
Assignment 3 - Solution

Exercise 1
1. Pseudo-code for method PlayMessage:

if (battery.isSufficientlyHigh()) {
message = messageMemory.GetMessage(i);

//it is not specified how to iterate over blocks in message
//we just assume that the GetAudioBlock returns null when out of range
AudioBlock block;
int j = 0;
while ((block = message.GetAudioBlock(j++)) != null) {

speaker.PlayAudioBlock(block);
}
userInterface.Display("message played");

} else {
userInterface.Display("battery low");

}

2. Sequence diagram:

1

Exercise 2
/* Helper */
abstract sig Bool{}{}
one sig True extends Bool{}
one sig False extends Bool{}

abstract sig Student{
id: one ID,
major: one Major,
university: lone University,
legal: Bool,
classmates: set Student,

}

sig Grad extends Student{}
sig Undergrad extends Student{}
sig ID{}
sig Major{}
sig University{}

fact unique_ids {
all disj s, t: Student | s.id != t.id

}

fact legal_in_university {
all s: Student | (s.university != none) iff (s.legal = True)

}

fact classmates_have_same_majors {
all disj s, t: Student | (s.major = t.major) iff (s in t.classmates)

}

fact no_grad_and_undergrad_are_classmates {
all s: Grad, t: Undergrad | (s not in t.classmates) and (t not in s.classmates)

}

pred show{}

run show for 5

2

Exercise 3
Properties of binary relations properties_sol.als

Properties of Binary Relations
(solution by Martin Ouimet)

1. The non-empty property can be removed.
Relation satisfying the remaining properties:

univ = {}
r = {}

2. The transitive property can be removed.
Relation satisfying the remaining properties:

univ = {a,b}
r = {(a,b), (b,a)}

3. The irreflexive property can be removed.
Relation satisfying the remaining properties:

univ = {a,b}
r = {(a,a),(b,b)}

No other individual property can be removed such that the remaining properties
are satisfied.

3

Refactoring navigation expressions File: distribution_sol.als

Distributivity of Join
(solution by Michael Craig)

Proof for part a) was not necessary.

a) Distributivity of join over union holds: for a set s and relations p and q,
suppose (A0) is in s.(p+q). Then for some AX, (AX) is in s and (AX,A0) is
in p or q, or both. Then (A0) is in either s.p or s.q, or both, so it is
certainly in s.p + s.q.

Now assume (A0) is in s.p + s.q. Then for some (AX) in s, (AX,A0) is in
either p or q. Thus (AX,A0) is certainly in p+q, so that s.(p+q) must
contain (A0).

In other words, for any atom A0, A0 is in s.(p+q) iff it is in s.p + s.q.

b) Distributivity of join over difference does not hold: consider the set s =
{(A0,A1)} and the relations p = {(A0,A1)} and q = {(A1,A1)}. Then s.(p-q) =
s.({(A0,A1)}) = {(A1)}, but s.p - s.q = {(A1)} - {(A1)} = {}.

c) Distributivity of join over intersection does not hold: consider the set s =
{(A0),(A1)} and the relations p = {(A0,A0)} and q = {(A1,A0)}. Then s.(p&q)
= s.({}) = {}, but s.p & s.q = {(A0)} & {(A0)} = {(A0)}.

4

Doris Day’s song File: everybody_sol.als

/*
A song by Doris Day goes:
Everybody loves my baby but my baby don’t love nobody but me
David Gries has pointed out that, from a strictly logical point of view,
this implies ‘I am my baby’.
Check this, by formalizing the song as some constraints,
and Gries’s inference as an assertion.
Then modify the constraints to express what Doris Day probably meant,
and show that the assertion now has a counterexample.
*/

sig Person {
loves: set Person

}

one sig Me extends Person {}

pred my_baby[b: Person] {
(all p: Person | b in p.loves) and b.loves = Me

}

assert song {
all p: Person| my_baby[p] implies Me = p

}

//run my for 3

check song for 5

5

Barber paradox File: barber_sol.als

/* Solutions to barber.als.
* Uncomment them one at a time and execute the command.
*/

/* (a) Use the analyzer to show that the model is indeed inconsistent,
* at least for villages of small sizes.
*/

/*
sig Man {shaves: set Man}
one sig Barber extends Man {}
*/

/* (b) Some feminists have noted that the paradox disappears if the existence
* of women is acknowledged. Make a new version of the model that
* classifies villagers into men (who need to be shaved) and women (who
* don’t), and show that there is now a solution.
*/

/*
abstract sig Person {shaves: set Man}
sig Man, Woman extends Person{}
one sig Barber in Person {} // must be ’in’ not ’extends’:
*/

/* (c) A more drastic solution, noted by Edsger Dijkstra, is to allow the
* possibility of there being no barber. Modify the original model
* accordingly, and show that there is now a solution.
*/

/*
sig Man {shaves: set Man}
lone sig Barber extends Man {}
*/

/* (d) Finally, make a variant of the original model that allows for multiple
* barbers. Show that there is again a solution.
*/

/*
sig Man {shaves: set Man}
some sig Barber extends Man {}
*/

fact {
Barber.shaves = {m: Man | m not in m.shaves}

}

run { }

6

Modelling the Tube File: tube_sol.als

Modeling the Tube
(solution by Greg Dennis)

There are multiple equivalent constraints. If you found different solutions,
you can use the Alloy Analyzer to test whether they are equivalent.

a) named stations are on exactly the lines as shown in graphic
Stanmore in (JubileeStation - CentralStation) - CircleStation
BakerStreet in (JubileeStation & CircleStation) - CentralStation
Epping in (CentralStation - JubileeStation) - CircleStation

b) no station (including those unnamed) is on all three lines
no (JubileeStation & CentralStation & CircleStation)

c) the Circle line forms a circle
all s: CircleStation {

one s.circle
CircleStation in s.^circle

}

d) Jubilee is a straight line starting at Stanmore
JubileeStation in Stanmore.*jubilee
all s: JubileeStation {

lone s.jubilee
s not in s.^jubilee

}

e) there’s a station between Stanmore and BakerStreet
let reach = ^jubilee | some Stanmore.reach & reach.BakerStreet

f) it is possible to travel from BakerStreet to Epping
Epping in BakerStreet.^(jubilee + central + circle)

7

