
Software Architecture
and Engineering

Requirements Elicitation

Peter Müller
Chair of Programming Methodology

Spring Semester 2016

2

Main Activities of Software Development

These activities may
overlap and are typically
executed iteratively

Peter Müller – Software Architecture and Engineering

Validation

Requirements
Elicitation

Implementation

Design

2. Requirements Elicitation

3

Peter Müller – Software Architecture and Engineering

4

Peter Müller – Software Architecture and Engineering

Software – a Poor Track Record

 Software bugs cost the U.S. economy an estimated
$59.5 billion annually, or about 0.6 percent of the
gross domestic product

31%

53%16%

 84% of all software projects are
unsuccessful
- Late, over budget, less features than

specified, cancelled
 The average unsuccessful project

- 222% longer than planned
- 189% over budget
- 61% of originally specified features

2. Requirements Elicitation

5

Peter Müller – Software Architecture and Engineering

Why IT-Projects Fail
 Top 5 reasons measured by frequency of responses by IT

executive management

2. Requirements Elicitation

6

Peter Müller – Software Architecture and Engineering

Why IT-Projects Fail
 Top 5 reasons measured by frequency of responses by IT

executive management
 Failure profiles of yellow projects

1. Lack of User Input
2. Incomplete Requirements
3. Changing Requirements
4. Lack of Executive Support
5. Technology Incompetence 7%

7.50%
11.80%

12.30%

12.80%

2. Requirements Elicitation

7

Peter Müller – Software Architecture and Engineering

Why IT-Projects Fail
 Top 5 reasons measured by frequency of responses by IT

executive management
 Failure profiles of yellow projects

1. Lack of User Input
2. Incomplete Requirements
3. Changing Requirements
4. Lack of Executive Support
5. Technology Incompetence

 Failure profiles of red projects
1. Incomplete Requirements
2. Lack of User Involvement
3. Lack of Resources
4. Unrealistic Expectations
5. Lack of Executive Support

7%
7.50%

11.80%
12.30%

12.80%

9%
9.90%

10.60%
12.40%

13.10%

2. Requirements Elicitation

8

Peter Müller – Software Architecture and Engineering

2. Requirements Elicitation

2.1 Requirements
2.2 Activities

2. Requirements Elicitation – Requirements

9

Peter Müller – Software Architecture and Engineering

Requirements

 Definition:
A feature that the system must have or a constraint
it must satisfy to be accepted by the client

[Brügge, Dutoit]

 Requirements engineering defines the
requirements of the system under construction

2. Requirements Elicitation – Requirements

10

Peter Müller – Software Architecture and Engineering

Requirements

 Describe the user’s view of the system
 Identify the what of the system, not the how

 Part of requirements
- Functionality
- User interaction
- Error handling
- Environmental

conditions (interfaces)

 Not part of requirements
- System structure
- Implementation

technology
- System design
- Development

methodology

2. Requirements Elicitation – Requirements

11

Peter Müller – Software Architecture and Engineering

 Functionality
- What is the software supposed to do?

 External interfaces
- Interaction with people, hardware, other software

 Performance
- Speed, availability, response time, recovery time

 Attributes (quality requirements)
- Portability, correctness, maintainability, security

 Design constraints
- Required standards, operating environment, etc.

Types of Requirements
2. Requirements Elicitation – Requirements

12

Peter Müller – Software Architecture and Engineering

 Functionality
- What is the software supposed to do?

 External interfaces
- Interaction with people, hardware, other software

 Performance
- Speed, availability, response time, recovery time

 Attributes (quality requirements)
- Portability, correctness, maintainability, security

 Design constraints
- Required standards, operating environment, etc.

Types of Requirements
Functional

Requirements

2. Requirements Elicitation – Requirements

13

Peter Müller – Software Architecture and Engineering

 Functionality
- What is the software supposed to do?

 External interfaces
- Interaction with people, hardware, other software

 Performance
- Speed, availability, response time, recovery time

 Attributes (quality requirements)
- Portability, correctness, maintainability, security

 Design constraints
- Required standards, operating environment, etc.

Types of Requirements
Functional

Requirements

Nonfunctional
Requirements

2. Requirements Elicitation – Requirements

14

Peter Müller – Software Architecture and Engineering

Functionality includes

 Relationship of outputs to inputs

 Response to abnormal situations

 Exact sequence of operations

 Validity checks on the inputs

 Effect of parameters

2. Requirements Elicitation – Requirements

15

Peter Müller – Software Architecture and Engineering

External Interfaces

 Detailed description of all
inputs and outputs
- Description of purpose
- Source of input, destination

of output
- Valid range, accuracy,

tolerance
- Units of measure
- Relationships to other

inputs/outputs
- Screen and window formats
- Data and command formats

Software
System

Other
software

Users

Networks
Hardware

2. Requirements Elicitation – Requirements

16

Peter Müller – Software Architecture and Engineering

Performance

 Static numerical requirements
- Number of terminals supported
- Number of simultaneous users supported
- Amount of information handled

 Dynamic numerical requirements
- Number of transactions processed within certain time

periods (average and peak workload)
- Example: 95% of the transactions shall be processed in

less than 1 second

2. Requirements Elicitation – Requirements

17

Peter Müller – Software Architecture and Engineering

Constraints (Pseudo Requirements)

 Standard compliance
- Report format, audit tracing, etc.

 Implementation requirements
- Tools, programming languages, etc.
- Development technology and methodology should not be

constrained by the client. Fight for it!
 Operations requirements

- Administration and management of the system
 Legal requirements

- Licensing, regulation, certification

2. Requirements Elicitation – Requirements

18

Peter Müller – Software Architecture and Engineering

Quality Criteria for Requirements

Correctness
Requirements

represent the client’s
view

Clarity
(Un-ambiguity)

Requirements can be
interpreted in only

one way

Consistency
Requirements do not

contradict each
other

Completeness
All possible scenarios

are described,
including exceptional

behavior

2. Requirements Elicitation – Requirements

19

Peter Müller – Software Architecture and Engineering

Quality Criteria for Requirements (cont’d)

Realism
Requirements can be

implemented and
delivered

Traceability
Each feature can be

traced to a set of
functional

requirements

Verifiability
Repeatable tests can
be designed to show
that the system fulfills

the requirements

2. Requirements Elicitation – Requirements

20

Peter Müller – Software Architecture and Engineering

Quality Criteria: Examples

 “System shall be usable by elderly people”
- Not verifiable, unclear
- Solution: “Text shall appear in letters at least 1cm high”

 “The product shall be error-free”
- Not verifiable (in practice), not realistic
- Solution: Specify test criteria

 “The system shall provide real-time response”
- Unclear
- Solution: “The system shall respond in less than 2s”

2. Requirements Elicitation – Requirements

21

Peter Müller – Software Architecture and Engineering

[Boehm 1981]

Relative Cost to Fix an Error

 The sooner a defect is found, the cheaper it is to fix

0

20

40

60

80

100

120

140

160

180

200

Requirements Design Coding Development
Testing

Acceptance
Testing

Operation

2. Requirements Elicitation – Requirements

22

Peter Müller – Software Architecture and Engineering

Requirements Validation

 A quality assurance step, usually after
requirements elicitation or analysis

 Reviews by clients and developers
- Check all quality criteria
- Future validations (testing)

 Prototyping
- Throw-away or evolutionary prototypes
- Study feasibility
- Give clients an impression of the future system
- Typical example: user interfaces

2. Requirements Elicitation – Requirements

23

Peter Müller – Software Architecture and Engineering

2. Requirements Elicitation

2.1 Requirements
2.2 Activities

2. Requirements Elicitation – Activities

24

Peter Müller – Software Architecture and Engineering

Requirements Elicitation Activities

Identifying Actors

Identifying Use Cases

Identifying Nonfunctional
Requirements

Identifying Scenarios

2. Requirements Elicitation – Activities

25

Peter Müller – Software Architecture and Engineering

Identifying Actors

 Actors represent roles
- Kind of user
- External system
- Physical environment

 Questions to ask
- Which user groups are supported by the system?
- Which user groups execute the system’s main functions?
- Which user groups perform secondary functions

(maintenance, administration)?
- With what external hardware and software will the

system interact?

2. Requirements Elicitation – Activities

26

Peter Müller – Software Architecture and Engineering

Scenarios and Use Cases

 Document the behavior of the system from the
users’ point of view

 Can be understood by customer and users

 A scenario is an instance of a use case

Scenario
 Describes common cases

 Focus on understandability

Use Case
 Generalizes scenarios to

describe all possible cases
 Focus on completeness

2. Requirements Elicitation – Activities

27

Peter Müller – Software Architecture and Engineering

Scenarios

 Definition:
A narrative description of what people do and
experience as they try to make use of computer
systems and applications

[M. Carroll, 1995]

 Different Applications during the software lifecycle
- Requirements Elicitation
- Client Acceptance Test
- System Deployment

2. Requirements Elicitation – Activities

28

Scenario Example

When Alice wants to borrow a book, she takes it to
the checkout station. There she first scans her
personal library card. Then she scans the barcode
label of the book. If she has no borrowed books that
are overdue and the book is not reserved for another
person, the systems registers the book as being
borrowed by her and turns off the electronic safety
device of that book. Several books can be checked
out together. The checkout procedure is terminated
by pressing a ‘Finished’ key. The system produces a
loan slip for the books that have been borrowed.

Peter Müller – Software Architecture and Engineering

[Adapted from Glinz 2000]

2. Requirements Elicitation – Activities

29

Peter Müller – Software Architecture and Engineering

Identifying Scenarios: Questions to Ask

 What are the tasks the actor wants the system to
perform?

 What information does the actor access?

 Which external changes does the actor need to
inform the system about?

 Which events does the system need to inform the
actor about?

2. Requirements Elicitation – Activities

30

Peter Müller – Software Architecture and Engineering

Sources of Information

Client
Users

Elicitation

Existing
documentation

Task observation

2. Requirements Elicitation – Activities

31

Peter Müller – Software Architecture and Engineering

Sources of Information

Client
Users

Elicitation

Existing
documentation

Task observation

Speak to the
end user, not

just to the client

2. Requirements Elicitation – Activities

32

Peter Müller – Software Architecture and Engineering

Sources of Information

Client
Users

Elicitation

Existing
documentation

Task observation

Speak to the
end user, not

just to the client

 User manuals
 Procedure manuals
 Company standards
 etc.

2. Requirements Elicitation – Activities

33

Peter Müller – Software Architecture and Engineering

Use Cases

 A list of steps describing the interaction between an
actor and the system, to achieve a goal

 A use case consists of
- Unique name
- Initiating and participating actors
- Flow of events
- Entry conditions
- Exit conditions
- Exceptions
- Special requirements

2. Requirements Elicitation – Activities

34

Peter Müller – Software Architecture and Engineering

Use Case Example: Event Flow

Actor steps
1. Scans library card

3. selects ‘Borrow’ function
5. scans label of book to be

borrowed

7. presses ‘Finish’ key

System Steps
2. validates the card; returns

the card; displays user
data; displays ‘Select
function’ dialog

4. displays ‘Borrow’ dialog
6. identifies book; records

book as borrowed, unlocks
safety label; displays book
data

8. prints loan slip; displays
‘Finished’ message

2. Requirements Elicitation – Activities

35

Peter Müller – Software Architecture and Engineering

Use Case Example: Event Flow

Actor steps
1. Scans library card

3. selects ‘Borrow’ function
5. scans label of book to be

borrowed

7. presses ‘Finish’ key

System Steps
2. validates the card; returns

the card; displays user
data; displays ‘Select
function’ dialog

4. displays ‘Borrow’ dialog
6. identifies book; records

book as borrowed, unlocks
safety label; displays book
data

8. prints loan slip; displays
‘Finished’ message

Also specify alternative flows
and exceptional cases

2. Requirements Elicitation – Activities

36

Peter Müller – Software Architecture and Engineering

Identifying Nonfunctional Requirements

 Nonfunctional requirements are defined together
with functional requirements because of
dependencies
- Example: Support for novice users requires help

functionality
 Elicitation is typically done with check lists
 Resulting set of nonfunctional requirements

typically contains conflicts
- Real-time requirement suggests C or Assembler

implementation
- Maintainability suggests OO-implementation

2. Requirements Elicitation – Activities

	Software Architecture�and Engineering�Requirements Elicitation
	Main Activities of Software Development
	Foliennummer 3
	Software – a Poor Track Record
	Why IT-Projects Fail
	Why IT-Projects Fail
	Why IT-Projects Fail
	2. Requirements Elicitation
	Requirements
	Requirements
	Types of Requirements
	Types of Requirements
	Types of Requirements
	Functionality includes
	External Interfaces
	Performance
	Constraints (Pseudo Requirements)
	Quality Criteria for Requirements
	Quality Criteria for Requirements (cont’d)
	Quality Criteria: Examples
	Relative Cost to Fix an Error
	Requirements Validation
	2. Requirements Elicitation
	Requirements Elicitation Activities
	Identifying Actors
	Scenarios and Use Cases
	Scenarios
	Scenario Example
	Identifying Scenarios: Questions to Ask
	Sources of Information
	Sources of Information
	Sources of Information
	Use Cases
	Use Case Example: Event Flow
	Use Case Example: Event Flow
	Identifying Nonfunctional Requirements

