
Prof. Dr. Peter Müller
Software Component Technology

The slides in this section are partly based on the lecture
“Software Engineering I” by Prof. Bernd Brügge, TU München

Software Engineering
System Design

Summer Semester 06

2

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
4.4 Specific System Design Issues

4. System Design – Overview

3

Peter Müller – Software Engineering, SS 06

Software Design

“There are two ways of constructing a software
design: One way is to make it so simple that there are
obviously no deficiencies, and the other way is to
make it so complicated that there are no obvious
deficiencies.”
 [C.A.R. Hoare]

4. System Design – Overview

4

Peter Müller – Software Engineering, SS 06

Waterfall Model of Project Life Cycle

Analysis

Validation
(Test)

System Design

Implementation

Deployment

Requirements
Elicitation

Detailed Design

Design

4. System Design – Overview

5

Peter Müller – Software Engineering, SS 06

Scope of System Design

 Bridge the gap between a

problem and an existing
system in a manageable
way

 Use divide and conquer:
model the new system as a
set of subsystems

Problem

Existing
System

New
System

4. System Design – Overview

6

Peter Müller – Software Engineering, SS 06

Areas of System Design

Identify design goals

Refine subsystem
decomposition to

address design goals

Design initial
subsystem

decomposition

Design goals
 Qualities to be optimized

Software architecture
 Subsystem responsibilities
 Dependencies among

subsystems
 Subsystem mapping to

hardware
Major policy decisions

(control flow, access control,
data storage, etc.)

4. System Design – Overview

7

Peter Müller – Software Engineering, SS 06

From Analysis to System Design

Analysis

Analysis Model
Functional

Model

Dynamic
Model

Analysis
Object Model

System Design

Design Goals

Software
Architecture

Detailed Design

4. System Design – Overview

8

Peter Müller – Software Engineering, SS 06

Repetition: Representative Software Qualities

Scalability

Repairability

Portability

Reusability

Understandability

Maintainability

Security

Usability

Reliability

Robustness

Performance

Correctness

Interoperability

Verifiability

Evolvability

4. System Design – Overview

9

Peter Müller – Software Engineering, SS 06

Typical Design Trade-Offs

Portability

Understandability

Usability

Robustness

Performance

Reusability Cost

Rapid development Functionality

Functionality

Cost

Backward Compatibility

4. System Design – Overview

10

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
4.4 Specific System Design Issues

4. System Design – Subsystem Decomposition

11

Peter Müller – Software Engineering, SS 06

Why Decompose a System?

 Modularity is a software engineering principle
 Management

- Partition the overall development effort
- Clear assignment of requirements to modules, ideally

one or more requirements mapped to one module
 Modification

- Decouple parts of a system so that changes to one part
do not affect other parts

 Understanding
- Permit system to be understood as a composition of

mind-sized chunks with one issue at a time

4. System Design – Subsystem Decomposition

12

Peter Müller – Software Engineering, SS 06

Subsystems

 Collection of classes, associations, operations,
events and constraints that are closely interrelated
with each other

 The objects and classes from the analysis object
model are the “seeds” for the subsystems

 In UML, subsystems are
modeled as packages

 In programming languages, subsystems are
modeled as modules, packages, or by conventions

P

4. System Design – Subsystem Decomposition

13

Peter Müller – Software Engineering, SS 06

Subsystem

Services and Subsystem Interfaces

Service: Set of related operations
-Provided by the subsystem
-Share a common purpose
-Operations with parameters and high-level behavior
defined during system design

Subsystem interface: Set of fully-typed operations
-Specifies the interaction and information flow from and to
subsystem boundaries, but not inside the subsystem
-Refinement of services
-Defined in detailed design

4. System Design – Subsystem Decomposition

14

Peter Müller – Software Engineering, SS 06

Decomposition Example: Compiler

Service:
 Scan input file and provide

stream of tokens
 Initialize symbol table
 Report lexical errors
Operations:
 getNextToken(File, ST)

Lexer Parser
Service:
 Parse token stream and build

abstract syntax tree
 Enter symbol table information
 Report syntax errors
Operations:
 getAST(File, ST)

Static Analyzer
Service:
 Perform semantic analysis
 Fill symbol table
 Report type errors
Operations:
 performAnalysis(AST, ST)

Code Generator

Service:
 Generate target code from

analyzed syntax tree
Operations:
 generateCode(AST, ST)

Main

4. System Design – Subsystem Decomposition

15

Peter Müller – Software Engineering, SS 06

Repetition: Cohesion and Coupling

 Cohesion measures interdependence of the
elements of one module

 Coupling measures interdependence between
different modules

 Goal: high cohesion and low coupling

Low
cohesion

High
coupling

Low
coupling

High
cohesion

4. System Design – Subsystem Decomposition

16

Peter Müller – Software Engineering, SS 06

Achieving High Cohesion and Low Coupling

High cohesion
 Operations work on same

data
 Operations implement a

common abstraction
(abstract data type)

 Use object-orientation!

Low coupling
 Small interfaces
 Information hiding
 No global data
 Interactions are within

subsystem rather than
across subsystem
boundaries

 Use object-orientation!

4. System Design – Subsystem Decomposition

17

Peter Müller – Software Engineering, SS 06

Cohesion and Coupling in Compiler Example

 Cohesion
- Each subsystem has a clear responsibility
- Very high cohesion in compiler

 Coupling
- Small interfaces between subsystems
- But: All subsystems read and update the symbol table

(global data)
- Changes of symbol table structure have effect on all

subsystems
- Coupling can be further reduced

4. System Design – Subsystem Decomposition

18

Peter Müller – Software Engineering, SS 06

Compiler Example Revisited

Lexer

Service:
 Manage symbol table
Operations:
 enterIdentifier(Ident, Line)
 getType(Ident)
 Etc.

Symbol Table

Parser Code
Generator

Static
Analyzer

Main

4. System Design – Subsystem Decomposition

19

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
4.4 Specific System Design Issues

4. System Design – Architectural Styles

20

Peter Müller – Software Engineering, SS 06

Good Architecture

 Result of a consistent set of principles and
techniques, applied consistently through all
phases of a project

 Resilient in the face of (inevitable) changes
 Source of guidance throughout the product lifetime

 Reuse of established engineering knowledge

- Application of architectural styles
- Analogous to design patterns in detailed design

4. System Design – Architectural Styles

21

Peter Müller – Software Engineering, SS 06

Architecture as an Art

 Inventing a novel architecture

is a highly creative act

 Requires
- Knowledge of existing work
- Experience

4. System Design – Architectural Styles

22

Peter Müller – Software Engineering, SS 06

Styles in Building Architecture

 Customer picks an architectural style
- Main components of the style are fixed

 Architect changes details according to
requirements of the customer

 We apply the same approach to software

Ranch style T-Ranch style Raised Ranch style

4. System Design – Architectural Styles

23

Peter Müller – Software Engineering, SS 06

Elements of a Software Architecture

 Subsystems (components)
- Computational units with specified interface
- Examples: filters, databases, layers, objects

 Connectors

- Interactions between components
- Examples: method calls, pipes, event broadcasts, shared

data

 See M. Shaw, D. Garlan: Software Architecture.
Prentice Hall, 1996.

4. System Design – Architectural Styles

24

Peter Müller – Software Engineering, SS 06

Architectural Styles: Overview

 Data flow systems
- Batch sequential, pipe-

and-filter
 Call-and-return system

- Main program and
subroutine

 Independent
components
- Interacting processes,

event system

 Data-centered systems
(repositories)
- Databases, blackboards

 Hierarchical systems
- Layers
- Interpreters, rule-based

systems
 Client-server systems
 Peer-to-peer systems

4. System Design – Architectural Styles

25

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

26

Peter Müller – Software Engineering, SS 06

Data Flow Systems

 The availability of data controls the computation
 The structure is determined by the orderly motion

of data from component to component
 Data flow is the only form of communication

between components
 Variations

- How control is exerted (e.g., push versus pull)
- Degree of concurrency between processes
- Topology

4. System Design – Architectural Styles

27

Peter Müller – Software Engineering, SS 06

Data Flow Systems (cont’d)

 Components: data flow components
- Interfaces are input ports and output ports
- Input ports read data; output ports write data
- Computational model: read data from input ports,

compute, write data to output ports
 Connectors: data streams

- Uni-directional
- Usually asynchronous, buffered
- Computational model: transport data from writer to

reader

4. System Design – Architectural Styles

28

Peter Müller – Software Engineering, SS 06

Batch Sequential Style

 Components are independent programs
 Connectors are some type of media
 Each step runs to completion before next step

begins

Program Program Program

Component

Data flow via media

4. System Design – Architectural Styles

29

Peter Müller – Software Engineering, SS 06

Batch Sequential Style: Properties

 History: Mainframes and magnetic tape
 Applications: Business data processing

- Discrete transactions of predetermined type and
occurring at periodic intervals

- Creation of periodic reports based on periodic data
updates

 Examples
- Payroll computations
- Tax reports

4. System Design – Architectural Styles

30

Peter Müller – Software Engineering, SS 06

Pipe-and-Filter Style

 Components (Filters)
- Read streams of input data
- Locally transform input data
- Produce streams of output data

 Connectors (Pipes)
- Streams, e.g., first-in-first-out buffer

Filter
Filter

Filter

Component:
Filter

Filter
Filter

Connector:
Pipe

4. System Design – Architectural Styles

31

Peter Müller – Software Engineering, SS 06

Pipe-and-Filter Style: Properties

 Data is processed incrementally as it arrives
 Output usually begins before input is consumed
 Filters must be independent, no shared state
 Filters don’t know upstream or downstream filters

 Examples

- lex/yacc-based compiler (scan, parse, generate code, …)
- Unix pipes
- Image / signal processing

4. System Design – Architectural Styles

32

Peter Müller – Software Engineering, SS 06

Push Pipeline with Active Source

 Source of each pipe pushes data downstream
 Example: Unix pipes: grep pattern * ¦ wc

dataSource filter1 filter2 dataSink

write(data)

write(data)

f1(data)

write(data)

f2(data) Active
source

Push

4. System Design – Architectural Styles

Push Push

33

Peter Müller – Software Engineering, SS 06

Pull Pipeline with Active Sink

dataSink filter1 filter2 dataSource

data := read() data := read()

f1(data)

data := read()

f2(data) Active
sink

Pull

 Sink of each pipe pulls data upstream
 Example: Compiler: lexer.getNextToken()

4. System Design – Architectural Styles

Pull Pull

34

Peter Müller – Software Engineering, SS 06

Mixed Pipeline With Passive Source and Sink

 If more than one filter is pushing / pulling,
synchronization is needed

dataSink filter1 filter2 dataSource

data := read()

f1(data)

data := read()

f2(data)

Push

Pull

write(data)

Active
filter

4. System Design – Architectural Styles

35

Peter Müller – Software Engineering, SS 06

Pipe-and-Filter Style: Discussion
Strengths
 Reuse: any two filters can

be connected if they agree
on that data format that is
transmitted

 Ease of maintenance:
filters can be added or
replaced

 Potential for parallelism:
filters implemented as
separate tasks, consuming
and producing data
incrementally

Weaknesses
 Sharing global data is

expensive or limiting
 Can be difficult to design

incremental filters
 Not appropriate for

interactive applications
 Error handling is Achilles

heel, e.g., some
intermediate filter crashes

 Often lowest common
denominator on data
transmission, e.g., ASCII in
Unix pipes

4. System Design – Architectural Styles

36

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

37

Peter Müller – Software Engineering, SS 06

Call-and-Return Style (Explicit Invocation)

 Components: Objects
 Connections: Messages (method invocations)
 Key aspects

- Object preserves integrity of representation
(encapsulation)

- Representation is hidden from client objects
 Variations

- Objects as concurrent tasks

4. System Design – Architectural Styles

38

Peter Müller – Software Engineering, SS 06

Call-and-Return Style: Discussion

Strengths
 Change implementation

without affecting clients
 Can break problems into

interacting agents
(distributed across multiple
machines / networks)

Weaknesses
 Objects must know their

interaction partners (in
contrast to Pipe-and-Filter)

 When partner changes,
objects that explicitly
invoke it must change

 Side effects: if A uses B
and C uses B, then C’s
effects on B can be
unexpected to A

4. System Design – Architectural Styles

39

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

40

Peter Müller – Software Engineering, SS 06

Event-Based Style (Implicit Invocation)

 Characterized by the style of communication
between components
- Component announces (broadcasts) one or more events

 Generalized Observer Design Pattern
 Components

- May announce events
- May register for events of other components with a

callback
 Connectors

- Bindings between event announcements and method
calls (callbacks)

4. System Design – Architectural Styles

41

Peter Müller – Software Engineering, SS 06

Event-Based Style: Example
4. System Design – Architectural Styles

42

Peter Müller – Software Engineering, SS 06

Event-Based Style: Properties

 Announcers of events do not know which
components will be affected by those events

 Components cannot make assumptions about
ordering of processing, or what processing will
occur as a result of their events

 Examples

- Programming environment tool integration
- User interfaces (Model-View-Controller)
- Syntax-directed editors to support incremental semantic

checking

4. System Design – Architectural Styles

43

Peter Müller – Software Engineering, SS 06

Event-Based Style: Example

 Integrating tools in a shared environment

 Editor announces it has finished editing a module
- Compiler registers for such announcements and

automatically re-compiles module
- Editor shows syntax errors reported by compiler

 Debugger announces it has reached a breakpoint
- Editor registers for such announcements and

automatically scrolls to relevant source line

4. System Design – Architectural Styles

44

Peter Müller – Software Engineering, SS 06

Event-Based Style: Discussion

Strengths
 Strong support for reuse:

plug in new components by
registering it for events

 Maintenance: add and
replace components with
minimum effect on other
components in the system

Weaknesses
 Loss of control

- What components will
respond to an event?

- In which order will
components be invoked?

- Are invoked components
finished?

 Ensuring correctness is
difficult because it depends
on context in which invoked

 In practice, call-and-return style and event-based
style are combined

4. System Design – Architectural Styles

45

Peter Müller – Software Engineering, SS 06

Model-View-Controller Example

0

10

20

30

40

50

60

a b c

a b c
X 60 30 10
Y 50 30 20
Z 80 10 10

a

b

c

a = 50%
b = 30%
c = 20%

Change notification
Requests, modifications

4. System Design – Architectural Styles

46

Peter Müller – Software Engineering, SS 06

View View

Model-View-Controller Architecture

View
View

Model
(Application Interface)

Send events

Update view

Report
change
events

Initiate
operation

Read
data

Report
change
events

View
Controller

4. System Design – Architectural Styles

47

Peter Müller – Software Engineering, SS 06

Model-View-Controller Architecture

 Components
- Model contains the core functionality and data
- One or more views display information to the user
- One or more controllers handle user input

 Communication
- Change-propagation mechanism via events ensures

consistency between user interface and model
- If the user changes the model through the controller of

one view, the other views will be updated automatically

4. System Design – Architectural Styles

48

Peter Müller – Software Engineering, SS 06

Model-View-Controller in Java

 Objects can register
with a GUI
component as
observer for one or
several event types

 Upon occurrence of
an event, the event
source informs all
registered objects
by invoking a
method

1. User clicks
on Button 2. actionPerformed

event is associated
with button

observer1

button

observer2 3. Observers
are informed

4. System Design – Architectural Styles

49

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

50

Peter Müller – Software Engineering, SS 06

Data-Centered Style (Repository Style)

 Components
- Central data store component represents systems state
- Independent components operate on the data store

Repository Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Knowledge
Source

Computation

Direct
access

4. System Design – Architectural Styles

51

Peter Müller – Software Engineering, SS 06

Special Case: Blackboard Architectures

 Interactions among knowledge sources solely
through repository

 Knowledge sources make changes to the shared
data that lead incrementally to solution

 Control is driven entirely by the state of the
blackboard

 Example
- Repository: modern compilers act on shared data:

symbol table, abstract syntax tree
- Blackboard: signal and speech processing

4. System Design – Architectural Styles

52

Peter Müller – Software Engineering, SS 06

Data-Centered Style: Discussion

Strengths
 Efficient way to share large

amounts of data
 Data integrity localized to

repository module

Weaknesses
 Subsystems must agree

(i.e., compromise) on a
repository data model

 Schema evolution is
difficult and expensive

 Distribution can be a
problem

4. System Design – Architectural Styles

53

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

54

Peter Müller – Software Engineering, SS 06

Hierarchical Style (Layered Style)

 Components
- Group of subtasks which implement an abstraction at

some layer in the hierarchy
 Connectors

- Protocols that define how the layers interact

4. System Design – Architectural Styles

55

Peter Müller – Software Engineering, SS 06

Hierarchical Style: Properties

 Each layer provides service to the layer above it
and acts as a client of the layer below

 Each layer collects services at a particular level of
abstraction

 A layer depends only on lower layers
- Has no knowledge of higher layers

 Example

- Communication protocols
- Operating systems

4. System Design – Architectural Styles

56

Peter Müller – Software Engineering, SS 06

Hierarchical Style: Example

 The OSI Networking Model
- Each level supports communication at a level of

abstraction
- Protocol specifies behavior at each level of abstraction
- Each layer deals with specific level of communication

and uses services of the next lower level

 Layers can be exchanged
- Example: Token Ring for Ethernet on Data Link Layer

4. System Design – Architectural Styles

57

Peter Müller – Software Engineering, SS 06

OSI Model Layers and Their Responsibilities

The system you are designing

Performs data transformation services, such
as byte swapping and encryption

Initializes a connection, including
authentication

Reliably transmits messages

Transmits and routes data within the network

Sends and receives frames without error

Sends and receives bits over a channel Physical

Data Link

Network

Transport

Session

Presentation

Application

4. System Design – Architectural Styles

58

Peter Müller – Software Engineering, SS 06

Hierarchical Style: Example (cont’d)

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Use service of
lower layer

Virtual
connection

4. System Design – Architectural Styles

59

Peter Müller – Software Engineering, SS 06

Hierarchical Style: Discussion

Strengths
 Increasing levels of

abstraction as we move up
through layers: partitions
complex problems

 Maintenance: in theory, a
layer only interacts with
layer below (low coupling)

 Reuse: different
implementations of the
same level can be
interchanged

Weaknesses
 Performance:

communicating down
through layers and back
up, hence bypassing may
occur for efficiency reasons

4. System Design – Architectural Styles

60

Peter Müller – Software Engineering, SS 06

Interpreters

 Architecture is based on a virtual machine
produced in software

 Special kind of a layered architecture where a
layer is implemented as a true language interpreter

 Components
- “Program” being executed and its data
- Interpretation engine and its state

 Example: Java Virtual Machine
- Java code translated to platform independent bytecode
- JVM is platform specific and interprets the bytecode

4. System Design – Architectural Styles

61

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

62

Peter Müller – Software Engineering, SS 06

Client Server Style

 Components
- Subsystems are independent processes
- Servers provide specific services such as printing, etc.
- Clients use these services

 Connectors
- Data streams, typically over a communication network

Internet Server

Client

Client

Client

4. System Design – Architectural Styles

63

Peter Müller – Software Engineering, SS 06

Client Server Style Example: Databases

 Front-end: User application (client)
- Customized user interface
- Front-end processing of data
- Initiation of server remote procedure calls
- Access to database server across the network

 Back-end: Database access and manipulation
(server)
- Centralized data management
- Data integrity and database consistency
- Database security
- Concurrent operations (multiple user access)
- Centralized processing (for example archiving)

4. System Design – Architectural Styles

64

Peter Müller – Software Engineering, SS 06

Client Server Style: Variants

 Thick / fat client
- Does as much processing as possible
- Passes only data required for communications and

archival storage to the server
- Advantages: less network bandwidth, fewer server

requirements
 Thin client

- Has little or no application logic
- Depends primarily on the server for processing activities
- Advantages: lower IT admin costs, easier to secure,

lower hardware costs.

4. System Design – Architectural Styles

65

Peter Müller – Software Engineering, SS 06

Client Server Style: Discussion

Strengths
 Makes effective use of

networked systems
 May allow for cheaper

hardware
 Easy to add new servers or

upgrade existing servers
 Availability (redundancy)

may be straightforward

Weaknesses
 Data interchange can be

hampered by different data
layouts

 Communication may be
expensive

 Data integrity functionality
must be implemented for
each server

 Single point of failure

4. System Design – Architectural Styles

66

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
 4.3.1 Data flow systems
 4.3.2 Call-and-return system
 4.3.3 Independent components
 4.3.4 Data-centered systems
 4.3.5 Hierarchical systems
 4.3.6 Client-server systems
 4.3.7 Peer-to-peer systems
4.4 Specific System Design Issues

4. System Design – Architectural Styles

67

Peter Müller – Software Engineering, SS 06

Peer-to-Peer Style

 Similar to client-server style, but each component
is both client and server

 Pure peer-to-peer style
- No central server, no central router

 Hybrid peer-to-peer style
- Central server keeps information on peers and responds

to requests for that information

 Examples
- File sharing applications, e.g., Napster, Gnutella, Kazaa
- Communication and collaboration, e.g., Skype

4. System Design – Architectural Styles

68

Peter Müller – Software Engineering, SS 06

Peer-to-Peer Style: Discussion

Strengths
 Efficiency

- All clients provide resources

 Scalability
- System capacity grows with

number of clients

 Robustness
- Data is replicated over peers
- No single point of failure in

the system (in pure peer-to-
peer style)

Weaknesses
 Architectural complexity
 Resources are distributed

and not always available
 More demanding of peers

(compared to client-server)
 New technology not fully

understood

4. System Design – Architectural Styles

69

Peter Müller – Software Engineering, SS 06

Architectural Style Case Study

 The KWIC index system accepts an ordered set of
lines, each line is an ordered set of words, and
each word is an ordered set of characters. Any line
may be "circularly shifted" by repeatedly removing
the first word and appending it at the end of the
line. The KWIC index system outputs a listing of all
circular shifts of all lines in alphabetical order.

 We discuss and evaluate different system designs

4. System Design – Architectural Styles

70

Peter Müller – Software Engineering, SS 06

KWIC Example

Input
Star Wars
The Empire Strikes Back
The Return of the Jedi

Output
Back The Empire Strikes
Empire Strikes Back The
Jedi The Return of the
Return of the Jedi The
Star Wars
Strikes Back The Empire
The Empire Strikes Back
The Return of the Jedi
Wars Star
of the Jedi The Return
 the Jedi The Return of

4. System Design – Architectural Styles

71

Peter Müller – Software Engineering, SS 06

Evaluation Criteria

 Changes in algorithm
- Line shifting on each line as it is read, on all the lines

after they are read, or on demand when the
alphabetization requires a new set of shifted lines

 Changes in data representation
- Lines and circular shifts can be stored in various ways

 Enhancement to system function
- Elimination of certain noise words ("a", "an", "and", etc.)
- Interaction

 Performance: space and time
 Reuse

4. System Design – Architectural Styles

72

Peter Müller – Software Engineering, SS 06

Solution 1: Subroutines with Shared Data

Master
Control

Sorted Shifts
Index Shifts Index Characters,

Line Index

Output
Medium

Input
Medium

Input Circular
Shifter Output Alphabetizer

Subroutine call
Direct memory access
System I/O

4. System Design – Architectural Styles

73

Peter Müller – Software Engineering, SS 06

Solution 1: Data Representation

F R I E N D S S E X A N D T H E C I T

0 7 …

Y …

0 1 1
0 7 11

…
…

1 0 1
11 0 7

…
…

Characters Line Index

Shifts Index Sorted Shifts
Index

4. System Design – Architectural Styles

74

Peter Müller – Software Engineering, SS 06

Solution 1: Discussion

 Pros
- Efficient data representation (data stored only once)
- Distinct computational aspects are isolated in different

modules
 Cons

- Change in data storage format affects all modules
- Similarly: changes in algorithm and enhancements to

system function
- Reuse is not well-supported (each module is tightly tied

to this particular implementation)

4. System Design – Architectural Styles

75

Peter Müller – Software Engineering, SS 06

Solution 2: Abstract Data Types
Master
Control

Output
Medium

Input
Medium

Input

Circular
Shifter

Output

Alphabetizer

Procedure call
System I/O

LineStorage

ad
dL

in
e

ad
dW

or
d

ge
tL

in
e

ge
tW

or
d

se
tu

p

ge
tL

in
e

pa
rs

e

al
ph

a

ge
tL

in
e

pr
in

t

4. System Design – Architectural Styles

76

Peter Müller – Software Engineering, SS 06

Solution 2: Discussion

 Same processing modules as first solution, but
better amenable to change

 Data not directly shared by components
 Pros

- Algorithms and data representations can be changed
in individual modules without affecting others

- Reuse is better supported because modules make fewer
assumptions about the others with which they interact

 Cons
- Not particularly well-suited to enhancements

4. System Design – Architectural Styles

77

Peter Müller – Software Engineering, SS 06

Solution 3: Implicit Invocation (Event-Based)
Master
Control

Output
Medium

Input
Medium

Input Circular
Shifter Output Alphabetizer

Procedure call
Event sending

LineStorage

ad
dL

in
e

ge
tL

in
e

pa
rs

e

pr
in

t

LineStorage
ad

dL
in

e

ge
tL

in
e

4. System Design – Architectural Styles

78

Peter Müller – Software Engineering, SS 06

Solution 3: Discussion

 Pros
- Supports functional enhancements: additional modules

can be attached to the system by registering them to be
invoked on certain events

- Data representations can be changed
- Reuse: implicitly invoked modules only rely on the

existence of certain externally triggered events
 Cons

- Difficult to change the order of processing
- Uses more space than solutions 1 and 2

4. System Design – Architectural Styles

79

Peter Müller – Software Engineering, SS 06

Solution 4: Pipe-and-Filter

Output
Medium

Input
Medium

Input Circular
Shifter Output Alphabetizer

Pipes
System I/O

4. System Design – Architectural Styles

80

Peter Müller – Software Engineering, SS 06

Solution 4: Discussion

 Pros
- Intuitive flow of processing
- Reuse: each filter can function in isolation
- New functions are easily added to the system by

inserting filters at the appropriate point in the processing
sequence

 Cons
- Difficult (impossible) to support an interactive system
- Inefficient in terms of space, since each filter must

copy all of the data to its output ports

4. System Design – Architectural Styles

81

Peter Müller – Software Engineering, SS 06

KWIC Case Study: Summary

Subroutines Abstract Data
Types

Implicit
Invocation

Pipe-and-
Filter

Change in
Algorithm - - + +

Change in
Data Rep. - + + -

Change in
Function + - + +

Performance + o - -

Reuse - + + +

4. System Design – Architectural Styles

82

Peter Müller – Software Engineering, SS 06

4. System Design

4.1 Overview
4.2 Subsystem Decomposition
4.3 Architectural Styles
4.4 Specific System Design Issues

4. System Design – Architectural Styles

83

Peter Müller – Software Engineering, SS 06

Areas of System Design: Specific Issues

Identify design goals

Refine subsystem
decomposition to

address design goals

Design initial
subsystem

decomposition

Concurrency

Hardware / Software Mapping

Data Management

Global Resource Handling

Software Control

Boundary Conditions

4. System Design – Specific System Design Issues

84

Peter Müller – Software Engineering, SS 06

Concurrency: Threads

 Execution threads are sequences
of atomic actions during a program
execution

 Concurrent programs can have
more than one thread

 Execution of threads can be parallel
(on several processors) or virtually
parallel (on one processor)

 Design goal: response time,
performance

4. System Design – Specific System Design Issues

85

Peter Müller – Software Engineering, SS 06

Concurrency Questions

 Which objects of the object model are
independent?
- Candidates for separate threads

 Does the system support multiple users?
- Example: Client-server architecture with several clients

 Can a single request to the system be
decomposed into multiple requests? Can these
requests be handled in parallel?
- Search in a distributed database
- Image recognition by decomposing the image into stripes

4. System Design – Specific System Design Issues

86

Peter Müller – Software Engineering, SS 06

Hardware / Software Mapping

 This activity addresses two questions:

- How shall we realize the subsystems: with hardware or
with software?

- How do we map the object model on the chosen
hardware and software?

 Much of the difficulty of designing a system comes
from meeting externally-imposed hardware and
software constraints

4. System Design – Specific System Design Issues

87

Peter Müller – Software Engineering, SS 06

Mapping the Objects

 Processor issues
- Is the computation rate too demanding for a single

processor?
- Can we get a speedup by distributing tasks across

several processors?
- How many processors are required to maintain steady

state load?
 Memory issues

- Is there enough memory to buffer bursts of requests?

4. System Design – Specific System Design Issues

88

Peter Müller – Software Engineering, SS 06

Mapping the Objects (cont’d)

 Example: stock trading
- Usually steady rate of stock orders per day
- Extreme peaks for important IPOs

 Bank is liable for loss of orders
- System must be able to handle peak load

4. System Design – Specific System Design Issues

89

Peter Müller – Software Engineering, SS 06

Mapping the Associations

 Which of the client-supplier relationships in the
analysis / design model correspond to physical
connections?

 Describe the logical connectivity (subsystem

associations)

 Identify associations that do not directly map into
physical connections
- How should these associations be implemented?

4. System Design – Specific System Design Issues

90

Peter Müller – Software Engineering, SS 06

Hardware / Software Mapping Questions

 What is the connectivity among physical units?
- Tree, star, matrix, ring

 What is the appropriate communication protocol
between the subsystems?
- Function of required bandwidth, latency and desired

reliability, desired quality of service (QoS)
 Is certain functionality already available in

hardware?
 General system performance question

- What is the desired response time?

4. System Design – Specific System Design Issues

91

Peter Müller – Software Engineering, SS 06

Example: ATM Machine and Host System

Backend software runs
on mainframe; one for

the whole country

Connected via
leased line

(low latency)

Client
software
runs on

common PC;
one PC per

ATM

Connected via
backbone

Server software runs
on workstations;
one per region

4. System Design – Specific System Design Issues

92

Peter Müller – Software Engineering, SS 06

Data Management

 Some objects in the models need to be persistent
 Persistency is achieved by files and databases
 Files

- Cheap, simple, permanent storage
- Low level (read, write)
- Applications must add code to provide suitable level of

abstraction
 Database

- Powerful, easy to port
- Supports multiple writers and readers

4. System Design – Specific System Design Issues

93

Peter Müller – Software Engineering, SS 06

File or Database?

 When should you choose a file?
- Is the data voluminous (bit maps)?
- Do you have lots of raw data (core dump, event trace)?
- Do you need to keep the data only for a short time?

 When should you choose a database?
- Does the data require access by multiple users?
- Must the data be ported across multiple platforms

(heterogeneous systems)?
- Do multiple application programs access the data?
- Does the data management require a lot of

infrastructure (e.g., indexing, transactions)?

4. System Design – Specific System Design Issues

94

Peter Müller – Software Engineering, SS 06

Database Management System

 Contains mechanisms for describing data,
managing persistent storage and for providing a
backup mechanism

 Provides concurrent access to the stored data

 Contains information about the data (“meta-data”)
- Also called data schema

4. System Design – Specific System Design Issues

95

Peter Müller – Software Engineering, SS 06

Object-Oriented Databases

 An object-oriented database supports all the
fundamental object modeling concepts
- Classes, Attributes, Methods, Associations, Inheritance

 Mapping an object model to an OO-database
- Determine which objects are persistent
- Perform normal requirement analysis and detailed design
- Do the mapping specific to commercially available

product
 Suitable for medium-sized data set,

irregular associations among objects

4. System Design – Specific System Design Issues

96

Peter Müller – Software Engineering, SS 06

Relational Databases

 Data is presented as two-dimensional tables
 Tables have a specific number of columns and

arbitrary numbers of rows
- Primary key: Combination of attributes that uniquely

identify a row in a table
- Foreign key: Reference to a primary key in another table

 SQL is the standard language for defining and
manipulating tables

 Suitable for large data set, complex queries over
attributes

4. System Design – Specific System Design Issues

97

Peter Müller – Software Engineering, SS 06

Mapping an Object Model to a Relational DB

 UML object models can be mapped to relational
databases

 UML mappings
- Each class is mapped to a table
- Each class attribute is mapped onto a column in the table
- An instance of a class represents a row in the table
- A one-to-many association is implemented as foreign key
- A many-to-many association is mapped into its own table

 Methods are not mapped

4. System Design – Specific System Design Issues

98

Peter Müller – Software Engineering, SS 06

Mapping 1:n and n:1 Associations

 Buried Foreign Keys

Transaction

transactionID

Portfolio
portfolioID
…

*

transactionID portfolioID
TransactionTable

portfolioID …
PortfolioTable

Foreign
Key

Primary
Key

Primary
Key

4. System Design – Specific System Design Issues

99

Peter Müller – Software Engineering, SS 06

Mapping Many-to-Many Associations

 Separate table for association

City

cityName

Airport
airportCode
airportName

* Serves *

cityName airportCode
Houston IAH
Houston HOU
Albany ALB
Munich MUC
Hamburg HAM

ServesTable
airportCode airportName
IAH Intercontinental
HOU Hobby
ALB Albany County
MUC Munich Airport
HAM Hamburg Airport

AirportTableCityTable
cityName
Houston
Albany
Munich
Hamburg

Primary
Key Separate

Table

4. System Design – Specific System Design Issues

100

Peter Müller – Software Engineering, SS 06

Mapping Inheritance

 Option 1: separate table Person
name

Assistant
office

Student
legi

id office
79 RZ F02

AssistantTable
id legi
56 123456

StudentTable
id name
56 Urs
79 Sile

PersonTable

4. System Design – Specific System Design Issues

101

Peter Müller – Software Engineering, SS 06

Mapping Inheritance (cont‘d)

 Option 2: duplicating columns Person
name

Assistant
office

Student
legi

id legi name
56 123456 Urs

StudentTable
id office name
79 RZ F02 Sile

AssistantTable

4. System Design – Specific System Design Issues

102

Peter Müller – Software Engineering, SS 06

Separate Tables vs. Duplicated Columns

 Separate table mapping
- Pro: Adding attributes to

the superclass is easy
(adding a column to the
superclass table)

- Con: Searching for the
attributes of an object
requires a join operation

 Duplicated columns
- Con: Modifying the

database schema is
more complex and error-
prone

- Pro: Individual objects
are not fragmented
across a number of
tables (faster queries)

 Trade-off between modifiability and response time
- How likely is a change of the superclass?
- What are the performance requirements for queries?

4. System Design – Specific System Design Issues

103

Peter Müller – Software Engineering, SS 06

Data Management Questions

 Should the data be distributed?
 Should the database be extensible?
 How often is the database accessed?
 What is the expected request rate? In the worst case?
 What is the size of typical and worst case requests?
 Does the data need to be archived?
 Does the system design try to hide the location of the

databases (location transparency)?
 Is there a need for a single interface to access the data?
 What is the query format?
 Should the database be relational or object-oriented?

4. System Design – Specific System Design Issues

104

Peter Müller – Software Engineering, SS 06

Boundary Conditions

 Most of the system design effort is concerned with
the steady-state behavior described in the analysis
phase

 Additional administration use cases describe:
 Initialization ("startup use cases”)
 Termination ("termination use cases")

- What resources are cleaned up and which systems are
notified upon termination

 Failure (“failure use cases”)
- Many possible causes: Bugs, errors, external problems
- Good system design foresees fatal failures

4. System Design – Specific System Design Issues

105

Peter Müller – Software Engineering, SS 06

Boundary Condition Questions

 Initialization
- How does the system start up?
- What data needs to be accessed at startup time?
- What services have to be registered?
- What does the user interface do at start up time?
- How does it present itself to the user?

 Termination
- Are single subsystems allowed to terminate?
- Are other subsystems notified if a single subsystem

terminates?
- How are local updates communicated to the database?

4. System Design – Specific System Design Issues

106

Peter Müller – Software Engineering, SS 06

Boundary Condition Questions (cont’d)

 Failure
- How does the system behave when a node or

communication link fails? Are there backup
communication links?

- How does the system recover from failure? Is this
different from initialization?

4. System Design – Specific System Design Issues

107

Peter Müller – Software Engineering, SS 06

Modeling Boundary Conditions

 Boundary conditions are best modeled as use
cases with actors and objects

 Actor: often the system administrator
 Interesting use cases:

- Start up of a subsystem
- Start up of the full system
- Termination of a subsystem
- Error in a subsystem or component, failure of a

subsystem or component

4. System Design – Specific System Design Issues

108

Peter Müller – Software Engineering, SS 06

Influences from Requirements Analysis

 Finally: The subsystem decomposition influences
boundary conditions

Nonfunctional
Requirements Definition of Design Goals

Functional
model Subsystem Decomposition

Object model Hardware/software Mapping,
Data Management

Dynamic
model Identification of Concurrency

4. System Design – Specific System Design Issues

109

Peter Müller – Software Engineering, SS 06

Summary: System Design

 Design goals definition
- Describes and prioritizes the qualities that are important

for the system
 Subsystem decomposition

- Decomposes the overall system into manageable parts
by using the principles of cohesion and coherence

 Architectural style
- A pattern of a typical subsystem decomposition

 Software architecture
- An instance of an architectural style

4. System Design – Summary

	Software Engineering�System Design
	4. System Design
	Software Design
	Waterfall Model of Project Life Cycle
	Scope of System Design
	Areas of System Design
	From Analysis to System Design
	Repetition: Representative Software Qualities
	Typical Design Trade-Offs
	4. System Design
	Why Decompose a System?
	Subsystems
	Services and Subsystem Interfaces
	Decomposition Example: Compiler
	Repetition: Cohesion and Coupling
	Achieving High Cohesion and Low Coupling
	Cohesion and Coupling in Compiler Example
	Compiler Example Revisited
	4. System Design
	Good Architecture
	Architecture as an Art
	Styles in Building Architecture
	Elements of a Software Architecture
	Architectural Styles: Overview
	4. System Design
	Data Flow Systems
	Data Flow Systems (cont’d)
	Batch Sequential Style
	Batch Sequential Style: Properties
	Pipe-and-Filter Style
	Pipe-and-Filter Style: Properties
	Push Pipeline with Active Source
	Pull Pipeline with Active Sink
	Mixed Pipeline With Passive Source and Sink
	Pipe-and-Filter Style: Discussion
	4. System Design
	Call-and-Return Style (Explicit Invocation)
	Call-and-Return Style: Discussion
	4. System Design
	Event-Based Style (Implicit Invocation)
	Event-Based Style: Example
	Event-Based Style: Properties
	Event-Based Style: Example
	Event-Based Style: Discussion
	Model-View-Controller Example
	Model-View-Controller Architecture
	Model-View-Controller Architecture
	Model-View-Controller in Java
	4. System Design
	Data-Centered Style (Repository Style)
	Special Case: Blackboard Architectures
	Data-Centered Style: Discussion
	4. System Design
	Hierarchical Style (Layered Style)
	Hierarchical Style: Properties
	Hierarchical Style: Example
	OSI Model Layers and Their Responsibilities
	Hierarchical Style: Example (cont’d)
	Hierarchical Style: Discussion
	Interpreters
	4. System Design
	Client Server Style
	Client Server Style Example: Databases
	Client Server Style: Variants
	Client Server Style: Discussion
	4. System Design
	Peer-to-Peer Style
	Peer-to-Peer Style: Discussion
	Architectural Style Case Study
	KWIC Example
	Evaluation Criteria
	Solution 1: Subroutines with Shared Data
	Solution 1: Data Representation
	Solution 1: Discussion
	Solution 2: Abstract Data Types
	Solution 2: Discussion
	Solution 3: Implicit Invocation (Event-Based)
	Solution 3: Discussion
	Solution 4: Pipe-and-Filter
	Solution 4: Discussion
	KWIC Case Study: Summary
	4. System Design
	Areas of System Design: Specific Issues
	Concurrency: Threads
	Concurrency Questions
	Hardware / Software Mapping
	Mapping the Objects
	Mapping the Objects (cont’d)
	Mapping the Associations
	Hardware / Software Mapping Questions
	Example: ATM Machine and Host System
	Data Management
	File or Database?
	Database Management System
	Object-Oriented Databases
	Relational Databases
	Mapping an Object Model to a Relational DB
	Mapping 1:n and n:1 Associations
	Mapping Many-to-Many Associations
	Mapping Inheritance
	Mapping Inheritance (cont‘d)
	Separate Tables vs. Duplicated Columns
	Data Management Questions
	Boundary Conditions
	Boundary Condition Questions
	Boundary Condition Questions (cont’d)
	Modeling Boundary Conditions
	Influences from Requirements Analysis
	Summary: System Design

