
Software Engineering
Development Processes

Summer Semester 06

Prof. Dr. Peter Müller
Software Component Technology

The slides in this section are partly based on the courses

“Software Engineering I” by Prof. Bernd Brügge, TU München and
“Software Engineering” by Prof. Jan Vitek, Purdue University

2

Peter Müller – Software Engineering, SS 06

8. Development Processes

8.1 Classical Process Models
8.2 Extreme Programming

8. Development Processes – Overview

3

Peter Müller – Software Engineering, SS 06

Requirements for Development Process

 A procedure to guide and control the entire

development

 Should support developing high-quality systems
- Software qualities: see Lecture 1
- Acceptable development costs (time, money, etc.)

8. Development Processes – Classical Process Models

4

Peter Müller – Software Engineering, SS 06

Typical Development Process Questions

 Which activities to select for the software project?

 What are the dependencies between activities?
- Does system design depend on analysis?
- Does analysis depend on design?

 How to schedule the activities?
- Should analysis precede design?
- Can analysis and design be done in parallel?
- Should they be done iteratively?

8. Development Processes – Classical Process Models

5

Peter Müller – Software Engineering, SS 06

Software Development Activities

 Development process: activities and results of
software production
 Four basic activities:

- Specification: Definition of functionality and constraints
- Development and Implementation: Production of system
- Validation: Verification, testing, etc.
- Maintenance: Changes and improvements

 Subdivision of activities depends on the particular
process employed
 Differs depending on the kind of system built and

the organizational context

8. Development Processes – Classical Process Models

6

Peter Müller – Software Engineering, SS 06

Software Development Activities (cont’d)

Requirements Analysis What is the problem?

System Design What is the solution?

Detailed Design
What are the mechanisms that
best implement the solution?

Implementation How is the solution constructed?

Testing Is the problem solved?

Deployment Can the customer use the solution?

Maintenance Are enhancements needed?

P
ro

bl
em

D

om
ai

n
Im

pl
em

en
ta

tio
n

D
om

ai
n

8. Development Processes – Classical Process Models

7

Peter Müller – Software Engineering, SS 06

Waterfall Model (Royce 1970)

 First process model (also
called phase model)
- The development is

decomposed in phases
- Each phase is completed

before the next starts
- Each phase produces a

product (document or program)
 Loved by managers

- Nice milestones
- Easy to check progress

Integration and
System Test

System and
Software Design

Implementation
and Unit Test

Operation and
Maintenance

Requirements
Definition

8. Development Processes – Classical Process Models

8

Peter Müller – Software Engineering, SS 06

Waterfall Process Assumptions

 Requirements are known from the start, before
design
 Requirements rarely change
 Design can be conducted in a purely abstract way
 Everything will all fit nicely together when the time

comes

8. Development Processes – Classical Process Models

9

Peter Müller – Software Engineering, SS 06

Advantage of Waterfall: Transparency

 The output of one
phase is the input
of the next

Analysis

Validation
(Test)

System Design

Implementation

Requirements
Elicitation

Detailed Design

Requirements
specification

Analysis Model

Software
Architecture

Specification

Code

Report

8. Development Processes – Classical Process Models

10

Peter Müller – Software Engineering, SS 06

Problems with the Waterfall

 Assumptions typically don’t apply
- E.g., requirements typical imprecise and mature as

development advances
- Big Bang Delivery risky: proof of concept only at the end

 Late deployment hides many risks
- Technological (“I thought they would work together...”)
- Conceptual (“I thought that’s what they wanted ...”)
- Personnel (took so long, half the team left)
- User doesn’t see anything real until the end, and they

always hate it
- Testing comes in too late in the process

8. Development Processes – Classical Process Models

11

Peter Müller – Software Engineering, SS 06

Problems with the Waterfall (cont’d)

 Too much documentation (paper flood)
 Unidirectional flow often too stiff: feedback is

needed between phases
- Design reveals problems in requirements
- Coding reveals design and requirement problems, etc.

 Alternative: weakening through feedback

8. Development Processes – Classical Process Models

12

Peter Müller – Software Engineering, SS 06

 Idea: build a prototype and continually improve it
- Build in customer feedback at each iteration

Spiral Model (Boehm 1985)

 Determine objectives
and constraints

 Evaluate Alternatives
 Identify risks
 Resolve risks by assigning

priorities to risks

 Use a waterfall model for
each prototype
development (“cycle”)

 Develop a series of
prototypes for the
identified risks starting
with the highest risk

 If a risk has successfully
been resolved, evaluate
the results of the “cycle”
and plan the next round

 If a certain risk cannot be
resolved, terminate the
project immediately

8. Development Processes – Classical Process Models

13

Peter Müller – Software Engineering, SS 06

Spiral Model
Determine objectiv es,
alternatives, & constr aints

Evaluate alter natives,
identify & resolv e r isks

Develop & ver ify
next level productPlan next phase

Requirements

Development

Integration

plan

plan

plan

Requirements

Design

validation

validation

Software System
Product

Risk
analysis

Risk
analysis

Prototype1
Prototype2

Prototype3

Risk
analysis

Concept of
operation

Requirements
Design

Code

Unit Test

Integration & Test
Acceptance

Detailed
Design

P1

P2

Test

Project
start

Can be
on paper

8. Development Processes – Classical Process Models

14

Peter Müller – Software Engineering, SS 06

Types of Prototypes

 Revolutionary Prototyping
- Get user experience with a throwaway version to get the

requirements right, then build the whole system
 Evolutionary Prototyping

- The prototype is used as the basis for the implementation
of the final system

- Advantage: Short time to market
- Disadvantage: Can be used only if target system can be

constructed in prototyping language

8. Development Processes – Classical Process Models

15

Peter Müller – Software Engineering, SS 06

Spiral Model: Discussion

 Theoretically, wide applicability
- Many systems built this way

 Problematic
- Not transparent: Difficult to judge progress. Managers

have no checkpoints
- Poorly structured code: due to frequent modification
- Requires a skilled team: Small, skilled, and motivated

group
 Practically, narrow applicability: small systems with

limited life times

8. Development Processes – Classical Process Models

16

Peter Müller – Software Engineering, SS 06

8. Development Processes

8.1 Classical Process Models
8.2 Extreme Programming

8. Development Processes – Extreme Programming

17

Peter Müller – Software Engineering, SS 06

Extreme Programming (XP)

 A light-weight methodology for small to medium
sized teams
 Developing software in the face of vague and

rapidly changing requirements

 XP and traditional methodologies
- XP runs counter to software engineering practice
- XP is not a solution for all problems
- XP is programmer friendly

 Extreme Programming is an Agile Method

8. Development Processes – Extreme Programming

18

Peter Müller – Software Engineering, SS 06

Problems Addressed by XP

 Schedule slips
- Delivery date is always six

months in the future

 Project canceled
- After many slips, project

canned

 System goes sour
- After a couple of years of

operation and some
changes, bugs start to
appear

 Defect rate
- So buggy that it is not used

 Business misunderstood
- Software does not answer all

the right questions

 Business changes
- System answers the wrong

(out of date) questions

 False feature rich
- Lots of unused features

 Staff turnover
- Where have all the good

programmers gone?

8. Development Processes – Extreme Programming

19

Peter Müller – Software Engineering, SS 06

XP Approach

 Schedule slips
- Short release cycles to limit the scope of slips
- Within release, 1 to 4 weeks customer-requested feature

iterations
- Within iteration, 1-3 day tasks
- Implement most important features first, to minimize the

impact of slips
 Project canceled

- Customer involvement to choose the smallest possible
release, to minimize potential bottlenecks and maximize
software value

8. Development Processes – Extreme Programming

20

Peter Müller – Software Engineering, SS 06

XP Approach (cont’d)

 System goes sour
- Create and maintain a comprehensive suite of tests
- Run tests after every change

 Defect rate
- Unit test (programmer defined)
- Functional tests (user defined)

 Business misunderstood
- Customer is an integral part of the team
- Specification continuously refined

8. Development Processes – Extreme Programming

21

Peter Müller – Software Engineering, SS 06

XP Approach (cont’d)

 Business changes
- Shorter release cycles imply less change during

development
- Unimplemented features can be replaced at no cost

 False feature rich
- Only highest priority tasks are addressed

 Staff turnover
- Religion
- Shared code ownership

8. Development Processes – Extreme Programming

22

Peter Müller – Software Engineering, SS 06

Extreme Programming

 Suggested reading: Kent Beck: Embracing Change
with Extreme Programming, 1999

Analysis

Design

Implementation

Test

Tim
e

Scope

8. Development Processes – Extreme Programming

23

Peter Müller – Software Engineering, SS 06

The Basics

 XP relies on 12 principles that are used as guides
during the development process

 XP separates software development into

4 activities, these are roles a software engineer
can play

 XP advocates 12 practices that describe how to

approach the development process

8. Development Processes – Extreme Programming

24

Peter Müller – Software Engineering, SS 06

The Twelve XP Principles
1. Rapid feedback
2. Assume simplicity
3. Incremental change
4. Embracing change
5. Quality work
6. Small initial investment
7. Concrete experiments
8. Open, honest communication
9. Accepted responsibility
10. Local adaptation
11. Travel light
12. Honest measurements

8. Development Processes – Extreme Programming

25

Peter Müller – Software Engineering, SS 06

XP Principles (cont’d)

1. Rapid feedback
- Generate feedback, interpret it and put experience in

the system as frequently as possible
- Business learns the benefits and shortcoming of the

systems
- Programmers lean how to best test, design, implement

seconds/minutes instead of weeks/months
2. Assume simplicity

- Do not design for reuse
- Plan for today and trust your ability to add complexity in

the future

8. Development Processes – Extreme Programming

26

Peter Müller – Software Engineering, SS 06

XP Principles (cont’d)

3. Incremental change
- Designs change a little at a time
- Plans change a little at a time
- Teams change a little at a time

4. Embracing change

- Best strategies preserve most options while solving the
pressing problems

8. Development Processes – Extreme Programming

27

Peter Müller – Software Engineering, SS 06

XP Principles (cont’d)

5. Quality of work
- Quality is not a free variable: the only possible values

are “excellent and “insanely excellent”
6. Small initial investment

- Tight budgets force programmers and customers to
focus on essentials

- Avoid comfort
7. Concrete experiments

- Every abstract decision should be tested
- The result of a design session should be a series of

experiments

8. Development Processes – Extreme Programming

28

Peter Müller – Software Engineering, SS 06

XP Principles (cont’d)

8. Open, honest communication
- Deliver the bad news early

9. Accepted responsibility
- Responsibilities should not be given, they should be

accepted
10.Local adaptation

- There are no fixed rules
11.Travel light

- Keep things small, maintain only the essential
12.Honest measurements

- Strive for accurate measurement of productivity

8. Development Processes – Extreme Programming

29

Peter Müller – Software Engineering, SS 06

The Four XP Activities

Testing

Listening Designing

Coding

8. Development Processes – Extreme Programming

30

Peter Müller – Software Engineering, SS 06

XP Activities: Coding

 Coding as learning
 Coding as communication
 Code as end result
 Code as specification

8. Development Processes – Extreme Programming

31

Peter Müller – Software Engineering, SS 06

XP Activities: Testing

 Anything that cannot be measured does not exist
 Without test, software is useless
 Tests are not only for functional requirements

they are also for performance and adherence to
standards
 “test infected” – do not code before having tests
 Write only tests that could possibly fail (but beware

about that possibly)
 Test keep the program alive longer
 Testing improves productivity

8. Development Processes – Extreme Programming

32

Peter Müller – Software Engineering, SS 06

XP Activities: Listening

 Listening to customers
 Find rules that encourage useful communication
 Find rules that discourage useless communication

8. Development Processes – Extreme Programming

33

Peter Müller – Software Engineering, SS 06

XP Activities: Designing

 Organize the logic of the system
 Good design ensures that every piece of logic has

only one home
 Good design allows the extension of the system

with changes in only one place
 Bad design is seen when one modification requires

many changes
 Complexity is a source of bad design
 Design is a daily activity of all programmers

8. Development Processes – Extreme Programming

34

Peter Müller – Software Engineering, SS 06

The Twelve XP Practices
1. The Planning Game
2. Small releases
3. Metaphor
4. Simple design
5. Testing
6. Refactoring
7. Pair programming
8. Collective ownership
9. Continuous integration
10. 40-hour week
11. On-site customer
12. Coding standards

8. Development Processes – Extreme Programming

35

Peter Müller – Software Engineering, SS 06

XP Practices: 1. The Planning Game

 Business people decide about
- Scope
- Priority of features
- Composition of releases
- Dates of releases

 Technical people decide about

- Estimates
- Process
- Detailed scheduling

8. Development Processes – Extreme Programming

36

Peter Müller – Software Engineering, SS 06

XP Practices: 2. Small Releases

 Working system early

 Releases anywhere from daily to monthly

 Metaphor

- System shape defined by a metaphor shared by the
customer and programmers

8. Development Processes – Extreme Programming

37

Peter Müller – Software Engineering, SS 06

XP Practices: 3. Metaphor

 A story that customer, programmers, and
managers can tell about how the system works
 Every project is guided by a single overarching

metaphor
 Vocabulary should be consistent with the metaphor
 Give a coherent story within which to work, a story

that can be easily shared by business and technical
 A metaphor is a system architecture that is easy to

communicate

8. Development Processes – Extreme Programming

38

Peter Müller – Software Engineering, SS 06

XP Practices: 4. Simple Design

 The right design is one that:

- Runs all tests
- Communicates everything the programmers want to

communicate
- Contains no duplicate code
- Has the fewest possible classes and methods
- Say everything once and only once

8. Development Processes – Extreme Programming

39

Peter Müller – Software Engineering, SS 06

XP Practices: 5. Testing

 Any feature without an automated test does not

exist

 Programmers write unit tests

 Customers write functional tests

 Write test only for method that could possibly break

8. Development Processes – Extreme Programming

40

Peter Müller – Software Engineering, SS 06

XP Practices: 6. Refactoring

 A change that leaves system behavior unchanged,
but enhances simplicity, flexibility,
understandability, and/or performance
 Before changing the program: Is there a way of

modifying the program to make adding this new
feature easier?
 After changing the program: Is there a way to make

the program simpler?
 You refactor only when the systems requires you to
 Keep all tests running

8. Development Processes – Extreme Programming

41

Peter Müller – Software Engineering, SS 06

XP Practices: 7. Pair Programming

 All production code is written with two people
looking at one machine
 There are two roles in each pair:

- One partner is thinking about implementation
- The other is thinking strategically

(Is this whole approach going to work? What test cases
may fail? Can we simplify the system to make this
problem go away?)

 Pair programming is dynamic, different pairs each
time
 Pair programming spreads knowledge

8. Development Processes – Extreme Programming

42

Peter Müller – Software Engineering, SS 06

XP Practices: 8. Collective Ownership

 Anybody who sees an opportunity to add value to

any portion of the code is required to do so at any
time

 Chaos is adverted by testing

8. Development Processes – Extreme Programming

43

Peter Müller – Software Engineering, SS 06

XP Practices: 9. Continuous Integration

 Code is integrated and tested several times a

day

 Integration ends when 100% of tests are passed

8. Development Processes – Extreme Programming

44

Peter Müller – Software Engineering, SS 06

XP Practices: 10. 40 Hour Weeks

 Be fresh and rested

 Overtime is a symptom of serious problems on the

project

8. Development Processes – Extreme Programming

45

Peter Müller – Software Engineering, SS 06

XP Practices: 11. On site customer

 Real customers are need full time

 Provide instant feedback

 Keep development on track

8. Development Processes – Extreme Programming

46

Peter Müller – Software Engineering, SS 06

XP Practices: 12. Coding standards

 The standard is indispensable

 It should not be possible to tell who wrote a piece of

code

 The standard must be accepted by the whole team

8. Development Processes – Extreme Programming

47

Peter Müller – Software Engineering, SS 06

XP: Discussion

 Situations where XP is not appropriate
(according to Kent Beck)
- When it is not supported by the company culture
- More than 10 or 20 programmers (!)
- Project too big for regular complete integration
- Where it inherently takes a long time to get

feedback
- Where you can’t realistically test (e.g., already in

production using a $1,000,000 machine that is
already at full capacity)

8. Development Processes – Extreme Programming

49

Peter Müller – Software Engineering, SS 06

Process Maturity

 A software development process is mature
- If the development activities are well defined and
- If management has some control over the quality,

budget, and schedule of the project
 Process maturity is described with

- A set of maturity levels and
- The associated measurements (metrics) to manage the

process
 Assumption

- With increasing maturity the risk of project failure
decreases

50

Peter Müller – Software Engineering, SS 06

Capability Maturity Levels
1. Initial Level (also called ad hoc or chaotic)
2. Repeatable Level

- Process depends on individuals ("champions")
3. Defined Level

- Process is institutionalized (sanctioned by management)
4. Managed Level

- Activities are measured and provide feedback for
resource allocation (process itself does not change)

5. Optimizing Level
- Process allows feedback of information to change

process itself

51

Peter Müller – Software Engineering, SS 06

Maturity Level 1: Chaotic Process

 Ad hoc approach to software development activities
 No problem statement or requirements specification
 Output is expected

- But nobody knows how to get there in a deterministic
fashion

 Similar projects may vary widely in productivity
- "when we did it last year we got it done"

52

Peter Müller – Software Engineering, SS 06

Maturity Level 1: Chaotic Process (cont‘d)

 Level 1 Metrics
- Rate of productivity (baseline comparisons, collection of

data is difficult)
- Product size (LOC, number of functions, etc.)
- Staff effort (person-months)

 Recommendation
- Level 1 managers and developers should not

concentrate on metrics and their meanings
- They should first attempt to adopt a process model

(waterfall, spiral model, etc.)

53

Peter Müller – Software Engineering, SS 06

Maturity Level 2: Repeatable Process

 Inputs and outputs are defined
- Input: Problem statement or requirements specification
- Output: Source code

 Process itself is a black box (activities within
process are not known)
- No intermediate products are visible
- No intermediate deliverables

 Process is repeatable due to some individuals who
know how to do it
- "Champion"

54

Peter Müller – Software Engineering, SS 06

Maturity Level 2: Metrics

 Software size: lines of code, function points,
classes or method counts
 Personnel efforts: person-months
 Technical expertise

- Experience with application domain
- Design experience
- Tools & method experience

 Employee turnover within project

55

Peter Müller – Software Engineering, SS 06

Example: LOC (Lines of Code) Metrics
Numbers do not include:
 > reused code
 > classes from class libraries

Lines of Code # of Classes Lines of Code/Student

F'89 F'91 F'92
S'91 S'92 S'93

0
5000

10000
15000
20000
25000
30000

35000
40000

0

100

200

300

400

500

600

F'89 F'91 F'92
S'91 S'92 S'93

0

500

1000

1500

2000

2500

3000

F'89 F'91 F'92
S'91 S'92 S'93

Basic Course
Adv. Course

56

Peter Müller – Software Engineering, SS 06

Maturity Level 3: Defined Process

 Activities of software development process are well
defined with clear entry and exit conditions

 Intermediate products of development are well

defined and visible

57

Peter Müller – Software Engineering, SS 06

Maturity Level 3: Additional Metrics

 Requirements complexity: Number of classes,
methods, interfaces
 Design complexity: Number of subsystems,

concurrency, platforms
 Implementation complexity: Number of code

modules, code complexity
 Testing complexity: Number of paths to test,

number of class interfaces to test
 Thoroughness of testing:

- Requirements defects discovered
- Design defects discovered
- Code defects discovered

58

Peter Müller – Software Engineering, SS 06

Maturity Level 4: Managed Process
 Uses information from early

project activities to set
priorities for later project
activities (intra-project
feedback)
- The feedback determines how

and in what order resources
are deployed

 Effects of changes in one
activity can be tracked in the
others

 Level 4 Metrics:
- Number of iterations per

activity
- Code reuse: Amount of

producer reuse (time
designated for reuse for future
projects?)

- Amount of component reuse
(reuse of components from

- Defect identification:
• How and when (which review)

are defects discovered?
- Defect density:

• When is testing complete?
- Configuration management:

• Is it used during the
development process? (Has
impact on tracability of
changes).

- Module completion time:
• Rate at which modules are

completed (Slow rate indicates
that the process needs to be
improved).

59

Peter Müller – Software Engineering, SS 06

Maturity Level 5: Optimizing Process
 Measures from software development activities are

used to change and improve the current process
 This change can affect both the organization and

the project:
- The organization might change its management scheme
- A project may change its process model before

completion

61

Peter Müller – Software Engineering, SS 06

What does Process Maturity Measure?
 The real indicator of process maturity is the level of

predictability of project performance (quality, cost,
schedule).
- Level 1: Random, unpredictable performance
- Level 2: Repeatable performance from project to project
- Level 3: Better performance on each successive project
- Level 4: project performance improves on each

subsequent project either
• Substantially (order of magnitude) in one dimension of project

performance
• Significant in each dimension of project performance

- Level 5: Substantial improvements across all dimensions
of project performance.

62

Peter Müller – Software Engineering, SS 06

Determining the Maturity of a Project
 Level 1 questions:

- Has a process model been adopted for the Project?

 Level 2 questions:
- Software size: How big is the system?
- Personnel effort: How many person-months have been invested?
- Technical expertise of the personnel:

• What is the application domain experience
• What is their design experience
• Do they use tools?
• Do they have experience with a design method?

- What is the employee turnover?

63

Peter Müller – Software Engineering, SS 06

Maturity Level 3 Questions
 What are the software development activities?
 Requirements complexity:

- How many requirements are in the requirements specification?

 Design complexity:
- Does the project use a software architecture? How many

subsystems are defined? Are the subsystems tightly coupled?

 Code complexity: How many classes are identified?
 Test complexity:

- How many unit tests, subsystem tests need to be done?

 Documentation complexity: Number of documents &
pages

 Quality of testing:
- Can defects be discovered during analysis, design,

implementation? How is it determined that testing is complete?
- What was the failure density? (Failures discovered per unit size)

64

Peter Müller – Software Engineering, SS 06

Maturity Level 4 and 5 Questions
 Level 4 questions:

- Has intra-project feedback been used?
- Is inter-project feedback used? Does the project have a

post-mortem phase?
- How much code has been reused?
- Was the configuration management scheme followed?
- Were defect identification metrics used?
- Module completion rate: How many modules were

completed in time?
- How many iterations were done per activity?

 Level 5 questions:
- Did we use measures obtained during development to

influence our design or implementation activities?

65

Peter Müller – Software Engineering, SS 06

Steps to Take in Using Metrics
 Metrics are useful only

when implemented in a
careful sequence of
process-related
activities.

1. Assess your current
process maturity level

2. Determine what metrics
to collect

3. Recommend metrics,
tools and techniques
- whenever possible

implement automated
support for metrics
collection

4. Estimate project cost and
schedule and monitor
actual cost and schedule
during development

 5. Construct a project
data base:
- Design, develop and

populate a project data
base of metrics data.

- Use this database for the
analysis of past projects
and for prediction of
future projects.

 6. Evaluate cost and
schedule for accuracy
after the project is
complete.

 7. Evaluate productivity
and quality

 Make an overall

66

Peter Müller – Software Engineering, SS 06

Pros and Cons of Process Maturity
 Problems:

- Need to watch a lot (“Big brother“, „big sister“)
- Overhead to capture, store and analyse the required

information
 Benefits:

- Increased control of projects
- Predictability of project cost and schedule
- Objective evaluations of changes in techniques, tools

and methodologies
- Predictability of the effect of a change on project cost or

schedule

67

Peter Müller – Software Engineering, SS 06

The Joel Test
1. Do you see source control?
2. Can you make a build in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

12: perfect
11: tolerable
10 or less: serious problems

	Software Engineering�Development Processes
	8. Development Processes
	Requirements for Development Process
	Typical Development Process Questions
	Software Development Activities
	Software Development Activities (cont’d)
	Waterfall Model (Royce 1970)
	Waterfall Process Assumptions
	Advantage of Waterfall: Transparency
	Problems with the Waterfall
	Problems with the Waterfall (cont’d)
	Spiral Model (Boehm 1985)
	Spiral Model
	Types of Prototypes
	Spiral Model: Discussion
	8. Development Processes
	Extreme Programming (XP)
	Problems Addressed by XP
	XP Approach
	XP Approach (cont’d)
	XP Approach (cont’d)
	Extreme Programming
	The Basics
	The Twelve XP Principles
	XP Principles (cont’d)
	XP Principles (cont’d)
	XP Principles (cont’d)
	XP Principles (cont’d)
	The Four XP Activities
	XP Activities: Coding
	XP Activities: Testing
	XP Activities: Listening
	XP Activities: Designing
	The Twelve XP Practices
	XP Practices: 1. The Planning Game
	XP Practices: 2. Small Releases
	XP Practices: 3. Metaphor
	XP Practices: 4. Simple Design
	XP Practices: 5. Testing
	XP Practices: 6. Refactoring
	XP Practices: 7. Pair Programming
	XP Practices: 8. Collective Ownership
	XP Practices: 9. Continuous Integration
	XP Practices: 10. 40 Hour Weeks
	XP Practices: 11. On site customer
	XP Practices: 12. Coding standards
	XP: Discussion
	Process Maturity
	Capability Maturity Levels
	Maturity Level 1: Chaotic Process
	Maturity Level 1: Chaotic Process (cont‘d)
	Maturity Level 2: Repeatable Process
	Maturity Level 2: Metrics
	Example: LOC (Lines of Code) Metrics
	Maturity Level 3: Defined Process
	Maturity Level 3: Additional Metrics
	Maturity Level 4: Managed Process
	Maturity Level 5: Optimizing Process
	What does Process Maturity Measure?
	Determining the Maturity of a Project
	Maturity Level 3 Questions
	Maturity Level 4 and 5 Questions
	Steps to Take in Using Metrics
	Pros and Cons of Process Maturity
	The Joel Test

