
Assignment 1 (solution)

Exercise 1 - Design and Documentation

The graph design would make sense if we rarely modify the source and target
- otherwise it would make more sense to have them as arguments to shortestPath.

In order to improve efficiency we could cache the shortest path by recom-
puting it lazily or eagerly:

• Lazily:
class STGraph{
List<Edge> edges;
Node source;
Node target;

public STGraph(Node source, Node target){
this.source=source;
this.target = target;

}

public void setST(Node source, Node target){
this.source=source;
this.target = target;
sp = null;

}

private List<Node> sp;

void addEdge(Edge e){
edges.Add(e);
sp = null;

}

List<Node> shortestPath(){
if (sp == null)
sp = computeShortestPath()

return sp;
}
private List<Node> computeShortestPath()

}

– This should not influence the client-visible documentation, except
perhaps for the memory consumption.

– One could add the following documentation:

1. postcondition for addEdge: sp == null
2. postcondition for shortestPath: old(sp == null)|| result == sp

1

• Eagerly:

class STGraph{
List<Edge> edges;
Node source;
Node target;

private List<Node> sp;

public STGraph(Node source, Node target){
this.source=source;
this.target = target;
sp = computeShortestPath();

}

public void setST(Node source, Node target){
this.source=source;
this.target = target;
sp = computeShortestPath();

}
public void addEdge(Edge e){
edges.Add(e);
sp = computeShortestPath();

}

public List<Node> shortestPath(){
return sp;

}

private List<Node> computeShortestPath(){
...

}
}

– This should not influence the client-visible documentation, except
for the complexity of addEdge.

– One could add the following documentation:

1. class invariant for class STGraph: sp != null
2. postcondition for shortestPath: result == sp

We could also think of a more involved design where we keep the inter-
mediate data of the shortest-path algorithm and update it incrementally when
adding edges.

2

Exercise 2 - Design

1. This is one possible scenario:

(a) A new list ’a’ is created.

(b) This list is cloned to create a list ’b’.

(c) List ’b’ is modified by calling method set.

(d) List ’a’ is modified by calling method set and a new ListRep object
is created even though the list is technically not shared anymore.

2. You could use actual reference counting instead of using the boolean field
shared.

3. Yes, for instance:

(a) A new list ’a’ is created.

(b) This list is cloned to create a list ’b’.

(c) List ’b’ is not used anymore and is removed from the heap by the
garbage collector.

(d) List ’a’ is modified by calling method set and a new ListRep object
is created even though the list is technically not shared anymore.

4. You could implement a finalizer that decreases the shared counter before
the object is eventually removed from the heap.

3

Exercise 3 - Requirements Elicitation

There is no authoritative solution to this exercise since it depends on the dis-
cussion in the exercise session. The following should be mainly seen as hints:

• Actors:

– Customer

– Flower Shop Manager

– Messenger

• Some open issues:

– How does the messenger communicate with the web browser?

– How are undelivered flower orders handled?

– Can he use the system to "push" flowers that will expire soon?

– Who is going to host the system?

• Scenarios:

– Scenario 1 (normal)

1. Jill wishes to purchase some flowers.
2. She logs into the internet browser with her user name and pass-

word.
3. She selects the flowers of her choosing and presses check-out.
4. For the address, she selects her home address.
5. Jill pays with her credit card.
6. The system offers her a receipt for the delivery and her credit

card is charged.

– Scenario 2 (exceptional)

1. Bob wants to become a frequent customer for the web shop.
2. He enters the URL of the shop and selects new customer.
3. Bob gives his preferred username.
4. The system finds that there is already a username existing, and

notifies Bob that he cannot have this username.

– Scenario 3 (unspecified)

* Sarah has already checked out and printed her receipt.

* She realizes that the address she selected was incorrect.

* She immediately logs back in and selects her last order.

* The system tells her that it hasn’t been prepared yet and that she
is able to modify the order.

* She changes the address to the correct one and prints out the
new receipt.

• Non-functional requirements:

4

– Client should be able to use standard web browsers.

– Respond time of the system should be within 3 seconds.

– The system should support at least 400 clients.

– The system should use the existing point of sales system.

5

