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Dynamic Race Detection

• A popular kind of dynamic analysis
– The analysis is an under-approximation: it 

considers a subset of the program behaviors

• Highly effective for finding concurrency bugs

• Many different variants
– Interesting trade-off between asymptotic 

complexity and  precision of the analysis
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Today

We will illustrate the key concepts of race
detection on a rich application domain that is
quite prevalent today, namely event-driven
applications such as Web pages and Android

All concepts we study today apply to other
settings: e.g. regular concurrent Java programs.



Martin Vechev 5

~ 640 million web pages~ 1 billion smartphones

Reacts to events: user clicks,  arrival of network requests

Motivation: Event-Driven Applications
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Wanted: fast response time

Highly Asynchronous,

Complex control flow

Event-Driven Applications
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Looks Like This
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This is what Runs
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<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

<img src=“img1.png” onload=“SAE=‘poor’;”>

<img src=“img2.png” onload=“alert(SAE);”>

</body>

</html>

9

Non-determinism: network latency
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fetch img1.png
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Non-determinism: network latency
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fetch img1.png
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fetch img2.png

Non-determinism: network latency
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fetch img1.png
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fetch img2.png

Non-determinism: network latency

great
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fetch img1.png
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fetch img2.png

Non-determinism: network latency
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fetch img1.png
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fetch img2.png

img1.png loaded

Non-determinism: network latency
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fetch img1.png

16

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency
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<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

<img src=“img1.png” onload=“SAE=‘poor’;”>

<img src=“img2.png” onload=“alert(SAE);”>

</body>

</html>

fetch img1.png
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fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

poor
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What do we learn from these?

Asynchrony  +  Shared Memory        

18

Non-Determinism

Unwanted Behavior
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What do we learn from these?

Asynchrony  +  Shared Memory        
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Lets phrase the problem as data race detection

Non-Determinism

Unwanted Behavior
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What is a Data Race ?
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What is a Data Race ?

Semantically, a data race occurs when we have a reachable

program state where:

• we have two outgoing transitions by two different threads

• the two threads access the same memory location

• one of the accesses is a write
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Examples

Thread T1:              Thread T2: 

fork T2

X = 1                         X = 2

Data Race on X Program has No Data Races

Thread T1:     Thread T2: 

X = 1                            X = 2
fork T2

The program has a reachable state

where both X = 1 and X = 2 

are enabled

The program does not have a reachable 

state where both X = 1 and X  = 2 

are enabled
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Wanted

23

race 1

race 2

race 3

….

race N

Race Detector
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Naïve Algorithm

The definition of a data race suggests a naïve algorithm

which finds all races of a program given some input states.

The algorithm simply enumerates all reachable states of the

concurrent program from the initial input states and checks

the definition on each such reachable state.
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Naïve Algorithm

Does Not Scale to Real-World Programs

The definition of a data race suggests a naïve algorithm

which finds all races of a program given some input states.

The algorithm simply enumerates all reachable states of the

concurrent program from the initial input states and checks

the definition on each such reachable state.
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In Practice

In practice, algorithms aim to scale to large programs by being more

efficient and not keeping program states around. To accomplish that,

they weaken their guarantees.

We will see the guarantees they provide a little later, but at this point it

is sufficient to mention that a typical guarantee is that the first race the

algorithm repots is a real race, but any subsequent reported races after

the first race are not guaranteed to exist, that is, they may be false

positives, a major issue to deal with for any modern analyzer.

False positives exist because of user-defined synchronization.
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Example of a False Positive Race
(on variable X)

Initially: X = Y = 0

Thread T1:              ||            Thread T2: 

while(Y == 0);                                 X = 0
X = 1                                                Y = 1

A state of the art race detector may report a race on X and Y
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Modern Dynamic Race Detection: 5 Steps

Step 1: Define Memory locations (on which races can happen)

Usually easy but there can be issues (framework vs. user-code)

Step 2: Define Happens-Before Model (how operations are ordered)

Can be tricky to get right due to subtleties of concurrency

Step 3: Come up with an Algorithm to detect races

Hard to get good asymptotic complexity  + correctness

Step 4: Come up with techniques (algorithm, filters) to remove harmless races

Needs to answer what harmless means

Step 5: Implement Algorithm and Evaluate

Important to have low instrumentation overhead
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Dynamic Race Detection: Flow

Program Build HB
trace Find 

Races

HB graph

obtained by 

running the 

program

Here, we use 

the definition of

happens-before

A directed

acyclic graph

(DAG)

Query the graph for pairs of

mutually unreachable nodes.

Reduces to a reachability

problem on graphs. Need

space/time efficient algorithms

Here, we may also apply

algorithms to classify races

(some of these  boxes will become clear later in the slides)
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Let us now discuss these 5 steps in our 
example domain: event-driven applications

These 5 steps need to be taken for any 
other domain
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• "Normal", C-like, memory locations for 
JavaScript variables

• Functions are treated like "normal" locations

• HTML DOM elements

• Event, event-target and event-handler tuple

31

Memory 
LocationsStep 1:
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Memory Locations: Example
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<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

<img src=“img1.png”  onload=“SAE=‘poor’;”>

<img src=“img2.png”                   onload=“alert(SAE);”>

</body>

</html>



Martin Vechev

… is a partial order (A, ≼ ) 

33

Happens-
Before 
Model

Step 2:
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… is a partial order (A, ≼ ) 

34

Happens-
Before 
Model

First, define the contents of A, i.e. atomic action
 E.g.:  parsing a single HTML element, executing a script, processing an 

event handler

Step 2:
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… is a partial order (A, ≼ ) 
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Happens-
Before 
Model

First, define the contents of A, i.e. atomic action
 E.g.:  parsing a single HTML element, executing a script, processing an 

event handler

Then, define ≼ , i.e. how to order actions
 E.g.: parsing of HTML elements of the web page is ordered

Step 2:
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<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

<img src=“img1.png”  onload=“SAE=‘poor’;”>

<img src=“img2.png”                   onload=“alert(SAE);”>

</body>

</html>

Happens-Before: Example

36

a data race on SAE
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Happens-
Before 
Model

Memory 
Locations

Steps 3 and 4 : Define Race Detection Algorithm

37

??
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Dynamic Race Detection: Theorems
(that an analyzer should ensure)

No false positives: if the Analysis reports a race for a given 
execution then the execution for  sure contains a race

38

No false negatives: if the Analysis reports no races on an 
execution, then the execution must not contain a race
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Synchronization done with read/writes
quickly leads to thousands of false races

Massive number of event handlers
quickly causes space blow-up in analysis data structures

39

Two Challenges Affecting Steps 3 and 4
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False Positives: Example
<html><body>

<script>

var init = false, y = null;

function f() {

if (init) 

alert(y.g);

else 

alert("not ready");

}

</script>

<input type="button“ id="b1“

onclick="javascript:f()">

<script>

y = { g:42 };

init = true;

</script>

</body></html>

• 3 variables with races:

init

y

y.g

• some races are synchronization:

init

• reports false races on variables:

y

y.g
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Wanted: “guaranteed” races

41

Intuition: identify races that are 

guaranteed to exist. 

We  report races on variable 

init

But not on:

y

y.g

Because races on y and y.g are 

covered by the race on init

<html><body>

<script>

var init = false, y = null;

function f() {

if (init) 

alert(y.g);

else 

alert("not ready");

}

</script>

<input type="button“ id="b1“

onclick="javascript:f()">

<script>

y = { g:42 };

init = true;

</script>

</body></html>
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Synchronization with read/writes
race coverage eliminates false races

Massive number of event handlers
quickly causes space blow-up in analysis data structures

42



Two Challenges Affecting Steps 3 and 4
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A race detector should compute races.  The basic query is whether 
two operations a and b are ordered: 

a ≼ b

Observation: represent ≼ (the happens-before of an execution 
trace) as a directed acyclic graph and perform graph connectivity 
queries to answer a ≼ b

Report a race if a and b are not reachable from one another, they 
teach the same memory location and one is a write.

Computing Races
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Example ≼ built from a trace

44

A

B C

D

E

The DAG representing ≼
(Hasse diagram)Lets take the trace: ABCDE. 

If the happens-before tells us that B and C

need not be ordered, but all others are ordered,

then we obtain the following graph on the right,

also written in text as:

This graph captures that we not only have ABCDE

as a trace but we also have ACBDE as a trace

In this example, we would have a race between B and C

if actions B and C were touching the same memory location

and one of them was writing to that location.

≼ = { ( A, B), (A, C), (B, D), (C, D), (D, E) }
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a ≼ b via BFS

45

A

B C

D

E

M  - number of edges

N  - number of nodes

Query Time:   O(M)

Space        :   O(N)

?
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A

B C

D

E

A vector clock vc is a map:

vc  Nodes   Nat

associate a vector clock 

with each node

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

1,0,0,0,0 ⊑ 1,1,1,1,0
it follows that A ≼ D

1,1,0,0,0 ⋢ 1,0,1,0,0
it follows that B ⋠ C

a ≼ b via vector clocks

46

In this example graph, Nodes = {A,B,C,D,E}

?
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A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

a ≼ b via vector clocks

47

At a given node, its vector clock 

captures who can reach that node. 

For example, for node C, its vector 

clock vc-C1,0,1,0,0 denotes that:

A can reach C: because vc-C(A) = 1

B cannot reach C: because vc-C (B) = 0

C can reach C: because vc-C (C) = 1

D cannot reach C: because vc-C (D) = 0

E cannot reach C: because vc-C (E) = 0

Given two nodes, say B and C, we

can determine whether they are 

mutually unreachable by just checking:

whether vc-C(B) = 0 and vc-B(C) = 0

This is constant-time work.

?
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A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

a ≼ b via vector clocks

48

To compute the vector clocks, simply 

process each edge of the graph and join 

the vector clocks.

For instance, to compute the vector 

clock for node D, we may first process 

the edge from to B -> D, thereby 

copying the vector clock 1,1,0,0,0
from B to D.

Then, when we process the edge C -> 

D, we will join (take the max) of the 

current vector clock at D (1,1,0,0,0
) and the vector clock coming from C 

(1,0,1,0,0). 

That is, for each edge we process, we 

do O(N) work (as we need to iterate 

over each entry in the vector clock and 

the number of such entries is N).

?
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a ≼ b via vector clocks
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A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

Space Explosion

?

Pre-computation Time:  O(M  N) 

(to obtain all vector clocks)

Query  Time:   O(1)

(for a pair of nodes)

Space:   O(N2)
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A

B C

D

E

Key idea: Re-discover threads by 

partitioning the nodes into chains.

computes  a map:

c  Nodes  ChainIDs

associate a chain with each node

a ≼ b via combining chain 
decomposition with vector clocks

50

?
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A

B C

D

E

Key idea: Re-discover threads by 

partitioning the nodes into chains.

computes  a map:

c  Nodes  ChainIDs

associate a chain with each node

a ≼ b via combining chain 
decomposition with vector clocks

51

?
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A

B C

D

E

C = number of chains

Chain Computation Time: O(N3 + C  M)

Vector clock computation: O(C  M)

Query  Time: O(1)

Space:  O(C  N)

Improved

a ≼ b via combining chain    
decomposition with vector clocks 

(optimal version)

52
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A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(N3 + C  M)

Vector clock computation: O(C  M)

Query  Time: O(1)

Space:  O(C  N)

Improved

53

a ≼ b via combining chain    
decomposition with vector clocks 

(optimal version)

?
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A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(C  M)

Vector clock computation: O(C  M)

Query  Time: O(1)

Space:  O(C  N)

Improved

Improved

a ≼ b via combining chain    
decomposition with vector clocks 

(greedy version)

?
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Synchronization with read/writes
race coverage eliminates all false races

Massive number of event handlers
greedy chain decomposition + vector clocks 

space: O(C  N)   where C << N

55





Two Challenges Affecting Steps 3 and 4
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Race Detection: Web

56

Happens-
Before 
Model

Memory 
Locations

?

race 
coverage

chain 
decomposition

vector
clocks

Race Detector

Pre-computation Time: O(C  M)

Query  Time: O(1)

Space:   O(C  N)
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• Based on WebKit  Browser

– Used by Apple’s Safari and Google’s Chrome

• Check it out: http://www.eventracer.org

57

Step 5: Implement and Evaluate

http://www.eventracer.org/
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We evaluate algorithm performance and 
precision

Hopefully algorithm is fast and does not report 
too many false positives on a wide range of 
applications

58

Step 5: Implement and Evaluate
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~17 per 

web site

Experiments: Fortune 100 web sites

59

Happens-
Before 
Model

Memory 
Locations

race 
coverage

chain 
decomposition

vector
clocks

Race Detector
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Race coverage: benefit

60

Metric Mean

# race vars

Max

# race vars

All 634.6 3460

Only uncovered races 45.3 331

Filtering methods

Writing same value 0.75 12

Only local reads 3.42 43

Late attachment of event handler 16.7 117

Lazy initialization 4.3 61

Commuting operations - className, cookie 4.0 80

Race with unload 1.1 33

Remaining after all filters 17.8 261
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314 uncovered races: manual inspection

61

synchronization races: many idoms

e.g. conditionals, try-catch, …

57%25%

18%

harmful races: many cases of 
reading from undefined, 

new bugs:UI glitches, broken 
functionality after a race, needs 
page refresh, missing event 
handlers, broken analytics, …

harmless races
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Metric Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition 544MB 25181MB

Vector clocks + chain decomposition 5MB 171MB

62

Algorithm: Space
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Metric Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition >0.1sec OOM

Vector clocks + chain decomposition 0.04sec 2.4sec

Breadth-first search >22sec TIMEOUT

Algorithm: Time
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Modern Dynamic Race Detection: 5 Steps

Step 1: Define Memory locations (on which races can happen)

Usually easy but there can be issues (framework vs. user-code)

Step 2: Define Happens-Before Model (how operations are ordered)

Can be tricky to get right due to subtleties of concurrency

Step 3: Come up with an Algorithm to detect races

Hard to get good asymptotic complexity  + correctness

Step 4: Come up with techniques (algorithm, filters) to remove harmless races

Needs to answer what harmless means

Step 5: Implement Algorithm and Evaluate

Important to have low instrumentation overhead
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Check it Out

65

http://www.eventracer.org

http://www.eventracer.org/android

Web: 

Android: 

https://github.com/eth-srl/All Open Source:

http://www.eventracer.org/
http://www.eventracer.org/
https://github.com/eth-srl/

