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Why Does Software Contain Bugs?

 Our ability to predict the behavior of our 
implementations is limited
- Software is extremely complex
- No developer can understand the whole system

 We make mistakes
- Unclear requirements, miscommunication
- Wrong assumptions (e.g., behavior of operating system)
- Design errors (e.g., capacity of data structure too small)
- Coding errors (e.g., wrong loop condition)

5. Testing
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“First actual case of bug being found.”
5. Testing
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Increasing Software Reliability 

Fault Avoidance
 Detect faults statically without executing the program
 Includes development methodologies, reviews, and 

program verification

Fault Detection
 Detect faults by executing the program
 Includes testing

Fault Tolerance
 Recover from faults at runtime (e.g., transactions)
 Includes adding redundancy (e.g., n-version programming)

5. Testing
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Goal of Testing

 An error is a deviation of the observed behavior 
from the required (desired) behavior
- Functional requirements (e.g., user-acceptance testing)
- Nonfunctional requirements (e.g., performance testing)

 Testing is a process of executing a program with 
the intent of finding an error 

 A successful test is a test that finds errors

5. Testing
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Limitations of Testing

 It is impossible to completely test any nontrivial 
module or any system
- Theoretical limitations: termination
- Practical limitations: prohibitive in time and cost

Testing can only show the presence of bugs, 
not their absence. [E. W. Dijkstra]

5. Testing
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Test Stages
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Test Stages

Requirements
Elicitation

System Design

Implementation

Detailed Design Unit Test

Integration Test

System Test

5. Testing – Test Stages
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Creation of Test Harness

 Test driver
- Applies test cases to UUT including setup and clean-up

 Test stub
- Partial, temporary implementation of a component used 

by UUT
- Simulates the activity of a missing component by 

answering to the calling sequence of the UUT and 
returning back fake data

Test Stub

Test Stub
Test Driver Unit Under 

Test (UUT)
uses uses

5. Testing – Test Stages
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Unit Testing

 Testing individual subsystems (collection of 
classes) 

 Goal: Confirm that subsystem is correctly coded 
and carries out the intended functionality

Unit TestSubsystem 
Code

Detailed Design
Model

5. Testing – Test Stages
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Unit Test Example (JUnit)

class SavingsAccount {
…
public void deposit( int amount ) { … }
public void withdraw( int amount ) { … }
public int getBalance( ) { … }

}

@Test
public void withdrawTest( ) {
SavingsAccount target = new SavingsAccount();
target.deposit( 300 );
int amount = 100;
target.withdraw( amount );
Assert.assertTrue( target.getBalance( ) == 200 );

}

Implement 
test driver

Create
test data

Create
test oracle

5. Testing – Test Stages

Peter Müller – Software Architecture and Engineering
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Unit Testing: Discussion

 To achieve a reasonable test coverage, one has to 
test each method with several inputs
- To cover valid and invalid inputs
- To cover different paths through the method

Peter Müller – Software Architecture and Engineering

@Test
public void withdrawTest( ) {
SavingsAccount target = new SavingsAccount();
target.deposit( 500 );
int amount = 0;
target.withdraw( amount );
Assert.assertTrue( target.getBalance( ) == 500 );

}

Boiler-plate code 
for creating test 
data and writing 

test oracles 

5. Testing – Test Stages
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Parameterized Unit Tests (NUnit)

 Parameterized test methods take arguments for
test data
- Decouple test driver (logic) from test data

 Test data can be specified as values, ranges, or
random values

 Requires generic test oracles

[ Test ]
public void withdrawTest( int balance, int amount ) {
SavingsAccount target = new SavingsAccount();
target.deposit( balance );
target.withdraw( amount );
Assert.IsTrue( target.getBalance( ) == balance – amount );

}

5. Testing – Test Stages

Peter Müller – Software Architecture and Engineering
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Generic Test Oracles: Example
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5. Testing – Test Stages

[ Test ]
public void bubbleSortTest( ) {
int[ ] a = { 7, 2, 5, 2 };

bubbleSort( a );

int[ ] expected = { 2, 2, 5, 7 };   
Assert.AreEqual( expected, a );

}

public static void bubbleSort( int[ ] a ) {
for( int i = 0; i < a.Length - 1; i++ ) {

for( int j = i + 1; j < a.Length; j++ ) {
if( a[ i ] > a[ j ] ) 
{ int tmp = a[ i ]; a[ i ] = a[ j ]; a[ j ] = tmp; }

}
}

}

Create
test data

Create
test oracle
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Generic Test Oracles: Example
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5. Testing – Test Stages

[ Test ]
public void bubbleSortTest( int[ ] a ) {
int[ ] original = ( int[ ] ) a.Clone();

bubbleSort( a );

for( int i = 0; i < a.Length - 1; i++ )
Assert.IsTrue( a[ i ] <= a[ i+1 ] );

bool[ ] visited = new bool[ a.Length ];
for( int i = 0; i < a.Length; i++ ) {

int j;
for ( j = 0; j < a.Length; j++ ) {
if( !visited[ j ] && a[ i ] == original[ j ] ) 
{ visited[ j ] = true; break; }

}
Assert.IsFalse( j == a.Length );

}
}

Save test data 
for later 

comparison

Check that array 
is sorted

Check that array 
is a permutation 
of original array

Value a[ i ] is not 
in the original 

array
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Parameterized Unit Tests: Discussion

 Parameterized unit tests avoid boiler-plate code

 Writing generic test oracles is sometimes difficult
- Analogous to writing strong postconditions

 Still several test methods are needed, for instance, 
for valid and invalid input

 Parameterized unit tests are especially useful when
test data is generated automatically (see later)

5. Testing – Test Stages

Peter Müller – Software Architecture and Engineering
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Test Execution

 Execute the test cases
 Re-execute test cases after every change

- Automate as much as possible
- For instance, before every commit to the repository

 Regression testing
- Testing that everything that used to work still works after 

changes are made to the system 
- Also important for system testing

5. Testing – Test Stages
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Eight Rules of Testing
1. Make sure all tests are fully 

automatic and check their 
own results

2. A test suite is a powerful 
bug detector that reduces 
the time it takes to find 
bugs

3. Run your tests frequently–
every test at least once a 
day

4. When you get a bug report, 
start by writing a unit test
that exposes the bug

5. Better to write and run 
incomplete tests than not 
run complete tests

6. Concentrate your tests on 
boundary conditions

7. Do not forget to test 
exceptions raised when 
things are expected to go 
wrong

8. Do not let the fear that 
testing can’t catch all bugs 
stop you from writing tests 
that will catch most bugs 

[M. Fowler]

5. Testing – Test Stages
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Integration Testing

 Testing groups of subsystems and eventually the 
entire system

 Goal: Test interfaces between subsystems

Subsystem 
Code

Subsystem 
Code

Subsystem 
Code

Integration 
Test

Software 
Architecture

5. Testing – Test Stages
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Integration Testing Strategy

 Typical strategies 
- Big-bang integration 

(non-incremental)
- Bottom-up integration
- Top-down integration

 Selection criteria
- Amount of test harness 

(stubs and drivers)
- Scheduling concerns

Call hierarchy

E F

DCB

A

G

5. Testing – Test Stages

 The order in which the subsystems are selected for 
testing and integration
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System Testing

 Testing the entire system

 Goal: Determine if the system meets the 
requirements (functional and non-functional)

Entire 
System

System 
Test

Requirements
Specification

5. Testing – Test Stages
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System Testing Stages

Entire System

Functional 
Test

Functional 
requirements

Performance 
Test

Non-functional 
requirements

Acceptance 
Test

Client’s understanding 
of requirements

Installation 
TestUser Environment

5. Testing – Test Stages
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Functional Testing

.

. 

 Goal: Test functionality of system
- System is treated as black box

 Test cases are designed from requirements 
specification
- Based on use cases
- Alternative source: user manual

 Test cases describe
- Input data
- Flow of events
- Results to check

5. Testing – Test Stages
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Acceptance Testing

 Goal: Demonstrate that the system meets customer 
requirements and is ready to use

 Performed by the client, not by the developer

 Alpha test
- Client uses the software at the developer’s site
- Software used in a controlled setting, with the developer 

ready to fix bugs
 Beta test

- Conducted at client’s site (developer is not present)
- Software gets a realistic workout in target environment

5. Testing – Test Stages
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Independent Testing

 Programmers have a hard time believing they 
made a mistake
- Plus a vested interest in not finding mistakes
- Often stick to the data that makes the program work

 Designing and programming are constructive tasks
- Testers must seek to break the software

 Testing is done best by independent testers

5. Testing – Test Stages
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Independent Testing: Responsibilities

 Performed by independent test 
team
- Exception: Acceptance test performed 

by client
 Performed by independent test 

team

 Performed by programmer
- Requires detailed knowledge of the 

code
- Immediate bug fixing 

Unit Test

Integration Test

System Test

5. Testing – Test Stages
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Independent Testing: Wrong Conclusions

 The developer should not be testing at all
- “Test before you code”

 Testers get only involved once software is done

 Toss the software over the wall for testing
- Testers and developers collaborate in developing the test 

suite

 Testing team is responsible for assuring quality
- Quality is assured by a good software process

5. Testing – Test Stages
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Summary

 Main objective
- Design tests that systematically uncover different classes 

of errors with a minimum amount of time and effort
- A good test has a high probability of finding an error
- A successful test uncovers an error

 Secondary benefits
- Demonstrate that software appears to be working 

according to specification (functional and non-functional)
- Data collected during testing provides indication of 

software reliability and software quality
- Good testers clarify the specification (creative work)

5. Testing – Test Stages
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Test Strategies
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Testing Steps

Select what will be tested 

Define test cases

Select test strategy

Create test oracle

What parts of the system?
What aspects of the system?

What integration strategy?
How is the test data determined?

What are the test data?
How is the test carried out?

What are the expected results?
Defined before executing tests

5. Testing – Test Strategies
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Example: Solve Quadratic Equation
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void roots( double a, double b, double c ) {
double q = b*b – 4*a*c;
if( q > 0 && a != 0 ) {
numRoots = 2;
double r = Math.sqrt( q );
x1 = (-b + r) / (2 * a);
x2 = (-b - r) / (2 * a);

} else if( q == 0 ) {
numRoots = 1;
x1 = -b / (2 * a);

} else {
numRoots = 0;

}
}    

x =
−b ± b2 − 4ac

2a

Fails if a==0 and 
b*b–4*a*c == 0

5. Testing – Test Strategies
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Strategy 1: Exhaustive Testing

 Check UUT for all possible inputs
- Not feasible, even for trivial programs

 Assuming that double represents 64-bit values, we 
get (264)3 ≈ 1058 possible values for a, b, c

 Programs with heap data structures have a much
larger state space!

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {
…

}    

5. Testing – Test Strategies
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void roots( double a, double b, double c ) {
…

}    

Strategy 2: Random Testing

 Select test data uniformly

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {
double q = b*b – 4*a*c;
if( q > 0 && a != 0 ) { 
… 

} else if( q == 0 ) {
numRoots = 1;
x1 = -b / (2 * a);

} else { … }
}    

Fails if a==0 and 
b*b–4*a*c == 0

The likelihood of 
selecting a==0 and b==0

randomly is 1/1038

5. Testing – Test Strategies
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Random Testing: Observations

 Random testing focuses on generating test data
fully automatically

 Advantages
- Avoids designer/tester bias
- Tests robustness, especially handling of invalid input and

unusual actions

 Disadvantages
- Treats all inputs as equally valuable

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies



35

Strategy 3: Functional Testing

 Use requirements knowledge to determine test 
cases

Peter Müller – Software Architecture and Engineering

Two solutions One solution No solution
a ≠ 0 and b2-4ac > 0 a = 0 and b ≠ 0

or
a ≠ 0 and b2-4ac = 0 

a = 0, b = 0, and c ≠ 0
or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c, 
compute all solutions of the 
equation ax2 + bx + c = 0

Test each case of 
the specification

5. Testing – Test Strategies
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Functional Testing: Observations

 Functional testing focuses on input/output behavior
- Goal: Cover all the requirements

 Attempts to find
- Incorrect or missing functions
- Interface errors
- Performance errors

 Limitations
- Does not effectively detect design and coding errors

(e.g., buffer overflow, memory management)
- Does not reveal errors in the specification (e.g., missing

cases)

Peter Müller – Software Architecture and Engineering

5. Testing – Test Strategies
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Strategy 4: Structural Testing

 Use design knowledge about system structure, 
algorithms, data structures to determine test cases 
that exercise a large portion of the code

Peter Müller – Software Architecture and Engineering

void roots( double a, double b, double c ) {
double q = b*b – 4*a*c;
if( q > 0 && a != 0 ) { 
… 

} else if( q == 0 ) {
…

} else { 
… 

}
}    

Test this
case

and this
case

and this
case

Error might still be
missed, for instance, 
when case is tested

with a==1, b==2, c==1

5. Testing – Test Strategies
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Structural Testing: Observations

 Not well suited for system test
- Focuses on code rather than on 

requirements, for instance, does not 
detect missing logic

- Requires design knowledge, which testers 
and clients do not have (and do not care 
about)

- Thoroughness would lead to highly-
redundant tests

Peter Müller – Software Architecture and Engineering

 Structural testing focuses on thoroughness
- Goal: Cover all the code

5. Testing – Test Strategies
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Testing Strategies: Summary
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Functional testing
 Goal: Cover all the 

requirements
 Black-box test
 Suitable for all test stages

Structural testing
 Goal: Cover all the code

 White-box test
 Suitable for unit testing

5. Testing – Test Strategies

Random testing
 Goal: Cover corner cases

 Black-box test
 Suitable for all test stages
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5. Testing – Functional Testing
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System Test

Applications of Functional Testing

 Black-box test a unit against its requirements

Peter Müller – Software Architecture and Engineering

Functional 
test

Unit Test

Integration Test

Acceptance 
test

Test interfaces 
between 

subsystems

During test-driven 
development, 

when code is not 
yet written

5. Testing – Functional Testing
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing

5.3.1 Partition Testing
5.3.2 Selecting Representative Values
5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing
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Finding Representative Inputs
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Failure
No failure

 Divide inputs into 
equivalence classes
- Each possible input 

belongs to one of the 
equivalence classes

- Goal: some classes have 
higher density of failures

 Choose test cases for 
each equivalence class

Requirement 
implemented 

correctly

Requirement not 
implemented

Requirement 
implemented 

incorrectly

5. Testing – Functional Testing
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Equivalence Classes: Example
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month

Month with 28 
or 29 days month = 2

Months with 
30 days month ∈ {4, 6, 9, 11}

Months with 
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Given a month (an integer in [1;12]) and a year (an 
integer), compute the number of days of the given
month in the given year (an integer in [28;31])

year

Leap
years

(year mod 4 = 0 and
year mod 100 ≠ 0) or

year mod 400 = 0 

Non-leap 
years

year mod 4 ≠ 0 or
(year mod 100 = 0 and

year mod 400 ≠ 0)

Invalid inputs
missing

5. Testing – Functional Testing
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Equivalence Classes: Example (cont’d)
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month

Month with 28 
or 29 days month = 2

Months with 
30 days month ∈ {4, 6, 9, 11}

Months with 
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or
month > 12

Given a month (an integer in [1;12]) and a year (an 
integer), compute the number of days of the given
month in the given year (an integer in [28;31])

year

Leap
years

(year mod 4 = 0 and
year mod 100 ≠ 0) or

year mod 400 = 0 

Non-leap 
years

year mod 4 ≠ 0 or
(year mod 100 = 0 and

year mod 400 ≠ 0)

Partitioning seems
too coarse

5. Testing – Functional Testing
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Equivalence Classes: Example (cont’d)
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month

Month with 28 
or 29 days month = 2

Months with 
30 days month ∈ {4, 6, 9, 11}

Months with 
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or
month > 12

Given a month (an integer in [1;12]) and a year (an 
integer), compute the number of days of the given
month in the given year (an integer in [28;31])

year

Standard leap
years

year mod 4 = 0 and
year mod 100 ≠ 0

Standard non-
leap years year mod 4 ≠ 0

Special leap 
years year mod 400 = 0 

Special non-
leap years

year mod 100 = 0 and
year mod 400 ≠ 0

5. Testing – Functional Testing
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing

5.3.1 Partition Testing
5.3.2 Selecting Representative Values
5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing
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Selecting Representative Values

 Once we have partitioned the input values, we 
need to select concrete values for the test cases 
for each equivalence class

 Input from a range of valid values
- Below, within, and above the range
- Also applies to multiplicities on aggregations

 Input from a discrete set of valid values
- Valid and invalid discrete value
- Instances of each subclass

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing
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Boundary Testing

 A large number of errors tend to occur at 
boundaries of the input domain
- Overflows
- Comparisons (‘<‘ instead of ‘<=‘, etc.)
- Missing emptiness checks (e.g., collections)
- Wrong number of iterations

Peter Müller – Software Architecture and Engineering

int abs( int x ) { 
if( 0 <= x ) return x;
return –x; 

}

Given an integer x, 
determine the
absolute value of x

x

Valid all values

Negative result for
x==Integer.MIN_VALUE

5. Testing – Functional Testing
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Boundary Testing: Example

 Select elements at the “edge” of each equivalence 
class (in addition to values in the middle)
- Ranges: lower and upper limit
- Empty sets and collections

Peter Müller – Software Architecture and Engineering

month

Month with 28 or 29 days month = 2

Months with 30 days month ∈ {4, 6, 9, 11}

Months with 31 days month ∈ {1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or month > 12

There is only one
value

Choose all 
values

Choose 1 and 12 
plus one more

Choose
MIN_VALUE, 0, 

13, MAX_VALUE

5. Testing – Functional Testing
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Boundary Testing: Example (cont’d)
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year

Standard leap
years

year mod 4 = 0 and
year mod 100 ≠ 0

Standard non-
leap years year mod 4 ≠ 0

Special leap 
years year mod 400 = 0 

Special non-
leap years

year mod 100 = 0 and
year mod 400 ≠ 0

Choose for instance
-200.004, -4, 4, 2012, 

400.008

Choose for instance
-200.003, -1, 1, 2011, 

400.009 

Choose for instance
-200.000, 0, 2000, 

400.000

Choose for instance
-200.100, 1900, 

400.100

5. Testing – Functional Testing
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Parameterized Unit Test for Leap Years

 Analogous test cases for February in non-leap 
year, months with 30 days, and months with 31 
days

Peter Müller – Software Architecture and Engineering

[ Test ]
public void TestDemo29(

[ Values( -200004, -200000, -4, 0,4, 2000, 2012, 400000, 400008 ) ] 
int year ) 

{
int d = Days( 2, year );
Assert.IsTrue( d == 29 );

}

All selected values for
leap years and special

leap years

Only one
value

Expected
result

5. Testing – Functional Testing
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Parameterized Unit Test for Invalid Inputs
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[ Test ]
[ ExpectedException( typeof(ArgumentException) ) ]
public void TestDemoInvalid(

[ Values( int.MinValue, 0, 13, int.MaxValue ) ] int month, 
[ Values( -200100, -200004, -200003, -200000, -4, -1, 0, 1, 4, 1900, 

2000, 2011, 2012, 400000, 400008, 400009, 400100 ) ] int year ) {
int d = Days( month, year );

} All selected
values for year

Expected result: 
an exception

All selected
invalid values

for month

5. Testing – Functional Testing
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing

5.3.1 Partition Testing
5.3.2 Selecting Representative Values
5.3.3 Combinatorial Testing

5.4 Structural Testing

5. Testing – Functional Testing
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Combinatorial Testing

 Combining equivalence classes and boundary 
testing leads to many values for each input
- Twelve values for month and 17 values for year in the 

Leap Year example
 Testing all possible combinations leads to a 

combinatorial explosion (12 x 17 = 204 tests)

 Reduce test cases to make effort feasible
- Semantic constraints
- Combinatorial selection
- Random selection

Peter Müller – Software Architecture and Engineering

5. Testing – Functional Testing
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Eliminating Combinations

 Inspect test cases for unnecessary combinations
- Especially for invalid values
- Use problem domain knowledge

 Reduces test cases from 204 to 17 + 4 + 3 + 4 = 28

Peter Müller – Software Architecture and Engineering

month
Month with 28 

or 29 days month = 2

Months with 
30 days month ∈ {4, 6, 9, 11}

Months with 
31 days

month ∈
{1, 3, 5, 7, 8, 10, 12}

Invalid month < 1 or
month > 12

Test all 
combinations

with year

Behavior is
independent of 

year

Behavior is
independent of 

year

Behavior is
independent of 

year

5. Testing – Functional Testing
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Eliminating Combinations: NUnit Example 
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[ Test, Sequential ]
[ ExpectedException( typeof(ArgumentException) ) ]
public void TestDemoInvalid(

[ Values( int.MinValue, 0, 13, int.MaxValue ) ] int month, 
[ Values( -200100, -200004, -200003, -200000 ) ] int year ) {

int d = Days( month, year );
} One value for

year for each
value for month

All selected
invalid values

for month

5. Testing – Functional Testing
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Selecting Object References

 Objects are different from values because they 
have identity

 When selecting test data for objects, one has to 
consider object identities and aliasing

 Referenced objects lead to combination problem

Peter Müller – Software Architecture and Engineering

a1 = new Account( 1000 );
a2 = new Account( 1000 );
a1.transfer( a2, 500 );

a1 = new Account( 1000 );
a1.transfer( a1, 500 );

Might behave
differently

(e.g., deadlock)

5. Testing – Functional Testing
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Roots Example

 53 = 125 test cases for valid inputs

Peter Müller – Software Architecture and Engineering

Given three values, a, b, c, 
compute all solutions of the 
equation ax2 + bx + c = 0

a b c

Valid any
value

any
value

any
value

Invalid infinity, 
NaN

infinity, 
NaN

infinity, 
NaN

Boundary testing:
a, b, c ∈

{ Double.MIN_VALUE, -5,
0, 5, Double.MAX_VALUE }

5. Testing – Functional Testing
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Roots Example (cont’d)
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Two solutions One solution No solution

a ≠ 0 and b2-4ac > 0
a = 0 and b ≠ 0

or
a ≠ 0 and b2-4ac = 0 

a = 0, b = 0, and c ≠ 0
or

a ≠ 0 and b2-4ac < 0

Given three values, a, b, c, 
compute all solutions of the 
equation ax2 + bx + c = 0

Partitioning seems
too coarse

Partitioning seems
too coarse

Look at
dependencies
between inputs

Semantic
constraints on 
combinations

Semantic
constraints on 
combinations

5. Testing – Functional Testing
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Roots Example (cont’d)
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Two solutions One solution No solution
Linear 

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0 

(Truly) 
quadratic 
equation

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Given three values, a, b, c, 
compute all solutions of the 
equation ax2 + bx + c = 0

Not all inputs are
covered: a=b=c=0

5. Testing – Functional Testing
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Roots Example (cont’d)
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Two solutions One solution No solution
Linear 

equation a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0 

(Truly) 
quadratic 
equation

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

Invalid 
input a = 0, b = 0, c = 0

Given three values, a, b, c, compute all 
solutions of the equation ax2 + bx + c = 0; 
report an error if all three values are zero

5. Testing – Functional Testing
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Roots Example: Summary

 Classifying the combinations according to semantic 
constraints did not reveal any irrelevant test cases

 But we did identify an omission in the specification
- It is common that testers clarify the specification

 One option is to manually choose a manageable 
number of test cases such that there is at least one 
test case for each semantic constraint
- Note that omitting test cases might leave errors such as 

arithmetic overflow undetected

Peter Müller – Software Architecture and Engineering
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Semantic Constraints: Discussion

 Semantic constraints potentially reduce the number 
of test cases
- They also help increasing the coverage

 But too many combinations remain
- Especially when there are many input values, for 

instance, for the fields of objects
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Network Security

Influence of Variable Interactions

 Empirical evidence 
suggests that most 
errors do not depend 
on the interaction of 
many variables
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Vars Medical 
Devices Browser Server NASA 

GSFC
Network 
Security

1 66% 29% 42% 68% 20%
2 97% 76% 70% 93% 65%
3 99% 95% 89% 98% 90%
4 100% 97% 96% 100% 98%
5 99% 96% 100%
6 100% 100%

 Interactions of 
two or three 
variables trigger 
most errors
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Pairwise-Combinations Testing

 Instead of testing all possible combinations of all 
inputs, focus on all possible combinations of each 
pair of inputs
- Pairwise-combinations testing is identical to 

combinatorial testing for two or less inputs
 Example: Consider a method with four boolean

parameters
- Combinatorial testing requires 24 = 16 test cases
- Pairwise-combinations testing requires 5 test cases:

TTTT, TFFF, FTFF, FFTF, FFFT
 Can be generalized to k-tuples (k-way testing)
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Pairwise-Combinations Testing: Complexity

 For n parameters with d values per parameter, the 
number of test cases grows logarithmically in n and 
quadratic in d
- Handles larger number of parameters, for instance, fields 

of objects
- The number d can be influenced by the tester

 Result holds for large n and d, and for all k in k-way 
testing
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Pairwise-Combinations Testing: Example

 Three parameters, five values each
- Double.MIN_VALUE, -5, 0, 5, Double.MAX_VALUE
- 53 = 125 test cases for combinatorial testing
- 25 test cases for pairwise-combinations testing

 Bug is still detected (depends only on a and b)
 Some cases depend on three parameters, e.g., 

invalid input
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Two solutions One solution No solution
a = 0 and b ≠ 0 a = 0, b = 0, and c ≠ 0 

a ≠ 0 and b2-4ac > 0 a ≠ 0 and b2-4ac = 0 a ≠ 0 and b2-4ac < 0

a = 0, b = 0, c = 0

5. Testing – Functional Testing



69

Pairwise-Combinations Testing: Discussion

 Pairwise-combinations testing (or k-way testing) 
reduces the number of test cases significantly while 
detecting most errors

 Pairwise-combinations testing is especially 
important when many system configurations need 
to be tested
- Hardware, operating system, database, application 

server, etc.
 Should be combined with other approaches to 

detect errors that are triggered by more complex 
interactions among parameters
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Functional Testing: Summary

Peter Müller – Software Architecture and Engineering

Functional 
Requirements

Independently 
Testable Feature

Representative 
Values

Test Case 
Specification Test Cases

Equivalence classes,
boundary testing

Exhaustive enumeration, 
semantic constraints,
pairwise combinations
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5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing
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Motivating Example
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public void sort( int[ ] a ) {
if( a == null || a.length < 2 ) // array is trivially sorted
return;

// check if array is already sorted
for( int i = 0; i < a.length – 1; i++ )
if( a[ i ] < a[ i + 1 ] ) 
break;

if( i >= a.length – 1 ) // array is already sorted
return;

// use quicksort to sort the array in ascending order
}

Given a non-null array of integers, sort the
array in-place in ascending order

Error: check for
sortedness should

use ‘>’ 
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Motivating Example: Functional Testing

 The requirements give no clue that one should test 
with an array that is sorted in descending order
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a

Valid any non-
null array

Invalid null

Given a non-null array of integers, sort the
array in-place in ascending order

Choose for instance
{ }, { 1 }, { 1, 2, 3 } 
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Motivating Example: Discussion

 Detailed design and coding introduce many
behaviors that are not present in the requirements
- Choice of data structures
- Choice of algorithms
- Optimizations such as caches

 Functional testing generally does not thoroughly
exercise these behaviors
- No data structure specific test cases, e.g., rotation of 

AVL-tree
- No test cases for optimizations, e.g., cache misses
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System Test

Applications of Structural Testing

 White-box test a unit to cover a large portion of its 
code
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Unit Test

Integration Test

Use design 
knowledge to 
cover most of 

the code

5. Testing – Structural Testing



76

Peter Müller – Software Architecture and Engineering

5. Testing

5.1 Test Stages
5.2 Test Strategies
5.3 Functional Testing
5.4 Structural Testing

5.4.1 Control Flow Testing
5.4.2 Advanced Topics of Control Flow Testing
5.4.3 Data Flow Testing
5.4.4 Interpreting Coverage
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Basic Blocks

 A basic block is a sequence of statements such
that the code in a basic block:
- has one entry point: no code within it is the destination of 

a jump instruction anywhere in the program
- has one exit point: only the last instruction causes the 

program to execute code in a different basic block

 Whenever the first instruction in a basic block is 
executed, the rest of the instructions are 
necessarily executed exactly once, in order
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Basic Blocks: Example
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public void sort( int[ ] a ) {

if( a == null || a.length < 2 )

return;

for( int i = 0; i < a.length – 1; i++ ) {

if( a[ i ] < a[ i + 1 ] ) 

break;

}

if( i >= a.length – 1 )

return;

qsort( a, 0, a.length );

}
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Intraprocedural Control Flow Graphs

 An intraprocedural control flow graph (CFG) of a 
procedure p is a graph (N,E) where:

 N is the set of basic blocks in p plus designated
entry and exit blocks

 E contains
- an edge from a to b with condition c iff the execution of 

basic block a is succeeded by the excution of basic block 
b if condition c holds

- an edge (entry, a, true) if a is the first basic block of p
- edges (b, exit, true) for each basic block b that ends with

an (possibly implicit) return statement
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Control Flow Graphs: Example
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2
¬b2

b3¬b3

i = 0;
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Test Coverage

 The CFG can serve 
as an adequacy 
criterion for test 
cases

 The more parts 
are executed, the 
higher the chance  
to  uncover a bug

 “parts” can be 
nodes, edges, 
paths, etc.
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;
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Test Coverage: Example

 Consider the input 
a = { 3, 7, 5 }
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;
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Statement Coverage

 Assess the quality of a test suite by measuring how 
much of the CFG it executes

 Idea: one can detect a bug in a statement only by 
executing the statement

- Can also be defined on basic blocks
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Statement Coverage = 
Number of executed statements

Total number of statements
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Statement Coverage: Example

 Consider the input 
a = { 3, 7, 5 }

 This single test 
case executes 7 
out of 10 basic 
blocks

 Statement
coverage: 70%
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;
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Statement Coverage: Example (cont’d)

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

 We can achieve
100% statement
coverage with
three test cases
- a = { 1 }
- a = { 5, 7 }
- a = { 7, 5 }

 The last test case 
detects the bug

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b2 = ( i < a.length – 1 );

b4 = ( i >= a.length – 1 );

return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;

b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;
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Statement Coverage: Discussion
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boolean contains( int[ ] a, int x ) {

if( a == null ) return false;

boolean found = false;

for( int i = 0; i <= a.length; i++ ) {

if( a[ i ] == x ) { 

found = true; 

break; 

} 

}

return found;

}

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;
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Statement Coverage: Discussion (cont’d)
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b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

 We can achieve 100% 
statement coverage
with two test cases
- a = null
- a = { 1, 2 }, x = 2

 The test cases do not 
detect the bug!

 More thorough testing
is necessary
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b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;
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Branch Coverage

 Idea: test all possible branches in the control flow 

 An edge (m, n, c) in a CFG is a branch iff there is
another edge (m, n’, c’) in the CFG with n ≠ n’

- Conveniently define branch coverage to be 100% if the 
code contains no branches
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Branch Coverage = 
Number of executed branches

Total number of branches
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Branch Coverage: Example 1

 Consider the input 
a = { 3, 7, 5 }

 This single test 
case executes 4 
out of 8 branches

 Branch coverage: 
50%

 Three test cases 
needed for 100% 
branch coverage
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b1 = ( a == null || a.length < 2 );

b3 = ( a[ i ] < a[ i + 1 ] );

b4 = ( i >= a.length – 1 );

b2 = ( i < a.length – 1 ); return;

exit

qsort( a, 0, a.length ); return;

break;i++;

entry

b1¬b1

b4¬b4

b2

¬b2

b3¬b3

i = 0;
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Branch Coverage: Example 2
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 The two test cases
- a = null
- a = { 1, 2 }, x = 2
execute 5 out of 6 
branches

 Branch coverage: 
83%

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;
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Branch Coverage: Example 2 (cont’d)

Peter Müller – Software Architecture and Engineering

 Achieving 100% 
branch coverage
would require a test 
case that runs the 
loop to the end
- a = null
- a = { 1 }, x = 1
- a = { 1 }, x = 3

 The last test case 
detects the bug

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;
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Branch Coverage: Discussion

 Branch coverage leads to more thorough testing
than statement coverage
- Complete branch coverage implies complete statement

coverage
- But “at least n% branch coverage” does not generally 

imply “at least n% statement coverage”

 Most widely-used adequacy criterion in industry
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Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int[ ] reverse( int[ ] a ) {
int j = a.length – 1;
int[ ] res = new int[ a.length ];
for( int i = 0; i < a.length; i++ ) {
res[ j ] = a[ i ];

}
return res;

}

j = a.length – 1;
res = new int[ a.length ];
i = 0; 

return res;

exit

res[ j ] = a[ i ];
i++;

entry

b1 ¬b1

b1 = ( i < a.length );
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Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100% 
branch coverage with
one test case
- a = { 1 }

 The test case does
not detect the bug!

 More thorough testing
is necessary

j = a.length – 1;
res = new int[ a.length ];
i = 0; 

return res;

exit

res[ j ] = a[ i ];
i++;

entry

b1 ¬b1

b1 = ( i < a.length );
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Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

int foo( boolean a, boolean b ) {
int x = 1;
int y = 1;
if( a )
x = 0;

else
y = 0;

if( b )
return 5 / x;

else
return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Branch Coverage: Discussion (cont’d)

Peter Müller – Software Architecture and Engineering

 We can achieve 100% 
branch coverage with
two test cases
- a = true, b = false
- a = false, b = true

 The test cases do not 
detect the bug!

 More thorough testing
is necessary

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Path Coverage

 Idea: test all possible paths through the CFG

 A path is a sequence of nodes n1, …, nk such that
- n1 = entry
- nk = exit
- There is an edge (ni, ni+1, c) in the CFG
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Path Coverage = 
Number of executed paths

Total number of paths
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Path Coverage: Example 1
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 The two test cases
- a = true, b = false
- a = false, b = true
execute two out of four 
paths

 Path coverage: 50%

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Path Coverage: Example 1 (cont’d)
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 We can achieve 100% 
path coverage with four 
test cases
- a = true, b = false
- a = false, b = true
- a = true, b = true
- a = false, b = false

 The two additional test 
cases detect the bugs

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Path Coverage: Example 2
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boolean contains( int[ ] a, int x ) {

if( a == null ) return false;

boolean found = false;

for( int i = 0; i <= a.length; i++ ) {

if( a[ i ] == x ) { 

found = true; 

break; 

} 

}

return found;

}

b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;
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Path Coverage: Example 2 (cont’d)

 Number of loop 
iterations is not known 
statically

 An arbitrarily large 
number of test cases 
is needed for 
complete path 
coverage
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b1 = ( a == null );

b3 = ( a[ i ] == x );

return found;

b2 = ( i <= a.length );

return 
false;

exit

found = true;
break;

i++;

entry

b1¬b1

b2

¬b2

b3¬b3

found = false; 
i = 0;
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Path Coverage: Discussion

 Path coverage leads to more thorough testing than
both statement and branch coverage
- Complete path coverage implies complete statement

coverage and complete branch coverage
- But “at least n% path coverage” does not generally imply 

“at least n% statement coverage” or “at least n% branch 
coverage”

 Complete path coverage is not feasible for loops
- Unbounded number of paths
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Branch Coverage: Discussion (cont’d)
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int[ ] reverse( int[ ] a ) {
int j = a.length – 1;
int[ ] res = new int[ a.length ];
for( int i = 0; i < a.length; i++ ) {
res[ j ] = a[ i ];

}
return res;

}

j = a.length – 1;
res = new int[ a.length ];
i = 0; 

return res;

exit

res[ j ] = a[ i ];
i++;

entry

b1 ¬b1

b1 = ( i < a.length );
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Loop Coverage

 Idea: for each loop, test zero, one, and more than
one (consecutive) iterations

 Loop coverage is typically combined with other
adequacy criteria such as statement or branch
coverage
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Loop Coverage = 

Number of executed loops
with 0, 1, and more than 1 iterations

Total number of loops * 3
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Loop Coverage: Example
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 The test case
- a = { 1 }
executes one out of 
three possible cases 
for the loop

 Loop coverage: 33%

j = a.length – 1;
res = new int[ a.length ];
i = 0; 

return res;

exit

res[ j ] = a[ i ];
i++;

entry

b1 ¬b1

b1 = ( i < a.length );
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Loop Coverage: Example
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 We can achieve 100% 
loop coverage with
three test cases
- a = { }
- a = { 1 }
- a = { 1, 2 }

 The last test case 
detects the bug

j = a.length – 1;
res = new int[ a.length ];
i = 0; 

return res;

exit

res[ j ] = a[ i ];
i++;

entry

b1 ¬b1

b1 = ( i < a.length );
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Measuring Coverage

 Coverage information  
is collected while the 
test cases execute

 Use code 
instrumentation or 
debug interface to 
count executed basic 
blocks, branches, etc.
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int foo( boolean a, boolean b ) {
int x = 1;  int y = 1;
if( a ) {
branchCovered[ 0 ] = true;  x = 0;

} else {
branchCovered[ 1 ] = true;  y = 0;

}
if( b ) {
branchCovered[ 2 ] = true;
return 5 / x;

} else {
branchCovered[ 3 ] = true;
return 5 / y;

}
}
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CFG: Method Calls
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static <E> void filter( 
Collection<E> from, 
Filter<E> f, 
Collection<E> to ) {

if( from == null ) return;
Iterator<E> i = from.iterator( );
while( i.hasNext( ) ) {
E e = i.next( );
if( f.apply( e ) )
to.add( e );

}
}

Iterator<E> i = from.iterator( );

to.add( e );

exit

e = i.next( );
b3 = f.apply( e );

entry

b1

¬b1

b2 = i.hasNext( );

b1 = ( from == null );

¬b2

b2
¬b3

b3

5. Testing – Structural Testing
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Dynamically-Bound Method Calls

 Intraprocedural CFGs treat 
method calls as simple 
statements

 Yet, calls invoke different 
code depending on the 
dynamic type of the 
receiver

 Testing should cover the 
possible behaviors
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static <E> void filter( 
Collection<E> from, 
Filter<E> f, 
Collection<E> to ) {

if( from == null ) return;
Iterator<E> i = from.iterator( );
while( i.hasNext( ) ) {
E e = i.next( );
if( f.apply( e ) )
to.add( e );

}
}
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Testing Dynamically-Bound Method Calls

 A dynamically-bound 
method call can be regarded 
as a case distinction on the 
type of the receiver
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NullFilter
apply( E e )

Duplicates
apply( E e )

Filter
apply( E e )

f.apply( e )

if( type( f ) == Filter )
f.Filter::apply( e );

else if( type( f ) == NullFilter )
f.NullFilter::apply( e );

else // type( f ) == Duplicates
f.Duplicates::apply( e );

 Now we can apply branch testing
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Testing Dynamically-Bound Calls (cont’d)

 Treating dynamically-
bound method calls as 
branches leads to a 
combinatorial explosion

 Use semantic constraints 
and pairwise-
combinations testing
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static <E> void filter( 
Collection<E> from, 
Filter<E> f, 
Collection<E> to ) {

if( from == null ) return;
Iterator<E> i = from.iterator( );
while( i.hasNext( ) ) {
E e = i.next( );
if( f.apply( e ) )
to.add( e );

}
} java.util contains 

dozens of 
collection classes

java.util contains 
dozens of 

collection classes

Several different 
Filter classes in 

the program
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Exceptions
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static <E> void filter( 
Collection<E> from, 
Filter<E> f, 
Collection<E> to ) {

if( from == null ) return;
if( f == null || to == null )
throw new
IllegalArgumentException( );

Iterator<E> i = from.iterator( );
while( i.hasNext( ) ) {
E e = i.next( );
if( f.apply( e ) )
to.add( e );

}
}

Iterator<E> i = from.iterator( );

to.add( e );

exit

e = i.next( );
b4 = f.apply( e );

entry

b1

¬b1

b3 = i.hasNext( );

b1 = ( from == null );

¬b3

b3
¬b4

b4

b2 = ( f == null || to == null );

throw new
IllegalArgumentException( );

¬b2
b2
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CFG: Exceptions

 Exceptions add a control flow edge from the basic 
block where the exception is thrown to the exit 
block or the block where the exception is caught

 Idea: Cover exceptional control flow like normal 
control flow during testing
- Test oracle is checked when method terminates normally
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[ Test ]
[ ExpectedException( typeof(ArgumentException) ) ]
public void TestDemoInvalid( … ) {
int d = Days( month, year );

}
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Example: Documented Exceptions
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static <E> void filter( 
Collection<E> from, 
Filter<E> f, 
Collection<E> to ) {

if( from == null ) return;
if( f == null || to == null )
throw new
IllegalArgumentException( );

Iterator<E> i = from.iterator( );
while( i.hasNext( ) ) {
E e = i.next( );
if( f.apply( e ) )
to.add( e );

}
}

Might throw:
 UnsupportedOperationException
 ClassCastException
 NullPointerException
 IllegalArgumentException
 IllegalStateException

Might throw:
 NoSuchElementException
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Example: Documented Exceptions (cont’d)
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Iterator<E> i = from.iterator( );

to.add( e ); exit

e = i.next( );

entry
b1

¬b1

b3 = i.hasNext( );

b1 = ( from == null );

¬b3

b3

¬b4

b4

b2 = ( f == null || to == null );

throw new
IllegalArgumentException( );

¬b2
b2

b4 = f.apply( e );
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Example: Undocumented Exceptions
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static <E> void filter( 
Collection<E> from, 
Filter<E> f, 
Collection<E> to ) {

if( from == null ) return;
if( f == null || to == null )
throw new
IllegalArgumentException( );

Iterator<E> i = from.iterator( );
while( i.hasNext( ) ) {
E e = i.next( );
if( f.apply( e ) )
to.add( e );

}
}

The example might also throw:
 ConcurrentModificationException
 NoClassDefFoundError
 NoSuchMethodError
 OutOfMemoryError
 StackOverflowError
 ThreadDeath
 VirtualMachineError
 etc.
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Example: Undocumented Exceptions (cont’d)
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Iterator<E> i = from.iterator( );

to.add( e ); exit

e = i.next( );

entry
b1

¬b1

b3 = i.hasNext( );

b1 = ( from == null );

¬b3

b3

¬b4

b4

b2 = ( f == null || to == null );

throw new
IllegalArgumentException( );

¬b2
b2

b4 = f.apply( e );

It is impractical to 
represent and test 

all exceptional 
control flow in the 

CFG
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Checked vs. Unchecked Exceptions

 Some programming languages distinguish between 
checked and unchecked exceptions

 Checked exceptions represent invalid conditions 
outside the immediate control of the program 
- Invalid user input, database problems, network outages, 

absent files
 Unchecked exceptions represent defects in the 

program  or the execution environment
- Illegal arguments, null-pointer dereferencing, division by 

zero, assertion violation, etc.
- In Java: all subclasses of RuntimeException and Error

Peter Müller – Software Architecture and Engineering
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Testing Unchecked Exceptions

 Unchecked 
exceptions are not 
supposed to occur

 When computing 
the CFG, ignore 
unchecked 
exceptions thrown 
by other methods 
and virtual machine
- But consider throw

statements
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Iterator<E> i = from.iterator( );

to.add( e ); exit

e = i.next( );
b4 = f.apply( e );

entry

b1

¬b1

b3 = i.hasNext( );

b1 = ( from == null );

¬b3

b3
¬b4

b4

b2 = ( f == null || to == null );

throw new
IllegalArgumentException( );

¬b2
b2
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Unchecked Exceptions: Bad Example

 Never use unchecked exceptions to encode control 
flow!

Peter Müller – Software Architecture and Engineering

static boolean contains( String[ ] a, String s ) {
for( int i = 0; i < a.length; i++ ) {
try {
if( a[ i ].equals(s) )
return true;

} catch( NullPointerException e ) { 
i++;

}
}

return false;
}

Exceptional 
control flow 
will not be 
covered 

Bug remains 
undetected
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Bad Example Fixed
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static boolean contains( String[ ] a, String s ) {
for( int i = 0; i < a.length; i++ ) {
if( a[ i ] != null ) {
if( a[ i ].equals(s) )
return true;

} else {
i++;

}
}
return false;

}

Normal 
control flow 

will be 
covered 

Bug will be 
detected
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Testing Checked Exceptions

 Checked exceptions represent regular control flow 
that needs to be tested
- Include control flow in CFG, testing, and coverage

 In Java, checked exceptions are declared in 
method signatures

 For each call, add appropriate control flow edges
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interface RemoteBuffer extends Remote {
void put( String s ) throws RemoteException;

}
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Checked Exceptions: Example
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class Producer {
RemoteBuffer b;
void produce( ) throws RemoteException {
boolean retried = false;
boolean success = false;
while( !success ) {

try {
b.put( "Product“ );
success = true;

} catch( RemoteException e ) {
if( retried )  throw e;

}
}

}
}

Exceptional 
control flow 

will be 
covered Bug will be 

detected
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Testing Exceptions: Summary

 Checked exceptions encode the program’s reaction 
to invalid conditions in the environment
- Test like normal control flow

 Unchecked exceptions represent defects
- Test unchecked exceptions explicitly thrown by method 

under test (argument validation, precondition check)
- Unchecked exceptions thrown by methods being called 

indicate defect in method under test (precondition 
violation) or in the called method

- Unchecked exceptions thrown by virtual machine indicate 
defect in method under test (e.g., infinite recursion) or 
deployment error (e.g., class not found)

Peter Müller – Software Architecture and Engineering
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5.4.1 Control Flow Testing
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Example Revisited
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int foo( boolean a, boolean b ) {
int x = 1;
int y = 1;
if( a )
x = 0;

else
y = 0;

if( b )
return 5 / x;

else
return 5 / y;

}

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Data Flow Testing

 Testing all paths is not 
feasible
- Number grows exponentially 

in the number of branches
- Loops

 Idea: Test those paths 
where a computation in one 
part of the path affects the 
computation of another
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b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Variable Definition and Use

 A variable definition for a variable v is a basic block 
that assigns to v
- v can be a local variable, formal parameter, field, or 

array element

 A variable use for a variable v is a basic block that 
reads the value from v
- In conditions, computations, output, etc.

Peter Müller – Software Architecture and Engineering
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Definition-Clear Paths

 A definition-clear path for a variable v is a path
n1, …, nk in the CFG such that:
- n1 is a variable definition for v
- nk is a variable use for v
- No ni (1 < i ≤ k) is a variable definition for v 

(nk may be a variable definition if each assignment to v 
occurs after a use)

 Note: definition-clear paths do not go from entry to 
exit (in contrast to our earlier definition of path)

Peter Müller – Software Architecture and Engineering
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Definition-Use Pairs

 A definition-use pair 
for a variable v is a 
pair of nodes (d,u) 
such that there is a 
definition-clear path 
d, …, u in the CFG

 We say DU-pair for 
definition-use pair 
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b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

Variable 
definition 

for x

Variable 
definition 

for x

Variable 
use for x
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Definition-Use Pairs: Examples
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b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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DU-Pairs Coverage

 Idea: test all paths that provide a value for a 
variable use

Peter Müller – Software Architecture and Engineering

DU-Pairs Coverage = 
Number of executed DU-Pairs

Total number of DU-Pairs
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DU-Pairs Coverage: Example
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 The two test cases
- a = true, b = false
- a = false, b = true
achieve 100% branch
coverage, but only 50% 
DU-pairs coverage

 In this example, DU-pairs 
coverage is equivalent to 
path coverage

b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;
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Determining all DU-Pairs

 DU-Pairs are computed using a static reaching-
definitions analysis

 For each node n and for each variable v, compute 
all variable definitions for v that possibly reach n via 
a definition-clear path

 The reaching definitions at a node n are:
- The reaching definitions of n’s predecessors in the CFG
- minus the definitions killed by one of n’d predecessors 
- plus the definitions made by one of n’d predecessors 

Peter Müller – Software Architecture and Engineering
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Reaching Definitions: Algorithm

 Input
- pred( n ) = { m | (m,n,c) is an edge in the CFG }
- succ( m ) = { n | (m,n,c) is an edge in the CFG }
- gen( n ) = { vn | n is a variable definition for v }
- kill( n ) = { vm | n is a variable definition for v and m ≠ n }

 We compute via fixpoint iteration
- Reach( n ): The reaching definitions at the beginning of n
- ReachOut( n ): The reaching definitions at the end of n

Peter Müller – Software Architecture and Engineering
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Reaching Definitions: Algorithm (con’t)
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foreach node n do ReachOut( n ) := ∅ end
worklist := nodes
while worklist ≠ ∅ do
n := any( worklist )
remove n from worklist
Reach( n ) := Um∈pred(n) ReachOut( m )
ReachOut( n ) := Reach( n ) \ kill( n ) ∪ gen( n )
if ReachOut( n ) has changed then 
worklist := worklist ∪ succ( n )

end
end
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Reaching Definitions: Example
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b1 = a;

b2 = b;

exit

entry

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach( n ) ReachOut( n )
1 ∅

2 x1, y1 x1, y1

3 x1, y1 x3, y1

4 x1, y1 x1, y4

5 x1, x3, y1, y4 x1, x3, y1, y4

6 x1, x3, y1, y4 x1, x3, y1, y4

7 x1, x3, y1, y4 x1, x3, y1, y4
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From Reaching Definitions to DU-Pairs

 The set of DU-pairs is easily determined as 
{ (d,u) | u is a variable use for v and vd ∈ Reach(u) }
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b1 = a;

b2 = b;

b1 ¬b1

b2 ¬b2

x = 1;
y = 1;

return 5 / x; return 5 / y;

x = 0; y = 0;

1:

2:

4:3:

6:

5:

7:

n Reach( n )
1 ∅

2 x1, y1

3 x1, y1

4 x1, y1

5 x1, x3, y1, y4

6 x1, x3, y1, y4

7 x1, x3, y1, y4

 DU-pairs for x: 
(1,6), (3,6)

 DU-pairs for y: 
(1,7), (4,7)
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Data Flow Testing Example

 Convert character sequence to integer
- Input format: ddec* | ‘x’(dhex*), where d is a (decimal or 

hexadecimal) digit
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static int convert( char[ ] a ) {
int base;  int i = 0;  int val = 0;
if ( a.length == 0 )  return 0;
if( a[ i ] == 'x' ) { base = 12; i = i + 1; } 
else { base = 10; }
while( i < a.length ) {

val = val * base + Character.digit( a[ i ], base );
i = i + 1;

}
return val;

}

5. Testing – Structural Testing

We assume here 
that all inputs are of 
the required format
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Data Flow Testing Example: CFG
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val = val * base + Character.digit( a[ i ], base );
i = i + 1; return val; exit

entry

b1

¬b1

b3 = ( i < a.length );

b2 = ( a[ i ] == 'x' );

¬b3

b3

1:

¬b2b2
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i = 0;
val = 0;
b1 = ( a.length == 0 );

return 0;

base = 12;
i = i + 1; base = 10;

2:

4: 5:

6:

7:
8:

3:
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Data Flow Testing Example: DU-Pairs

 We get 14 DU-pairs

 DU-pairs for i: 
(1,2), (1,4), (1,6), (4,6), 
(7,6), (1,7), (4,7), (7,7)

 DU-pairs for val: 
(1,7), (7,7), (1,8), (7,8)

 DU-pairs for base: 
(4,7), (5,7)
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n Reach( n ) ReachOut( n )
1 ∅ i1, val1
2 i1, val1 i1, val1
3 i1, val1 i1, val1
4 i1, val1 i4, val1, base4

5 i1, val1 i1, val1, base5

6 i1, i4, i7, val1, val7, 
base4, base5

i1, i4, i7, val1, val7, 
base4, base5

7 i1, i4, i7, val1, val7, 
base4, base5

i7, val7, base4, 
base5

8 i1, i4, i7, val1, val7, 
base4, base5

i1, i4, i7, val1, val7, 
base4, base5
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Data Flow Testing Example: Bug

 Consider the 
test cases
- a = { }
- a = { ‘x’ }
- a = { ‘1’ }
- a = { ‘1’, ‘2’ }

 The bug is not 
detected!
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static int convert( char[ ] a ) {
int base;  int i = 0;  int val = 0;
if ( a.length == 0 )  return 0;
if( a[ i ] == 'x‘ ) { base = 12; i = i + 1; } 
else { base = 10; }
while( i < a.length ) {

val = val * base + Character.digit( a[ i ], base );
i = i + 1;

}
return val;

}

 Branch and loop coverage: 100%
 DU-pairs missed: (4,7) for i, base (coverage 86%)

5. Testing – Structural Testing

 Branch and loop coverage: 100%
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Data Flow Testing Example: Observation

 DU-pairs for i and val include (7,7)
 Complete DU-pairs coverage requires more than 

one loop iteration
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static int convert( char[ ] a ) {
int base;  int i = 0;  int val = 0;
if ( a.length == 0 )  return 0;
if( a[ i ] == 'x' ) { base = 16; i = i + 1; } 
else { base = 10; }
while( i < a.length ) {

val = val * base + Character.digit( a[ i ], base );
i = i + 1;

}
return val;

}
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Determining all DU-Pairs: Heap Structures

 Determining 
whether a definition 
and a usage refer to 
the same heap 
location, a static 
analysis would need 
arithmetic and 
aliasing information

 Static analysis has 
to over-approximate
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static void repeat( int[ ] from, int[ ] to ) {
int i = 0;
if ( from.length == 0 )  return;
while( i < to.length ) {

to[ i ] = to[ i ] + from[ i % from.length ];
i = i + 1;

}
}
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Measuring DU-Pairs Coverage

 Keep track of currently active definitions
- defCover: Variable → Block

 Keep track of executed DU-pairs
- useCover: Variable × Blockdef × Blockuse → Ν

 Maps can be encoded as arrays, indexed by 
identifiers for variables and basic blocks

Peter Müller – Software Architecture and Engineering
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Measuring DU-Pairs Coverage: Example
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int foo( boolean a, boolean b ) {
int x = 1;  defCover[ “x” ] = 0;
int y = 1; defCover[ “y” ] = 0;
if( a ) {
x = 0; defCover[ “x” ] = 1;

} else {
y = 0; defCover[ “y” ] = 2;

}
if( b ) {
useCover[ “x”, defCover[ “x” ], 3 ]++;
return 5 / x;

} else {
useCover[ “y”, defCover[ “y” ], 4 ]++;
return 5 / y;

}
}

5. Testing – Structural Testing

Current variable 
definition for x is 

basic block 0

Current variable 
definition for x is 

basic block 1

DU-pair for variable x 
with current definition 
and use-block 3 has 

been executed
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Data Flow Testing: Discussion

 Data flow testing complements control flow testing
- Choose test cases that maximize branch and DU-pairs 

coverage

 Like with path coverage, not all DU-pairs are 
feasible
- Static analysis over-approximates data flow
- Complete DU-pairs coverage might not be possible

Peter Müller – Software Architecture and Engineering
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Data Flow Testing: Discussion (cont’d)

 DU-pairs coverage is not the only adequacy 
criterion for data flow testing
- All definitions, all predicate-usages, all simple-DU-paths, 

etc.

 DU-pair “anomalies” may point to errors
- Use before definition (not possible for locals in Java)
- Double definition without use
- Termination after definition without use

Peter Müller – Software Architecture and Engineering
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5.1 Test Stages
5.2 Test Strategies
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5.4.1 Control Flow Testing
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5.4.3 Data Flow Testing
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Interpreting Coverage

 High coverage does not mean that code is well 
tested
- But: low coverage means that code is not well tested
- Make sure you do not blindly optimize coverage but 

develop test suites that test the code well

 Coverage tools do not only measure coverage 
metrics, they also identify which parts of the code 
have not been tested

Peter Müller – Software Architecture and Engineering
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Experimental Evaluation: Approach

 Several studies investigate the benefit of coverage 
metrics
- Andrews et al.: “Using Mutation Analysis for Assessing 

and Comparing Testing Coverage Criteria”, TR SCE-06-
02, 2006

 Approach
- Seed defects in the code
- Develop test suites that satisfy various coverage criteria
- Measure how many of the seeded defects are found by 

the test suits
- Extrapolate to “real” defects in the code

Peter Müller – Software Architecture and Engineering
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Experimental Evaluation: Some Findings

 The test suite size grows exponentially in the 
coverage

 More demanding coverage criteria lead to larger 
test suites, but do not detect more bugs
- Block, decision, data flow coverage

 There is no significant difference in the cost-
efficiency of the various coverage metrics

 All adequacy criteria lead to test suites that detect 
more bugs than random testing, especially for large 
test suites

Peter Müller – Software Architecture and Engineering
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