.1 Requirements
2.2 Documenting Functional Requirements
2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

2. Requirements Elicitation – Requirements

7

Peter Müller – Software Engineering, SS 06

Requirements

 Definition:

A feature that the system must have or a constraint
it must satisfy to be accepted by the client
 [Brügge, Dutoit]

 Requirements engineering defines the
requirements of the system under construction

2. Requirements Elicitation – Requirements

8

Peter Müller – Software Engineering, SS 06

Requirements

 Describe the user’s view of the system
 Identify the what of the system, not the how

 Part of requirements
- Functionality
- User interaction
- Error handling
- Environmental

conditions (interfaces)

 Not part of requirements
- System structure
- Implementation

technology
- System design
- Development

methodology

2. Requirements Elicitation – Requirements

9

Peter Müller – Software Engineering, SS 06

Waterfall Model of Project Life Cycle

Analysis

Validation
(Test)

System Design

Implementation

Deployment

Requirements
Elicitation

Detailed Design

Requirements
Engineering

2. Requirements Elicitation – Requirements

10

Peter Müller – Software Engineering, SS 06

Requirements Engineering: Overview

Analysis

Requirements
Elicitation

Client

Users

Requirements
specification

Analysis
Model

Design

Designers

Used for communication
Participation

2. Requirements Elicitation – Requirements

11

Peter Müller – Software Engineering, SS 06

Requirements Elicitation vs. Analysis

 Requirements specification and analysis model
represent the same information

 Requirements Elicitation
- Definition of the system

in terms understood by
the customer

- Requirements
specification uses
natural language

- Communication with
clients and users

 Analysis
- Technical specification

of the system in terms
understood by the
developer

- The analysis model
uses a formal or semi-
formal notation

- Communication among
developers

2. Requirements Elicitation – Requirements

12

Peter Müller – Software Engineering, SS 06

Requirements Elicitation: Overview

 Challenging activity
 People with different backgrounds must

collaborate
- Client and end users with application (problem)

domain knowledge
- Developer with solution domain knowledge

(design knowledge, implementation knowledge)
 Difficulties

- Identifying an appropriate system
- Communicating about the domain and the system

accurately

2. Requirements Elicitation – Requirements

13

Peter Müller – Software Engineering, SS 06

Types of Requirements Elicitation

 Greenfield Engineering
- Development from scratch, no prior system exists
- Requirements extracted from end users and client
- Triggered by user needs

 Re-engineering
- Re-design and/or re-implementation of an existing

system using newer technology
- Triggered by technology enabler

 Interface Engineering
- Provide services of existing system in new environment
- Triggered by technology enabler or new market needs

2. Requirements Elicitation – Requirements

14

Peter Müller – Software Engineering, SS 06

Problem Statement

 Developed by the client as a description of the
problem addressed by the system

 Synonym: Statement of work
 A problem statement describes

- The current situation
- The functionality the new system should support
- The environment in which the system will be deployed
- Deliverables expected by the client
- Delivery dates (milestones)
- A set of acceptance criteria (criteria for system tests)

2. Requirements Elicitation – Requirements

15

Peter Müller – Software Engineering, SS 06

Current Situation

 Describes the problem to be solved

 Describes the motivation (business requirement)
- A change in the application domain or in the solution

domain

 Change in the application domain
- A new function (business process) is introduced

 Change in the solution domain
- A new solution (technology enabler) has appeared

2. Requirements Elicitation – Requirements

16

Peter Müller – Software Engineering, SS 06

Bankomat: The Problem

 Business need
- Providing standard services (withdrawals, transfers, etc.)

to bank clients is labor-intensive and expensive
- Due to market pressure, bank fees have been

decreasing
 Customer request

- Customers want to use basic bank services outside the
normal business hours

 Technological advance
- Computers and networks enable development of

automatic service machines

2. Requirements Elicitation – Requirements

17

Peter Müller – Software Engineering, SS 06

Bankomat: Objectives

 Provide software for operating a
banking machine
- Withdraw money in two currencies

(CHF / €)
- Transfer money to domestic

accounts
- Load and unload cash cards
- Print account statements

 Provide functionality to satisfy

legal documentation regulations

2. Requirements Elicitation – Requirements

18

Peter Müller – Software Engineering, SS 06

 Functionality
- What is the software supposed to do?

 External interfaces
- Interaction with people, hardware, other software

 Performance
- Speed, availability, response time, recovery time

 Attributes (quality requirements)
- Portability, correctness, maintainability, security

 Design constraints
- Required standards, operating environment, etc.

Types of Requirements
Functional

Requirements

Nonfunctional
Requirements

2. Requirements Elicitation – Requirements

19

Peter Müller – Software Engineering, SS 06

Functionality

 Includes
- Relationship of outputs to inputs
- Response to abnormal situations
- Exact sequence of operations
- Validity checks on the inputs
- Effect of parameters

 Phrased as an action or a verb

- Withdraw money
- Load cash card

2. Requirements Elicitation – Requirements

20

Peter Müller – Software Engineering, SS 06

External Interfaces

 Detailed description of all
inputs and outputs
- Description of purpose
- Source of input, destination

of output
- Valid range, accuracy,

tolerance
- Units of measure
- Relationships to other

inputs/outputs
- Screen and window formats
- Data and command formats

Software
System

Other
software

Users

Networks
Hardware

2. Requirements Elicitation – Requirements

21

Peter Müller – Software Engineering, SS 06

Performance

 Static numerical requirements
- Number of terminals supported
- Number of simultaneous users supported
- Amount of information handled

 Dynamic numerical requirements

- Number of transactions processed within certain time
periods (average and peak workload)

- Example: 95% of the transactions shall be processed in
less than 1 second

2. Requirements Elicitation – Requirements

22

Peter Müller – Software Engineering, SS 06

Constraints (Pseudo Requirements)

 Standard compliance
- Report format, audit tracing, etc.

 Implementation requirements
- Tools, programming languages, etc.
- Development technology and methodology should not be

constrained by the client. Fight for it!
 Operations requirements

- Administration and management of the system
 Legal requirements

- Licensing, regulation, certification

2. Requirements Elicitation – Requirements

23

Peter Müller – Software Engineering, SS 06

Nonfunctional Requirements: Bankomat

 Usability
- User interaction shall be done via a touch-screen
- Text shall appear in letters at least 1cm high

 Security
- System shall under no circumstances leak PIN numbers

or account information to unauthorized users
 Performance

- Each individual transaction shall take less than 10s
 Operations requirements

- System updates shall be possible remotely

2. Requirements Elicitation – Requirements

24

Peter Müller – Software Engineering, SS 06

Quality Criteria for Requirements

Correctness
Requirements

represent the client’s
view

Clarity
(Un-ambiguity)

Requirements can be
interpreted in only

one way

Consistency
Requirements do not

contradict each
other

Completeness
All possible scenarios

are described,
including exceptional

behavior

2. Requirements Elicitation – Requirements

25

Peter Müller – Software Engineering, SS 06

Quality Criteria for Requirements (cont’d)

Realism
Requirements can be

implemented and
delivered

Traceability
Each feature can be

traced to a set of
functional

requirements

Verifiability
Repeatable tests can
be designed to show
that the system fulfills

the requirements

2. Requirements Elicitation – Requirements

26

Peter Müller – Software Engineering, SS 06

Quality Criteria: Examples

 “System shall be usable by elderly people”
- Not verifiable, unclear
- Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”
- Not verifiable (in practice), not realistic
- Solution: Specify test criteria

 “The system shall provide real-time response”
- Unclear
- Solution: “The system shall respond in less than 2s”

2. Requirements Elicitation – Requirements

27

Peter Müller – Software Engineering, SS 06

[Boehm 1981]

Relative Cost to Fix an Error
 The sooner a defect is found, the cheaper it is to fix

0

20

40

60

80

100

120

140

160

180

200

Requirements Design Coding Development
Testing

Acceptance
Testing

Operation

2. Requirements Elicitation – Requirements

28

Peter Müller – Software Engineering, SS 06

Requirements Validation

 A quality assurance step, usually after
requirements elicitation or analysis

 Reviews by clients and developers
- Check all quality criteria
- Future validations (testing)

 Prototyping
- Throw-away or evolutionary prototypes
- Study feasibility
- Give clients an impression of the future system
- Typical example: user interfaces

2. Requirements Elicitation – Requirements

29

Peter Müller – Software Engineering, SS 06

2. Requirements Elicitation

2.1 Requirements
2.2 Documenting Functional Requirements
2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

2. Requirements Elicitation – Documenting Functional Requirements

30

Peter Müller – Software Engineering, SS 06

Scenarios and Use Cases

 Document the behavior of the system from the
users’ point of view

 Can be understood by customer and users

 A scenario is an instance of a use case

Scenario
 Describes common cases

 Focus on

understandability

Use Case
 Generalizes scenarios to

describe all possible
cases

 Focus on completeness

2. Requirements Elicitation – Documenting Functional Requirements

31

Peter Müller – Software Engineering, SS 06

Scenarios

 Definition:
A narrative description of what people do and
experience as they try to make use of computer
systems and applications
 [M. Carroll, 1995]

 Different Applications during the software lifecycle
- Requirements Elicitation
- Client Acceptance Test
- System Deployment

2. Requirements Elicitation – Documenting Functional Requirements

32

Peter Müller – Software Engineering, SS 06

Scenario Example: Bankomat

 Scenario
- Bob uses a Bankomat
- He enters his card and PIN into the Bankomat
- He requests withdrawal of CHF 400
- Bob receives a printed receipt, takes out his bank card

and the money and leaves
 Observations

- Describes a single instance of using the system
- Does not describe all possible ways the system can be

used

2. Requirements Elicitation – Documenting Functional Requirements

33

Peter Müller – Software Engineering, SS 06

UML Use Case Diagrams

Withdraw

Client

Actors represent
roles, that is, a kind of

user of the system

A use case represents a
sequence of interaction

for a kind of task

Actor is potentially
involved in the task

System boundaries

2. Requirements Elicitation – Documenting Functional Requirements

34

Peter Müller – Software Engineering, SS 06

Actors

 An actor models an external entity
which communicates with the system
- Kind of user
- External system
- Physical environment

 An actor has a unique name and an
optional description
- Client: A person in the train
- GPS satellite: An external system that

provides the system with GPS
coordinates

Client

2. Requirements Elicitation – Documenting Functional Requirements

35

Peter Müller – Software Engineering, SS 06

Use Case

 A use case represents a kind
of task provided by the system
as an event flow

 A use case consists of
- Unique name
- Participating actors
- Entry conditions
- Flow of events
- Exit conditions
- Special requirements

Withdraw

2. Requirements Elicitation – Documenting Functional Requirements

36

Peter Müller – Software Engineering, SS 06

Use Case Example: Withdraw

 Initiating actor: Client

 Entry condition
- Client has opened a bank account with the bank and
- Client has received a bank card and PIN

 Exit condition

- Client has the requested cash or
- Client receives an explanation from the Bankomat about

why the cash could not be dispensed

2. Requirements Elicitation – Documenting Functional Requirements

37

Peter Müller – Software Engineering, SS 06

Use Case Example: Withdraw Event Flow

Actor steps
1. Authenticate

3. Client selects “Withdraw

CHF”

5. Client enters amount

System Steps

2. Bankomat displays options

4. Bankomat queries amount

6. Bankomat returns bank

card
7. Bankomat outputs

specified amount in CHF

Anything missing?
Exceptional cases,

Details of authentication

2. Requirements Elicitation – Documenting Functional Requirements

38

Peter Müller – Software Engineering, SS 06

Reusing Use Cases

 <<include>> stereotype to include use cases
 Details in textual description

Withdraw

Client

Load
Cash Card

Transfer

Authenticate

<<include>>

<<include>>

<<include>>

2. Requirements Elicitation – Documenting Functional Requirements

39

Peter Müller – Software Engineering, SS 06

Reusing Use Cases: Discussion

 Criterion for decomposition:
Size of planning unit (40-80 person hours)

 Pros
- Convenient (no

duplicate information in
detailed description)

- Shorter descriptions
- Common functionality

may lead to reusable
components

- Enables integration of
existing components

 Cons
- May lead to functional

decomposition rather
than object-oriented
model

- Requires more UML
skills

2. Requirements Elicitation – Documenting Functional Requirements

40

Peter Müller – Software Engineering, SS 06

Separating Variant Behavior

 <<extend>> stereotype to provide special case
 Normal case specifies point at which the behavior

may diverge (extension point)
 Extending case specifies condition under which the

special case applies (as entry condition)

Withdraw
Client

Refuse
Withdrawal

<<extend>>
Not enough

money

Host

<<initiates>>

<<participates>>

2. Requirements Elicitation – Documenting Functional Requirements

41

Peter Müller – Software Engineering, SS 06

Withdraw Event Flow Revisited

Actor steps
1. Authenticate (use case

Authenticate)
3. Client selects “Withdraw

CHF”

5. Client enters amount

System Steps

2. Bankomat displays options

4. Bankomat queries amount

6. Bankomat returns bank

card
7. Bankomat outputs

specified amount in CHF

Listed as
extension point

2. Requirements Elicitation – Documenting Functional Requirements

42

Peter Müller – Software Engineering, SS 06

Use Case Refuse Withdrawal

Entry Condition:
Entered amount higher than
money in account

System Steps:
6a. Bankomat displays error
message; rejoin before 4.

4. (query
amount)

?

5. (enter
amount)

6. (return
card)

6a. (display
error)

7. (output
amount)

2. Requirements Elicitation – Documenting Functional Requirements

43

Peter Müller – Software Engineering, SS 06

Generalization and Specialization

 Factor out common (but not identical) behavior
 Child use cases

- Inherit the behavior and meaning of the parent use case
- Add or override some behavior

 Details in textual description of normal case

Withdraw

Withdraw
Euro

Withdraw
CHF

2. Requirements Elicitation – Documenting Functional Requirements

44

Peter Müller – Software Engineering, SS 06

Use Case Models

 The set of all use cases specifying the complete
functionality of the system and its environment

Withdraw

Client

Load
Cash Card

Transfer

Authenticate

<<include>>

<<include>>

Admin

Unload
Cash Card

Print
Statement

Update
Software

Refuse
Authentication

<<extend>>

2. Requirements Elicitation – Documenting Functional Requirements

45

Peter Müller – Software Engineering, SS 06

2. Requirements Elicitation

2.1 Requirements
2.2 Documenting Functional Requirements
2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

2. Requirements Elicitation – Requirements Elicitation Activities

46

Peter Müller – Software Engineering, SS 06

Requirements Elicitation Activities

Identifying Actors

Identifying Use Cases

Identifying Relationships Among
Actors and Use Cases

Identifying Initial Analysis
Objects

Identifying Nonfunctional
Requirements

Identifying Scenarios

Refining Use Cases

2. Requirements Elicitation – Requirements Elicitation Activities

47

Peter Müller – Software Engineering, SS 06

Identifying Actors

 Actors represent roles
- One person can have several roles
- Many persons can have the same role
- In companies, roles usually exist before system is built

 Questions to ask
- Which user groups are supported by the system?
- Which user groups execute the system’s main functions?
- Which user groups perform secondary functions

(maintenance, administration)?
- With what external hardware and software will the

system interact?

2. Requirements Elicitation – Requirements Elicitation Activities

48

Peter Müller – Software Engineering, SS 06

Actors vs. Objects

 During initial stages of actor identification, it is
difficult to distinguish actors from objects

 Example: database system can be
- An actor (external software) or
- An object (part of the system)

 Problem is solved when system boundaries are
defined
- Actors are outside
- Objects are inside

2. Requirements Elicitation – Requirements Elicitation Activities

49

Peter Müller – Software Engineering, SS 06

Identifying Scenarios: Questions to Ask

 What are the tasks the actor wants the system to
perform?

 What information does the actor access?
- Who creates that data?
- Can it be modified or removed? By whom?

 Which external changes does the actor need to
inform the system about?
- How often? When?

 Which events does the system need to inform the
actor about?
- With what latency?

2. Requirements Elicitation – Requirements Elicitation Activities

50

Peter Müller – Software Engineering, SS 06

Example: Bankomat

 What needs to be done to withdraw money?
 Who is involved in a withdrawal?
 What does the system do if there is not enough

- Money in the account?
- Cash in the Bankomat?

 What information does the client access?
 Can clients perform several tasks in one session?

2. Requirements Elicitation – Requirements Elicitation Activities

51

Peter Müller – Software Engineering, SS 06

Sources of Information

Client
Users

Elicitation

Existing
documentation

Task observation Insist on task
observation

Speak to the
end user, not

just to the client

 User manuals
 Procedure manuals
 Company standards
 etc.

2. Requirements Elicitation – Requirements Elicitation Activities

52

Peter Müller – Software Engineering, SS 06

Dialectic Approach

 Apply evolutionary, incremental engineering
- You help the client to formulate the requirements
- The client helps you to understand the requirements
- The requirements evolve while the scenarios are being

developed

 Client understands problem domain, not the
solution domain.
- Write scenarios using application domain terms
- Example: “Client” instead of “Account ID”

2. Requirements Elicitation – Requirements Elicitation Activities

53

Peter Müller – Software Engineering, SS 06

Types of Scenarios

As-is scenario
 Used in describing a

current situation
 Usually used in re-

engineering projects
 The user describes the

system

Training scenario
 Step by step instructions

that guide a novice user
through a system

Evaluation scenario
 User tasks against which

the system is to be
evaluated

Visionary scenario
 Used to describe a future

system
 Usually used in greenfield

engineering and
reengineering projects

 Can often not be done by
the user or developer alone

2. Requirements Elicitation – Requirements Elicitation Activities

54

Peter Müller – Software Engineering, SS 06

Identifying Use Cases

 Scenarios are generalized to high-level use cases
 Name

- A verb describing what the actor want to accomplish
 Initiating actor

- Helps to clarify roles
- Helps identifying previously overlooked actors

 High-level description
- Entry and exit conditions (identify missing cases)
- Event flow (define system boundary)
- Quality requirements (elicit nonfunctional requirements)

2. Requirements Elicitation – Requirements Elicitation Activities

55

Peter Müller – Software Engineering, SS 06

Another Use Case Example: Authenticate

 Name: Authenticate
 Initiating actor: Client
 Entry condition

- Client has opened a bank account with the bank and
- Client has received an bank card and PIN

 Exit condition
- Client is authenticated

Authenticate

Client

Refuse
Card

Invalid card

Refuse
PIN

Invalid PIN
<<extend>>

2. Requirements Elicitation – Requirements Elicitation Activities

56

Peter Müller – Software Engineering, SS 06

Authenticate Event Flow

Actor steps
1. Client inputs her card into

the Bankomat

3. Client types in PIN

System Steps

2. Bankomat requests the

input of a four-digit PIN

 Triggers for extending use cases (error conditions)
are specified in extending use cases (as entry
conditions)

Listed as
extension point

2. Requirements Elicitation – Requirements Elicitation Activities

57

Peter Müller – Software Engineering, SS 06

Use Case Refuse Card

 Name: Refuse authentication
 Entry condition

- Client used invalid card
 Exit condition

- Client receives an explanation from the Bankomat about
why she was not authenticated

Actor steps

System Steps
2a. Bankomat outputs the

card, displays a message,
and stops the interaction

2. Requirements Elicitation – Requirements Elicitation Activities

58

Peter Müller – Software Engineering, SS 06

Guidelines for Use Cases

 Name
- Use a verb phrase to name the use case
- The name indicates what the user is trying to accomplish
- Examples: “Withdraw”, “Authenticate”, “Load Cash Card”

 Length

- A use case should not exceed two A4 pages
- If longer, use <<include>> relationships
- A use case describes a complete set of interactions

2. Requirements Elicitation – Requirements Elicitation Activities

59

Peter Müller – Software Engineering, SS 06

Guidelines for Use Cases (cont’d)

 Flow of events
- Active voice is used
- Steps start either with “The Actor …” or “The System …”
- The causal relationship between steps is clear
- All flow of events are described (not only main flow)
- The boundaries of the system are clear
- Important terms are defined in the glossary

2. Requirements Elicitation – Requirements Elicitation Activities

60

Peter Müller – Software Engineering, SS 06

A Poor Use Case

 Name: Cash Card
 Initiating actor: Client
 Flow of events

1. The client enters his
card and PIN

2. Cash card is loaded
with specified amount

Bad name:
What is the user trying

to accomplish?

Incomplete transaction:
What happens after the

card is loaded?

Passive voice:
Who loads the card?

Causality:
What causes the card

to be loaded?
Who specifies the

amount?

2. Requirements Elicitation – Requirements Elicitation Activities

61

Peter Müller – Software Engineering, SS 06

How to Write a Use Case (Summary)
 Name of Use Case
 Actors

- Description of Actors involved in use case
 Entry condition

- “This use case starts when…”
 Flow of Events

- Free form, informal natural language
 Exit condition

- “This use cases terminates when…”
 Exceptions

- Describe what happens if things go wrong
 Special Requirements

- Nonfunctional Requirements, Constraints

2. Requirements Elicitation – Requirements Elicitation Activities

62

Peter Müller – Software Engineering, SS 06

Refining Use Cases

 Many use cases are rewritten several times
 Focus: completeness and correctness
 Activities during refinement

- Add details to use cases
- Specify low-level sequences of interactions
- Specify access rights

(which actor can invoke which use case)
- Identify missing exceptions and specify handling
- Factor out common functionality

2. Requirements Elicitation – Requirements Elicitation Activities

63

Peter Müller – Software Engineering, SS 06

Relationships Among Actors and Use Cases

 Communication relationships between actors and
use cases: <<initiate>> vs. <<participate>>

 Extend relationships
- Make common case simple
- Used for exceptional, optional, or seldom-occurring

behavior
 Include relationships

- Eliminate redundancies
- Used for behavior shared by at least two use cases

2. Requirements Elicitation – Requirements Elicitation Activities

64

Peter Müller – Software Engineering, SS 06

Identifying Nonfunctional Requirements

 Nonfunctional requirements are defined together
with functional requirements because of
dependencies
- Example: Support for novice users requires help

functionality
 Elicitation is typically done with check lists
 Resulting set of nonfunctional requirements

typically contains conflicts
- Real-time requirement needs C or Assembler

implementation
- Supportability requires OO-implementation

2. Requirements Elicitation – Requirements Elicitation Activities

65

Peter Müller – Software Engineering, SS 06

2. Requirements Elicitation

2.1 Requirements
2.2 Documenting Functional Requirements
2.3 Requirements Elicitation Activities
2.4 Requirements Documentation

2. Requirements Elicitation – Requirements Documentation

66

Peter Müller – Software Engineering, SS 06

Requirements Analysis Document
1. Introduction

1. Purpose and scope of the System
2. Objectives and success criteria of the project
3. Definitions, acronyms, references, overview

2. Current System
3. Proposed System

1. Overview
2. Functional requirements
3. Nonfunctional requirements
4. System models

4. Glossary

2. Requirements Elicitation – Requirements Documentation

67

Peter Müller – Software Engineering, SS 06

Section 3.3 Nonfunctional Requirements

3.3.1 User interface and human factors
3.3.2 Documentation
3.3.3 Hardware considerations
3.3.4 Performance characteristics
3.3.5 Error handling and extreme conditions
3.3.6 System interfacing
3.3.7 Quality issues
3.3.8 System modifications
3.3.9 Physical environment
3.3.10 Security issues
3.3.11 Resources and management issues

2. Requirements Elicitation – Requirements Documentation

68

Peter Müller – Software Engineering, SS 06

Nonfunctional Requirements: Checklist

3.3.1 User interface and human factors
- What type of user will be using the system?
- Will more than one type of user be using the system?
- What sort of training will be required for each type of user?
- Is it particularly important that the system be easy to learn?
- Is it important that users be protected from making errors?
- What sort of input/output devices for the human interface

are available, and what are their characteristics?
3.3.2 Documentation

- What kind of documentation is required?
- What audience is to be addressed by each document?

2. Requirements Elicitation – Requirements Documentation

69

Peter Müller – Software Engineering, SS 06

Nonfunctional Requirements: Checklist (cont’d)

3.3.3 Hardware considerations
- What hardware is the proposed system to be used on?
- What are the characteristics of the target hardware,

including memory size and auxiliary storage space?
3.3.4 Performance characteristics

- Are there any speed, throughput, or response time
constraints?

- Are there size or capacity constraints on the data to be
processed by the system?

3.3.5 Error handling and extreme conditions
- How should the system respond to input errors?
- How should the system respond to extreme conditions?

2. Requirements Elicitation – Requirements Documentation

70

Peter Müller – Software Engineering, SS 06

Nonfunctional Requirements: Checklist (cont’d)

3.3.6 System interfacing
- Is input coming from systems outside the proposed

system?
- Is output going to systems outside the proposed system?
- Are there restrictions on the format or medium that must

be used for input or output?
3.3.7 Quality Issues

- What are the requirements for reliability?
- Must the system trap faults?
- What is the maximum time for a restart after a failure?
- What is the acceptable downtime per 24-hour period?
- Is it important that the system be portable?

2. Requirements Elicitation – Requirements Documentation

71

Peter Müller – Software Engineering, SS 06

Nonfunctional Requirements: Checklist (cont’d)

3.3.8 System Modifications
- What parts of the system are likely candidates for later

modification?
- What sorts of modifications are expected?

3.3.9 Physical Environment
- Where will the target equipment operate?
- Will the target equipment be in one or several locations?
- Will the environmental conditions in any way be out of the

ordinary (for example, unusual temperatures, vibrations,
magnetic fields, ...)?

2. Requirements Elicitation – Requirements Documentation

72

Peter Müller – Software Engineering, SS 06

Nonfunctional Requirements: Checklist (cont’d)

3.3.10 Security Issues
- Must access to any data or the system itself be controlled?
- Is physical security an issue?

3.3.11 Resources and Management Issues
- How often will the system be backed up?
- Who will be responsible for the back up?
- Who is responsible for system installation?
- Who will be responsible for system maintenance?

2. Requirements Elicitation – Requirements Documentation

73

Peter Müller – Software Engineering, SS 06

Prioritizing Requirements

 High priority (“Core requirements”)
- Must be addressed during analysis, design, and

implementation
- A high-priority feature must be demonstrated

successfully during client acceptance
 Medium priority (“Optional requirements”)

- Must be addressed during analysis and design
- Usually implemented and demonstrated in the second

iteration of the system development
 Low priority (“Fancy requirements”, “nice to have”)

- Must be addressed during analysis

2. Requirements Elicitation – Requirements Documentation

74

Peter Müller – Software Engineering, SS 06

Project Agreement

 Acceptance of (parts of) the analysis model (as
documented by the requirements analysis
document) by the client (client sign-off)

 The client and the developers agree about the
functions and features that the system will have,
plus:
- A list of prioritized requirements
- A revision process
- A criteria that will be used to accept or reject the system
- A schedule and a budget

2. Requirements Elicitation – Requirements Documentation

75

Peter Müller – Software Engineering, SS 06

Summary

 Scenarios: Good way to establish communication
with client

 Use cases: Abstraction of scenarios
 Pure functional decomposition is bad

- Leads to un-maintainable code
 Pure object identification is bad

- May lead to wrong objects, attributes, and methods
 Use cases bridge the gap between functional

requirements and objects

2. Requirements Elicitation

77

Peter Müller – Software Engineering, SS 06

From Scenarios to Use Cases

 First step: name the use case
- Example: Withdraw

 Second step: find the actors

- Generalize the concrete names (“Bob”) to participating
actors (“Client”)

- Participating Actors: Client, host system

 Third step: concentrate on the flow of events
- Use informal natural language

	Software Engineering�Requirements Elicitation
	2. Requirements Elicitation
	Slide Number 3
	Software – a Poor Track Record
	Why IT-Projects Fail
	2. Requirements Elicitation
	Requirements
	Requirements
	Waterfall Model of Project Life Cycle
	Requirements Engineering: Overview
	Requirements Elicitation vs. Analysis
	Requirements Elicitation: Overview
	Types of Requirements Elicitation
	Problem Statement
	Current Situation
	Bankomat: The Problem
	Bankomat: Objectives
	Types of Requirements
	Functionality
	External Interfaces
	Performance
	Constraints (Pseudo Requirements)
	Nonfunctional Requirements: Bankomat
	Quality Criteria for Requirements
	Quality Criteria for Requirements (cont’d)
	Quality Criteria: Examples
	Relative Cost to Fix an Error
	Requirements Validation
	2. Requirements Elicitation
	Scenarios and Use Cases
	Scenarios
	Scenario Example: Bankomat
	UML Use Case Diagrams
	Actors
	Use Case
	Use Case Example: Withdraw
	Use Case Example: Withdraw Event Flow
	Reusing Use Cases
	Reusing Use Cases: Discussion
	Separating Variant Behavior
	Withdraw Event Flow Revisited
	Use Case Refuse Withdrawal
	Generalization and Specialization
	Use Case Models
	2. Requirements Elicitation
	Requirements Elicitation Activities
	Identifying Actors
	Actors vs. Objects
	Identifying Scenarios: Questions to Ask
	Example: Bankomat
	Sources of Information
	Dialectic Approach
	Types of Scenarios
	Identifying Use Cases
	Another Use Case Example: Authenticate
	Authenticate Event Flow
	Use Case Refuse Card
	Guidelines for Use Cases
	Guidelines for Use Cases (cont’d)
	A Poor Use Case
	How to Write a Use Case (Summary)
	Refining Use Cases
	Relationships Among Actors and Use Cases
	Identifying Nonfunctional Requirements
	2. Requirements Elicitation
	Requirements Analysis Document
	Section 3.3 Nonfunctional Requirements
	Nonfunctional Requirements: Checklist
	Nonfunctional Requirements: Checklist (cont’d)
	Nonfunctional Requirements: Checklist (cont’d)
	Nonfunctional Requirements: Checklist (cont’d)
	Nonfunctional Requirements: Checklist (cont’d)
	Prioritizing Requirements
	Project Agreement
	Summary
	From Scenarios to Use Cases

