
Assignment 2 (Solution)

Exercise 1
1. Q: Why are method equals and method hashcode probably pure?

Under which circumstances are they not pure?
A: They are probably pure because we don’t know the implementa-
tion of String.equals and Image.hashcode which might violate the
purity specification.
Q: Is is possible to change the class design such that they are pure
under all circumstances?
A: One possibility would be to provide a pure implementation of meth-
ods String.equals and Image.hashcode. Note that if we extract
them into separate methods we then need to make them final (other-
wise subclasses might override them with non-pure version).

2. One could instrument the following program operations:

• object allocations to keep track of newly allocated objects that
can be modified inside pure methods

• field writes to check whether the method is allowed to modify
given field

• method entry/exit to update global instrumentation state de-
pending on whether the method is pure or not.

The following shows a sketch of non-thread safe instrumentation:

class PurityChecks
{

// Contains objects that pure method is allowed to modify
static IdentityHashSet<object> fresh = new IdentityHashSet<object>();
// Denotes whether we are restricting method
// to modify only freshly created objects.
// Set to true for all methods annotated as @Pure
// and all methods called transitively from @Pure methods

1

static boolean checking = false;
}
class ImageFile
{

String file;
Image image;

public Image getImage() {
if (this.image == null) {

Image img = new Image();
// whenever an object is created we add
// it to the set of object that can be modified
+ PurityChecks.fresh.insert(img);
... load image

// whenever we modify an object
// we check if this is allowed
+ assert !PurityChecks.checking || PurityChecks.fresh.contains(this);
this.image = img;

}

return image;
}

@Pure
boolean equals(Object o) {

// Since this method has @Pure annotation we:
// 1. Save the state of the caller
+ boolean checking = PurityChecks.checking;
+ IdentityHashSet<object> fresh = PurityChecks.fresh;
// 2. Initialize the PurityChecks
// fresh set is initially empty as we are allowed to
// modify only newly created objects
+ PurityChecks.checking = true;
+ PurityChecks.fresh = new IdentityHashSet<object>();

if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

// add newly allocated objects to the global set to allow
// their modification after we return from this method
+ fresh.addAll(PurityCheck.fresh);
// Restore the state of caller,
// should be executed before each return statement

2

+ PurityChecks.checking = checking;
+ PurityChecks.fresh = fresh;

}

@Pure
int hashcode() {

+ var checking = PurityChecks.checking;
+ var fresh = PurityChecks.fresh;
+ PurityChecks.checking = true;
+ PurityChecks.fresh = new IdentityHashSet<object>();

if (image == null) {
return file.hashcode();

} else {
return image.hashcode() + file.hashcode();

}

+ fresh.addAll(PurityCheck.fresh);
+ PurityChecks.checking = checking;
+ PurityChecks.fresh = fresh;

}
}

3. For such designs, the instrumentation would report errors even if the
effects can’t be observed by a client. We could weaken the definition
of purity for such designs.

3

Exercise 2
Main insight: elems.Length must be strictly greater than 0 so that Add
works, therefore we get the preconditions initialElements.length > 0
and howMany > 0 in the constructors.

public class Bag {
private int[] elems;
private int count;

[ContractInvariantMethod]
private void ObjectInvariant() {

Contract.Invariant(elems != null);
Contract.Invariant(0 < elems.Length);
Contract.Invariant(0 <= count && count <= elems.Length);

}
public Bag(int[] initialElements) {

Contract.Requires(initialElements != null);
Contract.Requires(0 < initialElements.Length);
...

}
public Bag(int[] initialElements, int start, int howMany) {

Contract.Requires(0 <= start);
Contract.Requires(0 < howMany);
Contract.Requires(initialElements != null);
Contract.Requires(start + howMany <= initialElements.Length);
....

}
[Pure]
public int Count() {

....
}
public int RemoveMin() {

Contract.Requires(0 < Count());
....

}
public void Add(int x) {

Contract.Ensures(Count() == Contract.OldValue(Count()) + 1);
Contract.Ensures(elems[Contract.OldValue(Count())] == x)
Contract.Ensures(!Contract.OldValue(Count() == elems.Length) ||

elems.Length == 2*Contract.OldValue(elems.Length))
Contract.Ensures(Contract.ForAll(0, Count() - 1, i =>

elems[i] == Contract.OldValue(elems[i])))
....

}
}

4

Exercise 3
1. Student Class diagram

1

1

Student

2. (a) Classmates have the same major
(b) A student is legal iff he/she is registered

5

