
Peter Müller
Chair of Programming Methodology

The slides in this section are partly based on the courses
“Software Engineering I” by Prof. Bernd Brügge, TU München and

“Software Engineering” by Prof. Jan Vitek, Purdue University

Software Architecture
and Engineering

Testing

Spring Semester 2016

2

Peter Müller – Software Architecture and Engineering

Why Does Software Contain Bugs?

 Our ability to predict the behavior of our
implementations is limited
- Software is extremely complex
- No developer can understand the whole system

 We make mistakes
- Unclear requirements, miscommunication
- Wrong assumptions (e.g., behavior of operating system)
- Design errors (e.g., capacity of data structure too small)
- Coding errors (e.g., wrong loop condition)

5. Testing

3

Peter Müller – Software Architecture and Engineering

“First actual case of bug being found.”
5. Testing

4

Peter Müller – Software Architecture and Engineering

Increasing Software Reliability

Fault Avoidance
 Detect faults statically without executing the program
 Includes development methodologies, reviews, and

program verification

Fault Detection
 Detect faults by executing the program
 Includes testing

Fault Tolerance
 Recover from faults at runtime (e.g., transactions)
 Includes adding redundancy (e.g., n-version programming)

5. Testing

5

Peter Müller – Software Architecture and Engineering

Goal of Testing

 An error is a deviation of the observed behavior
from the required (desired) behavior
- Functional requirements (e.g., user-acceptance testing)
- Nonfunctional requirements (e.g., performance testing)

 Testing is a process of executing a program with
the intent of finding an error

 A successful test is a test that finds errors

5. Testing

6

Peter Müller – Software Architecture and Engineering

Limitations of Testing

 It is impossible to completely test any nontrivial
module or any system
- Theoretical limitations: termination
- Practical limitations: prohibitive in time and cost

Testing can only show the presence of bugs,
not their absence. [E. W. Dijkstra]

5. Testing

7

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Test Stages

8

Peter Müller – Software Architecture and Engineering

Test Stages

Requirements
Elicitation

System Design

Implementation

Detailed Design Unit Test

Integration Test

System Test

5. Testing – Test Stages

9

Peter Müller – Software Architecture and Engineering

Creation of Test Harness

 Test driver
- Applies test cases to UUT including setup and clean-up

 Test stub
- Partial, temporary implementation of a component used

by UUT
- Simulates the activity of a missing component by

answering to the calling sequence of the UUT and
returning back fake data

Test Stub

Test Stub
Test Driver Unit Under

Test (UUT)
uses uses

5. Testing – Test Stages

10

Peter Müller – Software Architecture and Engineering

Unit Testing

 Testing individual subsystems (collection of
classes)

 Goal: Confirm that subsystem is correctly coded
and carries out the intended functionality

Unit TestSubsystem
Code

Detailed Design
Model

5. Testing – Test Stages

11

Unit Test Example (JUnit)

class SavingsAccount {
…
public void deposit(int amount) { … }
public void withdraw(int amount) { … }
public int getBalance() { … }

}

@Test
public void withdrawTest() {
SavingsAccount target = new SavingsAccount();
target.deposit(300);
int amount = 100;
target.withdraw(amount);
Assert.assertTrue(target.getBalance() == 200);

}

Implement
test driver

Create
test data

Create
test oracle

5. Testing – Test Stages

Peter Müller – Software Architecture and Engineering

12

Unit Testing: Discussion

 To achieve a reasonable test coverage, one has to
test each method with several inputs
- To cover valid and invalid inputs
- To cover different paths through the method

Peter Müller – Software Architecture and Engineering

@Test
public void withdrawTest() {
SavingsAccount target = new SavingsAccount();
target.deposit(500);
int amount = 0;
target.withdraw(amount);
Assert.assertTrue(target.getBalance() == 500);

}

Boiler-plate code
for creating test
data and writing

test oracles

5. Testing – Test Stages

13

Parameterized Unit Tests (NUnit)

 Parameterized test methods take arguments for
test data
- Decouple test driver (logic) from test data

 Test data can be specified as values, ranges, or
random values

 Requires generic test oracles

[Test]
public void withdrawTest(int balance, int amount) {
SavingsAccount target = new SavingsAccount();
target.deposit(balance);
target.withdraw(amount);
Assert.IsTrue(target.getBalance() == balance – amount);

}

5. Testing – Test Stages

Peter Müller – Software Architecture and Engineering

14

Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

5. Testing – Test Stages

[Test]
public void bubbleSortTest() {
int[] a = { 7, 2, 5, 2 };

bubbleSort(a);

int[] expected = { 2, 2, 5, 7 };
Assert.AreEqual(expected, a);

}

public static void bubbleSort(int[] a) {
for(int i = 0; i < a.Length - 1; i++) {

for(int j = i + 1; j < a.Length; j++) {
if(a[i] > a[j])
{ int tmp = a[i]; a[i] = a[j]; a[j] = tmp; }

}
}

}

Create
test data

Create
test oracle

15

Generic Test Oracles: Example

Peter Müller – Software Architecture and Engineering

5. Testing – Test Stages

[Test]
public void bubbleSortTest(int[] a) {
int[] original = (int[]) a.Clone();

bubbleSort(a);

for(int i = 0; i < a.Length - 1; i++)
Assert.IsTrue(a[i] <= a[i+1]);

bool[] visited = new bool[a.Length];
for(int i = 0; i < a.Length; i++) {

int j;
for (j = 0; j < a.Length; j++) {
if(!visited[j] && a[i] == original[j])
{ visited[j] = true; break; }

}
Assert.IsFalse(j == a.Length);

}
}

Save test data
for later

comparison

Check that array
is sorted

Check that array
is a permutation
of original array

Value a[i] is not
in the original

array

16

Parameterized Unit Tests: Discussion

 Parameterized unit tests avoid boiler-plate code

 Writing generic test oracles is sometimes difficult
- Analogous to writing strong postconditions

 Still several test methods are needed, for instance,
for valid and invalid input

 Parameterized unit tests are especially useful when
test data is generated automatically (see later)

5. Testing – Test Stages

Peter Müller – Software Architecture and Engineering

17

Peter Müller – Software Architecture and Engineering

Test Execution

 Execute the test cases
 Re-execute test cases after every change

- Automate as much as possible
- For instance, before every commit to the repository

 Regression testing
- Testing that everything that used to work still works after

changes are made to the system
- Also important for system testing

5. Testing – Test Stages

18

Peter Müller – Software Architecture and Engineering

Eight Rules of Testing
1. Make sure all tests are fully

automatic and check their
own results

2. A test suite is a powerful
bug detector that reduces
the time it takes to find
bugs

3. Run your tests frequently–
every test at least once a
day

4. When you get a bug report,
start by writing a unit test
that exposes the bug

5. Better to write and run
incomplete tests than not
run complete tests

6. Concentrate your tests on
boundary conditions

7. Do not forget to test
exceptions raised when
things are expected to go
wrong

8. Do not let the fear that
testing can’t catch all bugs
stop you from writing tests
that will catch most bugs

[M. Fowler]

5. Testing – Test Stages

19

Peter Müller – Software Architecture and Engineering

Integration Testing

 Testing groups of subsystems and eventually the
entire system

 Goal: Test interfaces between subsystems

Subsystem
Code

Subsystem
Code

Subsystem
Code

Integration
Test

Software
Architecture

5. Testing – Test Stages

20

Peter Müller – Software Architecture and Engineering

Integration Testing Strategy

 Typical strategies
- Big-bang integration

(non-incremental)
- Bottom-up integration
- Top-down integration

 Selection criteria
- Amount of test harness

(stubs and drivers)
- Scheduling concerns

Call hierarchy

E F

DCB

A

G

5. Testing – Test Stages

 The order in which the subsystems are selected for
testing and integration

21

Peter Müller – Software Architecture and Engineering

System Testing

 Testing the entire system

 Goal: Determine if the system meets the
requirements (functional and non-functional)

Entire
System

System
Test

Requirements
Specification

5. Testing – Test Stages

22

Peter Müller – Software Architecture and Engineering

System Testing Stages

Entire System

Functional
Test

Functional
requirements

Performance
Test

Non-functional
requirements

Acceptance
Test

Client’s understanding
of requirements

Installation
TestUser Environment

5. Testing – Test Stages

23

Peter Müller – Software Architecture and Engineering

Functional Testing

.

.

 Goal: Test functionality of system
- System is treated as black box

 Test cases are designed from requirements
specification
- Based on use cases
- Alternative source: user manual

 Test cases describe
- Input data
- Flow of events
- Results to check

5. Testing – Test Stages

24

Peter Müller – Software Architecture and Engineering

Acceptance Testing

 Goal: Demonstrate that the system meets customer
requirements and is ready to use

 Performed by the client, not by the developer

 Alpha test
- Client uses the software at the developer’s site
- Software used in a controlled setting, with the developer

ready to fix bugs
 Beta test

- Conducted at client’s site (developer is not present)
- Software gets a realistic workout in target environment

5. Testing – Test Stages

25

Peter Müller – Software Architecture and Engineering

Independent Testing

 Programmers have a hard time believing they
made a mistake
- Plus a vested interest in not finding mistakes
- Often stick to the data that makes the program work

 Designing and programming are constructive tasks
- Testers must seek to break the software

 Testing is done best by independent testers

5. Testing – Test Stages

26

Peter Müller – Software Architecture and Engineering

Independent Testing: Responsibilities

 Performed by independent test
team
- Exception: Acceptance test performed

by client
 Performed by independent test

team

 Performed by programmer
- Requires detailed knowledge of the

code
- Immediate bug fixing

Unit Test

Integration Test

System Test

5. Testing – Test Stages

27

Peter Müller – Software Architecture and Engineering

Independent Testing: Wrong Conclusions

 The developer should not be testing at all
- “Test before you code”

 Testers get only involved once software is done

 Toss the software over the wall for testing
- Testers and developers collaborate in developing the test

suite

 Testing team is responsible for assuring quality
- Quality is assured by a good software process

5. Testing – Test Stages

28

Peter Müller – Software Architecture and Engineering

Summary

 Main objective
- Design tests that systematically uncover different classes

of errors with a minimum amount of time and effort
- A good test has a high probability of finding an error
- A successful test uncovers an error

 Secondary benefits
- Demonstrate that software appears to be working

according to specification (functional and non-functional)
- Data collected during testing provides indication of

software reliability and software quality
- Good testers clarify the specification (creative work)

5. Testing – Test Stages

29

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Test Strategies

30

Peter Müller – Software Architecture and Engineering

Testing Steps

Select what will be tested

Define test cases

Select test strategy

Create test oracle

What parts of the system?
What aspects of the system?

What integration strategy?
How is the test data determined?

What are the test data?
How is the test carried out?

What are the expected results?
Defined before executing tests

5. Testing – Test Strategies

31

Example: Solve Quadratic Equation

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {
double q = b*b – 4*a*c;
if(q > 0 && a != 0) {
numRoots = 2;
double r = Math.sqrt(q);
x1 = (-b + r) / (2 * a);
x2 = (-b - r) / (2 * a);

} else if(q == 0) {
numRoots = 1;
x1 = -b / (2 * a);

} else {
numRoots = 0;

}
}

x =
−b ± b2 − 4ac

2a

Fails if a==0 and
b*b–4*a*c == 0

5. Testing – Test Strategies

32

Strategy 1: Exhaustive Testing

 Check UUT for all possible inputs
- Not feasible, even for trivial programs

 Assuming that double represents 64-bit values, we
get (264)3 ≈ 1058 possible values for a, b, c

 Programs with heap data structures have a much
larger state space!

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {
…

}

5. Testing – Test Strategies

33

void roots(double a, double b, double c) {
…

}

Strategy 2: Random Testing

 Select test data uniformly

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {
double q = b*b – 4*a*c;
if(q > 0 && a != 0) {
…

} else if(q == 0) {
numRoots = 1;
x1 = -b / (2 * a);

} else { … }
}

Fails if a==0 and
b*b–4*a*c == 0

The likelihood of
selecting a==0 and b==0

randomly is 1/1038

5. Testing – Test Strategies

34

Random Testing: Observations

 Random testing focuses on generating test data
fully automatically

 Advantages
- Avoids designer/tester bias
- Tests robustness, especially handling of invalid input and

unusual actions

 Disadvantages
- Treats all inputs as equally valuable

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies

35

Strategy 3: Functional Testing

 Use requirements knowledge to determine test
cases

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution
a ≠ 0 and b2-4ac > 0 a = 0 and b ≠ 0

or
a ≠ 0 and b2-4ac = 0

a = 0, b = 0, and c ≠ 0
or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,
compute all solutions of the
equation ax2 + bx + c = 0

Test each case of
the specification

5. Testing – Test Strategies

36

Functional Testing: Observations

 Functional testing focuses on input/output behavior
- Goal: Cover all the requirements

 Attempts to find
- Incorrect or missing functions
- Interface errors
- Performance errors

 Limitations
- Does not effectively detect design and coding errors

(e.g., buffer overflow, memory management)
- Does not reveal errors in the specification (e.g., missing

cases)

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies

37

Strategy 4: Structural Testing

 Use design knowledge about system structure,
algorithms, data structures to determine test cases
that exercise a large portion of the code

Peter Müller – Software Architecture and Engineering

void roots(double a, double b, double c) {
double q = b*b – 4*a*c;
if(q > 0 && a != 0) {
…

} else if(q == 0) {
…

} else {
…

}
}

Test this
case

and this
case

and this
case

Error might still be
missed, for instance,
when case is tested

with a==1, b==2, c==1

5. Testing – Test Strategies

38

Structural Testing: Observations

 Not well suited for system test
- Focuses on code rather than on

requirements, for instance, does not
detect missing logic

- Requires design knowledge, which testers
and clients do not have (and do not care
about)

- Thoroughness would lead to highly-
redundant tests

Peter Müller – Software Architecture and Engineering

 Structural testing focuses on thoroughness
- Goal: Cover all the code

5. Testing – Test Strategies

39

Testing Strategies: Summary

Peter Müller – Software Architecture and Engineering

Functional testing
 Goal: Cover all the

requirements
 Black-box test
 Suitable for all test stages

Structural testing
 Goal: Cover all the code

 White-box test
 Suitable for unit testing

5. Testing – Test Strategies

Random testing
 Goal: Cover corner cases

 Black-box test
 Suitable for all test stages

40

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Functional Testing

41

System Test

Applications of Functional Testing

 Black-box test a unit against its requirements

Peter Müller – Software Architecture and Engineering

Functional
test

Unit Test

Integration Test

Acceptance
test

Test interfaces
between

subsystems

During test-driven
development,

when code is not
yet written

5. Testing – Functional Testing

42

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing

5.3.1 Partition Testing
5.3.2 Selecting Representative Values
5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing

43

Finding Representative Inputs

Peter Müller – Software Architecture and Engineering

Failure
No failure

 Divide inputs into
equivalence classes
- Each possible input

belongs to one of the
equivalence classes

- Goal: some classes have
higher density of failures

 Choose test cases for
each equivalence class

Requirement
implemented

correctly

Requirement not
implemented

Requirement
implemented

incorrectly

5. Testing – Functional Testing

44

Equivalence Classes: Example

Peter Müller – Software Architecture and Engineering

month

Month with 28
or 29 days month = 2

Months with
30 days month ∈ {4, 6, 9, 11}

Months with
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Given a month (an integer in [1;12]) and a year (an
integer), compute the number of days of the given
month in the given year (an integer in [28;31])

year

Leap
years

(year mod 4 = 0 and
year mod 100 ≠ 0) or

year mod 400 = 0

Non-leap
years

year mod 4 ≠ 0 or
(year mod 100 = 0 and

year mod 400 ≠ 0)

Invalid inputs
missing

5. Testing – Functional Testing

45

Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28
or 29 days month = 2

Months with
30 days month ∈ {4, 6, 9, 11}

Months with
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or
month > 12

Given a month (an integer in [1;12]) and a year (an
integer), compute the number of days of the given
month in the given year (an integer in [28;31])

year

Leap
years

(year mod 4 = 0 and
year mod 100 ≠ 0) or

year mod 400 = 0

Non-leap
years

year mod 4 ≠ 0 or
(year mod 100 = 0 and

year mod 400 ≠ 0)

Partitioning seems
too coarse

5. Testing – Functional Testing

46

Equivalence Classes: Example (cont’d)

Peter Müller – Software Architecture and Engineering

month

Month with 28
or 29 days month = 2

Months with
30 days month ∈ {4, 6, 9, 11}

Months with
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or
month > 12

Given a month (an integer in [1;12]) and a year (an
integer), compute the number of days of the given
month in the given year (an integer in [28;31])

year

Standard leap
years

year mod 4 = 0 and
year mod 100 ≠ 0

Standard non-
leap years year mod 4 ≠ 0

Special leap
years year mod 400 = 0

Special non-
leap years

year mod 100 = 0 and
year mod 400 ≠ 0

5. Testing – Functional Testing

47

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing

5.3.1 Partition Testing
5.3.2 Selecting Representative Values
5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing

48

Selecting Representative Values

 Once we have partitioned the input values, we
need to select concrete values for the test cases
for each equivalence class

 Input from a range of valid values
- Below, within, and above the range
- Also applies to multiplicities on aggregations

 Input from a discrete set of valid values
- Valid and invalid discrete value
- Instances of each subclass

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

49

Boundary Testing

 A large number of errors tend to occur at
boundaries of the input domain
- Overflows
- Comparisons (‘<‘ instead of ‘<=‘, etc.)
- Missing emptiness checks (e.g., collections)
- Wrong number of iterations

Peter Müller – Software Architecture and Engineering

int abs(int x) {
if(0 <= x) return x;
return –x;

}

Given an integer x,
determine the
absolute value of x

x

Valid all values

Negative result for
x==Integer.MIN_VALUE

5. Testing – Functional Testing

50

Boundary Testing: Example

 Select elements at the “edge” of each equivalence
class (in addition to values in the middle)
- Ranges: lower and upper limit
- Empty sets and collections

Peter Müller – Software Architecture and Engineering

month

Month with 28 or 29 days month = 2

Months with 30 days month ∈ {4, 6, 9, 11}

Months with 31 days month ∈ {1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or month > 12

There is only one
value

Choose all
values

Choose 1 and 12
plus one more

Choose
MIN_VALUE, 0,

13, MAX_VALUE

5. Testing – Functional Testing

51

Boundary Testing: Example (cont’d)

Peter Müller – Software Architecture and Engineering

year

Standard leap
years

year mod 4 = 0 and
year mod 100 ≠ 0

Standard non-
leap years year mod 4 ≠ 0

Special leap
years year mod 400 = 0

Special non-
leap years

year mod 100 = 0 and
year mod 400 ≠ 0

Choose for instance
-200.004, -4, 4, 2012,

400.008

Choose for instance
-200.003, -1, 1, 2011,

400.009

Choose for instance
-200.000, 0, 2000,

400.000

Choose for instance
-200.100, 1900,

400.100

5. Testing – Functional Testing

52

Parameterized Unit Test for Leap Years

 Analogous test cases for February in non-leap
year, months with 30 days, and months with 31
days

Peter Müller – Software Architecture and Engineering

[Test]
public void TestDemo29(

[Values(-200004, -200000, -4, 0,4, 2000, 2012, 400000, 400008)]
int year)

{
int d = Days(2, year);
Assert.IsTrue(d == 29);

}

All selected values for
leap years and special

leap years

Only one
value

Expected
result

5. Testing – Functional Testing

53

Parameterized Unit Test for Invalid Inputs

Peter Müller – Software Architecture and Engineering

[Test]
[ExpectedException(typeof(ArgumentException))]
public void TestDemoInvalid(

[Values(int.MinValue, 0, 13, int.MaxValue)] int month,
[Values(-200100, -200004, -200003, -200000, -4, -1, 0, 1, 4, 1900,

2000, 2011, 2012, 400000, 400008, 400009, 400100)] int year) {
int d = Days(month, year);

} All selected
values for year

Expected result:
an exception

All selected
invalid values

for month

5. Testing – Functional Testing

54

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing

5.3.1 Partition Testing
5.3.2 Selecting Representative Values
5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing

55

Combinatorial Testing

 Combining equivalence classes and boundary
testing leads to many values for each input
- Twelve values for month and 17 values for year in the

Leap Year example
 Testing all possible combinations leads to a

combinatorial explosion (12 x 17 = 204 tests)

 Reduce test cases to make effort feasible
- Semantic constraints
- Combinatorial selection
- Random selection

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

56

Eliminating Combinations

 Inspect test cases for unnecessary combinations
- Especially for invalid values
- Use problem domain knowledge

 Reduces test cases from 204 to 17 + 4 + 3 + 4 = 28

Peter Müller – Software Architecture and Engineering

month
Month with 28

or 29 days month = 2

Months with
30 days month ∈ {4, 6, 9, 11}

Months with
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or
month > 12

Test all
combinations

with year

Behavior is
independent of

year

Behavior is
independent of

year

Behavior is
independent of

year

5. Testing – Functional Testing

57

Eliminating Combinations: NUnit Example

Peter Müller – Software Architecture and Engineering

[Test, Sequential]
[ExpectedException(typeof(ArgumentException))]
public void TestDemoInvalid(

[Values(int.MinValue, 0, 13, int.MaxValue)] int month,
[Values(-200100, -200004, -200003, -200000)] int year) {

int d = Days(month, year);
} One value for

year for each
value for month

All selected
invalid values

for month

5. Testing – Functional Testing

58

Selecting Object References

 Objects are different from values because they
have identity

 When selecting test data for objects, one has to
consider object identities and aliasing

 Referenced objects lead to combination problem

Peter Müller – Software Architecture and Engineering

a1 = new Account(1000);
a2 = new Account(1000);
a1.transfer(a2, 500);

a1 = new Account(1000);
a1.transfer(a1, 500);

Might behave
differently

(e.g., deadlock)

5. Testing – Functional Testing

59

Roots Example

 53 = 125 test cases for valid inputs

Peter Müller – Software Architecture and Engineering

Given three values, a, b, c,
compute all solutions of the
equation ax2 + bx + c = 0

a b c

Valid any
value

any
value

any
value

Invalid infinity,
NaN

infinity,
NaN

infinity,
NaN

Boundary testing:
a, b, c ∈

{ Double.MIN_VALUE, -5,
0, 5, Double.MAX_VALUE }

5. Testing – Functional Testing

60

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0
a = 0 and b ≠ 0

or
a ≠ 0 and b2-4ac = 0

a = 0, b = 0, and c ≠ 0
or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,
compute all solutions of the
equation ax2 + bx + c = 0

Partitioning seems
too coarse

Partitioning seems
too coarse

Look at
dependencies
between inputs

Semantic
constraints on
combinations

Semantic
constraints on
combinations

5. Testing – Functional Testing

61

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution
Linear

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

(Truly)
quadratic
equation

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Given three values, a, b, c,
compute all solutions of the
equation ax2 + bx + c = 0

Not all inputs are
covered: a=b=c=0

5. Testing – Functional Testing

62

Roots Example (cont’d)

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution
Linear

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

(Truly)
quadratic
equation

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Invalid
input a = 0, b = 0, c = 0

Given three values, a, b, c, compute all
solutions of the equation ax2 + bx + c = 0;
report an error if all three values are zero

5. Testing – Functional Testing

63

Roots Example: Summary

 Classifying the combinations according to semantic
constraints did not reveal any irrelevant test cases

 But we did identify an omission in the specification
- It is common that testers clarify the specification

 One option is to manually choose a manageable
number of test cases such that there is at least one
test case for each semantic constraint
- Note that omitting test cases might leave errors such as

arithmetic overflow undetected

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

64

Semantic Constraints: Discussion

 Semantic constraints potentially reduce the number
of test cases
- They also help increasing the coverage

 But too many combinations remain
- Especially when there are many input values, for

instance, for the fields of objects

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

65

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Medical Devices

Browser

Server

NASA GSFC

Network Security

Influence of Variable Interactions

 Empirical evidence
suggests that most
errors do not depend
on the interaction of
many variables

Peter Müller – Software Architecture and Engineering

Vars Medical
Devices Browser Server NASA

GSFC
Network
Security

1 66% 29% 42% 68% 20%
2 97% 76% 70% 93% 65%
3 99% 95% 89% 98% 90%
4 100% 97% 96% 100% 98%
5 99% 96% 100%
6 100% 100%

 Interactions of
two or three
variables trigger
most errors

5. Testing – Functional Testing

66

Pairwise-Combinations Testing

 Instead of testing all possible combinations of all
inputs, focus on all possible combinations of each
pair of inputs
- Pairwise-combinations testing is identical to

combinatorial testing for two or less inputs
 Example: Consider a method with four boolean

parameters
- Combinatorial testing requires 24 = 16 test cases
- Pairwise-combinations testing requires 5 test cases:

TTTT, TFFF, FTFF, FFTF, FFFT
 Can be generalized to k-tuples (k-way testing)

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

67

Pairwise-Combinations Testing: Complexity

 For n parameters with d values per parameter, the
number of test cases grows logarithmically in n and
quadratic in d
- Handles larger number of parameters, for instance, fields

of objects
- The number d can be influenced by the tester

 Result holds for large n and d, and for all k in k-way
testing

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

68

Pairwise-Combinations Testing: Example

 Three parameters, five values each
- Double.MIN_VALUE, -5, 0, 5, Double.MAX_VALUE
- 53 = 125 test cases for combinatorial testing
- 25 test cases for pairwise-combinations testing

 Bug is still detected (depends only on a and b)
 Some cases depend on three parameters, e.g.,

invalid input

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution
a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

a = 0, b = 0, c = 0

5. Testing – Functional Testing

69

Pairwise-Combinations Testing: Discussion

 Pairwise-combinations testing (or k-way testing)
reduces the number of test cases significantly while
detecting most errors

 Pairwise-combinations testing is especially
important when many system configurations need
to be tested
- Hardware, operating system, database, application

server, etc.
 Should be combined with other approaches to

detect errors that are triggered by more complex
interactions among parameters

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing

70

Functional Testing: Summary

Peter Müller – Software Architecture and Engineering

Functional
Requirements

Independently
Testable Feature

Representative
Values

Test Case
Specification Test Cases

Equivalence classes,
boundary testing

Exhaustive enumeration,
semantic constraints,
pairwise combinations

5. Testing – Functional Testing

71

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Structural Testing

72

Motivating Example

Peter Müller – Software Architecture and Engineering

public void sort(int[] a) {
if(a == null || a.length < 2) // array is trivially sorted
return;

// check if array is already sorted
for(int i = 0; i < a.length – 1; i++)
if(a[i] < a[i + 1])
break;

if(i >= a.length – 1) // array is already sorted
return;

// use quicksort to sort the array in ascending order
}

Given a non-null array of integers, sort the
array in-place in ascending order

Error: check for
sortedness should

use ‘>’

5. Testing – Structural Testing

73

Motivating Example: Functional Testing

 The requirements give no clue that one should test
with an array that is sorted in descending order

Peter Müller – Software Architecture and Engineering

a

Valid any non-
null array

Invalid null

Given a non-null array of integers, sort the
array in-place in ascending order

Choose for instance
{ }, { 1 }, { 1, 2, 3 }

5. Testing – Structural Testing

74

Motivating Example: Discussion

 Detailed design and coding introduce many
behaviors that are not present in the requirements
- Choice of data structures
- Choice of algorithms
- Optimizations such as caches

 Functional testing generally does not thoroughly
exercise these behaviors
- No data structure specific test cases, e.g., rotation of

AVL-tree
- No test cases for optimizations, e.g., cache misses

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

75

System Test

Applications of Structural Testing

 White-box test a unit to cover a large portion of its
code

Peter Müller – Software Architecture and Engineering

Unit Test

Integration Test

Use design
knowledge to
cover most of

the code

5. Testing – Structural Testing

76

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5.4.1 Control Flow Testing
5.4.2 Advanced Topics of Control Flow Testing
5.4.3 Data Flow Testing
5.4.4 Interpreting Coverage

5. Testing – Structural Testing

77

Basic Blocks

 A basic block is a sequence of statements such
that the code in a basic block:
- has one entry point: no code within it is the destination of

a jump instruction anywhere in the program
- has one exit point: only the last instruction causes the

program to execute code in a different basic block

 Whenever the first instruction in a basic block is
executed, the rest of the instructions are
necessarily executed exactly once, in order

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

78

Basic Blocks: Example

Peter Müller – Software Architecture and Engineering

public void sort(int[] a) {

if(a == null || a.length < 2)

return;

for(int i = 0; i < a.length – 1; i++) {

if(a[i] < a[i + 1])

break;

}

if(i >= a.length – 1)

return;

qsort(a, 0, a.length);

}

5. Testing – Structural Testing

79

Intraprocedural Control Flow Graphs

 An intraprocedural control flow graph (CFG) of a
procedure p is a graph (N,E) where:

 N is the set of basic blocks in p plus designated
entry and exit blocks

 E contains
- an edge from a to b with condition c iff the execution of

basic block a is succeeded by the excution of basic block
b if condition c holds

- an edge (entry, a, true) if a is the first basic block of p
- edges (b, exit, true) for each basic block b that ends with

an (possibly implicit) return statement

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

80

Control Flow Graphs: Example

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2
¬b2

b3¬b3

i = 0;

5. Testing – Structural Testing

81

Test Coverage

 The CFG can serve
as an adequacy
criterion for test
cases

 The more parts
are executed, the
higher the chance
to uncover a bug

 “parts” can be
nodes, edges,
paths, etc.

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

5. Testing – Structural Testing

82

Test Coverage: Example

 Consider the input
a = { 3, 7, 5 }

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

5. Testing – Structural Testing

83

Statement Coverage

 Assess the quality of a test suite by measuring how
much of the CFG it executes

 Idea: one can detect a bug in a statement only by
executing the statement

- Can also be defined on basic blocks

Peter Müller – Software Architecture and Engineering

Statement Coverage =
Number of executed statements

Total number of statements

5. Testing – Structural Testing

84

Statement Coverage: Example

 Consider the input
a = { 3, 7, 5 }

 This single test
case executes 7
out of 10 basic
blocks

 Statement
coverage: 70%

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

5. Testing – Structural Testing

85

Statement Coverage: Example (cont’d)

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

 We can achieve
100% statement
coverage with
three test cases
- a = { 1 }
- a = { 5, 7 }
- a = { 7, 5 }

 The last test case
detects the bug

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b2 = (i < a.length – 1);

b4 = (i >= a.length – 1);

return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

5. Testing – Structural Testing

86

Statement Coverage: Discussion

Peter Müller – Software Architecture and Engineering

boolean contains(int[] a, int x) {

if(a == null) return false;

boolean found = false;

for(int i = 0; i <= a.length; i++) {

if(a[i] == x) {

found = true;

break;

}

}

return found;

}

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

5. Testing – Structural Testing

87

Statement Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

 We can achieve 100%
statement coverage
with two test cases
- a = null
- a = { 1, 2 }, x = 2

 The test cases do not
detect the bug!

 More thorough testing
is necessary

5. Testing – Structural Testing

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

88

Branch Coverage

 Idea: test all possible branches in the control flow

 An edge (m, n, c) in a CFG is a branch iff there is
another edge (m, n’, c’) in the CFG with n ≠ n’

- Conveniently define branch coverage to be 100% if the
code contains no branches

Peter Müller – Software Architecture and Engineering

Branch Coverage =
Number of executed branches

Total number of branches

5. Testing – Structural Testing

89

Branch Coverage: Example 1

 Consider the input
a = { 3, 7, 5 }

 This single test
case executes 4
out of 8 branches

 Branch coverage:
50%

 Three test cases
needed for 100%
branch coverage

Peter Müller – Software Architecture and Engineering

b1 = (a == null || a.length < 2);

b3 = (a[i] < a[i + 1]);

b4 = (i >= a.length – 1);

b2 = (i < a.length – 1); return;

exit

qsort(a, 0, a.length); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

5. Testing – Structural Testing

90

Branch Coverage: Example 2

Peter Müller – Software Architecture and Engineering

 The two test cases
- a = null
- a = { 1, 2 }, x = 2
execute 5 out of 6
branches

 Branch coverage:
83%

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

5. Testing – Structural Testing

91

Branch Coverage: Example 2 (cont’d)

Peter Müller – Software Architecture and Engineering

 Achieving 100%
branch coverage
would require a test
case that runs the
loop to the end
- a = null
- a = { 1 }, x = 1
- a = { 1 }, x = 3

 The last test case
detects the bug

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

5. Testing – Structural Testing

92

Branch Coverage: Discussion

 Branch coverage leads to more thorough testing
than statement coverage
- Complete branch coverage implies complete statement

coverage
- But “at least n% branch coverage” does not generally

imply “at least n% statement coverage”

 Most widely-used adequacy criterion in industry

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

93

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[] reverse(int[] a) {
int j = a.length – 1;
int[] res = new int[a.length];
for(int i = 0; i < a.length; i++) {
res[j] = a[i];

}
return res;

}

j = a.length – 1;
res = new int[a.length];
i = 0;

return res;

exit

res[j] = a[i];
i++;

entry

b1 ¬b1

b1 = (i < a.length);

5. Testing – Structural Testing

94

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%
branch coverage with
one test case
- a = { 1 }

 The test case does
not detect the bug!

 More thorough testing
is necessary

j = a.length – 1;
res = new int[a.length];
i = 0;

return res;

exit

res[j] = a[i];
i++;

entry

b1 ¬b1

b1 = (i < a.length);

5. Testing – Structural Testing

95

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {
int x = 1;
int y = 1;
if(a)
x = 0;

else
y = 0;

if(b)
return 5 / x;

else
return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

96

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%
branch coverage with
two test cases
- a = true, b = false
- a = false, b = true

 The test cases do not
detect the bug!

 More thorough testing
is necessary

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

97

Path Coverage

 Idea: test all possible paths through the CFG

 A path is a sequence of nodes n1, …, nk such that
- n1 = entry
- nk = exit
- There is an edge (ni, ni+1, c) in the CFG

Peter Müller – Software Architecture and Engineering

Path Coverage =
Number of executed paths

Total number of paths

5. Testing – Structural Testing

98

Path Coverage: Example 1

Peter Müller – Software Architecture and Engineering

 The two test cases
- a = true, b = false
- a = false, b = true
execute two out of four
paths

 Path coverage: 50%

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

99

Path Coverage: Example 1 (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100%
path coverage with four
test cases
- a = true, b = false
- a = false, b = true
- a = true, b = true
- a = false, b = false

 The two additional test
cases detect the bugs

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

100

Path Coverage: Example 2

Peter Müller – Software Architecture and Engineering

boolean contains(int[] a, int x) {

if(a == null) return false;

boolean found = false;

for(int i = 0; i <= a.length; i++) {

if(a[i] == x) {

found = true;

break;

}

}

return found;

}

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

5. Testing – Structural Testing

101

Path Coverage: Example 2 (cont’d)

 Number of loop
iterations is not known
statically

 An arbitrarily large
number of test cases
is needed for
complete path
coverage

Peter Müller – Software Architecture and Engineering

b1 = (a == null);

b3 = (a[i] == x);

return found;

b2 = (i <= a.length);

return
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false;
i = 0;

5. Testing – Structural Testing

102

Path Coverage: Discussion

 Path coverage leads to more thorough testing than
both statement and branch coverage
- Complete path coverage implies complete statement

coverage and complete branch coverage
- But “at least n% path coverage” does not generally imply

“at least n% statement coverage” or “at least n% branch
coverage”

 Complete path coverage is not feasible for loops
- Unbounded number of paths

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

103

Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[] reverse(int[] a) {
int j = a.length – 1;
int[] res = new int[a.length];
for(int i = 0; i < a.length; i++) {
res[j] = a[i];

}
return res;

}

j = a.length – 1;
res = new int[a.length];
i = 0;

return res;

exit

res[j] = a[i];
i++;

entry

b1 ¬b1

b1 = (i < a.length);

5. Testing – Structural Testing

104

Loop Coverage

 Idea: for each loop, test zero, one, and more than
one (consecutive) iterations

 Loop coverage is typically combined with other
adequacy criteria such as statement or branch
coverage

Peter Müller – Software Architecture and Engineering

Loop Coverage =

Number of executed loops
with 0, 1, and more than 1 iterations

Total number of loops * 3

5. Testing – Structural Testing

105

Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 The test case
- a = { 1 }
executes one out of
three possible cases
for the loop

 Loop coverage: 33%

j = a.length – 1;
res = new int[a.length];
i = 0;

return res;

exit

res[j] = a[i];
i++;

entry

b1 ¬b1

b1 = (i < a.length);

5. Testing – Structural Testing

106

Loop Coverage: Example

Peter Müller – Software Architecture and Engineering

 We can achieve 100%
loop coverage with
three test cases
- a = { }
- a = { 1 }
- a = { 1, 2 }

 The last test case
detects the bug

j = a.length – 1;
res = new int[a.length];
i = 0;

return res;

exit

res[j] = a[i];
i++;

entry

b1 ¬b1

b1 = (i < a.length);

5. Testing – Structural Testing

107

Measuring Coverage

 Coverage information
is collected while the
test cases execute

 Use code
instrumentation or
debug interface to
count executed basic
blocks, branches, etc.

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {
int x = 1; int y = 1;
if(a) {
branchCovered[0] = true; x = 0;

} else {
branchCovered[1] = true; y = 0;

}
if(b) {
branchCovered[2] = true;
return 5 / x;

} else {
branchCovered[3] = true;
return 5 / y;

}
}

5. Testing – Structural Testing

108

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5.4.1 Control Flow Testing
5.4.2 Advanced Topics of Control Flow Testing
5.4.3 Data Flow Testing
5.4.4 Interpreting Coverage

5. Testing – Structural Testing

109

CFG: Method Calls

Peter Müller – Software Architecture and Engineering

static <E> void filter(
Collection<E> from,
Filter<E> f,
Collection<E> to) {

if(from == null) return;
Iterator<E> i = from.iterator();
while(i.hasNext()) {
E e = i.next();
if(f.apply(e))
to.add(e);

}
}

Iterator<E> i = from.iterator();

to.add(e);

exit

e = i.next();
b3 = f.apply(e);

entry

b1

¬b1

b2 = i.hasNext();

b1 = (from == null);

¬b2

b2
¬b3

b3

5. Testing – Structural Testing

110

Dynamically-Bound Method Calls

 Intraprocedural CFGs treat
method calls as simple
statements

 Yet, calls invoke different
code depending on the
dynamic type of the
receiver

 Testing should cover the
possible behaviors

Peter Müller – Software Architecture and Engineering

static <E> void filter(
Collection<E> from,
Filter<E> f,
Collection<E> to) {

if(from == null) return;
Iterator<E> i = from.iterator();
while(i.hasNext()) {
E e = i.next();
if(f.apply(e))
to.add(e);

}
}

5. Testing – Structural Testing

111

Testing Dynamically-Bound Method Calls

 A dynamically-bound
method call can be regarded
as a case distinction on the
type of the receiver

Peter Müller – Software Architecture and Engineering

NullFilter
apply(E e)

Duplicates
apply(E e)

Filter
apply(E e)

f.apply(e)

if(type(f) == Filter)
f.Filter::apply(e);

else if(type(f) == NullFilter)
f.NullFilter::apply(e);

else // type(f) == Duplicates
f.Duplicates::apply(e);

 Now we can apply branch testing

5. Testing – Structural Testing

112

Testing Dynamically-Bound Calls (cont’d)

 Treating dynamically-
bound method calls as
branches leads to a
combinatorial explosion

 Use semantic constraints
and pairwise-
combinations testing

Peter Müller – Software Architecture and Engineering

static <E> void filter(
Collection<E> from,
Filter<E> f,
Collection<E> to) {

if(from == null) return;
Iterator<E> i = from.iterator();
while(i.hasNext()) {
E e = i.next();
if(f.apply(e))
to.add(e);

}
} java.util contains

dozens of
collection classes

java.util contains
dozens of

collection classes

Several different
Filter classes in

the program

5. Testing – Structural Testing

113

Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(
Collection<E> from,
Filter<E> f,
Collection<E> to) {

if(from == null) return;
if(f == null || to == null)
throw new
IllegalArgumentException();

Iterator<E> i = from.iterator();
while(i.hasNext()) {
E e = i.next();
if(f.apply(e))
to.add(e);

}
}

Iterator<E> i = from.iterator();

to.add(e);

exit

e = i.next();
b4 = f.apply(e);

entry

b1

¬b1

b3 = i.hasNext();

b1 = (from == null);

¬b3

b3
¬b4

b4

b2 = (f == null || to == null);

throw new
IllegalArgumentException();

¬b2
b2

5. Testing – Structural Testing

114

CFG: Exceptions

 Exceptions add a control flow edge from the basic
block where the exception is thrown to the exit
block or the block where the exception is caught

 Idea: Cover exceptional control flow like normal
control flow during testing
- Test oracle is checked when method terminates normally

Peter Müller – Software Architecture and Engineering

[Test]
[ExpectedException(typeof(ArgumentException))]
public void TestDemoInvalid(…) {
int d = Days(month, year);

}

5. Testing – Structural Testing

115

Example: Documented Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(
Collection<E> from,
Filter<E> f,
Collection<E> to) {

if(from == null) return;
if(f == null || to == null)
throw new
IllegalArgumentException();

Iterator<E> i = from.iterator();
while(i.hasNext()) {
E e = i.next();
if(f.apply(e))
to.add(e);

}
}

Might throw:
 UnsupportedOperationException
 ClassCastException
 NullPointerException
 IllegalArgumentException
 IllegalStateException

Might throw:
 NoSuchElementException

5. Testing – Structural Testing

116

Example: Documented Exceptions (cont’d)

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

entry
b1

¬b1

b3 = i.hasNext();

b1 = (from == null);

¬b3

b3

¬b4

b4

b2 = (f == null || to == null);

throw new
IllegalArgumentException();

¬b2
b2

b4 = f.apply(e);

5. Testing – Structural Testing

117

Example: Undocumented Exceptions

Peter Müller – Software Architecture and Engineering

static <E> void filter(
Collection<E> from,
Filter<E> f,
Collection<E> to) {

if(from == null) return;
if(f == null || to == null)
throw new
IllegalArgumentException();

Iterator<E> i = from.iterator();
while(i.hasNext()) {
E e = i.next();
if(f.apply(e))
to.add(e);

}
}

The example might also throw:
 ConcurrentModificationException
 NoClassDefFoundError
 NoSuchMethodError
 OutOfMemoryError
 StackOverflowError
 ThreadDeath
 VirtualMachineError
 etc.

5. Testing – Structural Testing

118

Example: Undocumented Exceptions (cont’d)

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();

entry
b1

¬b1

b3 = i.hasNext();

b1 = (from == null);

¬b3

b3

¬b4

b4

b2 = (f == null || to == null);

throw new
IllegalArgumentException();

¬b2
b2

b4 = f.apply(e);

It is impractical to
represent and test

all exceptional
control flow in the

CFG

5. Testing – Structural Testing

119

Checked vs. Unchecked Exceptions

 Some programming languages distinguish between
checked and unchecked exceptions

 Checked exceptions represent invalid conditions
outside the immediate control of the program
- Invalid user input, database problems, network outages,

absent files
 Unchecked exceptions represent defects in the

program or the execution environment
- Illegal arguments, null-pointer dereferencing, division by

zero, assertion violation, etc.
- In Java: all subclasses of RuntimeException and Error

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

120

Testing Unchecked Exceptions

 Unchecked
exceptions are not
supposed to occur

 When computing
the CFG, ignore
unchecked
exceptions thrown
by other methods
and virtual machine
- But consider throw

statements

Peter Müller – Software Architecture and Engineering

Iterator<E> i = from.iterator();

to.add(e); exit

e = i.next();
b4 = f.apply(e);

entry

b1

¬b1

b3 = i.hasNext();

b1 = (from == null);

¬b3

b3
¬b4

b4

b2 = (f == null || to == null);

throw new
IllegalArgumentException();

¬b2
b2

5. Testing – Structural Testing

121

Unchecked Exceptions: Bad Example

 Never use unchecked exceptions to encode control
flow!

Peter Müller – Software Architecture and Engineering

static boolean contains(String[] a, String s) {
for(int i = 0; i < a.length; i++) {
try {
if(a[i].equals(s))
return true;

} catch(NullPointerException e) {
i++;

}
}

return false;
}

Exceptional
control flow
will not be
covered

Bug remains
undetected

5. Testing – Structural Testing

122

Bad Example Fixed

Peter Müller – Software Architecture and Engineering

static boolean contains(String[] a, String s) {
for(int i = 0; i < a.length; i++) {
if(a[i] != null) {
if(a[i].equals(s))
return true;

} else {
i++;

}
}
return false;

}

Normal
control flow

will be
covered

Bug will be
detected

5. Testing – Structural Testing

123

Testing Checked Exceptions

 Checked exceptions represent regular control flow
that needs to be tested
- Include control flow in CFG, testing, and coverage

 In Java, checked exceptions are declared in
method signatures

 For each call, add appropriate control flow edges

Peter Müller – Software Architecture and Engineering

interface RemoteBuffer extends Remote {
void put(String s) throws RemoteException;

}

5. Testing – Structural Testing

124

Checked Exceptions: Example

Peter Müller – Software Architecture and Engineering

class Producer {
RemoteBuffer b;
void produce() throws RemoteException {
boolean retried = false;
boolean success = false;
while(!success) {

try {
b.put("Product“);
success = true;

} catch(RemoteException e) {
if(retried) throw e;

}
}

}
}

Exceptional
control flow

will be
covered Bug will be

detected

5. Testing – Structural Testing

125

Testing Exceptions: Summary

 Checked exceptions encode the program’s reaction
to invalid conditions in the environment
- Test like normal control flow

 Unchecked exceptions represent defects
- Test unchecked exceptions explicitly thrown by method

under test (argument validation, precondition check)
- Unchecked exceptions thrown by methods being called

indicate defect in method under test (precondition
violation) or in the called method

- Unchecked exceptions thrown by virtual machine indicate
defect in method under test (e.g., infinite recursion) or
deployment error (e.g., class not found)

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

126

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5.4.1 Control Flow Testing
5.4.2 Advanced Topics of Control Flow Testing
5.4.3 Data Flow Testing
5.4.4 Interpreting Coverage

5. Testing – Structural Testing

127

Example Revisited

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {
int x = 1;
int y = 1;
if(a)
x = 0;

else
y = 0;

if(b)
return 5 / x;

else
return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

128

Data Flow Testing

 Testing all paths is not
feasible
- Number grows exponentially

in the number of branches
- Loops

 Idea: Test those paths
where a computation in one
part of the path affects the
computation of another

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

129

Variable Definition and Use

 A variable definition for a variable v is a basic block
that assigns to v
- v can be a local variable, formal parameter, field, or

array element

 A variable use for a variable v is a basic block that
reads the value from v
- In conditions, computations, output, etc.

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

130

Definition-Clear Paths

 A definition-clear path for a variable v is a path
n1, …, nk in the CFG such that:
- n1 is a variable definition for v
- nk is a variable use for v
- No ni (1 < i ≤ k) is a variable definition for v

(nk may be a variable definition if each assignment to v
occurs after a use)

 Note: definition-clear paths do not go from entry to
exit (in contrast to our earlier definition of path)

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

131

Definition-Use Pairs

 A definition-use pair
for a variable v is a
pair of nodes (d,u)
such that there is a
definition-clear path
d, …, u in the CFG

 We say DU-pair for
definition-use pair

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

Variable
definition

for x

Variable
definition

for x

Variable
use for x

5. Testing – Structural Testing

132

Definition-Use Pairs: Examples

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

133

DU-Pairs Coverage

 Idea: test all paths that provide a value for a
variable use

Peter Müller – Software Architecture and Engineering

DU-Pairs Coverage =
Number of executed DU-Pairs

Total number of DU-Pairs

5. Testing – Structural Testing

134

DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

 The two test cases
- a = true, b = false
- a = false, b = true
achieve 100% branch
coverage, but only 50%
DU-pairs coverage

 In this example, DU-pairs
coverage is equivalent to
path coverage

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

5. Testing – Structural Testing

135

Determining all DU-Pairs

 DU-Pairs are computed using a static reaching-
definitions analysis

 For each node n and for each variable v, compute
all variable definitions for v that possibly reach n via
a definition-clear path

 The reaching definitions at a node n are:
- The reaching definitions of n’s predecessors in the CFG
- minus the definitions killed by one of n’d predecessors
- plus the definitions made by one of n’d predecessors

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

136

Reaching Definitions: Algorithm

 Input
- pred(n) = { m | (m,n,c) is an edge in the CFG }
- succ(m) = { n | (m,n,c) is an edge in the CFG }
- gen(n) = { vn | n is a variable definition for v }
- kill(n) = { vm | n is a variable definition for v and m ≠ n }

 We compute via fixpoint iteration
- Reach(n): The reaching definitions at the beginning of n
- ReachOut(n): The reaching definitions at the end of n

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

137

Reaching Definitions: Algorithm (con’t)

Peter Müller – Software Architecture and Engineering

foreach node n do ReachOut(n) := ∅ end
worklist := nodes
while worklist ≠ ∅ do
n := any(worklist)
remove n from worklist
Reach(n) := Um∈pred(n) ReachOut(m)
ReachOut(n) := Reach(n) \ kill(n) ∪ gen(n)
if ReachOut(n) has changed then
worklist := worklist ∪ succ(n)

end
end

5. Testing – Structural Testing

138

Reaching Definitions: Example

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach(n) ReachOut(n)
1 ∅

2 x1, y1 x1, y1

3 x1, y1 x3, y1

4 x1, y1 x1, y4

5 x1, x3, y1, y4 x1, x3, y1, y4

6 x1, x3, y1, y4 x1, x3, y1, y4

7 x1, x3, y1, y4 x1, x3, y1, y4

5. Testing – Structural Testing

139

From Reaching Definitions to DU-Pairs

 The set of DU-pairs is easily determined as
{ (d,u) | u is a variable use for v and vd ∈ Reach(u) }

Peter Müller – Software Architecture and Engineering

b1 = a;

b2 = b;

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach(n)
1 ∅

2 x1, y1

3 x1, y1

4 x1, y1

5 x1, x3, y1, y4

6 x1, x3, y1, y4

7 x1, x3, y1, y4

 DU-pairs for x:
(1,6), (3,6)

 DU-pairs for y:
(1,7), (4,7)

5. Testing – Structural Testing

140

Data Flow Testing Example

 Convert character sequence to integer
- Input format: ddec* | ‘x’(dhex*), where d is a (decimal or

hexadecimal) digit

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {
int base; int i = 0; int val = 0;
if (a.length == 0) return 0;
if(a[i] == 'x') { base = 12; i = i + 1; }
else { base = 10; }
while(i < a.length) {

val = val * base + Character.digit(a[i], base);
i = i + 1;

}
return val;

}

5. Testing – Structural Testing

We assume here
that all inputs are of
the required format

141

Data Flow Testing Example: CFG

Peter Müller – Software Architecture and Engineering

val = val * base + Character.digit(a[i], base);
i = i + 1; return val; exit

entry

b1

¬b1

b3 = (i < a.length);

b2 = (a[i] == 'x');

¬b3

b3

1:

¬b2b2

5. Testing – Structural Testing

i = 0;
val = 0;
b1 = (a.length == 0);

return 0;

base = 12;
i = i + 1; base = 10;

2:

4: 5:

6:

7:
8:

3:

142

Data Flow Testing Example: DU-Pairs

 We get 14 DU-pairs

 DU-pairs for i:
(1,2), (1,4), (1,6), (4,6),
(7,6), (1,7), (4,7), (7,7)

 DU-pairs for val:
(1,7), (7,7), (1,8), (7,8)

 DU-pairs for base:
(4,7), (5,7)

Peter Müller – Software Architecture and Engineering

n Reach(n) ReachOut(n)
1 ∅ i1, val1
2 i1, val1 i1, val1
3 i1, val1 i1, val1
4 i1, val1 i4, val1, base4

5 i1, val1 i1, val1, base5

6 i1, i4, i7, val1, val7,
base4, base5

i1, i4, i7, val1, val7,
base4, base5

7 i1, i4, i7, val1, val7,
base4, base5

i7, val7, base4,
base5

8 i1, i4, i7, val1, val7,
base4, base5

i1, i4, i7, val1, val7,
base4, base5

5. Testing – Structural Testing

143

Data Flow Testing Example: Bug

 Consider the
test cases
- a = { }
- a = { ‘x’ }
- a = { ‘1’ }
- a = { ‘1’, ‘2’ }

 The bug is not
detected!

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {
int base; int i = 0; int val = 0;
if (a.length == 0) return 0;
if(a[i] == 'x‘) { base = 12; i = i + 1; }
else { base = 10; }
while(i < a.length) {

val = val * base + Character.digit(a[i], base);
i = i + 1;

}
return val;

}

 Branch and loop coverage: 100%
 DU-pairs missed: (4,7) for i, base (coverage 86%)

5. Testing – Structural Testing

 Branch and loop coverage: 100%

144

Data Flow Testing Example: Observation

 DU-pairs for i and val include (7,7)
 Complete DU-pairs coverage requires more than

one loop iteration

Peter Müller – Software Architecture and Engineering

static int convert(char[] a) {
int base; int i = 0; int val = 0;
if (a.length == 0) return 0;
if(a[i] == 'x') { base = 16; i = i + 1; }
else { base = 10; }
while(i < a.length) {

val = val * base + Character.digit(a[i], base);
i = i + 1;

}
return val;

}

5. Testing – Structural Testing

145

Determining all DU-Pairs: Heap Structures

 Determining
whether a definition
and a usage refer to
the same heap
location, a static
analysis would need
arithmetic and
aliasing information

 Static analysis has
to over-approximate

Peter Müller – Software Architecture and Engineering

static void repeat(int[] from, int[] to) {
int i = 0;
if (from.length == 0) return;
while(i < to.length) {

to[i] = to[i] + from[i % from.length];
i = i + 1;

}
}

5. Testing – Structural Testing

146

Measuring DU-Pairs Coverage

 Keep track of currently active definitions
- defCover: Variable → Block

 Keep track of executed DU-pairs
- useCover: Variable × Blockdef × Blockuse → Ν

 Maps can be encoded as arrays, indexed by
identifiers for variables and basic blocks

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

147

Measuring DU-Pairs Coverage: Example

Peter Müller – Software Architecture and Engineering

int foo(boolean a, boolean b) {
int x = 1; defCover[“x”] = 0;
int y = 1; defCover[“y”] = 0;
if(a) {
x = 0; defCover[“x”] = 1;

} else {
y = 0; defCover[“y”] = 2;

}
if(b) {
useCover[“x”, defCover[“x”], 3]++;
return 5 / x;

} else {
useCover[“y”, defCover[“y”], 4]++;
return 5 / y;

}
}

5. Testing – Structural Testing

Current variable
definition for x is

basic block 0

Current variable
definition for x is

basic block 1

DU-pair for variable x
with current definition
and use-block 3 has

been executed

148

Data Flow Testing: Discussion

 Data flow testing complements control flow testing
- Choose test cases that maximize branch and DU-pairs

coverage

 Like with path coverage, not all DU-pairs are
feasible
- Static analysis over-approximates data flow
- Complete DU-pairs coverage might not be possible

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

149

Data Flow Testing: Discussion (cont’d)

 DU-pairs coverage is not the only adequacy
criterion for data flow testing
- All definitions, all predicate-usages, all simple-DU-paths,

etc.

 DU-pair “anomalies” may point to errors
- Use before definition (not possible for locals in Java)
- Double definition without use
- Termination after definition without use

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

150

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5.4.1 Control Flow Testing
5.4.2 Advanced Topics of Control Flow Testing
5.4.3 Data Flow Testing
5.4.4 Interpreting Coverage

5. Testing – Structural Testing

151

Interpreting Coverage

 High coverage does not mean that code is well
tested
- But: low coverage means that code is not well tested
- Make sure you do not blindly optimize coverage but

develop test suites that test the code well

 Coverage tools do not only measure coverage
metrics, they also identify which parts of the code
have not been tested

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

152

Experimental Evaluation: Approach

 Several studies investigate the benefit of coverage
metrics
- Andrews et al.: “Using Mutation Analysis for Assessing

and Comparing Testing Coverage Criteria”, TR SCE-06-
02, 2006

 Approach
- Seed defects in the code
- Develop test suites that satisfy various coverage criteria
- Measure how many of the seeded defects are found by

the test suits
- Extrapolate to “real” defects in the code

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

153

Experimental Evaluation: Some Findings

 The test suite size grows exponentially in the
coverage

 More demanding coverage criteria lead to larger
test suites, but do not detect more bugs
- Block, decision, data flow coverage

 There is no significant difference in the cost-
efficiency of the various coverage metrics

 All adequacy criteria lead to test suites that detect
more bugs than random testing, especially for large
test suites

Peter Müller – Software Architecture and Engineering

5. Testing – Structural Testing

	Software Architecture�and Engineering�Testing
	Why Does Software Contain Bugs?
	“First actual case of bug being found.”
	Increasing Software Reliability
	Goal of Testing
	Limitations of Testing
	5. Testing
	Test Stages
	Creation of Test Harness
	Unit Testing
	Unit Test Example (JUnit)
	Unit Testing: Discussion
	Parameterized Unit Tests (NUnit)
	Generic Test Oracles: Example
	Generic Test Oracles: Example
	Parameterized Unit Tests: Discussion
	Test Execution
	Eight Rules of Testing
	Integration Testing
	Integration Testing Strategy
	System Testing
	System Testing Stages
	Functional Testing
	Acceptance Testing
	Independent Testing
	Independent Testing: Responsibilities
	Independent Testing: Wrong Conclusions
	Summary
	5. Testing
	Testing Steps
	Example: Solve Quadratic Equation
	Strategy 1: Exhaustive Testing
	Strategy 2: Random Testing
	Random Testing: Observations
	Strategy 3: Functional Testing
	Functional Testing: Observations
	Strategy 4: Structural Testing
	Structural Testing: Observations
	Testing Strategies: Summary
	5. Testing
	Applications of Functional Testing
	5. Testing
	Finding Representative Inputs
	Equivalence Classes: Example
	Equivalence Classes: Example (cont’d)
	Equivalence Classes: Example (cont’d)
	5. Testing
	Selecting Representative Values
	Boundary Testing
	Boundary Testing: Example
	Boundary Testing: Example (cont’d)
	Parameterized Unit Test for Leap Years
	Parameterized Unit Test for Invalid Inputs
	5. Testing
	Combinatorial Testing
	Eliminating Combinations
	Eliminating Combinations: NUnit Example
	Selecting Object References
	Roots Example
	Roots Example (cont’d)
	Roots Example (cont’d)
	Roots Example (cont’d)
	Roots Example: Summary
	Semantic Constraints: Discussion
	Influence of Variable Interactions
	Pairwise-Combinations Testing
	Pairwise-Combinations Testing: Complexity
	Pairwise-Combinations Testing: Example
	Pairwise-Combinations Testing: Discussion
	Functional Testing: Summary
	5. Testing
	Motivating Example
	Motivating Example: Functional Testing
	Motivating Example: Discussion
	Applications of Structural Testing
	5. Testing
	Basic Blocks
	Basic Blocks: Example
	Intraprocedural Control Flow Graphs
	Control Flow Graphs: Example
	Test Coverage
	Test Coverage: Example
	Statement Coverage
	Statement Coverage: Example
	Statement Coverage: Example (cont’d)
	Statement Coverage: Discussion
	Statement Coverage: Discussion (cont’d)
	Branch Coverage
	Branch Coverage: Example 1
	Branch Coverage: Example 2
	Branch Coverage: Example 2 (cont’d)
	Branch Coverage: Discussion
	Branch Coverage: Discussion (cont’d)
	Branch Coverage: Discussion (cont’d)
	Branch Coverage: Discussion (cont’d)
	Branch Coverage: Discussion (cont’d)
	Path Coverage
	Path Coverage: Example 1
	Path Coverage: Example 1 (cont’d)
	Path Coverage: Example 2
	Path Coverage: Example 2 (cont’d)
	Path Coverage: Discussion
	Branch Coverage: Discussion (cont’d)
	Loop Coverage
	Loop Coverage: Example
	Loop Coverage: Example
	Measuring Coverage
	5. Testing
	CFG: Method Calls
	Dynamically-Bound Method Calls
	Testing Dynamically-Bound Method Calls
	Testing Dynamically-Bound Calls (cont’d)
	Exceptions
	CFG: Exceptions
	Example: Documented Exceptions
	Example: Documented Exceptions (cont’d)
	Example: Undocumented Exceptions
	Example: Undocumented Exceptions (cont’d)
	Checked vs. Unchecked Exceptions
	Testing Unchecked Exceptions
	Unchecked Exceptions: Bad Example
	Bad Example Fixed
	Testing Checked Exceptions
	Checked Exceptions: Example
	Testing Exceptions: Summary
	5. Testing
	Example Revisited
	Data Flow Testing
	Variable Definition and Use
	Definition-Clear Paths
	Definition-Use Pairs
	Definition-Use Pairs: Examples
	DU-Pairs Coverage
	DU-Pairs Coverage: Example
	Determining all DU-Pairs
	Reaching Definitions: Algorithm
	Reaching Definitions: Algorithm (con’t)
	Reaching Definitions: Example
	From Reaching Definitions to DU-Pairs
	Data Flow Testing Example
	Data Flow Testing Example: CFG
	Data Flow Testing Example: DU-Pairs
	Data Flow Testing Example: Bug
	Data Flow Testing Example: Observation
	Determining all DU-Pairs: Heap Structures
	Measuring DU-Pairs Coverage
	Measuring DU-Pairs Coverage: Example
	Data Flow Testing: Discussion
	Data Flow Testing: Discussion (cont’d)
	5. Testing
	Interpreting Coverage
	Experimental Evaluation: Approach
	Experimental Evaluation: Some Findings

