
Martin Vechev

Software Architecture and

Engineering: Part II

ETH Zurich, Spring 2016

Prof. Martin Vechev
http://www.srl.inf.ethz.ch/

http://www.srl.inf.ethz.ch/

Martin Vechev

SAE: Part II

Static

Analysis
Second

Project

Alias

Analysis

Relational

Analysis

Interval

Analysis

Semantics

&

Theory

Assertions

Framework

SMT

solver

Symbolic

Reasoning

Program

Repair

Concolic

Execution
Symbolic

Execution

Web &

Mobile

Apps

Race

Detection

Context

Bounded Dynamic

Analysis

2

Today

Martin Vechev

Dynamic Race Detection

• A popular kind of dynamic analysis
– The analysis is an under-approximation: it

considers a subset of the program behaviors

• Highly effective for finding concurrency bugs

• Many different variants
– Interesting trade-off between asymptotic

complexity and precision of the analysis

Martin Vechev

Today

We will illustrate the key concepts of race
detection on a rich application domain that is
quite prevalent today, namely event-driven
applications such as Web pages and Android

All concepts we study today apply to other
settings: e.g. regular concurrent Java programs.

Martin Vechev 5

~ 640 million web pages~ 1 billion smartphones

Reacts to events: user clicks, arrival of network requests

Motivation: Event-Driven Applications

Martin Vechev

Wanted: fast response time

Highly Asynchronous,

Complex control flow

Event-Driven Applications

Martin Vechev 7

Looks Like This

Martin Vechev 8

This is what Runs

Martin Vechev

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

9

Non-determinism: network latency

Martin Vechev

fetch img1.png

10

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

fetch img1.png

11

fetch img2.png

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

fetch img1.png

12

fetch img2.png

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

fetch img1.png

13

fetch img2.png

Non-determinism: network latency

great

Martin Vechev

fetch img1.png

14

fetch img2.png

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

fetch img1.png

15

fetch img2.png

img1.png loaded

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

fetch img1.png

16

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

fetch img1.png

17

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

poor

Martin Vechev

What do we learn from these?

Asynchrony + Shared Memory

18

Non-Determinism

Unwanted Behavior

Martin Vechev

What do we learn from these?

Asynchrony + Shared Memory

19

Lets phrase the problem as data race detection

Non-Determinism

Unwanted Behavior

Martin Vechev

What is a Data Race ?

Martin Vechev

What is a Data Race ?

Semantically, a data race occurs when we have a reachable

program state where:

• we have two outgoing transitions by two different threads

• the two threads access the same memory location

• one of the accesses is a write

Martin Vechev

Examples

Thread T1: Thread T2:

fork T2

X = 1 X = 2

Data Race on X Program has No Data Races

Thread T1: Thread T2:

X = 1 X = 2
fork T2

The program has a reachable state

where both X = 1 and X = 2

are enabled

The program does not have a reachable

state where both X = 1 and X = 2

are enabled

Martin Vechev

Wanted

23

race 1

race 2

race 3

….

race N

Race Detector

Martin Vechev

Naïve Algorithm

The definition of a data race suggests a naïve algorithm

which finds all races of a program given some input states.

The algorithm simply enumerates all reachable states of the

concurrent program from the initial input states and checks

the definition on each such reachable state.

Martin Vechev

Naïve Algorithm

Does Not Scale to Real-World Programs

The definition of a data race suggests a naïve algorithm

which finds all races of a program given some input states.

The algorithm simply enumerates all reachable states of the

concurrent program from the initial input states and checks

the definition on each such reachable state.

Martin Vechev

In Practice

In practice, algorithms aim to scale to large programs by being more

efficient and not keeping program states around. To accomplish that,

they weaken their guarantees.

We will see the guarantees they provide a little later, but at this point it

is sufficient to mention that a typical guarantee is that the first race the

algorithm repots is a real race, but any subsequent reported races after

the first race are not guaranteed to exist, that is, they may be false

positives, a major issue to deal with for any modern analyzer.

False positives exist because of user-defined synchronization.

Martin Vechev

Example of a False Positive Race
(on variable X)

Initially: X = Y = 0

Thread T1: || Thread T2:

while(Y == 0); X = 0
X = 1 Y = 1

A state of the art race detector may report a race on X and Y

Martin Vechev

Modern Dynamic Race Detection: 5 Steps

Step 1: Define Memory locations (on which races can happen)

Usually easy but there can be issues (framework vs. user-code)

Step 2: Define Happens-Before Model (how operations are ordered)

Can be tricky to get right due to subtleties of concurrency

Step 3: Come up with an Algorithm to detect races

Hard to get good asymptotic complexity + correctness

Step 4: Come up with techniques (algorithm, filters) to remove harmless races

Needs to answer what harmless means

Step 5: Implement Algorithm and Evaluate

Important to have low instrumentation overhead

Martin Vechev

Dynamic Race Detection: Flow

Program Build HB
trace Find

Races

HB graph

obtained by

running the

program

Here, we use

the definition of

happens-before

A directed

acyclic graph

(DAG)

Query the graph for pairs of

mutually unreachable nodes.

Reduces to a reachability

problem on graphs. Need

space/time efficient algorithms

Here, we may also apply

algorithms to classify races

(some of these boxes will become clear later in the slides)

Martin Vechev

Let us now discuss these 5 steps in our
example domain: event-driven applications

These 5 steps need to be taken for any
other domain

Martin Vechev

• "Normal", C-like, memory locations for
JavaScript variables

• Functions are treated like "normal" locations

• HTML DOM elements

• Event, event-target and event-handler tuple

31

Memory
LocationsStep 1:

Martin Vechev

Memory Locations: Example

32

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Martin Vechev

… is a partial order (A, ≼)

33

Happens-
Before
Model

Step 2:

Martin Vechev

… is a partial order (A, ≼)

34

Happens-
Before
Model

First, define the contents of A, i.e. atomic action
 E.g.: parsing a single HTML element, executing a script, processing an

event handler

Step 2:

Martin Vechev

… is a partial order (A, ≼)

35

Happens-
Before
Model

First, define the contents of A, i.e. atomic action
 E.g.: parsing a single HTML element, executing a script, processing an

event handler

Then, define ≼ , i.e. how to order actions
 E.g.: parsing of HTML elements of the web page is ordered

Step 2:

Martin Vechev

<html>

<head></head>

<body>

<script>

var SAE = “great”;

</script>

</body>

</html>

Happens-Before: Example

36

a data race on SAE

Martin Vechev

Happens-
Before
Model

Memory
Locations

Steps 3 and 4 : Define Race Detection Algorithm

37

??

Martin Vechev

Dynamic Race Detection: Theorems
(that an analyzer should ensure)

No false positives: if the Analysis reports a race for a given
execution then the execution for sure contains a race

38

No false negatives: if the Analysis reports no races on an
execution, then the execution must not contain a race

Martin Vechev

Synchronization done with read/writes
quickly leads to thousands of false races

Massive number of event handlers
quickly causes space blow-up in analysis data structures

39

Two Challenges Affecting Steps 3 and 4

Martin Vechev

False Positives: Example
<html><body>

<script>

var init = false, y = null;

function f() {

if (init)

alert(y.g);

else

alert("not ready");

}

</script>

<input type="button“ id="b1“

onclick="javascript:f()">

<script>

y = { g:42 };

init = true;

</script>

</body></html>

• 3 variables with races:

init

y

y.g

• some races are synchronization:

init

• reports false races on variables:

y

y.g

Martin Vechev

Wanted: “guaranteed” races

41

Intuition: identify races that are

guaranteed to exist.

We report races on variable

init

But not on:

y

y.g

Because races on y and y.g are

covered by the race on init

<html><body>

<script>

var init = false, y = null;

function f() {

if (init)

alert(y.g);

else

alert("not ready");

}

</script>

<input type="button“ id="b1“

onclick="javascript:f()">

<script>

y = { g:42 };

init = true;

</script>

</body></html>

Martin Vechev

Synchronization with read/writes
race coverage eliminates false races

Massive number of event handlers
quickly causes space blow-up in analysis data structures

42



Two Challenges Affecting Steps 3 and 4

Martin Vechev 43

A race detector should compute races. The basic query is whether
two operations a and b are ordered:

a ≼ b

Observation: represent ≼ (the happens-before of an execution
trace) as a directed acyclic graph and perform graph connectivity
queries to answer a ≼ b

Report a race if a and b are not reachable from one another, they
teach the same memory location and one is a write.

Computing Races

Martin Vechev

Example ≼ built from a trace

44

A

B C

D

E

The DAG representing ≼
(Hasse diagram)Lets take the trace: ABCDE.

If the happens-before tells us that B and C

need not be ordered, but all others are ordered,

then we obtain the following graph on the right,

also written in text as:

This graph captures that we not only have ABCDE

as a trace but we also have ACBDE as a trace

In this example, we would have a race between B and C

if actions B and C were touching the same memory location

and one of them was writing to that location.

≼ = { (A, B), (A, C), (B, D), (C, D), (D, E) }

Martin Vechev

a ≼ b via BFS

45

A

B C

D

E

M - number of edges

N - number of nodes

Query Time: O(M)

Space : O(N)

?

Martin Vechev

A

B C

D

E

A vector clock vc is a map:

vc  Nodes  Nat

associate a vector clock

with each node

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

1,0,0,0,0 ⊑ 1,1,1,1,0
it follows that A ≼ D

1,1,0,0,0 ⋢ 1,0,1,0,0
it follows that B ⋠ C

a ≼ b via vector clocks

46

In this example graph, Nodes = {A,B,C,D,E}

?

Martin Vechev

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

a ≼ b via vector clocks

47

At a given node, its vector clock

captures who can reach that node.

For example, for node C, its vector

clock vc-C1,0,1,0,0 denotes that:

A can reach C: because vc-C(A) = 1

B cannot reach C: because vc-C (B) = 0

C can reach C: because vc-C (C) = 1

D cannot reach C: because vc-C (D) = 0

E cannot reach C: because vc-C (E) = 0

Given two nodes, say B and C, we

can determine whether they are

mutually unreachable by just checking:

whether vc-C(B) = 0 and vc-B(C) = 0

This is constant-time work.

?

Martin Vechev

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

a ≼ b via vector clocks

48

To compute the vector clocks, simply

process each edge of the graph and join

the vector clocks.

For instance, to compute the vector

clock for node D, we may first process

the edge from to B -> D, thereby

copying the vector clock 1,1,0,0,0
from B to D.

Then, when we process the edge C ->

D, we will join (take the max) of the

current vector clock at D (1,1,0,0,0
) and the vector clock coming from C

(1,0,1,0,0).

That is, for each edge we process, we

do O(N) work (as we need to iterate

over each entry in the vector clock and

the number of such entries is N).

?

Martin Vechev

a ≼ b via vector clocks

49

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

Space Explosion

?

Pre-computation Time: O(M  N)

(to obtain all vector clocks)

Query Time: O(1)

(for a pair of nodes)

Space: O(N2)

Martin Vechev

A

B C

D

E

Key idea: Re-discover threads by

partitioning the nodes into chains.

computes a map:

c  Nodes  ChainIDs

associate a chain with each node

a ≼ b via combining chain
decomposition with vector clocks

50

?

Martin Vechev

A

B C

D

E

Key idea: Re-discover threads by

partitioning the nodes into chains.

computes a map:

c  Nodes  ChainIDs

associate a chain with each node

a ≼ b via combining chain
decomposition with vector clocks

51

?

Martin Vechev

A

B C

D

E

C = number of chains

Chain Computation Time: O(N3 + C  M)

Vector clock computation: O(C  M)

Query Time: O(1)

Space: O(C  N)

Improved

a ≼ b via combining chain
decomposition with vector clocks

(optimal version)

52

Martin Vechev

A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(N3 + C  M)

Vector clock computation: O(C  M)

Query Time: O(1)

Space: O(C  N)

Improved

53

a ≼ b via combining chain
decomposition with vector clocks

(optimal version)

?

Martin Vechev 54

A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(C  M)

Vector clock computation: O(C  M)

Query Time: O(1)

Space: O(C  N)

Improved

Improved

a ≼ b via combining chain
decomposition with vector clocks

(greedy version)

?

Martin Vechev

Synchronization with read/writes
race coverage eliminates all false races

Massive number of event handlers
greedy chain decomposition + vector clocks

space: O(C  N) where C << N

55





Two Challenges Affecting Steps 3 and 4

Martin Vechev

Race Detection: Web

56

Happens-
Before
Model

Memory
Locations

?

race
coverage

chain
decomposition

vector
clocks

Race Detector

Pre-computation Time: O(C  M)

Query Time: O(1)

Space: O(C  N)

Martin Vechev

• Based on WebKit Browser

– Used by Apple’s Safari and Google’s Chrome

• Check it out: http://www.eventracer.org

57

Step 5: Implement and Evaluate

http://www.eventracer.org/

Martin Vechev

We evaluate algorithm performance and
precision

Hopefully algorithm is fast and does not report
too many false positives on a wide range of
applications

58

Step 5: Implement and Evaluate

Martin Vechev

~17 per

web site

Experiments: Fortune 100 web sites

59

Happens-
Before
Model

Memory
Locations

race
coverage

chain
decomposition

vector
clocks

Race Detector

Martin Vechev

Race coverage: benefit

60

Metric Mean

race vars

Max

race vars

All 634.6 3460

Only uncovered races 45.3 331

Filtering methods

Writing same value 0.75 12

Only local reads 3.42 43

Late attachment of event handler 16.7 117

Lazy initialization 4.3 61

Commuting operations - className, cookie 4.0 80

Race with unload 1.1 33

Remaining after all filters 17.8 261

Martin Vechev

314 uncovered races: manual inspection

61

synchronization races: many idoms

e.g. conditionals, try-catch, …

57%25%

18%

harmful races: many cases of
reading from undefined,

new bugs:UI glitches, broken
functionality after a race, needs
page refresh, missing event
handlers, broken analytics, …

harmless races

Martin Vechev

Metric Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition 544MB 25181MB

Vector clocks + chain decomposition 5MB 171MB

62

Algorithm: Space

Martin Vechev 63

Metric Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition >0.1sec OOM

Vector clocks + chain decomposition 0.04sec 2.4sec

Breadth-first search >22sec TIMEOUT

Algorithm: Time

Martin Vechev

Modern Dynamic Race Detection: 5 Steps

Step 1: Define Memory locations (on which races can happen)

Usually easy but there can be issues (framework vs. user-code)

Step 2: Define Happens-Before Model (how operations are ordered)

Can be tricky to get right due to subtleties of concurrency

Step 3: Come up with an Algorithm to detect races

Hard to get good asymptotic complexity + correctness

Step 4: Come up with techniques (algorithm, filters) to remove harmless races

Needs to answer what harmless means

Step 5: Implement Algorithm and Evaluate

Important to have low instrumentation overhead

Martin Vechev

Check it Out

65

http://www.eventracer.org

http://www.eventracer.org/android

Web:

Android:

https://github.com/eth-srl/All Open Source:

http://www.eventracer.org/
http://www.eventracer.org/
https://github.com/eth-srl/

