
Prof. Dr. Peter Müller
Software Component Technology

The slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Software Engineering
Analysis

Summer Semester 06

2

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis - Introduction

3

Peter Müller – Software Engineering, SS 06

Requirements Engineering: Overview

Analysis

Requirements
Elicitation

Client

Users

Requirements
specification

Analysis
Model

Design

Designers

Used for communication
Participation

3. Analysis - Introduction

4

Peter Müller – Software Engineering, SS 06

Requirements Elicitation vs. Analysis

 Requirements specification and analysis model
represent the same information

 Requirements Elicitation
- Definition of the system

in terms understood by
the customer

- Requirements
specification uses
natural language

- Communication with
clients and users

 Analysis
- Technical specification

of the system in terms
understood by the
developer

- The analysis model
uses a formal or semi-
formal notation

- Communication among
developers

3. Analysis - Introduction

5

Peter Müller – Software Engineering, SS 06

Analysis Model

Analysis Requirements
specification

Analysis Model
Functional

Model

Dynamic
Model

Analysis
Object Model

Refined
functional model

Concepts
manipulated by
the system, their
properties and
relationships

System behavior

3. Analysis - Introduction

6

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis - Modeling

7

Peter Müller – Software Engineering, SS 06

What is Modeling?

 Building an abstraction of reality
- Abstractions from things, people, and processes
- Relationships between these abstractions

 Abstractions are simplifications
- They ignore irrelevant details
- They represent only the relevant details
- What is relevant or irrelevant depends on the purpose of

the model
 Draw complicated conclusions in the reality with

simple steps in the model

3. Analysis - Modeling

8

Peter Müller – Software Engineering, SS 06

Example 1: Cat
3. Analysis - Modeling

9

Peter Müller – Software Engineering, SS 06

Example 2: Street Map
3. Analysis - Modeling

10

Peter Müller – Software Engineering, SS 06

Example 3: Atom Models in Physics

 Bohr model
- Nucleus surrounded by

electrons in orbit
- Explains, e.g., spectra

 Quantum physics

- Position of electrons described
by probability distribution

- Takes into account
Heisenberg’s uncertainty
principle

3. Analysis - Modeling

11

Peter Müller – Software Engineering, SS 06

Why Model Software?

 Software is getting increasingly more complex
- Windows 2000: ~40 millions lines of code
- A single programmer cannot manage this amount of

code in its entirety
 Code is not easily understandable by developers

who did not write it
 We need simpler representations for complex

systems
 Modeling is a means for dealing with complexity

3. Analysis - Modeling

12

Peter Müller – Software Engineering, SS 06

What is a Good Model?

 Intuitively: A model is good if relationships, which
are valid in reality R, are also valid in model M

 Definition Interpretation I: R → M

 In a good model this diagram is commutative

M M

R R

I

fM

I

fR

I: Mapping of real things in reality
R to abstractions in model M

fM: Relationship between
abstractions in M

fR: Relationship between real
things in R

3. Analysis - Modeling

13

Peter Müller – Software Engineering, SS 06

Models of Models of Models …

 Software development is transformation of
models

M M

R R

fM

I: Requirements Elicitation
fR

M2 M2

M1 M1

fM2

I2: System Design
fM1

I1: Analysis

Functional
Model

Object
Model

Subsystem
Decomposition

3. Analysis - Modeling

14

Peter Müller – Software Engineering, SS 06

Modeling the Real World

Problem domain

Model view
of problem

Representation
of model

3. Analysis - Modeling

15

Peter Müller – Software Engineering, SS 06

Client

possesses Account Balance
Account No.

1
n

Address
Asset class

Modeling Example: Data Modeling

Tuple of
- Address
- Asset class
- At least one

account

Bank client

ER-Diagram

3. Analysis - Modeling

16

Peter Müller – Software Engineering, SS 06

Client 1

Asset class

Address Account
Balance
Account No.

1 1 1..*

Modeling Example: Object Modeling

Object with
- Data
- Operations Bank client

UML Class Diagram

3. Analysis - Modeling

17

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis – Object Modeling

18

Peter Müller – Software Engineering, SS 06

The Unified Modeling Language UML

 UML is a modeling language
- Using text and graphical notation
- For documenting specification,

analysis, design, and implementation
 Importance

- Recommended OMG (Object Management Group)
standard notation

- De facto standard in industrial software development
 Alternative: Business Object Notation (BON)

- Mainly used in the Eiffel community

3. Analysis – Object Modeling

http://www.uml.org/

19

Peter Müller – Software Engineering, SS 06

UML Notations

 Use case diagrams – requirements of a system
 Class diagrams – structure of a system
 Interaction diagrams – message passing

- Sequence diagrams
- Collaboration diagrams

 State and activity diagrams – actions of an object
 Implementation diagrams

- Component model – dependencies between code
- Deployment model – structure of the runtime system

 Object constraint language (OCL)

3. Analysis – Object Modeling

20

Peter Müller – Software Engineering, SS 06

Classes

 A class encapsulates state (attributes) and
behavior (operations)
- Each attribute has a type
- Each operation has a signature

 The class name is the only mandatory information

TarifSchedule
Table zone2price
Enumeration getZones()
Price getPrice(Zone)

Name
Type

Signature Operations

Attributes

3. Analysis – Object Modeling

21

Peter Müller – Software Engineering, SS 06

More on Classes

 Valid UML class diagrams

 Corresponding BON diagram
- No distinction between attributes

and operations
(uniform access principle)

TarifSchedule
zone2price
getZones()
getPrice()

TarifSchedule

 TarifSchedule

getZones
getPrice

 NONE
zone2price

3. Analysis – Object Modeling

22

Peter Müller – Software Engineering, SS 06

Instances (Objects)

nightTarif:TarifSchedule
zone2price = {
 (‘1’, 1.60),
 (‘2’, 2.40),
 (‘3’, 3.20)
}

Name of an
instance is
underlined

Attributes are
represented

with their
values

Name of an
instance

can contain
the class of

the
instance

:TarifSchedule
zone2price = {
 (‘1’, 1.60),
 (‘2’, 2.40),
 (‘3’, 3.20)
}

Name of an
instance is

optional

3. Analysis – Object Modeling

23

Peter Müller – Software Engineering, SS 06

Associations

 A link represents a connection between two objects
- Ability of an object to send a message to another object
- Object A has an attribute whose value is B
- Object A creates object B
- Object A receives a message with object B as argument

 Associations denote relationships between
classes

Person Company
Works for

Optional label

employee employer

Optional roles Optional roles

3. Analysis – Object Modeling

24

Peter Müller – Software Engineering, SS 06

Multiplicity of Associations

 The multiplicity of an association end denotes how
many objects the source object can reference
- Exact number: 1, 2, etc. (1 is the default)
- Arbitrary number: * (zero or more)
- Range: 1..3, 1..*

 1-to-1 association

 1-to-many association

City Country

Polygon Point

1 1

3..*

is capital of

3. Analysis – Object Modeling

25

Peter Müller – Software Engineering, SS 06

Association: Example

 Problem Statement:
A stock exchange lists many companies. Each
company is uniquely identified by a ticker symbol.

 Diagram does not express that ticker symbols are
unique

StockExchange Company *

tickerSymbol

lists

NYSE:StockExchange

C1:Company
tickerSymbol=“ABC”

lists

C2:Company
tickerSymbol=“ABC”

lists

3. Analysis – Object Modeling

26

Peter Müller – Software Engineering, SS 06

Qualified Associations

 For each ticker symbol, a stock exchange lists
exactly one company

 Qualifiers reduce the multiplicity of associations

StockExchange Company * *

tickerSymbol

lists

StockExchange Company 1 *

tickerSymbol

tickerSymbol lists

3. Analysis – Object Modeling

27

Peter Müller – Software Engineering, SS 06

Navigability

 Associations can be directed

Person Company *

Person Company *

Person Company *

Person knows
about Company

Company knows
about Person

Person and Company
know about each other

3. Analysis – Object Modeling

28

Peter Müller – Software Engineering, SS 06

Aggregation

 Aggregation expresses a
hierarchical part-of (“has-a”)
relationship
- Special form of association
- Objects can simultaneously be

part of several aggregates

 Used for documentation
purposes only
- No formal information
- Use with care!

Curriculum

Course
*

Curriculum

Course
*

Aggregate

Component

3. Analysis – Object Modeling

29

Peter Müller – Software Engineering, SS 06

Composition

 Composition expresses a strong aggregation
- Component cannot exist without aggregate

 Aggregation and composition can be documented
like other associations
- Multiplicity, label, roles

TicketMachine

ZoneButton
3

Aggregate

Component

3. Analysis – Object Modeling

30

Peter Müller – Software Engineering, SS 06

Generalization and Specialization

 Generalization expresses a
kind-of (“is-a”) relationship

 Generalization is
implemented by inheritance
- The child classes inherit the

attributes and operations of
the parent class

 Generalization simplifies the
model by eliminating
redundancy

Polygon

Rectangle

Superclass

Subclass

3. Analysis – Object Modeling

31

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis – From Use Cases to Objects

32

Peter Müller – Software Engineering, SS 06

Analysis Object Model: Motivation

The analysis object
model bridges the gap
between use cases and
an object-oriented design

Use Case

Actor

Use Case Use Case

Class

Class

Class Class

Class Class

3. Analysis – From Use Cases to Objects

33

Peter Müller – Software Engineering, SS 06

Analysis Object Model: Properties
Requirements
Specification

Design Documents

Understood by
customer

Functional
decomposition

Solution
domain Problem

domain

Internal
structure

User’s point
of view

Object-
oriented

Communication
among

developers

Formal or
semi-formal

notation

Understood
by developer

Communication
with clients and

users

Natural
language

Analysis
Object
Model

3. Analysis – From Use Cases to Objects

34

Peter Müller – Software Engineering, SS 06

Activities During Object Modeling

 Main goal: Find important abstractions

 Order of steps
is not important
(heuristics)

Identifying Classes

Finding the operations

Finding the attributes

Finding the associations
between classes

Iterate to get the model
right and detailed!

3. Analysis – From Use Cases to Objects

35

Peter Müller – Software Engineering, SS 06

Approaches to Class Identification

Application domain
approach
 Ask application domain

expert to identify relevant
abstractions

Component-based
approach
 Identify existing solution

classes

Design patterns approach
 Use reusable design

patterns

Syntactic approach
 Extract participating

objects from flow of
events in use cases
 Use noun-verb analysis to

identify components of the
object model

3. Analysis – From Use Cases to Objects

36

Peter Müller – Software Engineering, SS 06

Noun-Verb Analysis (Abbott’s Textual Analysis)

 Do a textual analysis of problem statement
 Take the flow of events and find participating

objects in use cases and scenarios
- Nouns are good candidates for classes
- Verbs are good candidates for operations

 Works well for short, structured texts

- Problem statement
- Flow of events in use cases

3. Analysis – From Use Cases to Objects

37

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Problem Statement

The library contains books and journals. It may have

several copies of a given book. Some of the books

are for short-term loans only. All other books can be

borrowed by any library member for three weeks.

Members of the library can normally borrow up to six

items at a time, but members of the staff may borrow

up to 12 items at one time. Only members of the staff

may borrow journals.

3. Analysis – From Use Cases to Objects

38

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Nouns

The library contains books and journals. It may have

several copies of a given book. Some of the books

are for short-term loans only. All other books can be

borrowed by any library member for three weeks.

Members of the library can normally borrow up to six

items at a time, but members of the staff may borrow

up to 12 items at one time. Only members of the staff

may borrow journals.

3. Analysis – From Use Cases to Objects

39

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Selecting Classes

 Library: inside or outside the system?
 Book, journal, copy: candidates for classes
 Loan: property or event
 Library member: candidate for a class
 Week: unit of measurement
 Items: used to refer to books and journals
 Time: event
 Staff members: candidate for a class

3. Analysis – From Use Cases to Objects

40

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Class Diagram

Library Member

Staff Member

Borrowable

Copy

Journal

Book

3. Analysis – From Use Cases to Objects

41

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Verbs

The library contains books and journals. It may have

several copies of a given book. Some of the books

are for short-term loans only. All other books can be

borrowed by any library member for three weeks.

Members of the library can normally borrow up to six

items at a time, but members of the staff may borrow

up to 12 items at one time. Only members of the staff

may borrow journals.

3. Analysis – From Use Cases to Objects

42

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Class Diagram

Library Member

borrow(Copy)

Staff Member

borrow(Copy)
borrow(Journal)

Borrowable

Copy

Journal

Book

1..*
0..1 0..*

0..1 0..*

0..1

0..*

3. Analysis – From Use Cases to Objects

43

Peter Müller – Software Engineering, SS 06

Textual Analysis Example: Iteration

Library Member

borrow(Copy)

Staff Member

borrow(Journal)

Borrowable

Copy

Journal

Book

1..*
0..1 0..*

0..1 0..*

3. Analysis – From Use Cases to Objects

44

Peter Müller – Software Engineering, SS 06

The library contains books and journals. It may have
several copies of a given book. Some of the books
are for short-term loans only. All other books can be
borrowed by any library member for three weeks.
Members of the library can normally borrow up to six
items at a time, but members of the staff may borrow
up to 12 items at one time. Only members of the staff
may borrow journals.

Textual Analysis Example: Remainder

Precondition
for borrow

Precondition
for borrow

Attribute in
Borrowable
Attribute in
Borrowable

3. Analysis – From Use Cases to Objects

45

Peter Müller – Software Engineering, SS 06

Mapping Speech to Object Models

Part of speech
 Proper noun
 Improper noun
 Doing verb
 being verb
 having verb
 modal verb
 adjective
 transitive verb
 intransitive verb

Example
 Jim Smith
 Toy, doll
 Buy, recommend
 is-a (kind-of)
 has a
 must be
 3 years old
 enter
 depends on

Model component
 Object
 Class
 Method
 Inheritance
 Aggregation
 Constraint
 Attribute
 Method
 Method (event)

3. Analysis – From Use Cases to Objects

46

Peter Müller – Software Engineering, SS 06

Problems of Noun-Verb Analysis

 Natural language is imprecise
- Identify and standardize terms
- Rephrase and clarify requirements specification

 Many more nouns than relevant classes

- Eliminate synonyms; use same word for the same thing
- Many nouns correspond to attributes

3. Analysis – From Use Cases to Objects

47

Peter Müller – Software Engineering, SS 06

Different Kinds of Objects

 Having three kinds
of objects makes
models more
resilient to change
- Interface of

system changes
more likely than
control

- Control of system
changes more
likely than
application domain

Entity Objects
 Represent the persistent

information tracked by the system
 Application domain objects,

“business objects”

Control Objects
 Represent the control tasks

performed by the system

Boundary Objects
 Represent the interaction

between the user and the system

3. Analysis – From Use Cases to Objects

48

Peter Müller – Software Engineering, SS 06

Identifying Entity Objects

 For each use case, participating objects are
- Identified (e.g., by noun-verb analysis)
- Named by application domain terms
- Described and collated in a glossary

 Results in the initial analysis model

3. Analysis – From Use Cases to Objects

49

Peter Müller – Software Engineering, SS 06

Heuristics for Identifying Entity Objects

 Terms the developers or users must clarify to
understand the use case (e.g., account)

 Recurring nouns in the use case (e.g., card)
 Real-world entities that the system must track

(e.g., cash dispenser)
 Real-world processes that the system must track
 Data sources or sinks (e.g., host)

Account Currency

3. Analysis – From Use Cases to Objects

50

Peter Müller – Software Engineering, SS 06

Cross Checks

 Use cases and initial analysis models can be
improved by cross-checking

 Which use case creates this object?
 Which actors can access this information?
 Which use cases modify and destroy this object?
 Which actors can initiate these use cases?
 Is this object needed? (Is there at least one use

case that depends on this information?)

3. Analysis – From Use Cases to Objects

51

Peter Müller – Software Engineering, SS 06

Identifying Boundary Objects

 Boundary objects collect information from actor
 Boundary objects translate information into

format for entity and control objects
 Boundary objects do not model details and visual

aspects (e.g., menu item, scrollbar)

 Each actor interacts with at least one boundary
object

3. Analysis – From Use Cases to Objects

52

Peter Müller – Software Engineering, SS 06

Heuristics for Identifying Boundary Objects

 User interface controls to initiate the use case
(e.g., bank card)

 Forms to enter data (e.g., option screen)
 Messages the system uses to respond (e.g.,

termination message)

Terminal Display

3. Analysis – From Use Cases to Objects

53

Peter Müller – Software Engineering, SS 06

Identifying Control Objects

 Control objects coordinate boundary and entity
objects

 Control objects usually do not have a concrete
counterpart in the real world

 Control objects are typically created at beginning
of use case and exist to its end

 Control objects collect information from boundary
objects and dispatch it to entity objects

 Examples
- Sequencing of forms, undo and history queues
- Dispatching information in distributed systems

3. Analysis – From Use Cases to Objects

54

Peter Müller – Software Engineering, SS 06

Heuristics for Identifying Control Objects

 Identify one control object per use case
 Identify one control object per actor in the use

case
 Life span of a control object should cover the

extent of a use case or user session

Withdrawal

3. Analysis – From Use Cases to Objects

55

Peter Müller – Software Engineering, SS 06

Stereotypes and Conventions

 UML provides stereotypes to attach extra
classifications

 Naming conventions help to distinguish kinds of
objects

<<Entity>>
Account

<<Boundary>>
Terminal

<<Control>>
Withdrawal

<<Entity>>
Account

<<Boundary>>
Terminal_Boundary

<<Control>>
Withdrawal_Control

3. Analysis – From Use Cases to Objects

56

Peter Müller – Software Engineering, SS 06

UML Packages

 A package is a UML
mechanism for organizing
elements into groups
- Usually not an application

domain concept
- Increase readability of UML

models
 Decompose complex

systems into subsystems
- Each subsystem is modeled

as a package

R

Q

P

<<import>>

<<import>>

3. Analysis – From Use Cases to Objects

57

Peter Müller – Software Engineering, SS 06

Avoid Ravioli Models

 Don’t put too many classes into the same package:
7 ± 2 (or even 5 ± 2)

Account
Amount
AccountId
Deposit()
Withdraw()
GetBalance()

Checking Account

Withdraw()

Savings Account

Withdraw()

Mortgage Account

Withdraw()

Bank
Name

Customer
Name

* *

3. Analysis – From Use Cases to Objects

58

Peter Müller – Software Engineering, SS 06

Put Taxonomies on a Separate Diagram

Account
Amount
AccountId
Deposit()
Withdraw()
GetBalance()

Checking Account

Withdraw()

Savings Account

Withdraw()

Mortgage Account

Withdraw()

3. Analysis – From Use Cases to Objects

59

Peter Müller – Software Engineering, SS 06

Summary: Ways to Find Objects

 Syntactical investigation with Abbott‘s technique
- In the problem statement
- In the flow of events of use cases

 Use of various knowledge sources
- Application knowledge: Interviews of users and experts

to determine the abstractions of the application domain
- Design knowledge: Reusable abstractions in the

solution domain
- General world knowledge: Use your empirical

knowledge and intuition

3. Analysis – From Use Cases to Objects

60

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis – Dynamic Modeling

61

Peter Müller – Software Engineering, SS 06

Overview

 Object model describes structure of system
 Dynamic model describes behavior
 Purpose: Detect and supply operations (methods)

for the object model

We look for objects that
are interacting and

extract their “protocol”

We look for objects that
have interesting

behavior on their own

Sequence diagrams

State diagrams

3. Analysis – Dynamic Modeling

62

Peter Müller – Software Engineering, SS 06

UML Sequence Diagrams

:Client :Terminal

insertCard()

insertPIN()

Actors and
objects:
columns

Lifelines:
dashed lines

Activations:
narrow

rectangles

Messages: arrows
Time

3. Analysis – Dynamic Modeling

63

Peter Müller – Software Engineering, SS 06

Nested Messages

 The source of an arrow indicates the activation
which sent the message

 An activation is as long as all nested activations

:Client :Terminal

insertCard()

:ClientData

check(data)

ok / nok

:Display

displayMessage(text)

Data flow

3. Analysis – Dynamic Modeling

64

Peter Müller – Software Engineering, SS 06

Creation and Destruction

 Creation is denoted by a message arrow pointing to
the object

 In garbage collection environments, destruction can
be used to denote the end of the useful life of an
object

:Terminal

:Session
start()

Destruction
log()

close()

Creation

3. Analysis – Dynamic Modeling

65

Peter Müller – Software Engineering, SS 06

From Use Cases to Sequence Diagrams

 Sequence diagrams are derived from flows of
events of use cases

 An event always has a sender and a receiver
- Find the objects for each event

 Relation to object identification
- Objects/classes have already been identified during

object modeling
- Additional objects are identified as a result of dynamic

modeling

3. Analysis – Dynamic Modeling

66

Peter Müller – Software Engineering, SS 06

Bankomat Example: Withdraw Event Flow

Actor steps
1. Authenticate (use case

Authenticate)
3. Client selects “Withdraw

CHF”

5. Client enters amount

System Steps

2. Bankomat displays options

4. Bankomat queries amount

6. Bankomat returns bank

card
7. Bankomat outputs

specified amount in CHF

Listed as
extension point

3. Analysis – Dynamic Modeling

67

Peter Müller – Software Engineering, SS 06

<<Entity>>
:Account :Client

<<Boundary>>
:Terminal

select
(wthdrCHF)

<<Control>>
:Withdrawal

initWthdr
(cur)

<<Boundary>>
:Display

queryAmount()

select
(option)

wthdr
(amount)

withdraw(amount, cur)
displayConfimation()

ejectCard()
taken

check(amount, cur)
okay

dispense(amount, cur)

3. Analysis – Dynamic Modeling

68

Peter Müller – Software Engineering, SS 06

Impact on Object Model

 For each object that receives an event there is a
public operation in the associated class

 Identify additional objects and classes
- In the example: Sink for dispense message

(CashDispenser)

<<Entity>>
:Account

check(amount, cur)

withdraw(amount, cur)
okay

<<Entity>>
Account

boolean check(int, Currency)
withdraw(int, Currency)

3. Analysis – Dynamic Modeling

69

Peter Müller – Software Engineering, SS 06

Recommended Layout of Sequence Diagrams

<<Entity>>
:Account :Client

<<Boundary>>
:Terminal

<<Control>>
:Withdrawal

<<Boundary>>
:Display

1st column:
Actor who
initiated the

use case

3rd column:
Control object that
manages the rest
of the use case

2nd column:
Boundary object

3. Analysis – Dynamic Modeling

70

Peter Müller – Software Engineering, SS 06

Heuristics for Sequence Diagrams

 Creation of objects
- Control objects are created at the initiation of a use case
- Boundary objects are often created by control objects

 Access of objects
- Entity objects are accessed by control and boundary

objects
- Entity objects should never access boundary or control

objects
• Easier to share entity objects across use cases
• Makes entity objects resilient against technology-induced

changes in boundary objects

3. Analysis – Dynamic Modeling

71

Peter Müller – Software Engineering, SS 06

Fork Structure

 The dynamic behavior is placed in a single
object, usually a control object

 It knows all the other objects and often uses them
for direct queries and commands

<<Control>>

3. Analysis – Dynamic Modeling

72

Peter Müller – Software Engineering, SS 06

Stair Structure

 The dynamic behavior is distributed
- Each object delegates some responsibility to other

objects
- Each object knows only a few of the other objects and

knows which objects can help with a specific behavior

3. Analysis – Dynamic Modeling

73

Peter Müller – Software Engineering, SS 06

Fork or Stair?

 Object-oriented supporters claim that the stair
structure is better
- The more the responsibility is spread out, the better

 Choose the stair (decentralized control) if
- The operations have a strong connection
- The operations will always be performed in the same

order
 Choose the fork (centralized control) if

- The operations can change order
- New operations are expected to be added as a result of

new requirements

3. Analysis – Dynamic Modeling

74

Peter Müller – Software Engineering, SS 06

Sequence Diagrams Summary

 Sequence diagrams represent behavior in terms of
interactions

 Complement the class diagrams (which
represent structure)

 Useful

- To find missing objects
- To detect and supply operations for the object model

 Time consuming to build, but worth the investment

3. Analysis – Dynamic Modeling

75

Peter Müller – Software Engineering, SS 06

State-Dependent Behavior

 Objects with extended lifespan often have state-
dependent behavior
- Typical for control objects
- Less often for entity objects
- Almost never for boundary objects

 Examples
- Withdrawal: has state-dependent behavior
- Account : has state-dependent behavior (e.g., locked)
- Display : does not have state-dependent behavior

 State-dependent behavior is modeled only if
necessary

3. Analysis – Dynamic Modeling

76

Peter Müller – Software Engineering, SS 06

Events, Actions, and Activities

 Event: Something that happens at a point in time
- Typical event: Receipt of a message
- Other events: Change event for a condition, time event

 Action: Operation in response to an event
- Example: Object performs a computation upon receipt of

a message
 Activity: Operation performed as long as object is

in some state
- Example: Object performs a computation without external

trigger

3. Analysis – Dynamic Modeling

77

Peter Müller – Software Engineering, SS 06

UML State Diagrams

 State diagram relates events and states for a class
 Often called “state chart” or “state chart diagram”

State 1

do / activity
entry / action
exit / action

State 2

do / activity
entry / action
exit / action

Event(par) [condition] / action

States:
rounded

rectangles

Transitions:
arrows Start

marker

End
marker

3. Analysis – Dynamic Modeling

78

Peter Müller – Software Engineering, SS 06

Example 1: States of Copy Objects

 Implementation has to take care of unexpected
messages, e.g., return in state “on shelf”
- Specify precondition
- Report an error, throw an exception

On loan
entry / book.borrow()

On shelf
entry / book.return()

return()
borrow()

Copy

borrow()
return()

1..* Book

borrow()
return()

3. Analysis – Dynamic Modeling

79

Peter Müller – Software Engineering, SS 06

Example 2: States of Book Objects

 Events can have different effects depending on
guard conditions

 Some state diagrams do not have end markers

Not
borrowable

Borrowable return()
borrow() [last copy]

return()

borrow() [not last copy]

3. Analysis – Dynamic Modeling

80

Peter Müller – Software Engineering, SS 06

Example 3: Ticket Vending Machine

Idle
entry / clear

balance

TicketSelected
entry / compute change

selectTicket(tkt)

OverPaid
do / dispense change

[change > 0]

ExactlyPaid
do / dispense ticket

[change = 0]

CollectMoney

[change < 0] insCoin(amount) / add to balance

[change
dispensed]

[ticket
dispensed]

3. Analysis – Dynamic Modeling

81

Peter Müller – Software Engineering, SS 06

State

 An abstraction of the attribute values of an object
 A state is an equivalence class of all those attribute

values and links that do not need to be
distinguished as far as the control structure of the
class or the system is concerned

 Example: State of a book
- A book is either borrowable or not
- Omissions: bibliographic data
- All borrowable books are in the same equivalence class,

independent of their author, title, etc.

3. Analysis – Dynamic Modeling

82

Peter Müller – Software Engineering, SS 06

Nested State Diagrams

 Activities in states can be composite items that
denote other state diagrams

 Sets of substates in a nested state diagram can be
denoted with a superstate
- Avoid spaghetti models
- Reduce the number of lines in a state diagram

3. Analysis – Dynamic Modeling

83

Peter Müller – Software Engineering, SS 06

Example: Superstate

Idle
entry / clear

balance

CollectMoney

TicketSelected
entry / compute change

ExactlyPaid
do / dispense ticket

OverPaid
do / dispense change

insCoin(amount) / add to balance

selectTicket(tkt)

[change > 0] [change = 0]

[change < 0]

[change
dispensed]

[ticket
dispensed]

Superstate

3. Analysis – Dynamic Modeling

84

Peter Müller – Software Engineering, SS 06

Expanding the Superstate

 Transitions from other states to the superstate
enter the first substate of the superstate

 Transitions to other states from a superstate are
inherited by all the substates (state inheritance)

do / store coins do / issue ticket do / print ticket

ExactlyPaid
do / dispense ticket

[change = 0]

[change
dispensed]

[ticket
dispensed]

Dispense as
atomic activity

Dispense as
composite

activity

3. Analysis – Dynamic Modeling

85

Peter Müller – Software Engineering, SS 06

State Diagram vs. Sequence Diagram

 State diagrams help to identify
- Changes to an individual object over time

 Sequence diagrams help to identify

- The temporal relationship of between objects
- Sequence of operations as a response to one or more

events

3. Analysis – Dynamic Modeling

86

Peter Müller – Software Engineering, SS 06

Practical Tips for Dynamic Modeling

 Construct dynamic models only for classes with
significant dynamic behavior
- Avoid “analysis paralysis”

 Consider only relevant attributes
- Use abstraction if necessary

 Look at the granularity of the application when
deciding on actions and activities

 Reduce notational clutter
- Try to put actions into superstate boxes (look for identical

actions on events leading to the same state)

3. Analysis – Dynamic Modeling

87

Peter Müller – Software Engineering, SS 06

Requirements Analysis Document
1. Introduction

1. Purpose and scope of the System
2. Objectives and success criteria of the project
3. Definitions, acronyms, references, overview

2. Current System
3. Proposed System

1. Overview
2. Functional requirements
3. Nonfunctional requirements
4. System models

4. Glossary

3. Analysis – Dynamic Modeling

88

Peter Müller – Software Engineering, SS 06

Section 3.4 System Model

3.4.1 Scenarios
- As-is scenarios, visionary scenarios

3.4.2 Use case model
- Actors and use cases

3.4.3 Object model
- Data dictionary
- Class diagrams: classes, associations, attributes, operations

3.4.4 Dynamic model
- State diagrams for classes with significant dynamic behavior
- Sequence diagrams for collaborating objects (protocol)

3.4.5 User Interface

3. Analysis – Dynamic Modeling

89

Peter Müller – Software Engineering, SS 06

Summary: System Models

1. What are the transformations?
- Create scenarios and use case diagrams
- Talk to client, observe, get historical records

2. What is the structure of the system?
- Create class diagrams
- Identify objects, associations and their multiplicity,

attributes, operations
3. What is its behavior?

- Create sequence diagrams
- Show senders, receivers, and sequence of events
- Create state diagrams (for the interesting objects)

→ Functional Model

→ Object Model

→ Dynamic Model

3. Analysis – Dynamic Modeling

90

Peter Müller – Software Engineering, SS 06

Dominance of Models

 Object model
- The system has classes with nontrivial states and

many relationships between the classes

 Dynamic model
- The model has many different types of events: Input,

output, exceptions, errors, etc.

 Functional model
- The model performs complicated transformations

(e.g., computations consisting of many steps)

3. Analysis – Dynamic Modeling

91

Peter Müller – Software Engineering, SS 06

Dominance of Models: Examples

 Compiler: Functional model
- Dynamic model is trivial (there is only one type input and

only a few outputs)
 Database systems: Object model

- Functional model is trivial (the purpose of the functions is
usually to store, organize, and retrieve data)

 Spreadsheet program: Functional model
- Dynamic model is interesting if the program allows

computations on a cell
- Object model is trivial (spreadsheet values are trivial; the

only interesting object is the cell)

3. Analysis – Dynamic Modeling

92

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis – Examples

93

Peter Müller – Software Engineering, SS 06

Elevator Control: Problem Statement

 The elevator has one button for each floor
- Illuminate when pressed
- Cause the elevator to visit the corresponding floor
- Illumination is canceled when the elevator visits the

corresponding floor
 Each floor, except the first floor and top floor has

two buttons to request the elevator to go up or
down, respectively
- Illuminate when pressed
- Causing the elevator to visit the corresponding floor
- Illumination is canceled when the elevator visits the floor

and then moves in the desired direction

3. Analysis – Examples

94

Peter Müller – Software Engineering, SS 06

Use Case: Fetch Elevator

 Initiating actor: Passenger
 Entry condition:

Passenger is in the hall
 Exit condition:

Elevator is on requested
floor with doors open

Flow of Events:
 Passenger pushes hall

button
 System illuminates button
 System closes elevator

doors
 System moves elevator to

requested floor
 System cancels

illumination
 System opens elevator

doors

FetchElevator

Passenger

3. Analysis – Examples

95

Peter Müller – Software Engineering, SS 06

Use Case: Ride Elevator

 Initiating actor: Passenger
 Entry condition:

Passenger is inside the
elevator

 Exit condition:
Elevator is on requested
floor with doors open

Flow of Events:
 Passenger pushes

elevator button
 System illuminates button
 System closes elevator

doors
 System moves elevator to

requested floor
 System cancels

illumination
 System opens elevator

doors

RideElevator

Passenger

3. Analysis – Examples

96

Peter Müller – Software Engineering, SS 06

Initial Analysis Object Model

<<Control>>
Controller

<<Boundary>>
ElevatorButton

<<Boundary>>
HallButton

<<Entity>>
Engine <<Boundary>>

Button
*

<<Entity>>
Door

3. Analysis – Examples

97

Peter Müller – Software Engineering, SS 06

Sequence Diagram: Fetch and Ride Elevator

<<Entity>>
:Door :Passenger

<<Boundary>>
:Button

<<Control>>
:Controller

push() request(floor)

<<Entity>>
:Engine

moveTo(floor)

illuminate

open()

cancel
Illumination()

close()

3. Analysis – Examples

98

Peter Müller – Software Engineering, SS 06

Iteration: Missed Requirements

 The project manager decides that the analysis
results should also be discussed with the hardware
engineer

 Engine cannot be told to move to a given floor
 Messages understood by the engine:

- Start moving in a given direction
- Stop moving

 Sensors are used to determine position of elevator
- Sensors send signal when floor is reached

3. Analysis – Examples

99

Peter Müller – Software Engineering, SS 06

Use Case: Request Elevator

 Initiating actor: Passenger
 Entry condition: –
 Exit condition:

Elevator starts moving
towards requested floor

Flow of Events:
 Passenger pushes button
 System illuminates button
 System closes elevator

doors
 System initiates elevator

to move to requested floor

RequestElevator

Passenger

3. Analysis – Examples

100

Peter Müller – Software Engineering, SS 06

Use Case: Reach Floor

 Initiating actor: Sensor
 Entry condition:

Elevator is moving to
requested floor

 Exit condition:
Elevator is stopped on
requested floor with doors
open

Flow of Events:
 Sensor signals that some

floor is reached
 System stops elevator
 System cancels

illumination of button
 System opens elevator

doors

ReachFloor

Sensor

3. Analysis – Examples

101

Peter Müller – Software Engineering, SS 06

Sequence Diagram: Request Elevator

<<Entity>>
:Door :Passenger

<<Boundary>>
:Button

push()

<<Control>>
:Controller

request(floor)

<<Entity>>
:Engine

start
(direction)

illuminate

close()

3. Analysis – Examples

102

Peter Müller – Software Engineering, SS 06

Sequence Diagram: Reach Floor

<<Entity>>
:Door :Sensor

<<Boundary>>
:Button

signal(floor)

<<Control>>
:Controller

<<Entity>>
:Engine

stop()

open()

opt [floor = nextStop]

cancel
Illumination()

“opt” frame denotes
conditional execution

3. Analysis – Examples

103

Peter Müller – Software Engineering, SS 06

State Diagram: Controller

Idle Busy
request(floor) /
door.close(); engine.start(direction)

signal(floor) [floor = nextStop] /
engine.stop(); door.open()

signal(floor) [floor ≠ nextStop]

Request is
disallowed while

elevator is moving

3. Analysis – Examples

104

Peter Müller – Software Engineering, SS 06

A More Realistic Elevator

 Additional business requirements
 Requests shall be accepted at any time

- Also when elevator is moving
 System keeps track of all pending requests

- Processing order not specified
 Elevator serves requests on its way immediately

- Detailed by scenario

 We ignore illumination of buttons and operation of
doors in the following

3. Analysis – Examples

105

Peter Müller – Software Engineering, SS 06

Scenario: Processing Requests on the Way
1. Alice enters elevator on

first floor and pushes
button for fifth floor

2. System initiates elevator
to move to fifth floor

3. When elevator is on
second floor, Bob pushes
hall button on third floor

4. System stops elevator on
third floor

5. Bob enters elevator and
pushes button for sixth
floor

6. System initiates elevator
to move to fifth floor

7. System stops elevator on
fifth floor

8. Alice gets off
9. System initiates elevator

to move to sixth floor
10.System stops elevator on

sixth floor
11.Bob gets off

3. Analysis – Examples

106

Peter Müller – Software Engineering, SS 06

Use Case: Request Elevator

 Initiating actor: Passenger
 Entry condition: –
 Exit condition:

- System stores new request
- If idle, elevator started

moving towards requested
floor

Flow of Events:
 Passenger pushes button
 System determines next

stop (a previous or new
request)

 System initiates elevator
to move to determined
next stop

RequestElevator

Passenger

3. Analysis – Examples

107

Peter Müller – Software Engineering, SS 06

Use Case: Reach Floor

 Initiating actor: Sensor
 Entry condition:

- Elevator is moving towards
requested floor

 Exit condition:
- Elevator had stopped on

requested floor
- Elevator is moving to next

requested floor

Flow of Events:
 Sensor signals that some

floor is reached
 System stops elevator if

requested floor is reached
 System chooses next

request (extension point)
 System initiates elevator

to move to requested floor

ReachFloor

Sensor

3. Analysis – Examples

108

Peter Müller – Software Engineering, SS 06

Sequence Diagram: Request Elevator

<<Entity>>
:RequestPool :Passenger

<<Boundary>>
:Button

<<Control>>
:Controller

push() request(floor)

<<Entity>>
:Engine

[idle] start
(direction)

store(later(floor, nextStop))

findNext(floor, nextStop)

Condition

3. Analysis – Examples

109

Peter Müller – Software Engineering, SS 06

Sequence Diagram: Reach Floor

<<Entity>>
:RequestPool :Sensor

<<Control>>
:Controller

signal(floor)

<<Entity>>
:Engine

stop()

served(floor)

opt [floor = nextStop]

setIdle()

start
(direction)

alt [nextStop = ∅]

[else]

nextStop := getNext()

3. Analysis – Examples

110

Peter Müller – Software Engineering, SS 06

Class Diagram

<<Control>>
Controller

int current
int nextStop
boolean idle
request(int)
signal(int)

<<Boundary>>
ElevatorButton

<<Boundary>>
HallButton

<<Entity>>
Engine

start(boolean) <<Boundary>>
Button

push()

*

<<Entity>>
RequestPool

store(int)
served(int)
int getNext()

3. Analysis – Examples

111

Peter Müller – Software Engineering, SS 06

State Diagram: Controller

Idle

Moving

request(floor)

Requested
Stop

signal(floor)
[floor = nextStop]

[pool is empty]

request(floor)

request(floor)

[pool is not empty] /
choose nextStop

3. Analysis – Examples

112

Peter Müller – Software Engineering, SS 06

3. Analysis

3.1 Modeling
3.2 Object Modeling
3.3 From Use Cases to Objects
3.4 Dynamic Modeling
3.5 Examples
3.6 Analysis Model Validation

3. Analysis – Model Validation

113

Peter Müller – Software Engineering, SS 06

Validation and Verification of Models

M M

R R

fM

I: Requirements Elicitation
fR

M2 M2

M1 M1

fM2

I2: System Design
fM1

I1: Analysis

Verification

Verification

Validation

3. Analysis – Model Validation

114

Peter Müller – Software Engineering, SS 06

Validation and Verification of Models (cont’d)

 Verification is a comparison of two models
- Determining that a model accurately represents another

model
- One can prove a refinement relation (rarely done in

practice)
 Validation is a comparison of a model to reality

- Reality can be an artificial system, (e.g., legacy system)
- Validation is a critical step in the development process

 Requirements should be validated with the client
and the user
- Technique: Formal and informal requirements reviews

3. Analysis – Model Validation

115

Peter Müller – Software Engineering, SS 06

Checklist for a Requirements Review

 Is the model correct?
- Everything is the model represents an aspect of reality

 Is the model complete?
- Every scenario, including exceptions, is described

 Is the model consistent?
- The model does not have components that contradict

themselves (for example, deliver contradicting results)
 Is the model unambiguous?

- The model describes one system (one reality), not many
 Is the model realistic?

- The model can be implemented without problems

3. Analysis – Model Validation

116

Peter Müller – Software Engineering, SS 06

Checklist for a Requirements Review (cont’d)

 One problem with modeling: We describe a system
model with many different views
- Use cases, class, sequence, and state diagrams

 We need to check the equivalence of these views
 Syntactical check of the models

- Consistent naming of classes, attributes, methods
- No dangling associations (“pointing to nowhere”)
- No double-defined classes
- No missing classes (mentioned but not defined)
- No classes with the same name but different meanings

3. Analysis – Model Validation

117

Peter Müller – Software Engineering, SS 06

Analysis Activities Summary

Review model

Consolidate model

Define
associations Define attributes Define state-

dependent behavior

Define interactions

Define control
objects

Define boundary
objects

Define entity
objects

Define participating
objects

Define use cases

3. Analysis - Conclusion

	Software Engineering�Analysis
	3. Analysis
	Requirements Engineering: Overview
	Requirements Elicitation vs. Analysis
	Analysis Model
	3. Analysis
	What is Modeling?
	Example 1: Cat
	Example 2: Street Map
	Example 3: Atom Models in Physics
	Why Model Software?
	What is a Good Model?
	Models of Models of Models …
	Modeling the Real World
	Modeling Example: Data Modeling
	Modeling Example: Object Modeling
	3. Analysis
	The Unified Modeling Language UML
	UML Notations
	Classes
	More on Classes
	Instances (Objects)
	Associations
	Multiplicity of Associations
	Association: Example
	Qualified Associations
	Navigability
	Aggregation
	Composition
	Generalization and Specialization
	3. Analysis
	Analysis Object Model: Motivation
	Analysis Object Model: Properties
	Activities During Object Modeling
	Approaches to Class Identification
	Noun-Verb Analysis (Abbott’s Textual Analysis)
	Textual Analysis Example: Problem Statement
	Textual Analysis Example: Nouns
	Textual Analysis Example: Selecting Classes
	Textual Analysis Example: Class Diagram
	Textual Analysis Example: Verbs
	Textual Analysis Example: Class Diagram
	Textual Analysis Example: Iteration
	Textual Analysis Example: Remainder
	Mapping Speech to Object Models
	Problems of Noun-Verb Analysis
	Different Kinds of Objects
	Identifying Entity Objects
	Heuristics for Identifying Entity Objects
	Cross Checks
	Identifying Boundary Objects
	Heuristics for Identifying Boundary Objects
	Identifying Control Objects
	Heuristics for Identifying Control Objects
	Stereotypes and Conventions
	UML Packages
	Avoid Ravioli Models
	Put Taxonomies on a Separate Diagram
	Summary: Ways to Find Objects
	3. Analysis
	Overview
	UML Sequence Diagrams
	Nested Messages
	Creation and Destruction
	From Use Cases to Sequence Diagrams
	Bankomat Example: Withdraw Event Flow
	Slide Number 67
	Impact on Object Model
	Recommended Layout of Sequence Diagrams
	Heuristics for Sequence Diagrams
	Fork Structure
	Stair Structure
	Fork or Stair?
	Sequence Diagrams Summary
	State-Dependent Behavior
	Events, Actions, and Activities
	UML State Diagrams
	Example 1: States of Copy Objects
	Example 2: States of Book Objects
	Example 3: Ticket Vending Machine
	State
	Nested State Diagrams
	Example: Superstate
	Expanding the Superstate
	State Diagram vs. Sequence Diagram
	Practical Tips for Dynamic Modeling
	Requirements Analysis Document
	Section 3.4 System Model
	Summary: System Models
	Dominance of Models
	Dominance of Models: Examples
	3. Analysis
	Elevator Control: Problem Statement
	Use Case: Fetch Elevator
	Use Case: Ride Elevator
	Initial Analysis Object Model
	Sequence Diagram: Fetch and Ride Elevator
	Iteration: Missed Requirements
	Use Case: Request Elevator
	Use Case: Reach Floor
	Sequence Diagram: Request Elevator
	Sequence Diagram: Reach Floor
	State Diagram: Controller
	A More Realistic Elevator
	Scenario: Processing Requests on the Way
	Use Case: Request Elevator
	Use Case: Reach Floor
	Sequence Diagram: Request Elevator
	Sequence Diagram: Reach Floor
	Class Diagram
	State Diagram: Controller
	3. Analysis
	Validation and Verification of Models
	Validation and Verification of Models (cont’d)
	Checklist for a Requirements Review
	Checklist for a Requirements Review (cont’d)
	Analysis Activities Summary

